Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление

Мадрид Карлос

Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата. Эта книга наверняка поможет читателю почувствовать очарование хаоса.

 

Предисловие

Может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе? Разумеется.

Если вы читали хоть что-нибудь о хаосе, вам наверняка известен ответ на этот вопрос. Однако рассмотрим противоположную ситуацию: может ли случиться так, что в результате взмаха крыльев той же бабочки в Бразилии утихнет ураган над Сингапуром?

Ответ вы узнаете из книги, которую держите в руках. Авторы большинства трудов, посвященных теории хаоса и ее связи с метеорологией и климатологией, отвечают лишь на первый вопрос и оставляют в стороне второй. Мы же рассмотрим оба и продемонстрируем читателю две стороны хаоса. Откроем секрет: ответ на второй вопрос также будет утвердительным.

Бабочка, о которой говорится в названии этой книги, имеет намного больше власти над торнадо, чем может показаться. Бабочка Лоренца превратилась в символ теории хаоса, подобно тому, как кот Шрёдингера стал символом квантовой механики.

К сожалению, приручить бабочку Лоренца так же непросто, как и кота Шрёдингера, поскольку теория хаоса и квантовая механика нанесли два самых болезненных удара по научной идее всеобщего детерминизма, или взаимной обусловленности процессов. Неприятнее всего то, что хаос буквально окружает нас. Солнечная система, погода и климат, популяции животных, эпидемии, атмосферные вихри, капли воды, капающие из крана, некоторые химические реакции, сигаретный дым, сердцебиение, сигналы головного мозга, финансовые рынки — это лишь некоторые примеры хаотических систем. По-настоящему удивительно не то, что некоторые сложные системы являются хаотическими, а то, что хаотическими могут быть удивительно простые системы, например двойной маятник.

В этой книге речь пойдет о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата. Хаотическое поведение системы наблюдается, если она чувствительна к начальным условиям, то есть когда имеет место так называемый эффект бабочки, который мы наблюдаем каждый день в прогнозах погоды, а также, как вы убедитесь чуть позже, в исследованиях климата. Немногие темы, связанные с наукой, вызывают такой же большой интерес, как изменение климата. Но чтобы рассмотреть эту тему как настоящие ученые, мы должны отличать сенсационные сообщения СМИ от математических теорий, описывающих климат.

В двух первых главах мы поговорим о революционных последствиях теории хаоса (и заодно покажем, в чем именно ошибался один великий философ), после чего расскажем о рождении и развитии теории хаоса. В третьей главе мы объясним основные понятия, связанные с хаосом, в том числе наиболее современные методы его применения в различных дисциплинах. В двух последних главах мы покажем, как эти методы и понятия находят применение при изучении задачи изменения климата, которую мы попытаемся представить в общем, понятном для всех виде.

Написать увлекательную и одновременно подробную книгу о теории хаоса непросто. Написать такую книгу о глобальном изменении климата тоже нелегко.

Однако написать книгу, посвященную двум этим темам сразу, еще сложнее. Мы надеемся, что вы, перевернув последнюю страницу, проникнете в самую суть теории хаоса и увидите, какие задачи она охватывает.

Необходимость говорить о математических теориях популярным языком заставила меня совершить квантовый скачок, который радикально изменил мои взгляды на мир. Постепенно для меня научное знание стало дополнять обычное, общечеловеческое знание, и это изменение было бы невозможно без изменения начальных условий, сформировавшихся в свое время благодаря моим школьным и университетским преподавателям, которые направили мой «хаотический» путь в сторону «странного аттрактора» — математики и ее истории. Я благодарю всех, кто помогал мне в работе над книгой: это и моя мать, Елена, и Хавьер Фресан, и мои друзья и коллеги по институту и университету, которые не хотели читать мою книгу, но терпели меня все время, пока я трудился над ней.

Осталось сказать лишь одно: переверните же страницу и почувствуйте очарование хаоса.

 

Глава 1. «Доисторическая эпоха» теории хаоса

Однажды великий философ Иммануил Кант (1724–1804) , известный в обоих полушариях, возвращался с дневной прогулки. Слуга следовал за ним на почтительном расстоянии, стараясь не потревожить мыслей своего господина. Кант всегда гулял в одном и том же месте в одно и то же время. Благодаря его пунктуальности жители Кёнигсберга даже сверяли часы по своему знаменитому соседу. Как-то раз, прежде чем пересечь сад и перешагнуть порог дома, автор «Критики чистого разума» задержался. Он остановился, чтобы посмотреть на папоротник, выросший после недавних дождей. По его зеленому стеблю неуклюже карабкалась прекрасная бабочка. Философ аккуратно тронул ее, а затем провел рукой по влажному листу папоротника и улыбнулся, наслаждаясь совершенством его формы. Кант что-то неслышно прошептал, посмотрел в небо и вошел в дом.

Несколько минут спустя он сел за стол у камина, обмакнул перо в чернильницу и начал писать.

Если бы Кант поднял голову…

В своей книге «Критика способности суждения» Иммануил Кант задался вопросом: является ли математика частью природы или же математику в натуральную философию привносят сами математики? Он писал о господствующих силах природы так:

«Можно смело сказать: для людей было бы нелепо даже только думать об этом или надеяться, что когда-нибудь появится новый Ньютон, который сумеет сделать понятным возникновение хотя бы травинки, исходя лишь из законов природы, не подчиненных никакой цели. Напротив, такую проницательность следует безусловно отрицать у людей».

Портрет Иммануила Канта .

«С самых ранних времен, до которых простирается история человеческого разума, математика пошла верным путем науки».

Это амбициозное утверждение сегодня неактуально — если вы позволите нам такое сравнение, то уже пришло время этого второго Ньютона, который сделал понятным возникновение травинок. Мы говорим об английском математике Майкле Барнсли, специалисте по одному из интереснейших аспектов теории хаоса — фракталам. Фрактальная геометрия — неразлучная спутница теории хаоса, в чем вы еще не раз убедитесь, читая эту книгу.

Барнсли обнаружил, что при простой «игре в хаос», словно по волшебству, могут появляться листья папоротника и других растений. Игра в хаос заключается всего лишь в постепенном нанесении на лист бумаги последовательности точек, которая в пределе образует знакомую картину. Подведем итог: на основе случайного закона (Кант сказал бы: закона, не подчиняющегося намерению) при помощи компьютера мы способны породить лист растения. Для этого достаточно выбрать фиксированную точку (расположенную не в центре экрана) и начать подбрасывать монету.

Когда выпадет решка, отметим новую точку на расстоянии в 6 единиц на северо-запад от предыдущей. Когда выпадет орел, новую точку сдвинем на 25 % к центру относительно предыдущей. Очевидно, что это построение может повторяться произвольное число раз и изначально расположение точек будет казаться случайным.

Однако после нескольких тысяч бросков на экране непостижимым образом постепенно начнет проявляться лист папоротника. Хаос словно бы порождает порядок в виде фрактального множества — папоротника Барнсли.

Мы никогда не узнаем, что сказал бы великий кёнигсбергский философ, если бы смог охватить взглядом удивительное множество природных систем, строго детерминированных, но при этом обладающих хаотическим поведением со всеми вытекающими последствиями, то есть поведением случайным, или стохастическим (по-гречески stochastikos означает «умеющий угадывать»). Многие движения, кажущиеся беспорядочными, в действительности описываются строгими правилами, в которых нет места случайности. Таким образом, хаос и фракталы — это новый инструмент познания Вселенной.

«Спонтанное» появление папоротника Барнсли .

* * *

ОТРЫВОК ИЗ РОМАНА «ВЕК ПРОСВЕЩЕНИЯ» АЛЕХО КАРПЕНТЬЕРА

Наблюдая за улиткой, Эстебан думал о том, что на протяжении тысячелетий перед взором первобытных народов, живших рыбною ловлей, постоянно находилась спираль, но они еще не способны были не только постичь ее форму, но даже осознать ее присутствие. Он созерцал похожего на шар морского ежа, спиралевидную раковину моллюска, желобки на раковине святого Иакова и поражался богатству форм, открытых человечеству, которое, увы, не способно осмыслить то, что представало его глазам. «Верно, и ныне многое вокруг меня приняло четкие и определенные формы, но я не могу постичь их смысл!» — думал Эстебан. Какой знак, какая мысль, какое предупреждение таятся в завитках цикория, в немом языке мхов, в строгой форме плода миртового дерева? Созерцать улитку. Одну улитку… Те Deum… [2]

* * *

ДИАЛОГ ИЗ ФИЛЬМА «ПАРК ЮРСКОГО ПЕРИОДА»

(РЕЖИССЕР СТИВЕН СПИЛБЕРГ, 1993 ГОД), СНЯТОГО ПО ОДНОИМЕННОМУ РОМАНУ МАЙКЛА КРАЙТОНА

- Тираннозавр не намерен подчиняться правилам и распорядку, он — суть хаоса.

- Я не понимаю, что такое хаос. Что это значит?

- Это непредсказуемость в сложных системах. Проще говоря — эффект бабочки. Бабочка взмахнула крылышком в Пекине, а в Центральном парке полил дождь. Сейчас вы все увидите. Дайте мне этот стакан воды. Машину постоянно качает, но ничего, это просто пример.

Допустим, вам в руку упала капелька воды. Куда она, по-вашему, скатится? К какому пальцу?

- Скажем, к большому.

- Так, хорошо. Не убирайте руку! Не шевелитесь. Я снова капну, в то же самое место. Куда теперь скатится капля?

- Не знаю. Туда же?

- Не туда! Почему? Потому что невидимые глазу колебания, ориентация волосинок на руке, количество крови в венах, микроскопические изъяны кожи, как правило, непостоянны и значительно влияют на результат.

- Как это называется?

- Непредсказуемость. Смотрите. Видите? Я снова прав. Кто мог предположить, что д-р Грант неожиданно выпрыгнет на ходу из машины? И еще один пример. Я остался один и разговариваю с самим собой. Теория хаоса в действии.

* * *

Рождение теории хаоса

Сегодня хаос у всех на устах. О нем сняты такие фильмы, как «Хаос», «Эффект бабочки» и «Парк Юрского периода». Ему посвящены художественные произведения, к примеру «Баталист» испанского писателя Артуро Перес-Реверте, где удачно сделанная фотография полностью меняет жизнь хорватского партизана, рассказы «И грянул гром» Рэя Брэдбери, в котором гибель доисторической бабочки меняет исход президентских выборов в США, или «Крах Баливерны» Дино Буццати, где неудержимое восхождение по отвесной скале получает неожиданную развязку.

Но что такое хаос? В большинстве словарей приводится несколько определений этого понятия. К примеру, в толковых словарях русского языка дается три значения слова «хаос». Первые два отражают изначальный смысл, которым наделялось это слово в Древней Греции, а также его привычное значение.

1. В древнегреческой мифологии и философии — беспорядочная материя, неорганизованная стихия, существовавшая в мировом пространстве до образования известного человеку мира.

2. Полный беспорядок, неразбериха.

Третье определение отражает смысл хаоса в физике и математике.

3. Явление, при котором поведение нелинейной системы выглядит случайным, несмотря на то что оно определяется детерминистическими законами.

В этой книге мы, разумеется, поговорим о хаосе в третьем, последнем значении, а также покажем, как математический хаос находит место в массовом сознании благодаря его использованию в физике, биологии, медицине, нейробиологии и других науках. Множество систем в нашем мире, начиная от человеческого мозга и заканчивая климатом Земли, полны хаоса.

В этой и следующей главах мы расскажем историю математической истории хаоса начиная с эпохи Ньютона, периода научной революции, и заканчивая XXI веком.

Знаковым в развитии теории хаоса стал рубеж XIX и XX веков, когда ряд нерешенных задач небесной механики, связанных с устойчивостью Солнечной системы (столкнется ли Луна с Землей? уничтожит ли удар астероида жизнь на Земле?), был рассмотрен талантливым математиком Анри Пуанкаре принципиально иным образом. И в этой, и в следующей главе мы будем использовать интуитивно понятное определение хаоса, близкое к тому, которое применяется в механике, так как именно в механике впервые были описаны системы, которые мы сегодня называем хаотическими. В третьей главе попытаемся применить более формальный подход и постараемся точнее объяснить, в чем именно заключается упомянутый в предисловии эффект бабочки, уже знакомый нам по литературе и кино.

Но начнем с самого начала. Так называемая теория хаоса родилась усилиями нескольких математиков, заинтересованных в том, чтобы связать динамические системы (системы, эволюционирующие со временем) и геометрию, — в их число входили уже упомянутый Анри Пуанкаре и Стивен Смэйл. Немалый вклад в создание теории хаоса внесли физики, изучавшие столь далекие друг от друга области, как метеорология и астрономия, в частности Эдвард Лоренц и Мишель Эно, а также некоторые биологи, занимавшиеся изучением роста популяций, в частности Роберт Мэй. В этот длинный список также следует включить многих ученых, работавших сразу в нескольких областях, в частности Джеймса Йорка, Давида Рюэля, Митчелла Фейгенбаума, Майкла Барнсли и многих других.

Начнем путь к истокам теории хаоса. Нам предстоит преодолеть три реки, которые впадают в море динамических систем: это механика Ньютона, аналитическая механика Лапласа и, наконец, общая теория, задуманная Пуанкаре, который по праву станет главным героем этой главы.

От Ньютона — к Лейбницу, от Лейбница — к Лапласу

В попытках понять траектории движения планет, которые наблюдал Кеплер в свой телескоп, Ньютон составил математические модели, следуя путем Галилея. Так, Ньютон сформулировал законы, связывавшие физические величины и скорости их изменения, то есть, к примеру, пространство, пройденное телом, и скорость тела или скорость тела и ускорение. Следовательно, физические законы, описывавшие динамические системы, выражались в виде дифференциальных уравнений, в которых дифференциалы служили мерами скорости изменения.

Дифференциальное уравнение — это уравнение, главной неизвестной которого является скорость изменения величины, то есть ее дифференциал или производная. И дифференциал, и производная функции описывают изменение ее значений, то есть показывают, как ведет себя функция: возрастает, убывает или остается неизменной. В наших примерах ускорение описывает изменение скорости движущегося тела, так как представляет собой отношение дифференциалов скорости и времени.

Иными словами, ускорение — это производная скорости по времени. Следовательно, ускорение характеризует изменение скорости с течением времени.

Простые решения дифференциальных уравнений, как и алгебраических, крайне редки. Аналитическая механика, появившаяся позднее, стала шагом вперед по сравнению с механикой Ньютона, поскольку была ближе к анализу, чем к геометрии.

В результате изучение физических явлений стало сводиться к поиску дифференциальных уравнений, описывающих эти явления. После того как Ньютон открыл знаменитое дифференциальное уравнение «сила равна произведению массы на ускорение», описывающее движение систем точек и твердых тел, швейцарский математик Леонард Эйлер (1707–1783) определил систему дифференциальных уравнений, описывающих движение непрерывных сред, например воды, воздуха и других потоков, в которых отсутствует вязкость. Впоследствии физик и математик Жозеф Луи Лагранж (1736–1813) изучил звуковые волны и сформулировал уравнения акустики, а Жан-Батист Жозеф Фурье (1768–1830) рассмотрел потоки распределения тепла и описал их с помощью уравнения. Математический анализ, по мнению Фурье, был так же обширен, как и сама природа.

В XVII–XIX веках физики последовательно расширяли математическую картину мира, предлагая все новые дифференциальные уравнения для изучения самых разных областей, к примеру уравнения Навье — Стокса, описывающие движение вязкой жидкости, или уравнения Максвелла, характеризующие электромагнитное поле. Всю природу — твердые тела, жидкости, звук, тепло, свет, электричество — стало возможно описать с помощью дифференциальных уравнений. Однако найти уравнения, характеризующие то или иное явление природы, и решить их — две принципиально разные задачи.

Существуют два типа дифференциальных уравнений: линейные и нелинейные.

Дифференциальное уравнение называется линейным, если сумма двух его решений также будет его решением. В линейном уравнении ни сама неизвестная функция, ни ее производная не возведены в степень, отличную от нуля или единицы. Линейные дифференциальные уравнения описывают события, в которых действие совокупности причин равно совокупному действию этих причин по отдельности. В нелинейных уравнениях, напротив, подобное соотношение между причинами и следствиями не наблюдается, и совокупность двух причин может привести к неожиданным последствиям. Как вы увидите позднее, нелинейности всегда сопутствует хаос.

* * *

НЬЮТОН И ПЕРВОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ

Самое знаменитое дифференциальное уравнение, несомненно, принадлежит Ньютону: сила равна произведению массы на ускорение. В виде символов это уравнение записывается так:

F = m ∙ a где а  = dv / dt — (ускорение есть отношение дифференциалов скорости и времени, то есть производная скорости по времени). Рассмотрим еще два простых примера:

( dy / dx ) + y = 0

Это линейное дифференциальное уравнение, однако

( dy / dx ) + y 2 = 0

уже будет нелинейным, так как в этом случае неизвестная функция у возведена в степень, отличную от нуля или единицы.

* * *

Теория линейных дифференциальных уравнений довольно быстро была разработана полностью. А вот с теорией нелинейных дифференциальных уравнений все обстояло иначе, и нелинейные задачи, например уравнение колебаний маятника, решаются путем приведения уравнений к линейному виду, то есть путем устранения всех неудобных членов. Иными словами, для данного нелинейного дифференциального уравнения решалось похожее линейное дифференциальное уравнение, а полученные решения использовались как приближенные решения исходного уравнения.

Этот метод был назван методом возмущений. Вскоре стала понятна его неэффективность, однако прошло еще много времени, прежде чем нелинейным дифференциальным уравнениям стало уделяться примерно такое же внимание, что и линейным.

Одной из нелинейных задач, не дававших покоя физикам и математикам с XVII века, была задача небесной механики, связанная с моделированием Солнечной системы — задача n тел. Необходимо определить траекторию движения в пространстве для n тел разной массы, взаимодействующих по закону тяготения.

Несмотря на простую формулировку, решить эту задачу совсем не просто. Ньютон решил геометрически задачу двух тел для двух сфер, движущихся под действием взаимного притяжения, и привел решение в «Математических началах натуральной философии». В 1734 году Даниил Бернулли (1700–1782) привел аналитическое решение этой задачи в статье, удостоенной премии Французской академии наук, а во всех подробностях задача была рассмотрена лишь в 1744 году Эйлером, в труде «Теория движения планет и комет».

Портрет Эйлера .

«Читайте, читайте Эйлера — он учитель всех нас!»
(Пьер-Симон Лаплас)

* * *

НЕЛИНЕЙНОЕ УРАВНЕНИЕ КОЛЕБАНИЙ МАЯТНИКА

Если обозначить через θ угол наклона маятника относительно вертикали, то нелинейное дифференциальное уравнение колебаний маятника будет записываться так: d 2 θ / dt 2 + sin θ  = 0.

Для малых колебаний это уравнение можно заменить линейным, использовав в качестве приближенного значения тригонометрической функции sin θ  сам угол θ . Полученное уравнение d 2 θ / dt 2 + sin θ  = 0 решить нетрудно: это линейное дифференциальное уравнение второго порядка, так как в нем фигурирует вторая производная, однако ни вторая производная, ни θ не возводятся в степень, большую 1.

Приведем еще один пример нелинейного дифференциального уравнения:  m ∙( dv / dt ) — v 2 = mg, где g — ускорение свободного падения (9,8 м/с 2 ). Это уравнение описывает движение снаряда в среде, сопротивление которой пропорционально квадрату его скорости ( v 2 и будет нелинейным членом уравнения).

* * *

После того как задача n тел была решена для n = 2, физики и математики XVIII и XIX столетий приступили к решению этой задачи для n = 3, чтобы описать относительное движение Солнца, Земли и Луны. Были начаты две параллельные исследовательские программы: в рамках первой велся поиск общих приближенных решений с помощью метода возмущений, в рамках второй — поиск точных частных решений. К примеру, Лагранж решил задачу трех тел, рассмотрев систему, включающую Солнце, Юпитер и астероид Ахиллес. Самый знаменитый труд Лагранжа,

«Аналитическая механика», стал достойным завершением работ Ньютона по механике. Вообще этот математик считал Ньютона счастливейшим из ученых: Вселенная всего одна, а ее математические законы открыл именно он.

В то же самое время возник еще один вопрос, тесно связанный с задачей n тел, — вопрос об устойчивости Солнечной системы, которая в то время представляла собой систему из семи тел. Ответ на этот вопрос напрямую зависел от решения задачи n тел. Ньютон знал, что для задачи двух тел можно привести точное решение для любого промежутка времени, однако при рассмотрении трех тел все обстояло иначе.

Хотя взаимное притяжение планет слабее, чем их притяжение к Солнцу, этими силами нельзя пренебречь, поскольку они могут сместить планету с орбиты или даже вытолкнуть ее за пределы Солнечной системы.

В своем труде «О движении тел по орбитам» (De motu corporum in gyrum), изданном в 1684 году, Ньютон писал, что планеты не движутся по эллипсам и не проходят по одной и той же орбите дважды. Он признавал, что задача о расчете траекторий движения планет на произвольный интервал времени неподвластна человеческому разуму.

Лист рукописи «О движении тел по орбитам»  Исаака Ньютона .

Оставался вопрос: устойчива ли Солнечная система? Не сойдут ли ее планеты в будущем со своих орбит? По мнению Ньютона, если планеты Солнечной системы постепенно сходили с орбит, требовалось радикальное решение: рука Бога периодически должна подталкивать каждую планету внутрь орбиты, восстанавливая равновесие. Лейбниц возражал Ньютону: Создателя нельзя уподоблять часовщику, который время от времени подводит часы.

Несколько десятилетий спустя великий физик и математик Пьер-Симон Лаплас (1749–1827) , который при Наполеоне занял пост министра внутренних дел, счел, что объяснил отклонения Сатурна и Юпитера от орбиты. Эти отклонения сильно беспокоили Ньютона, считавшего, что они объясняются исключительно законом всемирного тяготения и со временем скомпенсируют — ся. Юпитер, казалось, двигался с ускорением, Сатурн же постепенно замедлялся, и если бы эта тенденция сохранялась, то Юпитер покинул бы Солнечную систему, а Сатурн упал бы на Солнце.

* * *

ПОЛЕМИКА ЛЕЙБНИЦА И КЛАРКА

В 1715–1716 годах философ, математик, юрист, посол и человек множества других профессий Готфрид Вильгельм Лейбниц (1646–1716) вступил в дискуссию по переписке с Сэмюелом Кларком (1675–1729) , англиканским священником и сторонником Ньютона. Спор был посвящен влиянию механики Ньютона на христианские догматы. Лейбниц к тому времени уже вел активную переписку с самим Ньютоном по поводу авторства дифференциального и интегрального исчисления: оба ученых обвиняли друг друга в плагиате. Лейбниц во время этой переписки обсудил открытия Ньютона на примере задачи трех тел и устойчивости Солнечной системы.

Предполагалось, что Бог совершенен, следовательно, созданный Им мир — лучший из возможных, поэтому абсурдно предположение, что Бог должен регулярно подводить часы Вселенной.

По мнению Лейбница, Ньютон недооценил Бога. И действительно, в «Оптике» Ньютон писал: «В связи с вязкостью жидкостей, трением частей и слабой эластичностью тел движение с намного большей вероятностью будет затухать, нежели появляться, и неизменно будет сходить на нет». В ответ на это Лейбниц задавал вопрос: «Неужели машина, созданная Богом, способна приходить в такой беспорядок, что Он сам должен чинить ее подобно простому ремесленнику?»

Ньютон, дабы не унижать свое достоинство, предоставил право ответа на этот вопрос Кларку.

На этом полемика Лейбница и Ньютона завершилась, и английская математика надолго оказалась в изоляции. В результате пострадала и континентальная наука: французы, к примеру, долго следовали Декарту и его теории вихрей, пока Вольтер в 1727 году, вернувшись из Англии, не познакомил соотечественников с теорией тяготения Ньютона.

* * *

Лаплас доказал, что ускорение Юпитера и замедление Сатурна были вызваны второстепенными факторами, обусловленными особым расположением планет относительно Солнца. Солнечная система восстанавливала равновесие самостоятельно. Казалось, что спустя почти 100 лет Лейбниц праздновал победу над Ньютоном. Когда Лаплас представил свой «Трактат о небесной механике» Наполеону, тот заметил, что ни в одном томе этого монументального труда не упоминается Бог. Лаплас ответил: «Это потому, что я в этой гипотезе не нуждался». Система мира, описанная Лапласом, была полностью детерминированной и устойчивой. В своем «Опыте философии теории вероятностей» (1814) ученый писал:

«Мы должны рассматривать нынешнее состояние Вселенной как результат его предшествующего состояния и как причину состояния, которое воспоследует. Разум, которому в настоящий момент были бы известны все силы, движущие природой и относительное положение всех существ, ее составляющих, и который был бы достаточно обширным, чтобы подвергнуть все эти данные анализу, подытожил бы в одной и той же формуле движения величайших тел Вселенной и мельчайших атомов: для этого разума ничто не было бы неопределенным, и грядущее, равно как и прошлое, предстали бы перед его глазами.

То совершенство, которым человеческий разум наделил астрономию, есть лишь слабый отголосок этого разума. Открытия человека в области механики и геометрии наряду с открытием закона всемирного тяготения позволили описать теми же аналитическими выражениями прошлое и будущее состояние системы мира».

Однако Лаплас был очень и очень далек от истины. В своих уравнениях, описывавших систему «Солнце-Юпитер-Сатурн» (задачу трех тел) ученый пренебрег одним слагаемым, которое он счел слишком малым. Но это слагаемое могло неограниченно возрастать и вести к потере устойчивости Солнечной системы. В отличие от Лагранжа, крайне скрупулезного в расчетах, Лаплас был подобен лису, заметавшему собственные следы хвостом. Он часто забывал указывать источники, из которых брал те или иные результаты, и создавалось впечатление, что все они принадлежали ему лично. Математические задачи, с которыми Лаплас сталкивался в физических исследованиях, он решал так же небрежно. Американский астроном, который перевел «Трактат о небесной механике» на английский язык, говорил, что каждый раз, когда он видел фразу «нетрудно видеть, что…», то понимал: для восстановления пропущенного потребуется несколько часов упорного труда.

Портрет Лапласа  (1749–1827), «Ньютона революционной Франции».

Многие физики и математики XIX века посвятили себя поискам полного решения задачи трех тел и ответа на вопрос об устойчивости Солнечной системы. Со времен великого Ньютона до 1900 года на эту тему было написано более 800 работ.

Среди математиков, пытавшихся справиться с этой задачей, нашелся и человек, сыгравший ключевую роль в создании теории хаоса, — гениальный Анри Пуанкаре  (1854–1912) .

Конкурс короля Оскара

Еще в детстве Пуанкаре проявлял живой интерес к математике, однако в остальном он был неуклюжим и рассеянным. Он считается последним математиком-универ салом: в отличие от узких специалистов, Пуанкаре интересовало буквально все — он занимался анализом, дифференциальными уравнениями, группами, топологией, небесной механикой и математической физикой, а также философией, преподаванием и просветительской работой. Разумеется, он был первым математиком, кто столкнулся лицом к лицу с хаосом при решении задачи трех тел.

Жюль Анри Пуанкаре в возрасте 36 лет.

«Мысль — это всего только молния в ночи. Но в этой молнии — все».

Знаменитая работа Пуанкаре, посвященная этой задаче, была опубликована в 1890 году, когда ученому было всего 36 лет, однако ее история началась раньше.

В 1885 году европейские математики узнали, что под покровительством Оскара II, короля Швеции и Норвегии, пройдет важный международный математический конкурс. Оскар II, изучив ряд математических дисциплин в университете, чувствовал, что математике нужно придать новый толчок. В рамках международного конкурса была учреждена премия для того, кто сможет решить задачу трех тел и открыть путь к изучению устойчивости Солнечной системы.

В 1884 году Магнус Геста Миттаг-Леффлер (1846–1927) , преподаватель математики Стокгольмского университета, предложил королю Оскару II провести математический конкурс, приуроченный к шестидесятилетнему юбилею монарха, который должен был праздноваться через 5 лет, 21 января 1889 года. В те годы подобные конкурсы были вполне обычным делом, и хотя премии обычно не отличались большим размером, победители пользовались тем же авторитетом, что и нынешние нобелевские лауреаты. С другой стороны, этим конкурсом Миттаг-Леффлер хотел привлечь внимание специалистов к журналу Acta Mathematica, который он основал незадолго до того при неоценимой поддержке короля.

Подобрать членов жюри и организационного комитета конкурса было совсем не просто. Миттаг-Леффлер хотел избежать споров и обвинений в предвзятости, поэтому выбрал тех, с кем был знаком лично: своих бывших преподавателей, Шарля Эрмита и Карла Вейерштрасса как представителей французской и немецкой математической школы, а также Софью Ковалевскую, блестящую ученицу Миттаг-Леффлера и Вейерштрасса.

С помощью Миттаг-Леффлера члены организационного комитета сформулировали четыре вопроса, один из которых касался решения задачи n тел: «Для данной системы, состоящей из произвольного числа материальных точек, взаимодействующих друг с другом согласно законам Ньютона, предлагается выразить координаты каждой точки с помощью ряда, содержащего известные функции времени, которые бы равномерно сходились для любого значения времени.

По-видимому, эта задача, решение которой расширит наши знания об устройстве Вселенной, может быть решена известными на сегодня методами анализа. Это следует предполагать по меньшей мере потому, что незадолго до смерти Иоганн Петер Густав Лежён Дирихле сообщил своему другу, математику Леопольду Кронекеру, что обнаружил метод интегрирования дифференциальных уравнений механики и успешно применил его для доказательства устойчивости нашей Солнечной системы. К сожалению, нам ничего не известно об этом методе, хотя почти со стопроцентной уверенностью можно предполагать, что он не подразумевал каких-либо объемных и сложных расчетов, а основывался на некой простой идее. Разумно ожидать, что эту идею можно будет обнаружить вновь в ходе более тщательного и серьезного исследования.

Если никому не удастся решить предложенную задачу в указанные сроки, премия может быть присуждена работе, посвященной любой другой задаче механики, которая будет рассмотрена указанным образом и полностью решена».

Когда новость о проведении конкурса была опубликована в журнале Acta Mathematica, 31-летний Пуанкаре уже был известен в мире математики, однако он не сразу согласился принять участие в конкурсе. Митгаг-Леффлеру пришлось отправить ему письмо, призывая подать на конкурс какую-либо работу. Пуанкаре ответил, что планирует рассмотреть задачу трех тел не затем, чтобы решить ее (это представлялось ему практически невозможным), а главным образом для того, чтобы получить новые важные результаты, достойные быть представленными жюри конкурса.

В конце концов воодушевленный Пуанкаре начал развивать свои идеи, касавшиеся качественной теории дифференциальных уравнений. Эту теорию Пуанкаре разработал в 1881–1885 годах и изложил в четырех статьях, важнейшая из которых носила название «О кривых, определяемых дифференциальными уравнениями». В этих работах были рассмотрены линейные и нелинейные дифференциальные уравнения не столько с количественной, сколько с качественной точки зрения (иными словами, он стремился найти не решения в явном виде, а описать их общую динамику и устойчивость), для чего обратился к недавно созданной дисциплине — топологии, которая в то время называлась анализом размещения (лат. analysis situs).

В отличие от Лагранжа, который хвастался тем, что его «Аналитическая механика» не содержала ни одной иллюстрации, Пуанкаре смело использовал геометрические методы.

Понимая невозможность решить большинство дифференциальных уравнений (для нелинейных уравнений метод возмущений не работал), Пуанкаре рассмотрел их геометрически. Начал он с того, что рассмотрел дифференциальное уравнение

где производная у по х равна отношению двух произвольных функций Р и Q. Ученый подробно изучил так называемые особые точки, то есть точки с координатами (х, у), в которых Р(х, у) = Q(x, у) = 0. Иными словами, особые точки — это точки, в которых производная у по х равна нулю, разделенному на ноль, то есть точки, в которых возникает неопределенность, ведь операция деления на 0 не имеет смысла. Именно поэтому такие точки называются особыми.

* * *

РЕЗИНОВАЯ ГЕОМЕТРИЯ

Топология — это раздел математики, изучающий исключительно форму и расположение геометрических объектов без учета их количественных свойств, в частности размеров. Например, схемы метро дают информацию о станциях и пересадках, но искажают расстояния. Важнейшую роль в развитии топологии сыграл Пуанкаре, благодаря которому она обрела популярность как «качественная геометрия». Предоставим слово самому Пуанкаре:

«Так называемый «анализ размещения», analysis situs, это целая доктрина, которая привлекала внимание крупнейших геометров и в которой одна за одной появилось несколько важных теорем. Отличие этих теорем от теорем классической геометрии в том, что они носят качественный характер и остаются корректными даже тогда, когда фигуры неумело срисует неопытный чертежник, исказив их пропорции и заменив прямые более или менее криволинейными отрезками».

Топологию часто сравнивают с геометрией резиновых лент: если бы геометрические фигуры были изготовлены из эластичной резины, их можно было бы превращать друг в друга. Так, с точки зрения топологии сфера и куб неразличимы, и не важно, что поверхность сферы гладкая, а куб имеет ребра. Говорят, что тополог — это математик, не способный отличить бублик от чашки кофе, так как его невнимательный взгляд замечает лишь то, что и чашка, и бублик имеют единственное отверстие (бублик — дырку, чашка — отверстие в ручке). Мы можем отличить бублик от апельсина, так как в бублике дырка есть, а в апельсине — нет. Но как мы отличили бы бублик от апельсина, если бы были совсем маленькими и жили на их поверхности? (Этот вопрос вовсе не так прост, ведь сферическая поверхность Земли кажется нам плоской.) Один из методов, позволяющий избавиться от сомнений, заключается в изучении группы Пуанкаре для нашего пространства. Допустим, что мы привязали собаку к крыльцу дома очень длинным резиновым поводком и оставили ее на несколько дней. Если мы живем на поверхности бублика, то, когда мы вернемся домой, поводок скорее всего будет натянут, так как собака наверняка пройдет через отверстие бублика. Если же мы живем на поверхности апельсина, то, когда мы вернемся, поводок будет висеть свободно, и мы сможем смотать его обратно.

Пуанкаре был автором знаменитой гипотезы, носящей его имя: «Является ли трехмерная сфера единственным трехмерным многообразием, на поверхности которого любая петля стягивается в точку?». Эта обобщенная гипотеза была доказана Фридманом для четырех измерений и Смэйлом — для большего числа измерений. Полное доказательство гипотезы Пуанкаре для трех измерений привел российский математик Григорий Перельман в 2003 году.

* * *

Далее Пуанкаре рассмотрел их с точки зрения топологии: он изучил поведение кривых, заданных дифференциальным уравнением, в окрестности этих точек, поскольку решения исходного дифференциального уравнения — это функции, которые можно представить на плоскости графически. Точнее говоря, для этих функций можно построить график в так называемой фазовой плоскости. Термин «фаза» изначально появился в электротехнике и обозначает состояние или место, в котором находится определенное решение. На фазовой плоскости изображается семейство кривых, которые описывают решения дифференциального уравнения. Эти кривые часто называются траекториями или, по аналогии с движением планет, орбитами.

Пуанкаре разделил особые точки на четыре класса: центр, фокус, узел, седло. Названия классов заимствованы из гидродинамики, так как траектории (орбиты) на фазовой плоскости можно сравнить с потоком жидкости, распространяющимся по ней. Центры — это особые точки, окруженные периодическими орбитами; фокусы — особые точки, которые притягивают близлежащие траектории (они подобны водостокам фазовой плоскости); узлы, напротив, являются неустойчивыми, так как отталкивают близлежащие траектории (продолжая аналогию с гидродинамикой, такие точки можно сравнить с кранами, из которых льется вода на фазовую плоскость); наконец, седла — особые точки, которые являются устойчивыми и неустойчивыми одновременно. Седла — это точки, в которых словно бы сталкиваются два потока воды. Траектории, которые пересекаются точно в седле, называются сепаратрисами.

Седла Пуанкаре называл гомоклиническими точками, сепаратрисы — двоякоасимптотическими. В конце главы вы узнаете, почему он выбрал именно такие названия.

Слева — центр, справа — фокус.

Слева — узел, справа — седло идее сепаратрисы, которые в этом случае представляют собой две прямые, пересекающиеся в центральной точке.

Позднее Пуанкаре сформулировал теорему, которая сегодня называется теоремой Пуанкаре — Бендиксона (в честь шведского математика, закончившего ее доказательство). Согласно этой теореме, наряду с предельными циклами (замкнутыми кривыми, притягивающими соседние траектории) указанные выше разновидности особых точек являются единственно возможными на плоскости. Так как в двух измерениях существуют только центры, фокусы, узлы, седла и предельные циклы, то можно сказать, что количество траекторий, которые описывают решения дифференциальных уравнений, невелико: они могут описывать витки вокруг центра или предельного цикла, удаляться от узла, проходить вблизи седла или приближаться к фокусу. Все возможные варианты траектории можно пересчитать по пальцам одной руки.

Предельный цикл осциллятора Ван дер Поля . Он представляет собой замкнутую кривую (на рисунке — широкая линия), которая притягивает к себе все ближайшие траектории.

В 1881 году, за четыре года до проведения конкурса, Пуанкаре уже понимал, что созданную им новую качественную теорию можно использовать для решения задачи трех тел и ответа на вопрос об устойчивости Солнечной системы. Не напрасно лейтмотивом статьи «О кривых, определяемых дифференциальными уравнениями» стали вопросы: «Описывает ли движущаяся точка замкнутую кривую? Всегда ли эта кривая будет находиться в определенной части плоскости? Иными словами, если использовать астрономические термины, является ли орбита устойчивой?».

За несколько лет до проведения конкурса, в 1878 году, американский астроном Джордж Уильям Хилл привлек всеобщее внимание к важности периодических решений (замкнутых кривых) задачи об устойчивости Солнечной системы. Периодическое (то есть повторяющееся) движение очень полезно при изучении устойчивости: при таком движении тело никогда не сойдет с орбиты, не столкнется с другим телом и не улетит бесконечно далеко. Хилл нашел периодическое решение задачи трех тел для случая, когда масса одного из них пренебрежимо мала по сравнению с остальными.

Проблема Хилла представляла собой частный случай задачи трех тел, в котором легкая планета движется под действием сил притяжения двух одинаковых звезд, лежащих в одной плоскости. Изучив проблему Хилла, Пуанкаре доказал: эту проблему, равно как и общий случай задачи трех тел, нельзя решить классическими методами решения дифференциальных уравнений — в отличие от задачи двух тел (ее решили Ньютон, Бернулли и Эйлер), не все интегралы движения можно решить при помощи законов сохранения (энергии, импульса и так далее). Пуанкаре сделал вывод: какого-то одного общего решения задачи трех тел, выраженного в простых и привычных функциях, не существует.

У Пуанкаре оставался последний шанс — метод возмущений. Применив его, он нашел решения в виде бесконечных степенных рядов. Тем не менее ничто не указывало, что эти ряды (аналогичные ряды ранее получили Эйлер, Лагранж и Линдстедт) сходились, пусть они и удовлетворяли уравнениям задачи трех тел. В конечном счете Пуанкаре оставил попытки найти аналитическое решение задачи.

Лишь в 1909 году, то есть более чем 20 лет спустя, математик Карл Зундман (1873–1949) наконец представил общее решение задачи трех тел в виде сходящегося ряда. Искомый ряд сходился крайне медленно, а решение Зундмана было настолько сложным, что на практике оказалось совершенно бесполезным, но если бы он добился своего результата 20 годами ранее, то, возможно, получил бы премию от короля Оскара II.

Пуанкаре, оставив анализ, обратился к топологии, решив, что если он рассмотрит вопрос с другой стороны, то докажет существование периодических решений.

Так как устойчивость решений нельзя было оценить путем изучения рядов, Пуанкаре решил использовать свою качественную теорию дифференциальных уравнений: описывают ли эти решения замкнутые кривые, то есть являются ли они периодическими? Если движущееся тело описывает замкнутую кривую, то есть цикл, то рано или поздно его движение повторится, следовательно, движение тела будет периодическим. Вооружившись своей новой теорией, в которой были объединены анализ и топология, Пуанкаре показал: существует бесконечно много замкнутых кривых, а следовательно, бесконечно много периодических решений.

Слева — король Швеции и Норвегии Оскар II , справа —  Магнус Геста Миттаг-Леффлер . Король-пифагореец и математик-платоник.

И победителем становится…

На конкурс короля Оскара II двенадцать математиков представили двенадцать работ. Всего в пяти из них рассматривалась задача трех тел, но ни в одной не приводилось требуемого решения в виде степенного ряда. В итоге 20 января 1889 года, за день до шестидесятилетнего юбилея монарха, уважаемое жюри, получив одобрение короля, объявило победителем Анри Пуанкаре за статью «О задаче трех тел и уравнениях движения»: «Эта статья не может считаться полным решением предложенной задачи, однако она столь важна, что ее публикация откроет новую эру в истории небесной механики».

Французская пресса сочла Пуанкаре едва ли не героем, его победа расценивалась как триумф французской математики над немецкой, которой традиционно отдавалось первенство.

Однако вскоре стало понятно: что-то пошло не так. Когда Миттаг-Леффлер опубликовал статью Пуанкаре, астроном Йохан Аугуст Гуго Полден, подобно Немезиде, вместе с Леопольдом Кронекером незамедлительно провозгласил, что эта работа ничем принципиально не отличается от более ранней его работы, опубликованной в 1887 году.

Ситуация обострилась еще больше, когда несколько месяцев спустя, в июле 1889-го, на Пуанкаре с градом вопросов обрушился Эдвард Фрагмен, редактор журнала Acta Mathematica, который хотел прояснить непонятные моменты объемной статьи перед публикацией. Эрмит неспроста писал: «В этой работе, как и почти во всех остальных, Пуанкаре только показывает путь, однако требуется приложить немало усилий, чтобы устранить лакуны и закончить его работу».

Кроме того, в конце ноября сам автор обнаружил в статье грубую ошибку, о чем сообщил Миттаг-Леффлеру в письме, датированном 1 декабря:

«Сегодня утром я написал Фрагмену, чтобы сообщить о допущенной мной ошибке, но я сомневаюсь, что он даст тебе прочесть мое письмо. Однако последствия этой ошибки намного серьезнее, чем я изначально предполагал. Двоякоасимптотические решения [сепаратрисы, проходящие через седло] не являются замкнутыми кривыми… следовательно, не являются периодическими решениями. Верно лишь то, что две составляющие этой кривой [две сепаратрисы] пересекаются бесконечное число раз. Не буду говорить, какое беспокойство причинило мне это неприятное открытие. В статью необходимо внести много изменений».

Это письмо, несомненно, поразило редактора журнала и организатора конкурса: признание Пуанкаре серьезно подорвало авторитет жюри и организаторов. Миттаг-Леффлер оказался в крайне затруднительном положении. Он попытался изъять из обращения уже напечатанные копии статьи и не придавать огласке ошибку Пуанкаре, чтобы не повредить репутации ученого. Весь тираж очередного номера престижного журнала Acta Mathematica пришлось уничтожить — сохранился единственный экземпляр номера, который сейчас хранится в сейфе в Институте Миттаг-Леффлера. Между тем всего за два месяца, то есть за декабрь 1889-го и январь 1890 года, Пуанкаре полностью исправил все ошибки в своей работе, отправил ее в печать и оплатил публикацию из своего кармана, так как еще до участия в конкурсе согласился покрыть все накладные расходы. Пуанкаре заплатил более 3500 шведских крон при том, что в качестве премии он получил всего 2500 крон.

Прекрасный пример интеллектуальной честности.

Математический монстр Пуанкаре

В чем же заключалась ошибка Пуанкаре? Французский математик заявил, что нашел бесконечное множество периодических решений задачи трех тел, но потом обнаружил, что некоторые эти решения не были периодическими, так как не описывали замкнутые кривые. Именно благодаря этой грубой ошибке Пуанкаре смог обнаружить, что двоякоасимптотические решения, сепаратрисы, проходящие через седловые точки (эти точки Пуанкаре называл гомоклиническими), определяли хаотические орбиты.

Рассмотрим эту ситуацию подробнее. Пуанкаре и Бендиксон смогли доказать свою теорему на плоскости, в двух измерениях. Так как траектории на фазовой плоскости не могут пересекаться, число корректных траекторий невелико. Как мы уже показали, существует всего пять основных видов траекторий: они могут приближаться к особой точке, удаляться от нее (для фокусов, узлов и седел) либо периодически вращаться вокруг центра или вблизи предельного цикла.

В задаче трех тел, движущихся под действием сил взаимного притяжения, рассматривается трехмерное пространство, которое допускает куда больше сочетаний и возможных случаев. В фазовом пространстве все обстоит намного сложнее: траектории необязательно должны пересекаться — достаточно, чтобы они переплетались между собой. На плоскости, в отличие от трехмерного пространства, траектории не могут сплетаться. Кроме того, если число измерений пространства больше двух, система может иметь аттракторы, которые будут весьма заметно отличаться от особых точек (фокусов) и предельных циклов. Как вы узнаете из следующей главы, в многомерных пространствах возникают так называемые странные аттракторы, которые, как правило, сопутствуют хаосу.

В трехмерном пространстве траектории-решения могут переплетаться между собой.

Но как Пуанкаре справился с этими трудностями и нашел периодические решения в пространстве? Он применил метод, называемый сегодня сечениями Пуанкаре.

Так как изучать динамику на плоскости намного проще, чем в пространстве, ученый рассмотрел плоскость, заключенную в фазовом пространстве и полностью рассекающую трехмерный пучок траекторий. Нечто похожее мы делаем каждый день, когда проверяем, червивое ли яблоко: мы разрезаем его ножом и осматриваем поперечное сечение.

Допустим, что человек в течение всего дня носит с собой катушку ниток, разматывая ее. Нитка укажет траекторию этого человека. Теперь предположим, что мы неожиданно потеряли его след и не знаем, вернулся ли он домой. Как найти ответ? На помощь приходит топология, в частности теория Пуанкаре: плоскость, в которой располагается дверь дома нашего беглеца, станет сечением Пуанкаре.

Встанем у двери и сосчитаем, сколько нитей пересекает дверной порог. Если число нитей нечетно, наш незнакомец еще не вернулся, если же число нитей четно, он уже дома — это логично. Следовательно, если человек вернулся, то через дверной порог — наше сечение Пуанкаре — будет проходить четное число нитей. Выходит, изучение нитей (траекторий), пересекающих поверхность подобно тому, как нити пересекают порог (сечение Пуанкаре), дает важные результаты.

Сечение Пуанкаре S . Если бы х и Р(х) совпадали, траектория была бы замкнутой кривой и представляла собой периодическое решение.

Пуанкаре указывал, что периодичность решения можно определить с помощью сечения Пуанкаре, если показать, что кривая в конечном итоге возвращается в ту же исходную точку, в которой пересекла сечение. Следовательно, сечение Пуанкаре фазового пространства отражает важнейшие аспекты решений дифференциального уравнения (в том числе их устойчивость).

По сути, Пуанкаре считал, что в каждом сечении будет наблюдаться типичная и не слишком сложная двумерная динамика, при которой траектории могут пересекаться только в особых точках. Однако он с ужасом обнаружил, что сепаратрисы седловых точек (две траектории, которые сталкиваются в гомоклинических точках) пересекаются, но не совпадают, а представляют собой две различные кривые, которые пересекаются снова и снова, образуя своеобразную решетку с бесконечным множеством точек пересечения. Оказалось, что трехмерная динамика, проекции которой содержатся в каждом сечении, невероятно сложна.

Ошибка Пуанкаре: он считал, что нестабильная сепаратриса (та, что удаляется от седловой точки) и стабильная (та, что приближается к седловой точке) совпадают.

Таким образом, суть задачи такова: локальная структура седловой точки проста, поскольку линейна, а глобальная структура необязательно будет простой, поскольку она нелинейна. Более того, глобальная структура может быть невероятно сложной — именно поэтому возникают хаотические движения. В примере с задачей трех тел обе сепаратрисы переплетаются снова и снова бесконечное число раз. Эта гомоклиническая сеть — великое открытие Пуанкаре, фигура настолько сложная, что сам автор не осмелился ни изобразить ее, ни подробно описать. Эта сеть и вызывает хаос, а также приводит к тому, что систему нельзя описать посредством аналитических интегралов.

Гомоклиническая сеть: р — седло, Ь 0 , h 1 , h 2 …. — бесконечное множество гомоклинических точек, в которых пересекаются две сепаратрисы.

Позднее, в своем монументальном трехтомнике «Новые методы небесной механики», опубликованном в 1892–1899 годах, Пуанкаре привел первое математическое описание хаотического поведения динамической системы, связанного с гомоклиническими орбитами:

«Если попытаться представить себе фигуру, образованную этими двумя кривыми и их бесчисленными пересечениями, каждое из которых соответствует двоякоасимптотическому решению, то эти пересечения образуют нечто вроде решетки, ткани, сети с бесконечно тесными петлями. Ни одна из двух кривых никогда не должна пересечь самое себя, но она должна навиваться на самое себя очень сложным образом, чтобы пересечь бесконечно много раз все петли сети. Поражаешься сложности этой фигуры, которую я даже не пытаюсь изобразить. Ничто не является более подходящим, чтобы дать нам представление о сложности задачи трех тел».

Гомоклинические сети — это рельефный отпечаток хаоса, и 200-страничная исправленная и дополненная статья Пуанкаре стала первым учебником по теории хаоса. Эрмит в письме Миттаг-Леффлеру писал: «Пуанкаре кажется ясновидящим, перед которым истины предстают в ярком свете, но лишь перед ним одним».

Хаотическая орбита в ограниченной задаче трех тел. Если бы наша планета вращалась вокруг двойной звезды (а не Солнца), Кеплер отказался бы от мысли найти законы, описывающие движение планет, — в этом случае в движении планет вокруг звезд нельзя было бы обнаружить каких-либо закономерностей.

Пуанкаре приложил очень много усилий, чтобы познакомить коллег с детерминированными динамическими системами, предсказать поведение которых невозможно.

Траектории-решения дифференциального уравнения могут так сильно переплетаться, что даже небольшая ошибка при выборе траектории, указывающей решение задачи, может привести к тому, что мы проследуем вдоль другой траектории, которая приведет нас к совершенно иному состоянию. В 1908 году в «Науке и методе», взяв за основу задачу трех тел и, что любопытно, прогнозы погоды, Пуанкаре заключил:

«Если бы нам были в точности известны законы природы и положение тел во Вселенной в начальный момент времени, мы могли бы в точности предсказать состояние Вселенной в последующие моменты времени. Однако даже если законы природы перестанут быть для нас тайной, мы сможем определить начальное положение лишь приближенно. Если это позволит предсказать последующее положение тел с той же степенью приближения (а это все, что нам необходимо), то будем говорить, что рассматриваемое явление было предсказано и подчиняется законам. Но так происходит не всегда: может случиться, что небольшие отклонения в начальных условиях вызовут значительные отклонения в итоговых результатах. Небольшая ошибка, допущенная вначале, станет причиной огромной ошибки в конце. И составление прогнозов оказывается невозможным».

За несколько месяцев до смерти в 1911 году, по возвращении с Сольвеевского конгресса, где Пуанкаре познакомился с квантовой теорией Макса Планка (которая вкупе с теорией хаоса нанесла болезненный удар по научному детерминизму), Пуанкаре высказал свои опасения:

«Кажется излишним указывать, насколько эти идеи отличаются от традиционных; физические явления больше не будут подчиняться законам, выражаемым в виде дифференциальных уравнений, и это, несомненно, станет крупнейшей и самой радикальной революцией в натуральной философии со времен Ньютона».

Задавшись вопросом, подходят ли дифференциальные уравнения для математической формулировки физических законов, гениальный Пуанкаре, как любой истинный математик, сомневался в корректности детерминизма.

Ньютон, можно сказать, облачил закон причинно-следственной связи в математические одежды: законы Ньютона были записаны в виде дифференциальных уравнений. Развитие целого ряда методов математического анализа существенно расширило возможности прогнозирования с помощью классической механики. Но теперь Пуанкаре показал, что некоторые механические системы могут демонстрировать столь сложное поведение, что предсказать его невозможно. Из этого следовала не только ограниченная возможность науки предсказывать явления — квантовая физика ставила под сомнение сами дифференциальные уравнения. С наступлением XX века обе революции (вызванные появлением теории хаоса и квантовой механики) совершили окончательный переворот в науке.

* * *

ДЖЕЙМС КЛЕРК МАКСВЕЛЛ . МЕЖДУ ХАОСОМ И ЭЛЕКТРОМАГНЕТИЗМОМ

Проанализировав результаты наблюдений, проведенных французскими инженерами Сен-Венаном и Буссинеском , 11 февраля 1873 года знаменитый физик шотландского происхождения Джеймс Клерк Максвелл (1831–1879) организовал в Кембридже конференцию, посвященную детерминизму. На ней Максвелл продемонстрировал, насколько хорошо он знаком с эффектом, который сегодня называется «эффектом бабочки» или «чувствительностью к начальным условиям» и представляет собой своеобразный отпечаток хаоса:

«На некоторые из этих вопросов можно пролить немало света, рассмотрев устойчивость и неустойчивость. Когда положение вещей таково, что бесконечно малое отклонение от текущего состояния вызывает лишь бесконечно малое отклонение в будущем, то говорят, что состояние системы, находящейся в покое или в движении, стабильно. Однако если бесконечно малое отклонение от текущего состояния может вызвать конечное отклонение за конечное время, то говорят, что состояние системы нестабильно. Очевидно, что существование нестабильных состояний делает невозможным предсказание будущих событий, если наши знания о нынешнем состоянии приближенны и неточны. Следовательно, если физики, стремясь познать тайны науки, придут к изучению сингулярностей и неустойчивости, в отличие от непрерывности и устойчивости, то распространение знания станет возможным только при отказе от идеи всеобщего детерминизма, которая, по-видимому, происходит из предположения, согласно которому физика будущего будет подобна всего лишь увеличенному изображению физики прошлого».

* * *

Сегодня, сто лет спустя, кажется удивительным, насколько Пуанкаре опередил современников. Никогда математическая ошибка не оказывалась столь плодотворной, поэтому часто считают, что именно она в какой-то мере дала начало теории хаоса. Если Пуанкаре заложил фундамент теории хаоса, то Смэйл и Лоренц позднее воздвигли на нем целое здание, став, наряду с другими учеными, отцами-основателями этой теории. Но не будем забегать вперед.

 

Глава 2. Повторное открытие хаоса

Никому еще не удавалось познать что-то новое мгновенно. Если нам и кажется, что мы познали какое-то явление моментально, это означает, что на самом деле оно было рядом с нами долгое время. Так, хаос сопровождал нас почти тайно, не выходя на свет, поскольку ни один ученый не хотел столкнуться с ним лицом к лицу. Один американский физик прекрасно объяснил, почему путь к хаосу, открытый Пуанкаре, был практически заброшен на целых полвека, с начала до середины XX столетия, и впоследствии этот путь пришлось прокладывать заново.

Физик и математик Дойн Фармер, известный в США тем, что регулярно выигрывал в рулетку в Лас-Вегасе, применяя нелинейные дифференциальные уравнения, рассказывал о том, как он изучал математику:

«Слово «нелинейный» можно было встретить лишь в конце учебника. Студенты-физики проходили курс математики, и нелинейным уравнениям посвящалась последняя лекция. Многие пропускали эту тему, а остальные узнавали только методы, позволяющие сводить нелинейные уравнения к линейным и находить их приближенные решения. Мы теряли веру в свои силы: у нас не было ни малейшего представления о том, как сильно нелинейность изменяет модель. Мы не знали, что решения нелинейных уравнений могут казаться совершенно случайными. И если мы наблюдали нечто похожее, то задавались вопросом: "Откуда взялось это случайное движение? В уравнениях его не видно"».

Помимо Пуанкаре и новых исследователей теории хаоса, были и другие математики и физики, которые в те времена (мы говорим о последних годах XIX — начале XX века) изучали труды французского математика о задаче трех тел скорее в порядке исключения. Эти исследователи хаоса услышали призыв Пуанкаре заняться решением нелинейных задач и совершили ряд открытий в смежных областях.

Одним из этих ученых был Жак Адамар. Хотя различные примеры хаотических систем были известны давно, он в 1898 году первым математически доказал, что в некоторых динамических системах небольшое изменение начальных условий вызывает значительные изменения в последующем развитии системы (мы называем это явление эффектом бабочки). Французский математик изучил особую разновидность бильярда, в которой стол имел форму седловой поверхности, а траектории шаров были крайне неустойчивыми: два шара, расположенные рядом, после удара, приводившего их в движение, удалялись очень далеко друг от друга (по экспоненциальному закону). Адамар доказал, что для этой и аналогичных систем справедлива теорема о чувствительности к начальным условиям.

* * *

ВИВА, ЛАС ВЕГАС!

Два студента-физика, Дойн Фармер и Норман Паккард , в конце 1970-х основали небольшую группу под названием «Эвдемонисты». Их целью было найти способ выиграть в рулетку и направить вырученные средства на поддержку научного сообщества. Изучив купленную рулетку, члены группы сформулировали уравнение, включавшее период вращения рулетки и период вращения шарика на ней. Так как решить полученное уравнение было крайне сложно, студенты решили сконструировать микрокомпьютер, который бы предсказывал, в какой из восьми секторов упадет шарик. Компьютер помещался в каблуке туфли. Информация о том, на какой сектор следует ставить, передавалась с помощью сигнала от трех вибрирующих соленоидов, закрепленных на груди, под одеждой.

В 1978 году группа отправилась в Лас-Вегас, намереваясь обыграть казино. Наблюдатель вводил данные в компьютер, а девушка, которая делала ставку, получала указания от соленоидов, спрятанных под юбкой. Средний выигрыш составил 44 % от общей суммы ставок. Однако не обошлось без неожиданностей. Как-то раз изоляция повредилась, девушка получила сильные ожоги, но стоически продолжала игру. В итоге общий выигрыш группы составил почти 10000 долларов. Заветная цель была достигнута: с помощью методов статистики ученым удалось предсказать, в какую часть колеса рулетки будет падать шарик.

Но будьте внимательны: найденный алгоритм совсем не прост, и его нельзя применить к любой рулетке. В идеальных условиях, когда шарик представляет собой идеальную сферу, а колесо рулетки — идеальную окружность, предсказать результат было бы невозможно. «Эвдемонисты» смогли спрогнозировать, в какую часть колеса рулетки упадет шарик, только потому, что они внимательно изучили дефекты конкретной рулетки. Достоверность прогноза в краткосрочном периоде достигалась за счет несовершенства самой рулетки и шарика.

Компьютер «эвдемон истов», спрятанный в туфле.

* * *

Намного позже, в 1970-е, советский математик Яков Синай (род. 1935) вновь изучил результаты, полученные Адамаром, и рассмотрел уже не криволинейный бильярдный стол, а движение шаров на плоском квадратном столе, где располагались различные препятствия в форме дисков. Он доказал, что этот бильярд обладает теми же свойствами, что и бильярд Адамара, так как дискообразные препятствия приводят к хаотическому распределению шаров.

Хаотическая траектория бильярдного шара на бильярде Синая.

Еще один важный результат получил однокурсник Жака Адамара — французский физик Пьер Дюгем (1861–1916) . Он был убежденным католиком и ставил религиозную философию выше научной, с чем убежденный рационалист Пуанкаре не мог согласиться. Дюгем обратился к важным философским последствиям результатов, полученных им и Пуанкаре, и смог разглядеть их революционный характер.

В главе «Пример математического вывода, никогда не применимого» своего труда «Физическая теория. Ее цель и строение» (1906) Дюгем замечает, что долгосрочное прогнозирование траектории шаров в бильярде Адамара не имеет смысла, поскольку любая, даже самая малая неточность при измерении начального положения и скорости шара приведет к ошибочному прогнозу. Прогнозная траектория не будет иметь ничего общего с реальной. Процитируем книгу Дюгема:

«Очень хороший пример такого вывода, всегда бесполезного, представляют изыскания Адамара. Мы заимствуем его из наиболее простых проблем, составляющих предмет исследования наименее сложной из физических теорий, а именно механики. Материальная масса скользит вдоль некоторой поверхности. На нее не действует никакая тяжесть, никакая сила; нет также никакого трения, которое изменяло бы ее движение. Если наша материальная точка движется по какой-нибудь произвольной поверхности, то она описывает линию, которую наши математики называют геодезической линией данной поверхности. Исследования Адамара касались специально геодезических линий многократно пересекающихся плоскостей противоположной кривизны. Если дано первоначальное положение нашей материальной точки и направление ее первоначальной скорости, геодезическая линия, которая должна быть описана, вполне определена. Другое дело, когда начальные условия даны не математически, а практически. Пусть начальное положение нашей материальной точки есть не определенная точка на поверхности, а какая-то точка внутри небольшого пятна. Пусть направление начальной скорости не есть вполне определенная прямая линия, а одна какая-то из прямых линий, образующих пучок, сечение которого есть небольшое пятно. Несмотря на тесные границы, в которых сжаты геометрические данные, соответствующие нашим практическим данным, можно эти геометрические данные всегда выбрать таким образом, чтобы геодезическая линия удалилась от геодезической линии, выбранной заранее. Можно произвольно увеличить точность, с которой определены практические данные, можно уменьшить пятно, в котором находится первоначальное положение материальной точки, можно сжать пучок, в котором находится направление начальной скорости, но все же никогда не удастся геодезическую линию, остающуюся на конечном расстоянии, выделить из пучка ее неверных подруг, которые удаляются на бесконечность. Если начальные данные не определены математически, а при помощи физических методов, как бы они ни были точны, поставленный вопрос остается без ответа и всегда останется таковым».

* * *

ДЕДУШКА АДАМАР

Жак Адамар (1865–1963) , блестящий ученый еврейского происхождения, которому арифметика в детстве давалась с большим трудом, после смерти Пуанкаре занял его место во Французской академии наук. Адамар был патриархом парижской математики, сначала он занимал должность преподавателя в институте (известно, что студенты не понимали его лекций и высказывали недовольство), затем — университетского профессора (здесь, как правило, темы его исследований также интересовали прежде всего его самого).

Рассеянность Адамара была легендарной: во время Второй мировой войны, когда нацисты оккупировали Францию, профессор забыл дома американскую визу. Когда он переехал в США, то должен был как-то зарабатывать на жизнь, и в свои 79 лет он направился в университет. Ученого принял профессор, не расслышавший имени Адамара, и тот тогда показал на свой портрет, висевший на стене: «Смотрите, это я». Неделей позже Адамар вновь пришел в университет, но его портрет бесследно исчез со стены, а сам ученый получил отказ. По своим взглядам Адамар был близок к коммунистам, и некоторые полагают, что именно ему принадлежало авторство теорем, которые позднее были опубликованы в СССР и приписывались Карлу Марксу.

* * *

Далее Дюгем рассматривает другую задачу, очевидно схожую с той, что рассмотрел Адамар — задачу трех тел. Упомянув исследования Пуанкаре, Дюгем указывает: сплетение устойчивых и неустойчивых траекторий может означать, что мы не способны однозначно определить, является ли траектория планет устойчивой. Он пишет:

«Проблема трех тел остается еще для математиков страшной загадкой. Тем не менее, если в какой-нибудь данный момент известны с математической точностью положение и скорость каждой из звезд, образующих систему, то можно утверждать, что с этого момента каждая звезда будет описывать вполне определенную траекторию.

На этом основании математик может задаться следующим вопросом: будут ли эти звезды и впредь продолжать свое вращательное движение вокруг Солнца? Не произойдет ли, напротив, такая вещь, что одна из этих звезд отдалится от своих подруг, чтобы удалиться в бесконечность? Этот вопрос образует проблему устойчивости системы. Лаплас полагал, что он решил эту проблему, но только стараниями современных математиков, и в особенности Пуанкаре, обнаружена была чрезвычайная трудность ее решения. Но может случиться так, что практические указания, которые астроном дает математику, представляют для последнего бесчисленное множество теоретических данных, граничащих друг с другом, но тем не менее различных. Возможно, что среди этих указаний окажутся такие, по которым все звезды вечно должны оставаться на конечном расстоянии, но, может быть, окажутся и такие, по которым некоторые из этих небесных тел должны удалиться в бесконечность. Если бы здесь обнаружилось обстоятельство, аналогичное тому, с которым мы познакомились в проблеме Адамара, то для физика всякий математический вывод относительно устойчивости Солнечной системы оказался бы выводом никогда не применимым».

В присутствии хаоса реальная и прогнозная траектория системы в среднесрочном и долгосрочном периоде будут расходиться.

Несмотря на то что все французские математики находились в тени Пуанкаре, на протяжении большей части XX столетия никто не предпринимал серьезных попыток подробно изучить гомоклинические сети и хаотические орбиты.

Между открытиями Пуанкаре и началом современных исследований хаоса прошло очень много времени. Так случилось потому что, во-первых, была открыта квантовая механика, которой уделяли внимание несколько поколений физиков и математиков. Если в квантовой механике случайность оказывает влияние на различные события новым, неизвестным образом, зачем вводить случайность в классической механике, рассматривая чувствительность к начальным условиям? Во-вторых, идеи Пуанкаре, Адамара и Дюгема были высказаны слишком рано, когда еще не существовало средств для их дальнейшего развития, и только с появлением компьютеров стало возможным произвести необходимые сложные вычисления и численный анализ.

* * *

МАКС БОРН (1882–1970). БОРЬБА С ХАОСОМ

Этот знаменитый физик, создатель квантовой механики, в 1955 году вновь подчеркнул, какую важную роль в физике играет высокая чувствительность системы к начальным условиям, Борн задался вопросом: является ли классическая механика детерминированной? Чтобы найти ответ, он рассмотрел модель крайне нестабильного газа, предложенную Хендриком Антоном Лоренцем в 1905 году для объяснения теплопроводности металлов. По сути, каждая частица газа Лоренца ведет себя так же, как бильярдный шар в моделях Адамара и Синая: эта частица (допустим, электрон) при движении и столкновении с рядом препятствий (например, с атомами металла) отклоняется от траектории, и в результате малейшее различие в начальных условиях порождает два совершенно разных состояния. И вновь, если бы положение и скорость частицы можно было определить с очень высокой точностью, то ее состояние в последующие моменты времени (в прошлом или в будущем) можно было бы определить однозначно.

В своей речи при получении Нобелевской премии по физике в 1954 году Борн привел еще один пример: представьте себе частицу, которая движется без трения вдоль прямой между двумя стенами, причем соударение частицы со стенами абсолютно упругое. Частица движется с постоянной скоростью, равной начальной скорости, назад и вперед. Если мы точно знаем скорость частицы, то можем определить, где она будет находиться в любой момент времени. Но если допускается даже небольшая погрешность в измерении скорости, то неточность при измерении положения частицы в последующие моменты времени будет нарастать, а через достаточное время станет сопоставима с расстоянием между стенами. Следовательно, предсказать положение частицы на достаточно большом промежутке времени невозможно. Чувствительность к начальным условиям — составная часть классического детерминизма.

* * *

Последователи Пуанкаре в Америке

Шел XX век, и работы Пуанкаре были продолжены представителями двух математических школ: по одну сторону океана — американской, в частности Биркхофом и Смэйлом, по другую сторону — советской школой, основанной Ляпуновым (главными ее представителями были Колмогоров и Арнольд). Влияние Пуанкаре оставалось заметным, однако его идеи о гомоклинических точках на долгое время были забыты.

В работах Джорджа Дэвида Биркхофа (1884–1944) влияние работ Пуанкаре прослеживается при рассмотрении качественных характеристик дифференциальных уравнений. В своей книге «Динамические системы» (1927), где впервые упоминается термин «динамическая система», этот американский математик описывает теорию динамических систем и заходит дальше, чем Пуанкаре, в анализе кривых, определяемых дифференциальными уравнениями. Иными словами, Биркхоф использовал наследие Пуанкаре и развил его идеи в новых направлениях.

Говоря об американской математической школе, нельзя обойти вниманием фигуру Стивена Смэйла (род. 1930) , удостоенного в 1966 году Филдсовской премии за вклад в теорию динамических систем. Смэйл находился под влиянием сразу трех наиболее важных традиций изучения динамических систем и хаоса, а именно: забытой традиции, начатой Пуанкаре, к которой принадлежал Биркхоф; русской математической школы, объединившейся с английской усилиями Соломона Лефшеца во время холодной войны, и, наконец, традиции аналитико-топологического изучения дифференциальных уравнений, начатой Мэри Люси Картрайт (1900–1998) и Джоном Идензором Литлвудом (1883–1977) в Великобритании на основе трудов Ван дер Поля.

Бальтазар Ван дер Поль (1889–1959) был голландским инженером-электронщиком, который в «золотые двадцатые» обнаружил предельный цикл (об этом понятии мы уже говорили в первой главе) в нелинейном дифференциальном уравнении, которое описывало поведение электронных ламп, имевших огромное значение в сфере телекоммуникаций. Это уравнение имело траекторию-решение в форме замкнутой кривой, которая притягивала к себе все ближайшие траектории. В 1945 году, когда союзники вовсю работали над созданием радара, Картрайт и Литлвуд доказали, что в окрестностях этого предельного цикла наблюдалось сложное непериодическое движение — это был хаос!

Несколько позже, в 1950-е, специалист по топологии Стивен Смэйл продолжил качественный анализ динамических систем в поисках теоремы, аналогичной теореме Пуанкаре — Бендиксона, для трехмерного пространства, однако его работы не увенчались успехом. Подобная теорема не сформулирована до сих пор, так как траектории в пространстве могут переплетаться, что крайне усложняет динамику. Существуют трехмерные динамические системы, в которых, помимо центров, фокусов, узлов, седел и предельных циклов, наблюдаются странные аттракторы.

К несчастью для Смэйла, хаос существовал.

Странный аттрактор Рёсслера (1976). Подобно ленте Мёбиуса, он имеет только одну сторону, хотя кажется, что у него две стороны: достаточно проследовать вдоль внешней границы, чтобы увидеть, как она постепенно переходит во внутреннюю.

Изначально Смэйл считал, что почти все (или все) трехмерные динамические системы обладают не слишком странным поведением — почти таким же, как и двухмерные динамические системы на плоскости, все возможные аттракторы которых принадлежали конечному множеству фокусов и предельных циклов. Интерес Смэйла к аттракторам был вызван тем, что они описывали поведение динамической системы в долгосрочном периоде. Эти точки указывали, какими будут системы в далеком будущем, поскольку они испытывают фатальное притяжение к аттракторам, расположенным бесконечно далеко. Смэйл полагал, что единственными видами движения, корректными в долгосрочном периоде, были либо пребывание в состоянии покоя, либо равновесие в стационарном состоянии (в фокусе), либо периодическое повторение некой последовательности движений. Иными словами, система могла либо оставаться неподвижной, либо снова и снова совершать определенные движения. В долгосрочном периоде траекториями системы были точки либо окружности.

Каким же было удивление ученого, когда он, отдыхая на пляжах Рио-де-Жанейро, получил письмо с контрпримером к своей гипотезе. Норман Левинсон, коллега Смэйла из Массачусетского технологического института (MIT), описал динамическую систему, порождавшую нелинейный осциллятор Ван дер Поля, изученный Картрайт и Литлвудом. Эта система имела бесконечное множество периодических орбит и, что еще хуже, в долгосрочном периоде демонстрировала в высшей степени странное поведение: в теории была возможна ситуация, при которой система в будущем не будет оставаться неподвижной и не будет совершать определенные движения снова и снова, а продолжит двигаться совершенно беспорядочным образом. Рассмотрев аналитические работы Левинсона с геометрической точки зрения, Смэйл в 1959 году описал соленоид Смэйла (названный так за внешнее сходство с соленоидом — электромагнитом, состоящим из металлического сердечника, на который намотана проволока), а затем, уже в 1960-е — подкову Смэйла, обладающую крайне сложной динамикой, схожей с той, что демонстрирует система, описанная Левинсоном. Это были два в высшей степени странных аттрактора.

Соленоид Смэйла , представляющий собой тор, трижды обмотанный вокруг другого тора в четырехмерном пространстве.

Описание соленоида Смэйла, и в особенности подковы Смэйла, стало важным шагом на пути к пониманию связи между существованием гомоклинической орбиты и непериодическим и неустойчивым поведением, которое позднее стало называться детерминированным хаосом. С мэйл доказал, что существование гомоклинических точек подразумевает существование подковы — фигуры, служащей воплощением топологических операций растяжения и складывания, которые, как мы объясним в третьей главе, порождают хаос.

Возьмем на себя смелость рассмотреть хаос подробнее. До сих пор мы пытались приблизиться к хаосу с помощью интуитивно понятных примеров, однако понять, что же происходит на самом деле, совсем не просто. В научно-популярных книгах и даже в учебниках объяснения начинаются с числовых примеров, и только потом автор приводит примеры из геометрии и топологии.

Мы же решили действовать противоположным образом: во-первых, именно так исторически изучался хаос, во-вторых, так читатель сможет лучше понять, как и математики постепенно понимали, что такое хаос, — сначала с качественной, а затем с количественной точки зрения. У вас кружится голова от непонятных слов? Не беспокойтесь, математики прошлого чувствовали себя точно так же.

И соленоид, и подкова Смэйла — это примеры отображений, геометрических преобразований, в которых проявляется хаос. Преобразование, порождающее подкову Смэйла (обозначим его через f), очень простое. Чтобы выполнить его, рассмотрим квадрат или любую другую фигуру похожей формы. Сначала расположим квадрат на плоскости, растянем его, затем сложим пополам в форме подковы и уложим в границы, определенные краями исходной фигуры. Если мы будем повторять преобразование f снова и снова бесконечное число раз, то получим сложную и запутанную многослойную структуру, и возникнет хаос. На первой итерации исходный квадрат превратится в подкову в форме буквы U, как показано на следующем рисунке. На второй итерации подкова превратится в другую подкову, состоящую из трех кривых в форме буквы U. На третьей итерации мы получим уже семь кривых той же формы, и так далее. В пределе имеем бесконечно запутанную кривую, очень похожую на гомоклиническую сеть, которая приводила в ужас Пуанкаре. И действительно, в растяжении и складывании заключен геометрический смысл хаоса.

Последовательные итерации при построении подковы Смэйла . Они заключаются в растяжении и складывании кривой в форме буквы U в границах исходной фигуры.

Последовательно выполняемые операции растяжения и складывания, характерные для подковы Смэйла, — верный признак хаоса. Следовательно, эти же операции вы встретите во многих хаотических отображениях. В качестве примера можно привести «отображение пекаря», названное так за сходство с операциями, выполняемыми при замешивании теста, или «отображение кота Арнольда», определенное В. И. Арнольдом (о нем мы расскажем позже), которое заключается в последовательном растяжении и складывании изображения головы кота. Но мы не будем растягивать и складывать голову кота, вместо этого используем более привлекательное изображение — фотографию модели Лины Седерберг, мисс Ноябрь журнала «Плейбой» 1972 года. С 1970-х годов фрагмент ее фотографии используется в качестве тестового изображения в алгоритмах сжатия изображений и, по сути, является стандартом в науке и технике. (И кто-то еще осмеливается заявлять, что математики — скучные люди!) Между прочим, номер «Плейбоя» с этой фотографией стал самым продаваемым за всю историю журнала.

Если мы несколько раз применим отображение кота Арнольда к этой фотографии, то есть будем последовательно растягивать и складывать ее определенным образом, то заметим, что уже через несколько итераций лицо модели станет неразличимым. Но после определенного числа итераций (а именно 192) лицо модели можно будет увидеть снова. Точнее говоря, можно будет увидеть очень похожее лицо — траектории динамических систем могут совпадать друг с другом, только если являются периодическими, а мы рассматриваем хаотическую орбиту. Тем не менее лицо Лины будет появляться и исчезать бесконечное число раз. Так проявляет себя хаос.

Отображение кота Арнольда на примере фотографии Лины Седерберг . Результатом многократного растяжения и складывания изображения (верхние ряды) будет однородное поле (центральные ряды). Однако на каком-то этапе некоторые точки будут располагаться вблизи исходных положений, и исходное изображение внезапно появится вновь (нижний ряд).

В худшем (или лучшем — с какой стороны посмотреть) случае динамическая система будет хаотической. В этом случае траектории, расположенные близко друг к другу, будут быстро расходиться по мере того, как они будут растягиваться, сжиматься и складываться по мере приближения к аттрактору. Эти преобразования определяют очень странное и сложное поведение, которое следует из теоремы Пуанкаре о возвращении.

В своем труде о новых методах небесной механики ученый сформулировал удивительную теорему: «Для данных уравнений определенной формы и произвольного частного решения любого из этих уравнений всегда можно найти периодическое решение — его период может быть очень большим — такое, что разница между этими решениями будет сколь угодно малой». Портрет Лины демонстрирует теорему Пуанкаре о возвращении: если повторно применять одно и то же преобразование к системе, которая не может выйти за определенные границы, она бесконечное число раз будет возвращаться в состояние, близкое к оригиналу. Иными словами, рано или поздно все вернется на круги своя. Существование периодического решения означает, что если мы проткнули колесо велосипеда, то достаточно подождать, когда оно наполнится воздухом само по себе. Через достаточно долгое время колесо вновь наполнится воздухом — так гласит теорема Пуанкаре. Единственная проблема в том, что ждать придется дольше, чем существует Вселенная.

* * *

ВЫ, КОНЕЧНО, ШУТИТЕ, МИСТЕР ФЕЙНМАН ?

Ричард Филлипс Фейнман (1918–1988) , эксцентричный американский физик, был удостоен Нобелевской премии по физике 1965 года за вклад в квантовую электродинамику. В число его хобби входил гипноз, посещение топлесс-баров и взлом сейфов. В своих популярных «Фейнмановских лекциях по физике» он приводит несколько примеров, при виде которых возникает вопрос: вы, конечно, знакомы с теорией хаоса, мистер Фейнман?

В разделе «Немного философии» главы 38 первого тома «Лекций…», опубликованном в 1965 году, Фейнман описывает, насколько классическая механика проникнута духом недетерминизма, который с практической точки зрения есть следствие неточности при определении начальных условий некоторых физических систем. Если бы мы знали положение и скорость всех частиц в мире, то смогли бы предсказать, что произойдет в будущем. Предположим, что нам неизвестно точное положение некоторого атома. Следовательно, после столкновения этого атома с другим ошибка при определении его положения увеличится, с каждым новым столкновением неточность будет нарастать, а по прошествии определенного периода времени величина нашего незнания будет невообразимо велика.

* * *

Математика по другую сторону «железного занавеса»

В это же самое время внутри «железного занавеса» существовала мощная советская школа. Ее представители, многочисленные физики и математики, унаследовали важные результаты, полученные Ляпуновым в ходе исследований устойчивости движения в динамических системах.

Математик и физик Александр Ляпунов (1857–1918) , работавший примерно в то же время, что и Пуанкаре, использовал более количественный подход к теории устойчивости. Вместо того чтобы, подобно Пуанкаре, изучать геометрию траекторий, Ляпунов рассмотрел числа — так называемые экспоненты Ляпунова — которые служили индикаторами неустойчивости. Если какая-либо из этих экспонент была положительной, то траектории удалялись друг от друга (экспоненциально). В этом случае система была нестабильной.

В 1950-е годы основной темой семинаров Андрея Колмогорова (1903–1987) в Московском государственном университете была небесная механика: и он, и его ученик Владимир Игоревич Арнольд (1937–2010) занимались теоретическим изучением устойчивости динамических систем небесной механики, взяв за основу труды Пуанкаре и Ляпунова. Результатом этих исследований стала теорема, представленная Колмогоровым в 1954 году на Международном математическом конгрессе в Амстердаме.

Позднее юный немецкий математик Юрген Курт Мозер (1928–1999) захотел написать обзорную статью по этой теме для журнала Mathematical Reviews. Мозер настолько интересовался этой темой, что совершил поездку в Советский Союз, там он познакомился с Арнольдом, и результатом их совместной работы стала широко известная (среди специалистов) теория Колмогорова — Арнольда — Мозера. Эта теория описывает, что происходит, когда в интегрируемой (линейной) системе возникают неинтегрируемые (нелинейные) возмущения. Если эти возмущения достаточно малы, то большинство орбит будут подобны стабильным и квазипериодическим, то есть никогда не будут слишком далеко отклоняться от периодических орбит системы. В этой же ситуации будут наблюдаться и другие орбиты, предсказать поведение которых нельзя. Таким образом, в океане хаоса будут формироваться островки стабильности.

Если рассматривать Солнечную систему, то, поскольку масса планет по сравнению с массой Солнца пренебрежимо мала, в первом приближении можно пренебречь силами, действующими между планетами, и получить интегрируемую систему, в которой каждая планета будет двигаться по прекрасному кеплеровому эллипсу, что доказал Ньютон. Но если мы начнем учитывать взаимодействие между планетами, система уже не будет интегрируемой, о чем нам известно благодаря трудам Пуанкаре.

Планеты перестанут описывать идеальные эллипсы, и вполне возможно, что одна из них даже начнет движение по хаотической орбите и в конце концов покинет пределы Солнечной системы. С 1954 года благодаря теории Колмогорова — Арнольда — Мозера мы знаем, что незначительные отклонения нарушают равномерность лишь частично. И если предположить, что силы взаимодействия планет не слишком велики, то большинство их орбит будут близки по форме к эллипсам. Это не означает, что абсолютно все движения в пределах Солнечной системы должны быть равномерными — достаточно, чтобы равномерными были большинство движений.

Некоторые малые тела Солнечной системы могут двигаться по хаотическим орбитам. В конечном итоге они либо столкнутся с другими телами, либо покинут пределы Солнечной системы. Возможно, именно такой была судьба Хирона — астероида из группы Кентавров (наполовину астероида, наполовину кометы), движущегося по хаотической и неустойчивой орбите между Сатурном и Ураном.

Теория Колмогорова — Арнольда —  Мозера описывает островки регулярности в море хаоса.

Еще одной иллюстрацией теории Колмогорова — Арнольда — Мозера стало численное исследование, проведенное французским астрономом Мишелем Эно (род. 1931) совместно с аспирантом Карлом Хайлсом (род. 1939) в 1962 году при помощи нового инструмента — компьютера. Эно и Хайле хотели изучить движение звезд в галактиках в зависимости от их энергии. При низких энергиях решения уравнений были, как и ожидалось, периодическими или квазипериодическими. При высоких энергиях компьютер показывал, что периодические траектории постепенно размываются, и возникает целое море хаоса, в котором лишь иногда наблюдаются островки стабильности. Это была хаотическая система Эно — Хайлса.

Однако влияние советской школы этим не ограничивалось: во время холодной войны основные результаты, полученные советскими математиками, были переведены на английский. Европейские и американские математики смогли ознакомиться с ними благодаря трудам Соломона Лефшеца (1884–1972) , которые пришлись как нельзя кстати. Этот инженер-химик родился в Москве, учился в Париже, переехал в США, где в результате несчастного случая (во время эксперимента произошел взрыв) потерял обе руки, после чего он начал заниматься математикой. Математика помогла Лефшецу справиться с сильной депрессией, и позднее он даже получил должность преподавателя в Принстоне. Чтобы писать на доске, ученый использовал пластиковые протезы и перед лекциями просил учеников прикрепить кусочек мела к его правой руке. Его сотрудничество с советскими математиками по окончании Второй мировой войны сыграло важнейшую роль в развитии теории динамических систем, а вместе с ней — ив развитии зарождавшейся теории хаоса.

Лоренц: кофе, компьютер, бабочка

Вернемся в Соединенные Штаты. Там в 1963 году юный метеоролог из MIT по имени Эдвард Нортон Лоренц (1917–2008) , который учился у Биркхофа в Гарварде, сформулировал модель из трех обыкновенных дифференциальных уравнений для описания движения потока жидкости под действием градиента температур. Эта модель представляла собой упрощенное описание конвекции в атмосфере, то есть движение потоков горячего и холодного воздуха в условиях заметной разницы температур: горячий воздух поднимается вверх и, достигнув верхних слоев атмосферы, охлаждается, после чего вновь опускается к поверхности Земли. При некоторых значениях постоянных дифференциальные уравнения модели описывали начало нестационарной конвекции.

Однажды во время поиска численных решений с помощью компьютера Royal МсВее LGP-30, первого персонального компьютера в мире, Лоренц отлучился выпить чашку кофе и, вернувшись, обнаружил, что система демонстрирует крайне нестабильное, хаотическое поведение. Компьютер распечатал список очень странных значений, в которых не прослеживалось какой-либо закономерности. Лоренц счел, что произошла какая-то ошибка, и повторил расчеты. Но всякий раз он получал те же необычные результаты. Списки чисел начинались с почти одинаковых значений, которые затем становились принципиально различными. Лоренц по счастливой случайности столкнулся с феноменом чувствительности к начальным условиям.

Он заметил, что система была крайне неустойчивой даже при малейших изменениях. Незначительное изменение начальных условий приводило к тому, что конечные состояния системы оказывались принципиально разными. Предоставим слово самому Лоренцу:

«Два неотличимо различающихся состояния могут породить два существенно различных состояния. Если допущена какая-либо ошибка при наблюдении текущего состояния системы (а для реальных систем это, по всей видимости, неизбежно), то дать надежный прогноз состояния системы в далеком будущем будет невозможно».

Позаимствованный Лоренцем образ в итоге занял важное место в науке: взмах крыльев бабочки в Бразилии мог вызвать торнадо в Техасе. Это явление получило название эффект бабочки. И действительно, представим, что маленькая бабочка сидит на ветке дерева в далекой Амазонии и время от времени раскрывает и закрывает крылья. Допустим, что она взмахнула крыльями ровно два раза. Так как атмосфера — это хаотическая система, чувствительная к начальным условиям, малейшее отклонение потоков воздуха рядом с бабочкой может в конечном итоге вызвать ураган над Техасом спустя несколько месяцев.

Этот феномен стал широко известен в 1972 году, когда на заседании Американской ассоциации содействия развитию науки Лоренц выступил с докладом на тему «Может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе?», хотя еще в 1963 году один метеоролог так прокомментировал результаты исследования Лоренца: «Если эта теория верна, то взмах крыльев чайки может навсегда изменить погоду».

Популярная метафора о взмахе крыльев бабочки стала известной благодаря Лоренцу, а выражение «чувствительность к начальным условиям» ввел американский математик Гукенхеймер уже в 1970-е. В любом случае результат один: в силу хаотической динамики изначально совпадающие траектории постепенно отделяются друг от друга и расходятся.

Подобно спискам чисел, графики, приведенные Лоренцем в статье, изображали ряд колебаний, которые возрастали и в конечном итоге становились хаотическими.

Изначально траектория системы была периодической, но затем начинала испытывать сильные колебания, не подчиняющиеся какой-либо закономерности. Траектории вращались, по всей видимости, случайно, вокруг фигуры, напоминавшей восьмерку или крылья бабочки. Иногда траектории вращались несколько раз подряд вокруг одной половины этой фигуры, затем вокруг второй ее половины другое число раз. С течением времени близлежащие траектории отдалялись друг от друга по мере того, как они растягивались и складывались вблизи этой странной фигуры. При растяжениях близлежащие траектории разделялись, ошибки прогноза увеличивались. Затем, когда траектории складывались, они сплетались между собой. Этой странной фигурой, вблизи которой находились траектории, был аттрактор Лоренца.

В отличие от предсказуемых классических аттракторов (точек или предельных циклов), странные, или хаотические аттракторы, в частности аттрактор Лоренца , описывают непредсказуемые движения и имеют более сложную форму.

Лоренц опубликовал результаты своего открытия в метеорологическом журнале. Статья называлась «Детерминированный непериодический поток» и осталась практически незамеченной. Хотя Лоренц был метеорологом, он хотел быть математиком, однако эти планы нарушила Вторая мировая война. Математическое открытие Лоренца оказалось неактуальным, и статья пролежала на библиотечных полках почти 10 лет.

Только профессор Джеймс Иорк (род. 1941) из Мэрилендского университета смог распознать научные и философские последствия работы Лоренца: в упомянутой нами статье от 1963 года слились воедино (доказательством чему служит список источников, приведенный Лоренцем) топологические исследования нелинейных систем Пуанкаре, теория динамических систем Биркхофа и (внимание!) традиции советской математической школы, изложенные в книге «Качественная теория дифференциальных уравнений» Немыцкого и Степанова, изданной в Москве в 1949 году и переведенной на английский язык в 1960-м.

Эффект бабочки (чувствительность к начальным условиям) и так называемый эффект карточной колоды, заключающийся в растяжении и складывании траекторий, были сокрыты в гомоклинических сетях Пуанкаре. Оба этих признака хаоса проявились в виде аттрактора Лоренца и подковы Смэйла. Строго говоря, изучение гомоклинических сетей уже натолкнуло Смэйла на мысли о соленоиде и подкове, растяжение и складывание траекторий в которых являются характерными признаками хаоса. Так теория хаоса возродилась.

Новые создатели теории хаоса

Если Эдвард Лоренц предложил научному сообществу парадигму непрерывных хаотических динамических систем (систему Лоренца), то Роберт Мэй (род. 1936) , занимавшийся популяционной биологией, в своей статье «Простые математические модели, обладающие сложной динамикой», опубликованной в журнале Nature в 1976 году, описал парадигму дискретных хаотических динамических систем (в них время течет не непрерывно, а скачками). Речь шла о логистическом отображении очень простой функции: f(х) = kx (1 — х). При значениях, близких к 4, эта функция, как это ни парадоксально, демонстрирует удивительно сложную динамику.

В следующей главе на примере этого отображения мы объясним основные понятия, связанные с хаосом.

Термин «хаос» был официально принят за год до публикации Мэя. В 1975 году профессор Иорк впервые использовал этот термин в современной научной литературе, в частности в своей статье «Период, равный трем, означает хаос», написанной в соавторстве с Ли Тянь-Янем. Несколько лет спустя, в 1978–1979 годах, физик Митчелл Фейгенбаум (род. 1944) эвристически (то есть с помощью нестрогих методов, приблизительных подсчетов) обнаружил определенные универсальные постоянные, характеризовавшие переход от периодического движения к хаотическому.

Не следует забывать, что в конце 1970-х — начале 1980-х годов исследования возможностей практического применения теории хаоса начали давать свои плоды не только в компьютерном моделировании. Классическим примером, демонстрирующим важность хаоса при изучении физических явлений, является переход к турбулентности в потоке. Турбулентность — очень важное явление, так как оно рассматривается во многих науках, начиная от гидродинамики и заканчивая метеорологией и климатологией. В классической математике турбулентность начинается с накопления колебаний. В стандартной интерпретации по мере того, как движение воды в реке становится все быстрее, сумма колебаний, по отдельности простых, порождает нестабильность, турбулентность. Проблема заключалась в том, что большинство колебаний при наложении совпадают, и в результате возникает периодическое движение, но не турбулентность. Наконец, в 1971 году математики Давид Рюэль (род. 1935) и Флорис Такенс (1940–2010) решили использовать иной теоретический подход и рассмотрели турбулентность с точки зрения топологии. Тогда и возникла блестящая идея: сочетание колебаний может породить новый объект — странный аттрактор, получивший такое название за форму: он представлял собой множество, отличное от известных на тот момент аттракторов (фокусов и предельных циклов).

Еще одна область применения теории хаоса, важность которой неуклонно повышается, связана с биологией при изучении неравномерности пульса и распространения заболеваний. Еще более многообещающими кажутся исследования в медицине и нейробиологии, в частности в электроэнцефалографии, где выявление хаотических и нехаотических участков (любопытно, что именно нехаотические участки являются аномальными) на энцефалограмме сегодня считается единственным способом раннего диагностирования заболеваний мозга.

* * *

ОПЕРЕЖАЯ ВРЕМЯ

Весьма вероятно, что первой динамической системой, с которой столкнется человек, только начавший изучение теории хаоса, будет логистическое отображение: f ( x ) = 4 х ( 1 — х ). Несмотря на кажущуюся простоту, это отображение обладает очень сложной динамикой, которая включает хаотическое поведение. Логистическая функция является решением логистического уравнения, которое впервые описал бельгийский ученый Пьер Франсуа Ферхюльст (1804–1849) . Когда в исследовании роста населения, опубликованном в 1838 году, Ферхюльст ввел логистическое уравнение для моделирования „ _ роста населения и последующей стабилизации его численности, подтверждаемого демографической статистикой, он не мог и представить, что более чем через 100 лет его модель привлечет огромное внимание исследователей и станет классическим примером теории хаоса.

Пьер Франсуа Ферхюльст.

* * *

СТРАННЫЕ АТТРАКТОРЫ И ФРАКТАЛЫ

Большинство странных аттракторов в хаотических системах представляют собой фрактальные множества. Именно фрактальная геометрия, созданная Бенуа Мандельбротом (1924–2010) в 1977 году на основе передовых трудов Пьера Фату и Гастона Жюлиа, опубликованных в 1918 году, считается геометрией природы. Форму фракталов имеет множество природных объектов (морские побережья, листья растений, раковины моллюсков, легкие и другие органы человека, галактики, созвездия и даже кольца Сатурна, сегменты которых напоминают фрактальные множества Кантора), так как самоподобие — основное свойство сложных систем.

* * *

Слишком громкая революция

Несмотря на вышесказанное, объективная и не лишенная скепсиса характеристика, приведенная Давидом Рюэлем в книге «Случайность и хаос», полностью корректна:

«Математическая теория дифференцируемых динамических систем выиграла от притока «хаотических» идей и в целом не пострадала от современной тенденции (техническая сложность математики препятствует мошенничеству). Однако физика хаоса, несмотря на частые триумфальные объявления о «новых» прорывах, в настоящее время практически не дает интересных открытий.

Мы не будем излагать искаженное видение хаоса, характерное для некоторых постмодернистов и других мыслителей. Критики утверждают, что высокая популярность теории хаоса и фрактальной геометрии не соответствует их реальной научной ценности. Теория хаоса применяется даже при анализе художественных произведений и в управлении предприятиями.

Нельзя отрицать, что хаос открыл новый путь в науке. Эту новую науку, объединяющую множество дисциплин, математики называют теорией хаоса, или теорией динамических систем, физики — нелинейной динамикой, все остальные — нелинейной наукой. Это наука об эффекте бабочки, о чувствительности к начальным условиям, о случайных, беспорядочных и неправильных траекториях, о непериодическом и нестабильном поведении, о гомоклинических орбитах, о растяжении и складывании траекторий, о странных аттракторах и многом, многом другом. Войдем же в дверь, которую открыла перед нами теория хаоса.

* * *

ХАОС НА ЗЕМЛЕ И НА НЕБЕ

Если Роберт Мэй представил парадигму дискретной хаотической динамической системы в одном измерении (логистическое отображение), то французский астроном Мишель Эно предложил парадигму дискретной хаотической динамической системы в двух измерениях — так называемое отображение Эно. В 1976 году, спустя несколько лет после того, как свет увидела работа Лоренца с описанием модели непрерывной хаотической динамической системы, Эно опубликовал статью «Двухмерное отображение со странным аттрактором», в которой представил преобразование плоскости, определяемое формулой

где а и b — две постоянные, которые обычно принимаются как а  = 1,4 и b  = 0,3. Это отображение Н представляет собой упрощенную версию сечения Пуанкаре для аттрактора Лоренца.

Если мы применим Н несколько раз подряд к квадрату, то увидим, как он будет менять форму: сначала он будет превращаться во все более вытянутый четырехугольник, затем — в бесконечно запутанную подкову. Эта бесконечно запутанная структура (фрактал), к которой приближаются последовательные итерации Н , и будет странным аттрактором Эно.

Хотя Эно утверждал, что описал странный аттрактор (то есть аттрактор, имеющий фрактальную природу), правильность его выводов подтвердили шведские математики Майкл Бенедикс и Леннарт Карлесон лишь в 1991 году.

Аттрактор Эно имеет фрактальную структуру, то есть обладает самоподобием (он повторяется в различных масштабах снова и снова).

 

Глава 3. Но, господин математик, что такое этот ваш детерминированный хаос?

Бог и Дьявол сошлись в одном: способность человека предсказывать будущее безнадежно ограничена. Теория относительности Эйнштейна избавила ученых от иллюзий об относительном пространстве и времени, описанных в классической физике Ньютона, квантовая теория Бора, Планка и Гейзенберга, в свою очередь, покончила с мечтами о точных измерениях, а теория хаоса в одночасье уничтожила фантазии о возможностях предсказания будущего.

Самым важным ударом по традиционной мысли стало понимание того, что предсказать поведение многих систем на больших интервалах времени в принципе невозможно, так как решения уравнений, описывающих движение этих систем, крайне неустойчивы. Сложное поведение подобных систем вызвано не внешним воздействием, не обилием степеней свободы и не квантовыми эффектами. Уравнения, описывающие движение системы, детерминированы, однако их решения обладают стохастическими свойствами. Это явление называется детерминированным хаосом.

Попытаемся объяснить детерминированный хаос с точки зрения математики, ведь, как говорил Чарльз Дарвин, «математика наделяет человека новым, шестым чувством».

Хаос и сложность

Хаотические и сложные системы на протяжении многих десятилетий были забыты официальной наукой. Наука XX века позволила понять, из какой ткани соткана Вселенная, познать относительность пространства-времени и микрокосм квантовой механики (его можно сравнить с игровым полем), а современная наука помогает лучше понять, как устроена наша реальность (то есть фишки на игровом поле). Однако подлинное величие науки в конечном итоге проявляется на практике, и лишь теперь, в начале XXI века, мы постепенно начинаем осознавать важность теории хаоса и наук о сложности.

В действительности теория хаоса — лишь одна из так называемых наук о сложности, так как хаотические системы — это всего одна из разновидностей сложных систем. Существуют и другие науки о сложности: фрактальная геометрия, теория катастроф, нечеткая логика и другие. Говорят, что описать класс систем, изучаемых в теории хаоса, сложно, потому что они находятся на полпути между порядком и беспорядком, словно между двух огней. Если крайне упорядоченные системы (например, хрусталь) или очень неупорядоченные системы (например, дым) просты и описать их несложно, то описать промежуточные системы сложнее всего. В частности, хаотические системы — это нелинейные детерминированные системы, обладающие непериодическим поведением, в силу которого они становятся непредсказуемыми. Согласно китайской пословице, взмах крыльев бабочки можно ощутить на другой стороне Земли. Или, как писал математик Блез Паскаль, будь нос Клеопатры чуть покороче, облик Земли стал бы иным: Октавиан влюбился бы в Клеопатру и не стал бы первым римским императором. Кроме того, как вы увидите чуть позже, хаотические системы вездесущи: их можно встретить в математике, физике, астрофизике, метеорологии, биологии и медицине. Иными словами, почти все (или даже все) реальные системы обладают хаотической динамикой.

Динамические системы

Вы уже увидели, что хаос — это феномен, изучаемый в математической теории динамических систем. Динамическая система — это математическая модель, применяемая в естественных или общественных науках, которая представляет собой уравнение, описывающее изменение состояния системы с течением времени.

Существуют дискретные и непрерывные динамические системы. В дискретных системах время принимает набор фиксированных значений (t = 0, 1, 2, 3 …). Так, дискретная динамическая система формально задается уравнением в конечных разностях — формулой, которая описывает, как вычислить на основе исходного значения следующее, за ним — следующее, и так далее, до бесконечности. Уравнение в конечных разностях — это уравнение вида

где f — функция, описывающая, как вычисляется х n+1 на основе х. Иными словами, эта функция указывает, как вычислить х 1 через x 0 , х 2 через х 1 , х 3 через х 2 и так далее.

Уравнение в конечных разностях — это формула, выражающая значение переменной на следующем шаге через ее значение на предыдущем шаге. Так, для данного начального условия x0  решением динамической системы будет траектория {x 0 , х 1 , x 2 , х 3  …}. Чтобы получить ее, нужно применить f к х 0 некоторое число раз.

В непрерывных динамических системах время не принимает набор фиксированных значений, а течет непрерывно, как и в реальном мире. Непрерывные динамические системы описываются дифференциальными уравнениями, подобными приведенным в предыдущих главах. Дифференциальные уравнения — это формулы, выражающие скорость измерения переменной в зависимости от ее текущего значения.

В математическом анализе хаоса мы для простоты будем рассматривать дискретные динамические системы, так как они позволят вам понять суть вопроса.

Существует теорема, согласно которой непрерывная динамическая система будет хаотической тогда и только тогда, когда существует такое сечение Пуанкаре, что в нем можно определить дискретную динамическую систему, которая также будет хаотической.

Существует особый класс дискретных динамических систем, обладающих очень важной характеристикой: эти системы являются нелинейными. Система называется линейной, если функция f является линейной, то есть функцией первой степени, следовательно, имеет вид f(х) = ах + Ь. Если же функция f нелинейная (то есть ее степень больше 1) и, к примеру, имеет вид f(х) = ах2 + Ьх + с, то такая система считается нелинейной.

Несмотря на то что в нелинейных динамических системах значения величин, характеризующих систему, определяются значениями величин в предыдущий момент времени (такая система называется детерминированной), выходные значения непропорциональны входным. Микроскопические изменения в начальных условиях могут вызвать значительные изменения конечного состояния системы. Именно эта несоразмерность между причинами и следствиями объясняет, почему поведение подобных систем столь разнообразно: некоторые из них описывают фиксированные точки, периодические, квазипериодические и, наконец, хаотические орбиты.

Виды нелинейных динамических систем (стационарные, периодические и хаотические), соответствующие им представления временных рядов значений (слева) и графики траекторий на фазовой диаграмме (справа).

Эффект бабочки и эффект карточной колоды

Настало время ответить на вопрос, вынесенный в название главы: что же такое детерминированный хаос? Сначала посмотрим, что мы узнали о работах Пуанкаре, Смэйла и Лоренца из предыдущих глав. Мы увидели, что геометрическая сущность хаоса заключается в растяжении и последующем складывании траекторий.

В результате последовательных растяжений и складываний траектории на фазовом пространстве становятся подобны тарелке спагетти, в которой каждая траектория переплетена с остальными. Следовательно, малейшая неточность при измерении начальных условий может привести к тому, что мы проследуем вдоль неверной траектории-спагетти, которая переплетена с той, что нас интересует, но ведет к совершенно другой части блюда. В результате наш прогноз в долгосрочном периоде будет ошибочным. Эффект бабочки в действии.

История появления теории хаоса показывает нам две структурные характеристики, связанные с хаосом и объясняющие его непредсказуемость. Во-первых, хаотические системы крайне чувствительны к начальным условиям (это показали Пуанкаре и Лоренц), во-вторых, траектории в хаотических системах, растягиваясь и складываясь пополам, переплетаются между собой (Пуанкаре, Смэйл). Мы продемонстрировали обе эти характеристики на примере задачи трех тел Пуанкаре, бильярда Адамара, подковы Смэйла, системы Лоренца и других.

Математическое определение хаоса, с одной стороны, отражает чувствительность к начальным условиям, или эффект бабочки, а с другой стороны — запутанную топологическую структуру, или эффект карточной колоды (он заключается в том, что траектории переплетаются между собой так, будто воображаемый пекарь месит воображаемое тесто).

ХАОС = ЭФФЕКТ БАБОЧКИ + ЭФФЕКТ КАРТОЧНОЙ КОЛОДЫ

Хаос представляет собой совокупность эффекта бабочки и эффекта карточной колоды. Недостаточно, чтобы близлежащие траектории со временем быстро отдалялись друг от друга — они также должны растягиваться, складываться и при этом переплетаться.

Существует множество классических примеров хаотических систем, большинство из которых мы уже упоминали. Если говорить о непрерывных динамических системах, то наиболее ярким примером системы, не сохраняющей энергию (диссипативной системы), будет система Лоренца — упрощенная модель земной атмосферы.

Система Эно — Хайлса, связанная с задачей трех тел, — это классическая модель хаотической системы без диссипации (такие системы называются гамильтоновыми).

Если говорить о дискретных динамических системах, то вам уже знакомы логистическое отображение Мэя (о нем мы подробнее поговорим далее) и двухмерное отображение Эно — две системы, по форме схожие с подковой Смэйла и, что более важно, обладающие символической динамикой. Примером символической динамики является сдвиг Бернулли — возможно, простейшая разновидность дискретной динамической хаотической системы.

Сдвиг Бернулли определяется следующим образом: для данного числа х на интервале от 0 до 1, записанного в виде десятичной дроби, нужно сдвинуть запятую на одно положение вправо и отбросить первую цифру (то есть целую часть полученного числа). Пример:

В (0,324571) = 0,24571.

Мы сдвинули запятую на одну позицию вправо и стерли цифру 3. Аналогично,

В(0,24571) = 0,4571

В(0,4571) = 0,571

В(0,571) = 0,71

В(0,71) = 0,1

В(0,1) = 0

В(0) = 0

В(0) = 0

Следовательно, орбита или траектория начального значения х = 0,324571 будет записываться так: {0,324571; 0,24571; 0,4571; 0,571; 0,71; 0,1; 0; 0; 0}. Эта орбита стремится к фиксированной точке 0 (точечному аттрактору, или фокусу).

Как вы узнаете позже, сдвиг Бернулли обладает хаотическим поведением, поскольку в нем присутствуют и эффект бабочки, и эффект карточной колоды. Чувствительность к начальным условиям несложно подтвердить экспериментально: допустим, что мы хотим проследовать вдоль траектории точки х = 1/3 = 0,3 = 0,33333. Так как результатом измерения может быть лишь конечное число десятичных знаков, рассмотрим у = 0,3333. Ошибка будет составлять менее одной тысячной. Изначально орбиты х и у будут располагаться поблизости, однако затем отдалятся друг от друга:

В (0,33333…) = 0,33333 — В (0,3333) = 0,333

В (0,33333…) = 0,33333 — В (0,333) = 0,33

В (0,33333…) = 0,33333 — В (0,33) = 0,3

В (0,33333…) = 0,33333 — В (0,3) = 0

В (0,33333…) = 0,33333 — В(0) = 0

В (0,33333…) = 0,33333 — В(0) = 0

… --…

Подобно остальным периодическим десятичным дробям, х = 0,3 определяет периодическую орбиту для сдвига Бернулли. В нашем случае точка х имеет период, равный 1, то есть это фиксированная точка, так как она повторяется бесконечное число раз. И напротив, у = 0,3333, подобно всем остальным непериодическим десятичным дробям, — это точка, составляющая часть впадины аттрактора, расположенного в точке 0, так как в долгосрочном периоде ее орбита притягивается к точке 0. Ошибка измерения, которая изначально составляла менее одной тысячной (х — у = 0,3 — 0,3333 = 0,00003), значительно возрастет и будет иметь порядок нескольких десятых (после четвертой итерации ошибка будет равна 0,3 — 0 = 0,3).

Два начальных условия, близкие друг к другу, порождают две траектории, которые по прошествии определенного времени никак не связаны между собой.

Где в нашем случае проявляется эффект карточной колоды? Рассмотрим бесконечные непериодические десятичные дроби, то есть иррациональные числа. Построим орбиты чисел (2)0,5 - 1 (= 0,41421356237…) и π — 3 (= 0,14159265358…):

B((2) 0,5 - i) = 0,14213… — В (π — 3) = 0,41592…

В(0,14213..) = 0,42135… -- В (0,41592…) = 0,15926…

В (0,42135…) = 0,21356… -- В (0,15926…) = 0,59265…

В (0,21356…) = 0,13562… -- В (0,59265…) = 0,92653…

В(0,13562…) = 0,35623… -- В (0,92653…) = 0,26535…

В (0,35623.. .) = 0,56237… -- В (0,26535…) = 0,65358…

… --…

Что вы видите? Полученные десятичные дроби абсолютно случайны! Они напоминают номера лотерейного тиража. Это случайность, порождаемая хаосом. Орбиты чисел (2)0,5 -1, π — 3 или любого другого иррационального числа будут колебаться между 0 и 1. они будут приближаться к нулю столь же часто, как и к единице (или к 0,5). Знаки в десятичной записи иррациональных чисел не подчиняются какому-либо закону. Таким образом, если два рациональных числа — периодические десятичные дроби, значение которых точно известно, — порождают орбиты, которые рано или поздно будут периодическими (то есть начнут повторяться), то иррациональные числа (бесконечные непериодические десятичные дроби), напротив, порождают исключительно беспорядочные орбиты. Так как любое рациональное число бесконечно близко к некоторому иррациональному, периодические и непериодические орбиты неизбежно будут переплетаться между собой. В этом и заключается эффект карточной колоды.

Можно задаться вопросом: где в этом примере выполняются операции растяжения и складывания, которые порождают хаос? Чтобы обнаружить их, нужно посмотреть, какие математические действия мы совершаем при выполнении сдвига Бернулли. Мы уже говорили, что сдвиг Бернулли представляет собой сдвиг запятой в записи десятичной дроби на одну позицию вправо с последующим удалением первой цифры полученного числа. Когда мы сдвигаем запятую, в действительности мы умножаем число на 10, то есть «растягиваем» его, а когда мы стираем первую цифру, то уменьшаем, или «складываем, сгибаем» число. И вновь мы видим магический рецепт хаоса.

* * *

СДВИГ БЕРНУЛЛИ

Символическая динамика имеет и другие интересные свойства.

1) Она не поддается компьютерным вычислениям. Так как компьютеры работают с ограниченным числом десятичных знаков в записи дробей, для них все числа представляют собой точные десятичные дроби. Следовательно, если мы запрограммируем сдвиг Бернулли, то увидим на экране компьютера, что аттрактором всех орбит (подобно орбитам всех точных дробей) будет точка 0. Ни малейшего намека на хаос.

2) Существуют периодические орбиты с произвольным периодом. Так как периодические дроби могут иметь произвольный период (например, состоящий из шести цифр: #_37.jpg_0 то будут наблюдаться орбиты с произвольными длинами периодов: 1, 2,3,4, 5. Математики Ли Тянь-Янь и Джеймс Йорк на основе теоремы Шарковского сформулировали знаменитую теорему, согласно которой если для непрерывной функции существует орбита с периодом 3, то для нее существуют орбиты с любым периодом. Точная формулировка теоремы звучит так: существование 3-цикла подразумевает существование n-цикла (для n — 1,2,3,4, 5…). Ли и Йорк удачно подытожили смысл теоремы в названии свой статьи: «Период, равный трем, означает хаос».

3) Адамар и Смэйл обнаружили, что символическая динамика — один из самых заметных признаков хаоса. И соленоид, и подкова Смэйла, и аттрактор Лоренца обладают символической динамикой. Если мы рассмотрим десятичные дроби в двоичной системе счисления, то сможем описать каждую траекторию аттрактора Лоренца последовательностью нулей и единиц.

К примеру, траектория 0,11000101… сначала совершит два витка вокруг правой части аттрактора (так как после запятой записаны две единицы), затем — три витка вокруг его левой части (так как за двумя единицами следуют три нуля подряд) и так далее. Применив эту символическую динамику, можно доказать существование хаоса в системе Лоренца: каждая траектория будет беспорядочно вращаться вокруг правой или левой части аттрактора.

* * *

Рассмотрим теперь логистическое отображение Мэя, которое задается следующим уравнением в конечных разностях:

х n+1 = kх n (1 — х n ).

Иными словами, для данного начального условия х на интервале между 0 и 1 орбита х рассчитывается путем последовательного вычисления значений функции f(х) = kx (1 — х), где k — параметр, больший 1, но меньший 4. Поведение логистической системы, названной так потому, что она используется для моделирования динамики численности определенных популяций, удивительным образом зависит от значения k. Если k меньше некоторого критического значения, которое, по оценкам, составляет 3,569945…, то траектории будут иметь правильную форму. При превышении этого критического значения траектории будут стремиться к хаосу. Эта дискретная динамическая система четко показывает, что простые математические действия могут обладать неожиданно сложными свойствами.

Функция f(х) является функцией второй степени:

f(х) = kx (1 — х) = kx — kx2.

Иными словами, f(х) — нелинейная функция, и именно эта нелинейность делает возможным хаотическое поведение: в силу нелинейности небольшие отклонения начальных условий могут приводить к значительным изменениям.

Изучим динамику логистического отображения для значений k, меньших критического, к примеру для k = 2. Примем в качестве начального условия x0   = 0,8 и определим его орбиту с помощью калькулятора:

x 1 = f(х 0 ) = 2 х 0 (1 — х 0 ) = 2∙0,8∙(1 — 0,8) = 2∙0,8∙0,2 = 0,32

х 2 = f(х 1 ) = 2х 1 (1 — х 1 ) = 2∙0,32∙(1 — 0,32) = 2∙0,32∙0,68 = 0,4352

х 3 = f(х 2 ) = 2х 2 (1 — х 2 ) = 2∙0,4352∙(1 — 0,4352) = 2∙0,4352∙0,5648 = 0,49160192.

Теперь, когда мы знаем, как рассчитываются первые члены орбиты, вычислим

следующие члены напрямую:

х 4 = 0,4998589…

х 5 = 0,4999998…

х 6 = 0,4999999…

Обратите внимание на полученные значения. Что вы видите? Они последовательно приближаются к 0,5. Рассматриваемая траектория четко приближается к пределу — точечному аттрактору, расположенному в точке 0,5. Ради любопытства вычислим орбиту точки 0,5: так как f (0,5) = 2∙0,5∙(1 — 0,5) = 22424∙0,5∙0,5 = = 0,5, орбита этой точки будет стационарной (значения функции всегда будут равны 0,5). Следовательно, орбита точки 0,8 сходится к точке равновесия.

Рассмотрим, как наша траектория сходится к этой фиксированной точке, геометрически. Используем компьютерную программу, чтобы показать, как изменяются значения орбиты (представленные на вертикальной оси) с ростом числа итераций (откладываются на горизонтальной оси).

Нетрудно видеть, что значения орбиты очень быстро стабилизируются в окрестности точки 0,5, что мы уже вычислили при помощи калькулятора.

Далее будем изображать орбиту точки на так называемой диаграмме-паутине.

Построив график f(х) = 2х (1 — х) (он будет представлять собой параболу, так как f(х) — функция второй степени), рассмотрим начальное условие x 0 = 0,8. Далее определим орбиту этой точки графически. Проведем вертикальную линию через точку с абсциссой x 0   = 0,8 до пересечения с параболой — графиком функции f(x).

Затем из точки пересечения этой линии с параболой проведем горизонтальную линию до пересечения с диагональю у = х. Полученная абсцисса (координата на горизонтальной оси) будет указывать положение точки пересечения построенной линии с диагональю и будет соответствовать х 1 Далее будем смещаться вертикально (вверх или вниз), пока вновь не пересечем график f(х). Повторив описанные выше действия, получим ломаную линию. Абсциссами ее вертикальных отрезков будут x 0 , х 1 , х 2 , х 3 . Эта ломаная линия укажет, куда будет стремиться орбита x 0 .

На этом графике можно видеть, как «паутина» точки x 0 = 0,8 сходится к фиксированной точке, в которой пересекаются парабола — график функции f(х) — и прямая — график функции у = х. Как и следовало ожидать, этой фиксированной точкой будет точка 0,5.

Повторим описанные выше действия для другого значения параметра k. Примем его равным не 2, а 3,1. Орбита начальной точки x 0 = 0,8 будет выглядеть так.

При значениях k, больших 3, происходит нечто удивительное: хотя движение по-прежнему будет оставаться правильным, орбита точки 0,8 уже не будет стремиться к какой-то одной точке. Вместо этого она будет колебаться между значениями 0,56 и 0,76. Точечный аттрактор 0,5 словно бы разделился на две точки с координатами 0,56 и 0,76. По сути, это пример орбиты с периодом, равным 2, так называемого 2-цикла, так как мы видим два точечных аттрактора. Новая паутина, которая будет порождать уже не точку, а квадрат, выглядит так.

Продолжим увеличивать значения k и рассмотрим k = 3,5. Орбита x 0 = 0,8 будет выглядеть так.

Теперь орбита будет колебаться между четырьмя точками. Их координаты приблизительно равны 0,39, 0,51, 0,82 и 0,86. Это уже 4-цикл, так как одни и те же значения будут повторяться каждые четыре шага. Кажется, что с увеличением k периоды будут удваиваться: 1, 2, 4. Сначала мы наблюдали единственный точечный аттрактор, затем — два, теперь — четыре. Логично предположить, что далее их число будет равняться восьми, шестнадцати, тридцати двум и так далее. Наблюдаемая динамика уже не столь проста, однако ее по-прежнему можно назвать более или менее регулярной.

Позднее мы рассмотрим это необычное удвоение периода еще раз, а пока ограничимся тем, что изобразим новую паутину, образованную двумя основными квадратами.

И наконец, осмелимся превысить критическое значение 3,569945. Рассмотрим k = 3,9. Ситуация радикально изменится. Орбита x 0 = 0,8 будет выглядеть так.

Орбита стала хаотической! В ней больше не наблюдается никаких закономерностей. Она даже не является квазипериодической, а «прыгает» с одного места на другое и кажется случайной. А что, если мы рассмотрим k = 4?

То же самое хаотическое поведение! Диаграмма-паутина будет хаотической, а представленные на ней значения будут беспорядочно колебаться между 0 и 1.

Однако орбита и диаграмма-паутина точки х 0 = 0,8 — не исключение: все остальные возможные орбиты и диаграммы будут выглядеть точно так же. И вновь мы наблюдаем эффект карточной колоды.

На этом сюрпризы не заканчиваются: два различных начальных условия, близких друг к другу, определяют орбиты, которые по прошествии определенного времени будут выглядеть совершенно по-разному. Примем k = 4. Если мы хотим изучить орбиту точки а = 0,900 и по ошибке введем значение Ь = 0,901 (например, при измерении мы допустили ошибку, равную одной тысячной), то увидим, что орбиты а и b вскоре будут значительно отличаться, хотя изначально они были близки друг к другу. Орбита точки а будет образована значениями {0,900; 0,360; 0,9216; 0,2890; 0,8219; 0,5854; 0,9708…}, орбита точки b — значениями {0,901; 0,3568; 0,9180; 0,3012; 0,8419; 0,5324; 0,9958…}. Иными словами, исходная разница в одну тысячную через несколько итераций будет иметь порядок нескольких сотых. Всего за семь итераций разница увеличится в 20 раз! По прошествии определенного времени реальная и прогнозная траектории уже не будут иметь ничего общего.

И вновь мы наблюдаем эффект бабочки.

Подведем итог: изменяя значения параметра k в логистическом отображении от k = 2 до k = 4, мы показали, как система постепенно приближается к хаотическому состоянию. А где же операции растяжения и складывания, которые порождают хаос? Прямо у нас перед глазами. Логистическая функция f(х) = kx(1 — х) «растягивает» числовой интервал между 0 и 1 вследствие умножения х на k. Затем этот интервал «складывается пополам» в результате умножения kx на (1 — х) — число, меньшее единицы. Таким образом, числовой интервал растягивается и складывается, подобно подкове.

В поисках хаоса

Хотя сегодня в математике не существует четкого определения детерминированного хаоса, он рассматривается как совокупность эффекта бабочки и эффекта карточной колоды, которые мы наблюдали и в сдвиге Бернулли, и в логистическом отображении Мэя.

От какого класса динамических систем стоит ожидать хаотического поведения?

Как вы уже знаете, хаос нужно искать среди нелинейных систем — только в них действие совокупности причин может не равняться совокупному действию этих причин по отдельности и приводить к совершенно неожиданным последствиям. Также (об этом мы не упоминали) нужно искать среди неинтегрируемых систем. Система называется интегрируемой, если ее траектории или решения можно явно выразить при помощи известных функций. Интегрируемые системы (линейные и нелинейные) предсказуемы, так как известна формула, позволяющая вычислить орбиту любой точки в любой момент времени. В неинтегрируемых системах, напротив, решение нельзя представить в виде формулы, поэтому для них нельзя составить прогноз на бесконечно большой период времени. Кроме того, если мы рассмотрим такие си¬стемы с точки зрения топологии, то увидим, что траектории будут тесно сплетаться между собой.

Если мы сведем две рассмотренные выше категории воедино, то увидим, что нелинейные и неинтегрируемые системы обладают беспорядочным, непредсказуемым поведением, указывающим на присутствие хаоса. Следует заметить: даже тогда, когда хаос требует нелинейности (чтобы небольшие изменения начальных условий могли вызывать значительные изменения) и неинтегрируемости (чтобы мы не могли делать прогнозы в долгосрочном периоде), нелинейная и неинтегрируемая динамика необязательно будет хаотической. Существуют нелинейные и неинтегрируемые системы, демонстрирующие равномерное и предсказуемое поведение. Математики говорят, что эти две характеристики — нелинейность и неинтегрируемость — являются необходимыми, но не достаточными.

С другой стороны, среди нелинейных и неинтегрируемых систем выделяют два подвида: гамильтоновы системы, сохраняющие энергию, и диссипативные, которые не сохраняют энергию. Этим двум видам систем соответствуют две разновидности детерминированного хаоса, известные сегодня.

Гамильтонов хаос наблюдается в системах, сохраняющих энергию, например в системе из трех тел, изученной Пуанкаре, в звездной системе, рассмотренной Эно и Хайлсом, в моделях бильярда, описанных Адамаром и Синаем. Как мы рассказали, это хаотическое поведение возникает в силу бесконечного числа пересечений сепаратрис седловой точки, в результате которого образуется запутанная сеть траекторий. Хотя такие системы обладают очень сложной динамикой, в них отсутствуют странные аттракторы. Существует знаменитая теорема Лиувилля, согласно которой сохранение энергии препятствует возникновению аттракторов. В самом деле аттракторы — это диссипативные структуры, в которых энергия рассеивается по мере приближения системы к аттрактору.

Негамильтонов хаос, напротив, наблюдается в системах, не сохраняющих энергию, к примеру, в системе Лоренца. Так как эти системы не сохраняют энергию, в них присутствуют аттракторы и возникают наиболее известные хаотические объекты — странные аттракторы, представляющие собой промежуточное звено между теорией хаоса и фрактальной геометрией.

Странный аттрактор — это аттрактор хаотической системы, которому свойственна фрактальная геометрия. Фрактал — это геометрический объект неправильной формы с бесконечным множеством деталей, обладающий самоподобием, и, скорее всего, имеющий дробную размерность. Странные аттракторы — сложные структуры, которые при последовательном увеличении демонстрируют самоподобие, свойственное фракталам: в них вновь и вновь проявляется одна и так же структура. Кроме того, многие из них имеют дробную размерность. Иными словами, если мы находимся на плоскости, то размерность нашего фрактального аттрактора будет больше 1, но меньше 2 и составит, к примеру, 1,5: аттрактор будет занимать больше пространства, чем кривая, но меньше, чем плоскость. Если мы находимся в пространстве, размерность фрактального аттрактора будет больше 2, но меньше 3 и составит, к примеру, 2,25: аттрактор будет занимать больше пространства, чем плоскость, но меньше, чем объемное тело. Таков смысл дробной размерности. К примеру, размерность аттрактора Лоренца примерно равна 2,06. Любопытно, что с момента открытия аттрактора Лоренца считалось, что он имеет «странный» характер (то есть является аттрактором хаотической системы и, возможно, имеет фрактальную геометрию), однако строгое математическое доказательство этого было найдено лишь в 2000 году. В 1998 году Стивен Смэйл предложил доказательство этого утверждения в качестве одной из открытых математических задач XXI столетия.

В 2002 году математик Уорвик Такер смог строго доказать существование аттрактора Лоренца в статье под названием «Аттрактор Лоренца существует». Аттрактор в форме бабочки, изображенный Лоренцем на экране компьютера, стал реальностью. Аналогичная ситуация произошла со странным аттрактором Эно, открытым с помощью компьютера в 1976 году: его существование было математически доказано лишь в 1987 году усилиями шведского математика Леннарта Карлесона, лауреата Абелевской премии 2006 года.

Странный аттрактор Уэды . Этот аттрактор, напоминающий водоворот, представляет собой сечение Пуанкаре для хаотической системы.

Слева направо и сверху вниз — последовательность увеличенных изображений аттрактора Эно. На всех иллюстрациях изображен один и тот же узор — складывающиеся кривые.

Судьба аттрактора Рёсслера, напротив, сложилась не столь удачно. Отто Рёсслер предложил ряд уравнений, описывающих химическую реакцию Белоусова — Жаботинского. Эта реакция протекает в колебательном режиме: участвующие в ней вещества непрерывно соединяются и распадаются, и в результате образуются удивительные узоры красно-синего цвета. Компьютерное моделирование решений системы дифференциальных уравнений обладало хаотическим поведением, подобным тому, что рассмотрел Аоренц при решении своей системы. Рёсслер, подобно Лоренцу, предположил, что в системе присутствует странный аттрактор — аттрактор Рёсслера, существование которого все еще не доказано. Никто до сих пор не знает, действительно ли посреди хитросплетения траекторий находится аттрактор Рёсслера или это всего лишь иллюзия, возникающая при компьютерном моделировании.

Странные аттракторы Лоренца (слева) и  Рёсслера (справа). Существование последнего до сих пор математически не доказано.

Какое значение для динамики имеет фрактальная геометрия аттрактора? Можно предположить, что никакого, но это не так. Пуанкаре, Смэйл и Лоренц учат, что в основе любой динамики всегда лежит геометрия.

В классических аттракторах (фиксированных точках и предельных циклах — еще не так давно другие аттракторы были неизвестны) соседние орбиты всегда располагаются близко друг к другу, небольшие ошибки, как и предполагал Лаплас, заключены в определенных границах, таким образом, можно делать долгосрочные прогнозы. Если говорить о странных аттракторах, присущих хаотическим системам, то все обстоит иначе: две орбиты с близкими начальными условиями располагаются близко друг к другу лишь на коротком промежутке времени, после чего очень быстро отдаляются. Поведение соседних траекторий в странном аттракторе можно проиллюстрировать следующим экспериментом: если представить, что они действуют на маленькую каплю красящего вещества в жидкости, то капля постепенно примет форму очень длинной и тонкой нити, словно пронизывающей весь аттрактор.

Даже если точки, отмеченные красящим веществом, изначально будут находиться очень близко друг к другу, в конечном итоге они окажутся в произвольных частях аттрактора. Прогнозирование финального состояния любой из этих точек при сколь угодно малой ошибке измерения невозможно — в зависимости от допущенной ошибки финальные состояния точек могут располагаться в любой части странного аттрактора. Хаос перемешивает орбиты подобно тому, как пекарь замешивает тесто. Поведение орбит геометрически описывается посредством операций растяжения и складывания. Орбиты должны растягиваться, при этом будут возрастать ошибки (эффект бабочки), а также складываться и постепенно сплетаться по мере приближения к аттрактору (эффект карточной колоды). Растягивание увеличивает неопределенность, при складывании изначально далекие друг от друга траектории сближаются, а информация об исходном состоянии системы уничтожается. Траектории смешиваются, как смешиваются карты в колоде в руках умелого игрока. Так как операции растяжения и складывания повторяются бесконечное число раз, в аттракторах хаотических систем должно наблюдаться множество сгибов внутри каждого сгиба. Именно поэтому с геометрической точки зрения хаотические аттракторы намного сложнее классических. По мере увеличения масштаба хаотические аттракторы раскрывают всё новые и новые детали и проявляют свое самоподобие: структура хаотических аттракторов на микроуровне столь же сложна, как и на макроуровне. Одним словом, хаотические аттракторы — это фракталы.

Несколько примеров хаоса

Мы увидели, что существуют математические системы, обладающие хаотической динамикой. Но каково их практическое значение? Что такое хаос: правило или исключение?

Хаос вездесущ и проявляется повсеместно: и при движении небесных тел (задача трех тел), и при колебаниях двойных маятников, в потоках на грани турбулентности (поток Рэлея — Бенара), в некоторых химических реакциях (реакция Белоусова — Жаботинского), в определенных биологических популяциях и так далее. Открытие повсеместного присутствия хаоса стало третьей великой революцией в науке за последние 100 лет, после открытия теории относительности и квантовой механики.

Достойный упоминания пример хаотического движения в Солнечной системе — движение Гипериона, спутника Сатурна, по форме напоминающего картофелину, который, как может показаться, совершает случайные колебания. Гиперион движется вокруг Сатурна по орбите правильной формы, однако вращается вокруг себя совершенно беспорядочно: в результате быстрого хаотического движения он переворачивается каждые 6 часов и при вращении вокруг своей оси в буквальном смысле подскакивает.

* * *

МИТЧЕЛЛ ФЕЙГЕНБАУМ В ПОИСКАХ ХАОСА

Митчелл Фейгенбаум (род. 1944) — специалист по математической физике, первый, кто начал изучать хаос с помощью компьютеров. В 1975 году методом проб и ошибок он обнаружил число, которое сегодня называется постоянной Фейгенбаума и характеризует переход от периодического движения к хаотическому. Мы уже наблюдали это любопытное явление, когда говорили о логистическом отображении: по мере того как мы постепенно изменяли значение параметра к, периоды орбит удваивались. На смену орбитам с периодом 1 приходили орбиты с периодом 2,4,8,16,32 и так далее, после чего, при превышении критического значения к, равного 3,569945…, наступал хаос.

Удвоение периодов орбит, начиная с  k — 2 и заканчивая этим значением, происходит так быстро, что в конечном итоге период удваивается бесконечное число раз. Так возникает хаос. По мере увеличения к возрастает и сложность логистической системы: из стационарной она становится периодической, затем — хаотической. Если мы представим точку или точки, к которым сходится орбита х — 0,8 в логистическом отображении для различных значений параметра k , получим диаграмму, представленную на следующей странице.

На этой диаграмме значения к откладываются по горизонтальной оси, значения, к которым стремится орбита х — 0,8, — по вертикальной. Если мы зафиксируем значение k , то вертикальный разрез будет изображением соответствующего аттрактора на интервале от 0 до 1. К примеру, при k — 3,0 вертикальная линия пересекает график всего в одной точке. Это означает, что точка имеет период, равный 1, и является фиксированной. Другой пример: при  k — 3,2 вертикальная линия пересечет график в двух точках. Это означает, что орбита представляет собой 2-цикл. По мере движения по горизонтали от  k — 2,4 до  k — 4 ветви дерева Фейгенбаума будут раздваиваться вследствие удвоения периода. Когда мы преодолеем критическое значение 3,569945…, аттрактор, определяемый вертикальными линиями, превратится в беспорядочную полосу. Он будет представлять собой фрактал (Канторово множество). При значениях k , превышающих пороговое, будут наблюдаться отдельные островки периодичности. К примеру, при  k — 3,82 на диаграмме наблюдается полоса: если мы проведем воображаемую вертикальную линию, она пересечет диаграмму всего в трех точках: вверху, в середине и внизу. Иными словами, орбита будет представлять собой 3-цикл. Как вы уже знаете, «период, равный трем, означает хаос», поэтому то хаотическое нагромождение точек, которое наблюдается на диаграмме для последующих значений параметра, не должно казаться таким уж удивительным.

Фейгенбаум вычислил отношения относительных расстояний между ветвлениями (иными словами, между размерами ветвей дерева) и заметил, что эти отношения в пределе стремились к 4,669201… вне зависимости от того, какое отображение рассматривалось — логистическое или любое другое.

Следовательно, найденная им постоянная была универсальной. Хотя Фейгенбаум обнаружил эту постоянную эвристическим методом, а не с помощью формального доказательства, его открытие считается гениальным.

Бифуркационная диаграмма, или диаграмма Фейгенбаума , для логистического отображения.

* * *

Кроме того, в 1988 году двое ученых из MIT, Джеральд Джей Сассман и Джек Уисдом, показали, что движение Плутона также является хаотическим. На самом деле траектория Плутона особенно интересна: его орбита пересекается с орбитой Нептуна, и, возможно, в не столь далеком будущем Нептун и Плутон столкнутся, и произойдет настоящая космическая катастрофа. С помощью суперкомпьютера Сассман и Уисдом рассчитали траекторию Плутона на ближайшие 845 млн лет и обнаружили, что в силу неопределенности исходных условий две изначально близкие траектории будут существенно различаться уже спустя всего 20 млн лет — совсем небольшой промежуток времени по сравнению с возрастом Солнечной системы, который составляет как минимум 4,5 млрд лет. К счастью, при движении нашей планеты хаос не столь заметен: неточности при определении положения Земли начинают наблюдаться только по прошествии 100 млн лет.

Гиперион — спутник Сатурна неправильной формы. Фотография сделана зондом Кассини-Гойгенс.

Есть и другие примеры, показывающие, как проявляется хаос в нашей Солнечной системе. Пояс астероидов между Марсом и Юпитером движется под действием силы притяжения Солнца, однако подвержен колебаниям, вызванным притяжением Юпитера. Таким образом, можно говорить о задаче трех тел (Солнце, Юпитер и пояс астероидов). Некоторые движения в этой системе будут равномерными, другие — хаотическими. Астероиды, движущиеся равномерно, остаются на своих орбитах, а те, что движутся по хаотическим траекториям, через некоторое время сходят с орбит и теряются в космосе. Следовательно, астероиды распределены неоднородно, между ними есть промежутки — щели Кирквуда, названные в честь американского астронома, который открыл их еще в 1860 году. Если при вращении вокруг Солнца астероид пересекает одну из этих зон, его период вращения входит в резонанс с периодом обращения Юпитера, и газовый гигант уводит астероид с орбиты. Если астероид, сойдя с орбиты, направится к Марсу или к Земле, то гармонии в Солнечной системе придет конец. Нечто похожее происходит с полосами между кольцами Сатурна: частицы, движущиеся в зоне резонанса, сходят с орбит, в результате чего образуются щели.

* * *

АНТИНЬЮТОНОВСКИЙ МИР

Американский физик Джулиан Спротт (род. 1942) описал мир, параллельный нашему, в котором первые два закона Ньютона выполняются, а третий, закон действия и противодействия, — нет. В этом мире силы взаимодействия двух тел не равны по величине и противоположны по направлению, а равны и по величине, и по направлению. Иными словами, когда лягушка, севшая на кувшинку, спрыгивает с нее, то кувшинка не отклоняется назад, а словно бы тянется вслед за лягушкой. Итоговая динамика обладает рядом любопытных свойств, в число которых входит хаотическое по ведение в задаче двух тел.

Хаотическая орбита в антиньютоновской задаче двух тел.

* * *

Но удивительнее всего хаотическое поведение не сложных систем (Солнечная система, погода, климат, атмосфера), а очень простых — оно свойственно, в частности, обычному маятнику. И действительно, если мы рассмотрим двойной маятник, который представляет собой обычный маятник, к концу которого подвешен еще один, то увидим, что при превышении определенного уровня энергии его движение становится хаотическим и абсолютно непредсказуемым.

Хаотическое движение двойного маятника.

* * *

НЕПЛОТНО ЗАКРЫТЫЙ КРАН

Многие из нас хотя бы раз наблюдали, как из неплотно закрытого крана капает вода. Но не все знают, что за этим явлением скрывается хаотическая система. Очень часто в падении капель нет никакой закономерности, и предсказать, когда упадет следующая капля, нельзя. Это явление изучил Роберт Шоу совместно с другими учеными из Калифорнийского университета. Его эксперимент начался с измерения временных промежутков между падениями отдельных капель с помощью микрофона. Затем полученные значения были сгруппированы попарно, и получилась последовательность пар чисел — точек плоскости. Изобразив эти точки на графике, исследователи получили сечение аттрактора. Если ритм падения капель был периодическим, на графике была видна разновидность предельного цикла, если же ритм был непериодическим, на графике наблюдался странный аттрактор. Это было не пятно, а структура, имеющая форму подковы — наиболее явного отпечатка, который оставляют операции растяжения и складывания траекторий, порождающие хаос. Здесь случайность опирается на детерминированный фундамент.

* * *

Основные области применения теории хаоса

В последние годы теория хаоса, нелинейная динамика и науки о сложности в целом играют важную роль в медицине, биологии и смежных областях. Слияние точных и гуманитарных наук всего за несколько лет доказало свою эффективность. До середины XX века медицину и физику, казалось, разделяла непреодолимая стена: единственным применением физики в медицине стало использование радиоволн для диагностики и лечения раковых заболеваний. Однако начиная с 1950-х годов в этой стене, к счастью для всех нас, стали возникать бреши: так, медицинская визуализация и получение изображений внутренних органов стали возможными только благо даря симбиозу математики, физики и медицины.

Теория хаоса также перестала быть наукой об абстрактных закономерностях и в руках специалистов превратилась в мощнейший инструмент. Применение теории хаоса в медицине не позволяет делать прогнозы и решать какие-либо частные задачи — оно скорее позволяет описывать некоторые аспекты поведения сложных биологических систем с помощью определенных «магических чисел», например экспонент Ляпунова, фрактальных размерностей и других. Иными словами, теория хаоса может использоваться при классификации состояний организма, наиболее ценным при этом будет не полученное числовое значение, а переформулирование медицинских задач, переход от наблюдений к моделированию и измерениям. Прекрасным примером этому служат кардиология, электроэнцефалография и магнитоэнцефалография. Через несколько лет исследования хаоса и фракталов в физиологии помогут получить важные показатели, позволяющие понять, что именно происходит в организме в ходе старения или во время болезни. Важнейшее открытие таково: организм здорового человека — сложная хаотическая система, организм больного человека, напротив, является строго упорядоченным.

Различные показатели работы сердца больного (в верхнем ряду) и здорового человека (в нижнем ряду). Периодичность и предсказуемость этих показателей свидетельствует о сердечных заболеваниях, в то время как у здорового человека показатели будут совершенно хаотическими.

С экспериментальной точки зрения эта проблема заключается в том, чтобы на основе временного ряда наблюдаемых или измеренных значений (пульса, ритмов мозговой активности) воссоздать развитие динамической системы (сердца или мозга соответственно) в фазовом пространстве, где мы сможем измерить и рассчитать магические числа хаоса: экспоненты Ляпунова, фрактальные размерности и так далее. Нам на помощь придет хитроумный прием, придуманный Давидом Рюэлем и Флорисом Такенсом: чтобы как-то воссоздать аттрактор системы, рассмотрим исходные значения с некоторым запаздыванием. Если мы имеем последовательность значений x 1 , x 2 , х 3 , х 4  …, то можно образовать множество пар чисел (х 1 , x 2 ), (x 2 , x 3 ), (x 3 , x 4 ). Эти точки определят некоторую траекторию на плоскости. Если мы сгруппируем числа в тройки, получим траекторию в пространстве. Таким образом, динамика нашей системы будет описываться динамикой этого множества точек, и мы сможем вычислить фрактальную размерность системы или ее экспоненты Ляпунова. Будем воссоздавать систему со все большим запаздыванием (то есть будем объединять данные не в пары или тройки, а в четверки, пятерки и так далее). Существует теорема, гласящая: если исходная система периодическая, то ее фрактальная размерность будет возрастать до определенного значения, после чего примет некоторое целое значение (то есть перестанет быть фрактальной, дробной) и будет оставаться неизменной. Если же исходная система хаотическая, то ее фрактальная размерность стабилизируется вблизи некоторого дробного значения и как минимум одна экспонента Ляпунова будет положительной.

Но нужна ли вся эта математика? Да, нужна, нравится вам это или нет. Как это ни парадоксально, простая динамика свидетельствует о заболевании, а сложная (хаотическая) динамика — синоним здоровья. Заболевание предполагает потерю сложности, а рост упорядоченности приближает нас к смерти. Появление упорядоченности сердечного или мозгового ритма у тяжелобольных пациентов — опасный симптом. Если измерить электрические сигналы мозга с помощью электродов, то полученная кривая будет казаться хаотической (непериодической) и фрактальной (то есть обладающей самоподобием). Если мы применим метод Рюэля — Такенса для восстановления аттрактора с запаздыванием, то увидим, что у здоровых пациентов в рассматриваемой системе будут наблюдаться странные аттракторы, у пациентов с заболеваниями головного мозга — квазипериодические циклы.

Наконец, следует отметить, что некоторые органы человека подобны фракталам.

Так, бронхи имеют практически фрактальную структуру со множеством ветвлений. Возможно, происходит это потому, что фракталы прекрасно позволяют перейти от одной размерности к другой в силу своей дробной размерности. Бронхи, имеющие фрактальную размерность, примерно равную двум, — идеальный переход от трехмерного дыхательного горла (его размерность равна 3) к плоскости диффузии (ее размерность равна 2), в ходе которого кислород из воздуха поступает в кровь.

Если ритмы мозговой активности беспорядочны и описывают странный аттрактор (слева), то человек здоров. Если же ритмы мозговой активности становятся периодическими и возникает предельный цикл (справа), это означает, что пациент испытывает приступ эпилепсии.

(источник: Корнелис Ян Стам , «Нелинейный динамический анализ ЭКГ и МЭГ: обзор новой области», журнал Clinical Neurophysiology 116/10, 2005).

* * *

ПОСЛЕДНИЙ РУБЕЖ: КВАНТОВЫЙ ХАОС

Может ли недетерминированное поведение субатомных частиц быть результатом непредсказуемости, которую мы связываем с хаосом? Нет, не может. В теории хаоса рассматриваются нелинейные уравнения, а вся квантовая механика основана на линейном уравнении — волновом уравнении Шрёдингера. Следовательно, квантовый эффект бабочки невозможен, так как уравнения квантовой физики линейны, а для возникновения хаоса необходима нелинейность.

При переходе от классической хаотической системы к соответствующей квантовой хаос исчезает, оставляя след в виде связанных между собой флуктуаций. Изучение этих следов получило название квантовой хаологии, или постмодернистской квантовой механики. Классическая механика является детерминированной и вместе с тем хаотической; квантовая механика, напротив, имеет вероятностную природу и вместе с тем отличается упорядоченностью. Следовательно, квантовая механика избавила нас от проклятия хаоса ценой того, что электроны, фотоны и прочие квантовые частицы кажутся нам безумными.

* * *

Новая непредсказуемость

Пьер-Симон Лаплас был уверен, что система, описываемая законами Ньютона, должна быть предсказуемой. Однако оказалось, что динамическая система, подчиняющаяся законам Ньютона, может стать хаотической. Таким образом, одним из самых важных результатов теории хаоса стало опровержение тождества «детерминизм = предсказуемость».

Возможно, причина, по которой на протяжении трех столетий детерминизм отождествлялся с предсказуемостью, заключалась в том, что обычно рассматривались только линейные системы, а нелинейные оставались вне поля зрения ученых. Таким образом, вся Вселенная казалась подобной игрушечному механизму, столь же предсказуемому, как полет пушечного ядра или работа часового механизма.

Как это ни парадоксально, хаос детерминирован, он создается по строгим правилам, но накладывает фундаментальные ограничения на возможности составления прогнозов. Если мы допустим небольшую ошибку при измерении начального состояния системы (а это происходит постоянно, ведь в реальной жизни мы имеем дело с округленными и приближенными значениями), то в прогнозе, составленном по уравнению динамики, эта ошибка возрастет. Таким образом, прогнозированию препятствует сама реальность (любое измерение имеет конечную точность) и хаотическая структура уравнения динамики (изначальная ошибка возрастает экспоненциально).

Непредсказуемый хаос всегда остается детерминированным: если в две практически идентичные хаотические системы подать один и тот же входной сигнал, то выходной сигнал систем будет одинаковым, хотя и непредсказуемым. В качестве примера случайного и абсолютно детерминированного процесса можно привести бросок игральной кости. Сложно предсказать только одно — какой именно гранью вверх упадет кубик, поскольку любое незначительное изменение положения и скорости кубика повлияет на результат. Здесь источником случайности является выбор начальных условий. Если мы не можем полностью контролировать начальные условия, то и прогноз составить нельзя.

Две изначально близкие траектории в аттракторе Лоренца отдаляются друг от друга. Обе траектории берут начало в одной и той же окрестности (обведена кружочком), однако по прошествии определенного времени они окажутся в разных частях аттрактора.

Существование хаоса ставит очень серьезный философский вопрос. Верификация научной теории заключается в составлении прогнозов и их последующей проверке.

Но для хаотических явлений в принципе невозможно делать прогнозы в среднесрочном или долгосрочном периоде. Предположим, что математик описывает некий физический процесс с помощью уравнений, демонстрирующих хаотическую динамику, то есть динамику, чувствительную к начальным условиям, в которой существуют случайные траектории, сплетенные с периодическими. Если наш математик с помощью классических математических методов попытается предсказать, каким будет состояние системы для данных начальных условий по прошествии длительного промежутка времени, он придет к выводу: «Я могу составить прогноз только в случае, если вы укажете положение начальной точки с бесконечно большой точностью». Так как на практике это невозможно, определить поведение системы в долгосрочном периоде нельзя. Ни один физик не рискнет работать с подобными уравнениями, ведь полученные результаты будут абсолютно случайными. Именно это произошло с метеорологом Эдвардом Лоренцем и астрофизиком Мишелем Эно, работы которых изначально не были оценены другими учеными.

Философский смысл проблемы таков: поскольку хаос подразумевает чувствительность к начальным условиям, неизбежные ошибки при определении начальных условий будут возрастать экспоненциально, и в результате практические прогнозы, составленные на основе хаотической модели, обязательно будут ошибочными. Возникает вопрос: как можно использовать моделирование, если в общем случае ошибка будет очень велика?

Ответ таков: хаотические системы могут оказаться невероятно полезными при прогнозировании, однако сам хаос по своей природе накладывает серьезные ограничения на возможность составления прогнозов.

Однако динамику хаотических систем можно спрогнозировать в краткосрочном периоде. А после этого, сколь бы точно мы ни измерили начальные данные, мы неизбежно допустим ошибку, которая впоследствии существенно возрастет, и с определенного момента динамика хаотической системы станет непредсказуемой.

Но эта непредсказуемость не проявляется мгновенно. Если составить прогнозы в среднесрочном и долгосрочном периоде нельзя, то, получается, наука бесполезна? Вовсе нет, ведь помимо количественных оценок существуют и качественные. Процитируем Пуанкаре, который в свое время объяснил суть вопроса с присущей ему четкостью:

«Физик или инженер скажет нам: „Можете ли вы проинтегрировать это дифференциальное уравнение? Результат понадобится мне через восемь дней, чтобы закончить проект здания в срок". Мы ответим: „Это уравнение не относится ни к одному из интегрируемых типов, и вам прекрасно известно, что других типов не существует". „Да, это мне известно, но для чего же тогда нужны вы, господин математик?" Ранее уравнение считалось решенным только тогда, когда его решение можно было представить с помощью конечного числа известных функций, однако найти решение в таком виде можно едва ли для одного процента уравнений. Мы всегда можем решить любую задачу „качественно", то есть попытаться определить общий вид кривой, описывающей неизвестную функцию».

Хаос помогает увидеть взаимосвязи, формы и структуры там, где никто не подозревает. В хаосе присутствует порядок: случайность описывается геометрически.

При подтверждении научной теории следует придавать большее значение геометрии, а не результатам экспериментов, то есть не количественным, а качественным факторам. Актуальный пример этому мы приведем в следующих главах, где будем говорить о глобальном изменении климата: метеорологи и климатологи часто жертвуют точностью прогноза, чтобы понять общую картину. Они ежедневно сталкиваются с нелинейными задачами и вынуждены делать выбор: составить точную модель, позволяющую делать прогнозы (существование такой модели по определению невозможно), или предпочесть ей упрощенную модель, чтобы рассмотреть явление в общих чертах. Цель науки — не только прогнозирование, не только поиск набора эффективных рецептов, но и понимание природы вещей.

К примеру, Декарт своей теорией вихрей и движущейся материи объяснял всё, но не предсказывал ничего. Ньютон, напротив, своими законами и теорией тяготения рассчитал всё, но не объяснил ничего. История подтвердила правоту Ньютона, а измышления Декарта отошли в область фантазий. На протяжении многих веков на первый план выдвигалась именно возможность составления прогнозов. Ньютоновская теория тяготения одержала верх над декартовой теорией вихрей, низвергнув ее в небытие. С математическими моделями теории хаоса происходит то же самое, что и с теориями Декарта: они имеют качественный характер и не могут применяться для составления прогнозов или как руководство к действию, а служат скорее для описания и понимания явлений природы.

Если математика и физика прошлого изучали круги и часовые механизмы, то математика и физика наших дней интересуются фракталами и облаками.

 

Глава 4. Математическое описание глобального изменения климата

Если бы человечество могло составить список самых насущных проблем третьего тысячелетия, одной из них наверняка стало бы глобальное изменение климата. Это многогранная задача, которая имеет не только научный, но, как вы увидите далее, экономический и политический аспект. Мы рассмотрим эту проблему с точки зрения математики, поскольку математика хаоса играет в ней очень важную роль.

Математика и экология

Математическая экология — раздел математики, пребывающий в более чем почтенном возрасте: он «повзрослел» еще два столетия назад, в XIX веке. В то время многие ученые стали применять математические методы для изучения взаимоотношений между живыми организмами и окружающей средой. Мы уже знакомы с некоторыми из этих ученых, в частности с Пьером Франсуа Ферхюльстом, который описал логистическое отображение для моделирования динамики численности определенных популяций. К числу этих ученых принадлежал и итальянский математик и физик Вито Вольтерра (1860–1940) , известный тем, что сформулировал систему нелинейных дифференциальных уравнений, описывавших динамику биологической системы, в которой между собой взаимодействовали всего два вида живых существ — хищники и жертвы. Однако математика оказалась полезной не только при изучении динамики численности популяций, но и, уже в XX веке, при моделировании погоды и климата — двух систем, элементами которых являемся мы, люди. Глобальное изменение климата представляет собой междисциплинарную задачу: ее решением занимаются климатологи, метеорологи, физики, геологи, биологи, экономисты. Климатическая система относится к сложным системам и состоит из пяти подсистем: атмосферы (воздуха), гидросферы (воды), литосферы (земли), криосферы (льда) и биосферы (живых организмов). Бесконечную сложность окружающей среды нельзя понять, не изучив множество связей между экосистемами Земли.

* * *

ЦИКЛ «ХИЩНИК-ЖЕРТВА»

Уравнения модели «хищник — жертва» описывают, к примеру, изменение численности популяции волков и зайцев. Численность зайцев возрастает экспоненциально, и в то же время она уменьшается, поскольку зайцы — единственная добыча для волков. Чем больше зайцев — тем больше волков. Но чем больше будет волков, тем меньше будет зайцев, в результате популяция волков также уменьшится, после чего все начнется сначала. Следовательно, траектории, определяемые этой системой на фазовой плоскости, будут периодическими орбитами.

Фазовая плоскость динамической системы «хищник — жертва».

* * *

Климат и погода

Одна из причин, по которой изменение климата стало одной из самых актуальных тем начала XXI века, относится к социологии: любое аномальное погодное явление, в том числе никак не связанное с изменением климата, может быть заснято очевидцем и показано телеканалами всего мира. К примеру, средства массовой информации объясняют глобальным изменением климата разрушительное цунами, которое обрушилось на Индонезию в 2004 году, или ураган Катрина, от которого пострадал Новый Орлеан в 2005-м. Тем не менее причиной этих катастроф не было глобальное изменение климата: индонезийское цунами произошло в результате землетрясения, а разрушения, причиненные Катриной, объяснялись скорее неподготовленностью городских властей.

Возможно, обсуждение темы стоит начать с прояснения различий между погодой и климатом. Погода — это состояние атмосферы в определенной местности в конкретный момент. Пример: сегодня в нашем городе солнечная погода. Климат, напротив, это состояние атмосферы, наблюдаемое на протяжении многих лет. Точнее говоря, климат — это среднее состояние атмосферы, многолетний режим погоды, наблюдаемый на протяжении более 30 лет. Пример: в нашем городе влажный климат, так как у нас часто идут дожди. Таким образом, в выбранный день года в Мадриде, Лиссабоне и Риме может наблюдаться одинаковая погода, однако эти города расположены в регионах с разным климатом.

Следовательно, климат — это последовательность атмосферных характеристик в конкретной местности, определяющая, какая погода будет наблюдаться чаще всего. Следовательно, экстраординарные явления, такие как цунами или ураган, если только они не повторяются регулярно, не имеют ничего общего ни с климатом, ни с глобальным его изменением.

Глобальное потепление

Существует ли глобальное изменение климата? Если быть точными, климат менялся, меняется и будет меняться, поскольку он представляет собой динамическую систему.

К примеру, в конце X века, когда Эрик Рыжий с дружиной достиг Гренландии, он увидел зеленые луга (отсюда и название Гренландии — «зеленая земля») и основал на острове процветающую колонию. Позднее, в начале XV века, наступил Малый ледниковый период, ледники увеличились в размерах, и колонии викингов прекратили существование. Это изменение климата было не единственным в нашей эре: спустя несколько столетий после Рождества Христова наблюдался период потепления, на который пришлось падение Римской империи. Можно привести еще один пример из не столь далекого прошлого: с середины XIX века, когда завершился Малый ледниковый период, наблюдается период потепления, прерванный легким похолоданием в 1940–1975 годах.

Живительно, как быстро меняются идеи. В середине 1960-х годов, когда наблюдалось глобальное похолодание, экологи заговорили о неизбежном наступлении ледников. Многие исследователи утверждали, что причиной похолодания стала деятельность человека, приводившая к росту содержания углекислого газа (СО2) в атмосфере. В начале XXI века высказываются прямо противоположные опасения: наблюдается глобальное потепление, причиной которого также считается влияние человека.

Сегодня теория глобального изменения климата представляет собой совокупность трех гипотез, подтвержденных в неравной степени. Три столпа этой теории таковы.

1. На Земле наблюдается глобальное потепление.

2. Основная причина глобального потепления — парниковый эффект.

3. Основная причина парникового эффекта — выбросы СО2 в атмосферу в результате деятельности человека.

Иными словами, изменение климата = глобальное потепление + парниковый эффект + деятельность человека.

Климат Земли в прошлом и в наши дни

Межправительственная группа экспертов по изменению климата ООН в своем докладе, опубликованном в 2013 году, приводит данные о повышении средней температуры на планете с 1880 года до наших дней на 0,8 °С. Также указывается, что в Северном полушарии наблюдается более значительный рост температуры, чем в Южном.

Обратите внимание на две особенности следующего графика, где представлено изменение средней мировой температуры вплоть до наших дней. Во-первых, начиная с конца Малого ледникового периода (примерно с 1880 года) до наших дней темпы потепления отличались. С 1940 по 1975 год потепление полностью замедлилось и уступило место незначительному похолоданию, в результате появились опасения о начале нового ледникового периода. Однако начиная с 1980-х годов темпы потепления заметно возросли. Несмотря на это с 1999 по 2009 год средняя мировая температура практически не увеличивалась, хотя девять из десяти самых жарких лет за всю историю наблюдались именно в этот период.

Рост средней мировой температуры в 1880–2010 годах по результатам Института космических исследований имени Гэддарда при NASA.

Процессы, происходившие на протяжении XX века, представляли немалый интерес, что подчеркивает физик Мануэль Тоария в своей книге «Климат: глобальное потепление и будущее нашей планеты»:

«В условиях промышленного роста и огромного объема выбросов углекислого газа и углеводородов, наблюдавшегося в последние несколько десятилетий, потепление замедлилось, и в начале 40-х годов средняя мировая температура в целом начала понижаться. В 70-е годы, в период относительно низких температур, наиболее популярной теорией была теория глобального похолодания, согласно которой нас ждал новый ледниковый период. Суть этой теории была такова: загрязнение атмосферы, вызываемое промышленностью, выхлопными газами машин и бытовыми обогревателями, приводило к тому, что воздух становился менее прозрачным и задерживал солнечные лучи. В моду вошли различные модели ядерной зимы».

С 1980 года средняя мировая температура вновь начала быстро возрастать. Собственно, она постоянно меняется под воздействием различных факторов. К примеру, в результате извержения вулкана Пинатубо в 1991 году средняя мировая температура снизилась на несколько десятых градуса, а явление Эль-Ниньо 1998 года привело к тому, что этот год стал одним из самых жарких за все столетие.

* * *

ЯДЕРНАЯ ЗИМА И ХОЛОДНАЯ ВОЙНА

Холодная война между СССР и США стала причиной появления теории, описывающей экстремальный климатический сценарий: гипотетическая ядерная бомбардировка могла привести к значительному похолоданию, так как в этом случае в атмосфере оказалось бы большое количество дыма и сажи. В теории этот дым поднимался бы в стратосферу и частично заслонил бы Солнце, что привело бы к коллапсу сельского хозяйства, массовому голоду и, возможно, началу оледенения Земли. Страх перед ядерной зимой сыграл решающую роль при подписании договоров о разоружении между двумя противоборствующими сторонами.

* * *

Климатологи, признавая, что изменчивость — одна из неотъемлемых характеристик средней мировой температуры и земного климата в целом, пытаются объяснить недавнее глобальное похолодание, анализируя данные о погоде за последнюю тысячу лет. Если мы поймем, действительно ли повышение средней мировой температуры почти на целый градус за последние сто лет является аномальным, то, вероятно, сможем определить и устранить его причины.

Следовательно, нужно не ограничиваться изучением земного климата на сегодняшний день, а изучить историю климата Земли. К примеру, в последнем тысячелетии нынешнему периоду потепления предшествовал Малый ледниковый период, вызванный минимумом солнечной активности и повышенной вулканической активностью. Малый ледниковый период длился с XV по середину XIX века, положив конец Средневековому климатическому оптимуму — аномально теплому периоду, совпавшему с максимумом солнечной активности (в это время поверхность Солнца была буквально усеяна пятнами).

Кроме того, в разные периоды геологической истории нашей планеты средняя температура колебалась так же, как и сегодня, о чем свидетельствуют исследования в сфере палеоклиматологии. Причины, по которым в прошлом наблюдалось потепление или похолодание, до конца не известны, поскольку на климат влияет множество факторов: солнечная активность и ее циклы, извержения вулканов, океанские течения, парниковый эффект и так далее. Совокупность этих факторов позволяет оценить степень ограниченности наших знаний.

* * *

СОЛНЕЧНЫЕ ПЯТНА

Солнечные пятна, открытые в XVII веке Галилеем и членом ордена иезуитов Кристофом Шейнером, представляют собой участки поверхности Солнца с более низкой температурой, обладающие сильным магнитным полем. Солнечные пятна кажутся темными на контрасте с соседними участками поверхности. Чем больше пятен на Солнце, тем выше солнечная активность, так как области вблизи пятен светятся намного ярче.

* * *

Инструментальные наблюдения за погодой ведутся сравнительно недавно (старейшие данные о температуре воздуха относятся к 1850-м годам), и для анализа изменений климата необходимо использовать косвенные данные, то есть данные о климате, полученные из других источников, к примеру путем определения возраста различных слоев озерных отложений, анализа пузырьков воздуха в древних льдах или изучения годичных колец деревьев. Основная проблема заключается в том, что результаты, полученные на основе косвенных данных, необязательно будут точными и надежными, что стало очевидным в ходе широко известной дискуссии вокруг модели Майкла Манна, получившей название «хоккейная клюшка».

В 2001 году ООН и Межправительственная группа экспертов по изменению климата приняли решение использовать модель Манна в качестве основной (в последнем докладе на тему изменения климата, опубликованном в 2007 году, приводится уже спрямленный график). В 1998 году климатолог Майкл Манн опубликовал в престижном научном журнале Nature статью, где привел знаменитый график в форме хоккейной клюшки, который предположительно отражал изменение средней мировой температуры за последнюю тысячу лет. График Манна был составлен по результатам анализа годичных колец определенного вида сосен. В модели Манна отсутствовали Малый ледниковый период и Средневековый теплый период и выделялся лишь температурный пик XX века. Казалось, что в течение последнего тысячелетия, помимо потепления в XX веке, не произошло никаких значимых изменений.

График изменения средней мировой температуры — «хоккейная клюшка» Манна.

Различные группы исследователей опубликовали важные работы, в которых выступили с критикой этой модели. Двое из них, математик Стивен Макинтайр и экономист Росс Маккитрик, обнаружили в работе Манна многочисленные ошибки. На основе тех же данных, что использовал Манн, Макинтайр и Маккитрик получили совершенно иные результаты. Они обнаружили, что Манн и его коллеги применили удивительную формулу, в которой вне зависимости от входных данных выходное значение всегда описывалось графиком в форме хоккейной клюшки. Иными словами, при статистическом анализе данных Манн недооценил множество колебаний температуры. В исправленной версии расчетов различие между современными значениями средней мировой температуры и температуры во время Средневекового климатического оптимума оказалось уже не столь заметным.

Различные модели, описывающие изменение мировой температуры за последние две тысячи лет (обратите внимание на пики, соответствующие Средневековому теплому периоду, Малому ледниковому периоду и нашим дням).

Что мы знаем о корреляции между температурой и концентрацией СО2?

В 1896 году шведский ученый Сванте Август Аррениус опубликовал статью под названием «О влиянии углекислого газа в воздухе на температуру поверхности Земли», в которой отметил наличие прямой зависимости между изменением температуры и уровнем СО2. Позднее это явление стало называться парниковым эффектом, хотя первым аналогию с парником провел еще Жан-Батист Жозеф Фурье в 1824 году.

Углекислый газ, или двуокись углерода (СО2), служит причиной парникового эффекта, так как удерживает часть энергии, которую излучает нагретая поверхность Земли, и, как следствие, воссоздает эффект, наблюдаемый в обычном парнике. В результате температура заметно повышается. Основным парниковым газом является не СО2, а (внимание!) водяной пар, действием которого объясняется 60 % парникового эффекта. Нужно различать естественный парниковый эффект, благодаря которому Земля стала обитаемой (температура на ней возросла с —18 °С, при которых жизнь невозможна, до 33 °С), и искусственный парниковый эффект, вызываемый человеком в результате выбросов в атмосферу СО2, метана, оксида азота и других газов. Доказано, что с начала промышленной революции человек загрязняет атмосферу и изменяет ее химический состав.

Тепловая электростанция в Баттерси (Лондон), ставшая всемирно известной после того, как была изображена на обложке альбома «Animals» группы Pink Floyd.

Однако климат подчиняется куда более сложным законам. Нельзя сказать, что повышение концентрации С02 однозначно ведет к увеличению температуры. Изменение концентрации СО2, вызванное деятельностью человека и различными природными факторами, едва ли объясняет повышение температуры с 1920 по 1940 год, когда концентрация углекислого газа в атмосфере была невысока, и тем более не объясняет похолодание, наблюдавшееся с 1940 по 1975 год, когда произошел значительный рост выбросов парниковых газов, вызванный человеком. И действительно, палеоклиматические исследования показывают, что температура не зависит напрямую от уровня СО2 в атмосфере: в некоторых моделях температурные пики наблюдаются примерно за 800 лет до пиковых уровней концентрации СО2.

Таким образом, помимо парниковых газов, рост средней температуры объясняется и другими факторами, как природными (например, солнечной активностью), так и антропогенными: урбанизация и изменения в сельском хозяйстве, приводящие к выделению тепла, — лишь два из множества примеров влияния человека на климат, которые традиционно недооцениваются, но могут отчасти объяснить наблюдаемое потепление. Охлаждение планеты вызвано как природными факторами, в частности вулканической активностью, так и влиянием человека. Один из этих факторов — наблюдаемое с 1950-х годов так называемое глобальное затемнение, которое заключается в постепенном снижении объема излучения Солнца, достигающего земной поверхности. Считается, что глобальное затемнение вызвано ростом содержания частиц угля и сульфатов в атмосфере в результате деятельности человека, главным образом ввиду использования двигателей внутреннего сгорания и воздушного транспорта.

Цель математических моделей и графиков, которые строят климатологи, — это совокупная оценка вышеперечисленных факторов и влияния (как положительного, так и отрицательного), которое они оказывают на изменение средней мировой температуры. Климатические модели, в которых учитываются только природные факторы, не воспроизводят наблюдаемый рост средней мировой температуры. Напротив, потепление, наблюдаемое в последние 35 лет, можно с успехом объяснить, если принять во внимание факторы, связанные с деятельностью человека. Таким образом, научное сообщество склоняется к тому, что извержения вулканов и рост концентрации сульфатов в атмосфере вызывают снижение температуры на планете, а парниковые газы и рост солнечной активности — ее увеличение. Совокупность всех этих факторов объясняет рост средней мировой температуры на 0,74 °С.

Изменение средней мировой температуры под воздействием различных положительных и отрицательных факторов.

* * *

ГЛОБАЛЬНОЕ ЗАТЕМНЕНИЕ И 11 СЕНТЯБРЯ

В течение трех дней, последовавших за террористическими атаками 11 сентября, воздушное сообщение было практически полностью прекращено. Двое американских ученых, Дэвид Трэеис и Джерри Стэнхилл, воспользовались этой возможностью и измерили колебания температуры в различных частях США. Результаты оказались невероятными: и Трэвис, и Стэнхилл отметили измерение дневных температур на 1 °С. Иными словами, после трех дней без воздушного сообщения температура снизилась почти на один градус.

* * *

Статистика и теория хаоса

В представленных выше графиках и математических моделях присутствует некоторая неопределенность, которую сами ученые пытаются измерить. При оценке неопределенности в моделях, воспроизводящих земной климат в прошлом, важную роль играет статистика. При оценке неопределенности в моделях, служащих для прогнозирования климата, в игру вступает теория хаоса.

Мы рассказали о средней мировой температуре и о том, как она меняется. Но что такое «мировая температура»? Если погоду и температуру в конкретной местности можно определить довольно точно, то мировой климат и мировая температура являются результатами расчетов и оценок. Не существует никакого аналога гигантского термометра, который можно приложить к Земле, чтобы определить ее точную температуру. Мировая температура определяется, если можно так выразиться, на «статистической кухне» и представляет собой среднюю величину, которую можно рассчитать различными способами на основе данных, собираемых на метеорологических станциях, а также с помощью метеозондов и спутников.

Математик Кристофер Эссекс и экономист Росс Маккитрик приводят такой пример. Допустим, что преподаватель физики объясняет ученикам, как определить среднюю температуру в классе. Зимой ученики измерили температуру в четырех местах (у двери, у окна, на учительском столе и на задней парте). Результаты оказались следующими: 17 °С, 19,9 °С, 20,3 °С и 22,6 °С соответственно. Когда наступила весна, учитель открыл окно, чтобы проветрить класс. Все четыре результата измерений оказались равны 20 °С. Тогда преподаватель спросил учеников: в классе холоднее или теплее, чем зимой? Половина учеников вычислила среднюю зимнюю температуру как среднее арифметическое, то есть сложив четыре значения и разделив полученную сумму на четыре. Другая половина решила определить среднюю температуру как среднее квадратическое, то есть сложив квадраты температур, разделив сумму на четыре и вычислив квадратный корень из полученного значения.

К какому выводу пришла каждая группа учеников?

Те, кто использовал первый, линейный метод, определили, что зимой средняя температура в классе равнялась 19,95 °С. Иными словами, весной в классе потеплело на 0,05 °С, до 20 °С. Те, кто использовал второй, квадратичный метод, определили, что зимой средняя температура в классе составила 20,05 °С. Следовательно, весной в классе похолодало на 0,05 °С. Кто же прав? Правы и те и другие, так как оба метода были верными и отличались только тем, с какой точки зрения в них рассматривалось термодинамическое равновесие.

Если мы будем рассматривать не класс, а всю планету, возникает еще одна проблема, связанная с объемом и качеством исходных данных: мы располагаем обширной сетью метеостанций, распределенных в пространстве и времени (метеозонды стали повсеместно использоваться с начала 1950-х, спутники — только с начала 1980-х). Во всем мире насчитывается лишь 1000 станций, на которых велись наблюдения на протяжении всего XX века. Все они расположены на суше и в Северном полушарии (в городах Европы и Америки), поэтому изменения температуры в Южном полушарии и в океанах оказались обделены вниманием. Учитывая, что изменение средней мировой температуры в прошлом веке определялось по результатам наблюдений на недостаточном числе неравномерно распределенных метеостанций, любые экстраполяции неизбежно повлекут ошибки.

Сеть метеостанций, на которых велись наблюдения с 1880 по 2009 год. Обратите внимание, что на большей части поверхности планеты метеостанции отсутствуют.

* * *

МЕТЕОСТАНЦИЯ НА ВЫСОТЕ 1888 МЕТРОВ

Если мы обратим внимание на Пиренейский полуостров, то увидим, что для определения средней температуры на нем Межправительственная группа экспертов по изменению климата ООН и Институт космических исследований имени Годдарда при NASA используют едва ли два десятка метеостанций, всего четыре из которых располагаются достаточно далеко от больших городов. Единственная из этих четырех метеостанций, которая находится в горах и содержит достаточно обширный реестр исторических данных, — это метеостанция в муниципалитете Навасеррада, провинция Мадрид. Если мы изучим температурную кривую так, как это делают климатологи, то есть применим линейную регрессию, то сразу же увидим: общая тенденция (линейная) температуры в Навасерраде на протяжении XX века оставалась неизменной. Но если мы применим полиномиальную регрессию, то есть попытаемся найти не прямую, а плавную кривую, описывающую исходные значения, то увидим, что в разные годы температура повышалась и понижалась.

Если мы используем метод, разработанный специалистами по теории хаоса Давидом Рюэлем и Флорисом Такенсом, который заключается в построении траектории вида (a, b), (b, с), (с, d)… для исходного числового ряда a, b, с, d… и поиске динамики (возможно, хаотической) и аттрактора (возможно, странного) для климата в Навасерраде, то получим следующую траекторию, форму которой можно считать признаком хаоса.

* * *

Более того, многие из этих метеостанций установлены в городах и подвержены так называемому эффекту теплового острова (асфальт, автомобили, уличные фонари существенно меняют температуру в городах по сравнению с окрестностями). На каждой метеостанции эти аномалии корректируются по-разному.

Подведем итог. Сегодня мы знаем о климате намного больше, чем вчера, и в настоящее время наблюдается всеобщая озабоченность глобальным изменением климата, подкрепленная фактами и прогнозами, составленными на основе математических моделей и результатов наблюдений. Эти факты и прогнозы корректны, однако для них характерна некоторая неопределенность. Разумеется, мы знаем, что глобальное потепление нельзя объяснить исключительно природными факторами. Весьма вероятно, что важнейшей его причиной являются парниковые газы, а также изменения в землепользовании, в том числе развитие сельского хозяйства и вырубка лесов.

Но не следует забывать о возможных ошибках: модели могут быть излишне простыми или неточными, результаты измерений могут содержать значительные погрешности и так далее. Существует несколько источников неопределенности при прогнозировании климата: это слишком малое число значений некоторых переменных, недостаток информации об определенных регионах мира, а также неполное понимание некоторых механизмов, в частности действия аэрозолей и частиц пыли на изменение температуры атмосферы. Кроме того, геологические отчеты показывают, что в прошлые века и тысячелетия также наблюдались существенные изменения климата. Они не могут быть объяснены влиянием человека, и при анализе текущих изменений климата их непременно следует принимать во внимание.

 

Глава 5. Хаос, погода и климат

«Джек Холл — климатолог, предупреждающий о том, что глобальное потепление может привести к резкому изменению климата на Земле. Его прогнозы подтверждаются, когда таяние полярных льдов приводит к попаданию огромных объемов пресной воды в океан. В результате нарушается течение Гольфстрима в Атлантике, что приводит к дестабилизации климата в Северном полушарии. Кроме того, вскоре начинает происходить ряд необъяснимых явлений: в Нью-Дели выпадает снег, огромные градины обрушиваются на Токио, мощный торнадо разрушает небоскребы Лос-Анджелеса, а Манхэттен оказывается погребен под гигантским цунами. В результате образуется мегашторм, и на планете начинается новый ледниковый период. Землю покрывает многометровый слой снега».

Примерно так звучит анонс фильма «Послезавтра», вышедшего на экраны в 2004 году и имевшего большой успех в прокате. Однако этот фильм ближе к научной фантастике, чем к реальной науке, несмотря на то что реальные прогнозы относительно изменений климата на Земле также не слишком оптимистичны. В прошлой главе мы оглянулись назад, рассмотрев, каким был климат Земли в прошлом. Теперь обратим взгляд вперед. Каким станет климат в будущем? Можем ли мы предсказать его?

Климат в будущем: прогноз невозможен

Первые попытки математического моделирования погоды и климата были предприняты в 1920-е годы. В те времена синоптики (метеорологи, составляющие прогнозы по результатам наблюдений) поняли, что для предсказания погоды и климата на более длительное время им требуется помощь специалистов по динамической метеорологии, которые работают с уравнениями. Вскоре стало понятно, что атмосфера представляет собой очень сложную динамическую систему. В начале XX века норвежский физик и метеоролог Вильгельм Бьеркнес (1862–1951) высказал передовую гипотезу, смысл которой заключался в прогнозировании погоды и климата посредством решения уравнений, описывающих состояние атмосферы. Претворить эту идею в жизнь оказалось совсем не просто.

Позднее английский математик Льюис Фрай Ричардсон (1881–1953) вновь вернулся к идеям Бьеркнеса: во время Первой мировой войны, будучи водителем санитарного автомобиля, он объехал всю Францию и собрал обширные данные о погоде в конкретный день — 20 мая 1910 года. Затем на протяжении шести недель он провел множество расчетов, чтобы составить прогноз погоды на шесть часов вперед для небольшого региона. Результат оказался совершенно неудовлетворительным: прогноз Ричардсона не соответствовал собранным данным. Однако неудача не выбила исследователя из колеи, и он пророчески заметил: «Потребуется 64 тысячи человек, работающих посменно, чтобы предсказать изменение состояния атмосферы быстрее, чем оно произойдет в реальности». Прошло несколько десятилетий, и мечты Ричардсона о «погодной машине» исполнились, только вместо 64 тысяч человек над прогнозом погоды работали 64 тысячи электронных ламп.

Погода и климат во всем мире описываются с помощью системы уравнений, насчитывающих свыше 5 млн переменных. В этих уравнениях сведены воедино три компонента: основные физические законы (закон сохранения энергии, массы и так далее), соответствующие математические уравнения (нерешаемые нелинейные уравнения Навье — Стокса, описывающие движение вязкой жидкости) и, наконец, ряд формул, полученных эмпирическим путем (к примеру, формула испарения воды в зависимости от влажности и скорости ветра).

Однако отсутствие эффективных вычислительных инструментов затормозило развитие моделей прогнозирования климата до середины XX века, когда появились первые компьютеры. Изучение столь сложной системы, как атмосфера Земли, стало возможным также благодаря мощным методам анализа, математического и суперкомпьютерного моделирования.

Как вы уже знаете, различие между метеорологией и климатологией заключается в том, что они описывают разные временные интервалы. Метеорологические прогнозы охватывают несколько дней, максимум одну-две недели. Климатические прогнозы, напротив, могут относиться к временным интервалам в несколько столетий. Помимо этого, если цель метеорологии — обеспечение максимальной точности неизвестной, напротив, является средняя температура, например среднегодовая температура в Берлине в 2100 году. Эта средняя температура определяется как средняя температура во всех точках города на протяжении года.

* * *

ПРОРОЧЕСТВО ФОН НЕЙМАНА

Джон фон Нейман (1903–1957) был превосходным ученым, который уверенно разбирался почти во всех разделах математики: он занимался теорией множеств, функциональным анализом, квантовой механикой, экономикой. Участвуя в развитии вычислительной техники, он обратил внимание на возможность прогнозирования погоды и климата с помощью компьютеров.

В 1955 году он писал: «Возможно, мы сможем начать изучение атмосферы и климата уже через несколько десятилетий. Уровень сложности этих исследований сегодня сложно представить». Среди членов группы фон Неймана в Принстоне был  Жюль Чарни (1917–1981) , влиятельный метеоролог и климатолог, который возглавлял множество незаурядных исследований и был научным руководителем Эдварда Лоренца.

31 января 1949 года мощный компьютер ENIAC под управлением фон Неймана и его коллег смог спрогнозировать мощный шторм, который спустя 24 часа обрушился на северо-запад США. Эта дата стала вехой в истории метеорологии.

* * *

Другой вопрос — как составлять прогнозы климата на практике, поскольку нам известны значения температуры лишь в определенных точках (там, где расположены метеостанции), а средняя температура рассчитывается на основе этих значений с помощью интерполяции. Однако интерполяция может проводиться по-разному, а средние значения могут определяться разными способами, что мы показали в предыдущей главе на примере измерения температуры в классе.

Таким образом, для изучения моментальных и средних температур метеорологи и климатологи используют модели, основанные на уравнениях движения сжимаемых слоистых потоков (атмосферы) над неровной вращающейся поверхностью (поверхностью Земли). Очевидно, что эта модель зависит от начальных и граничных условий. Начальные условия (например, температура воздуха на сегодня) используются скорее в метеорологических прогнозах, а граничные условия (к примеру, поведение потоков воздуха вблизи поверхности суши или океана) преимущественно рассматриваются при прогнозировании климата.

Весьма важный класс климатических моделей, обладающих большой ценностью при прогнозировании, образуют модели энергетического баланса. Эти модели были созданы Михаилом Будыко и Уильямом Селлерсом в 1969 году на основе работ шведского ученого Сванте Аррениуса, выполненных в конце XIX века. Эти модели основаны на дифференциальном уравнении, в котором производная, или скорость изменения температуры со временем, приравнивается к сумме и разности различных факторов (к примеру, из величины солнечной радиации, поглощенной Землей, необходимо вычесть величину радиации, которую испускает Земля подобно любому другому нагретому телу при теплоотдаче). В зависимости от того, какой вес будут иметь эти факторы относительно средней температуры, модели энергетического баланса будут выглядеть по-разному.

Модели этого типа могут быть очень сложными — так, огромной сложностью отличаются модели общей циркуляции, описывающие всю земную поверхность.

Разумеется, подобные модели не имеют аналитического решения и рассматриваются исключительно с помощью численных методов. Найти численное решение будет непросто — для этого потребуется выполнить невероятный объем расчетов. А для того чтобы расчеты можно было выполнить за разумное время, анализируемый участок земной поверхности не должен быть покрыт сетью метеостанций слишком гу сто (к примеру, при анализе климата на всем Пиренейском полуострове требуется чуть больше дюжины точек), что вызывает определенные неудобства.

Множество групп международного научного сообщества создали свои модели общей циркуляции. Модели такого типа используют ведущие агентства, занимающиеся прогнозированием климата, в частности Межправительственная группа экспертов по изменению климата ООН и Институт космических исследований имени Годдарда при NASA. По мере накопления результатов наблюдений и увеличения мощностей компьютеров приемы моделирования физических процессов и численные методы решения уравнений становятся все лучше.

Прогноз роста средних температур в 2070–2100 годах согласно модели общей циркуляции НаdCМЗ, предложенной Межправительственной группой экспертов по изменению климата ООН.

Точность и неопределенность в математических моделях

Не будем слишком торопить события и вернемся в 60-е годы, когда юный коллега Жюля Чарни, метеоролог Эдвард Лоренц, предложил любопытную модель из трех обыкновенных дифференциальных уравнений для описания движений воздуха в атмосфере. Сегодня она называется системой Лоренца. Как вы знаете из второй главы, Лоренц обнаружил, что решения системы демонстрируют хаотическое поведение, поэтому предсказать состояние рассматриваемой системы на практике нельзя. Если при наблюдении текущего состояния системы была допущена какая-либо ошибка (а для реальных систем это, по всей видимости, неизбежно), то дать надежный прогноз состояния системы в далеком будущем невозможно. Проще говоря, в системе Лоренца наблюдался эффект бабочки. Предоставим слово самому Лоренцу:

«Когда я применил свои результаты для анализа атмосферы, имеющей в высшей степени непериодический характер, то увидел, что если начальные условия в точности неизвестны, то предсказать достаточно далекое будущее нельзя ни одним методом. В силу неизбежной неточности и неполноты метеорологических наблюдений долгосрочные прогнозы, по-видимому, невозможны».

Вернемся еще дальше в прошлое, в 1908 год. К тому моменту Анри Пуанкаре уже подробно изучил целый класс нестабильных явлений, для которых предсказать динамику системы в долгосрочном периоде было невозможно. Пуанкаре взял за основу задачу трех тел, а также (обратите внимание!) задачу прогнозирования погоды.

Он признавал, что погода неустойчива, о чем было известно метеорологам, поэтому они не могли предсказать, где и когда будет наблюдаться циклон:

«Почему метеорологи испытывают такие трудности при составлении прогнозов погоды? Почему дожди и грозы возникают, казалось бы, случайно и многие люди, которым кажется смешным молиться о солнечном затмении, молятся, чтобы пошел дождь или на небе засияло солнце? Метеорологи знают, что в некоторой точке возникнет циклон, но не могут предсказать, где именно. Стоит возникнуть перепаду температур в одну десятую градуса между двумя точками, и тут и там возникнут циклоны, которые обрушат всю свою мощь на страны, которые в противном случае никак не пострадали бы».

Давид Рюэль писал: «Математика Пуанкаре сыграла свою роль, однако его идеи, касавшиеся метеорологических прогнозов, пришлось открыть независимо от него». В своей статье от 1963 году Лоренц упомянул труды Пуанкаре о динамических системах, однако идеи этого французского математика о хаосе, погоде и климате были ему неизвестны.

Поскольку даже такая простая модель, как модель Лоренца, демонстрирует хаотическую динамику, и более того, подобная динамика часто наблюдается в нелинейных системах, разумно предположить, что любая точная модель атмосферы также будет чувствительной к начальным условиям, и в результате взмах крыльев бабочки в такой системе действительно сможет вызвать торнадо. Очевидно, что верно и обратное. Не важно, взмахнет ли бабочка крыльями, — это в любом случае приведет к изменению начальных условий, и если в первом случае торнадо пройдет над Техасом, то во втором — над Сингапуром, или над Нью-Йорком, или, что еще лучше, не возникнет вовсе. Взмах крыльев бабочки вызовет мельчайшие изменения в атмосфере, и по прошествии определенного периода времени состояние атмосферы значительно изменится.

* * *

ТУРБУЛЕНТНОСТЬ В НЕБЕ

Среди хаотических явлений, которые привлекли внимание ученых благодаря тому, что связаны с климатом, особое место занимает переход потоков к турбулентности. Как мы уже упоминали, это явление изучали Давид Рюэль и Флорис Такенс, которые объяснили турбулентность математически с помощью странных аттракторов. Турбулентность, по сути, представляет собой хаос во времени и пространстве, и ее рассмотрел еще философ-эпикуреец Лукреций более 2000 лет назад. Переход потока от ламинарного, то есть постоянного, стабильного течения, к непредсказуемой, непостоянной, нестабильной турбулентности знаком любому, кто летал на самолете.

Дым сигареты Хамфри Богарта сначала движется в ламинарном режиме, затем — в турбулентном, хаотическом.

* * *

Влияние хаоса на метеорологические прогнозы известно всем: предсказать погоду больше чем на десять дней вперед невозможно. По этой причине телевизионный прогноз погоды на неделю вперед и более обычно оказывается неточным: микроскопические ошибки при определении начальных условий в атмосфере постепенно возрастают и вызывают значительные ошибки в прогнозах.

* * *

ОТРЫВОК ИЗ РОМАНА «ПАРК ЮРСКОГО ПЕРИОДА» МАЙКЛА КРАЙТОНА

Первоначально теория хаоса выросла из попыток создать электронную модель погоды, которые были предприняты еще в 60-х. Погода — это большая сложная система, а более конкретно — это земная атмосфера в ее взаимодействии с землей и солнцем. Поведение этой большой и сложной системы никогда не поддавалось пониманию. Если я буду стрелять из пушки снарядом определенного веса, с определенной скоростью и под определенным углом и если после этого я выстрелю вторым снарядом почти того же веса, почти с той же скоростью и почти под тем же углом — что произойдет?

- Оба снаряда приземлятся почти в одном и том же месте.

- Правильно. Это линейная динамика.

- Понятно.

- Но если у меня есть одна система погоды, которую я привожу в действие при определенной температуре, определенной скорости ветра и определенной влажности, и если я повторю все это при почти таких же температуре, ветре и влажности, то вторая система не поведет себя почти так же, как первая. Она отклонится и очень быстро превратится в нечто совершенно другое. Гроза вместо ясного солнца. Это нелинейная динамика.

* * *

Как это связано с прогнозированием климата? В своей книге «Суть хаоса» Лоренц пишет:

«Почти все глобальные модели были использованы для прогнозирования в экспериментах, когда два или более решений, полученных на основе слегка различавшихся начальных условий, оценивались на предмет чувствительности к начальным условиям… Почти во всех без исключения моделях небольшие различия в начальных условиях в конечном итоге возрастали и становились весьма заметными».

В докладе Межправительственной группы экспертов по изменению климата, опубликованном в 2001 году, отмечено:

«При создании новых моделей климата и анализе уже существующих следует понимать, что мы имеем дело с нелинейной хаотической системой, следовательно, прогнозирование климата в долгосрочном периоде невозможно».

В докладе, опубликованном в 2007 году, также говорится:

«С момента публикации работы Лоренца (1963) известно, что даже простые модели могут обладать сложной динамикой в силу своей нелинейности. Нелинейная динамика, присущая климатической системе, наблюдается при моделировании климата на любом временном интервале. Модели, описывающие взаимодействие атмосферы и океана, климата и биосферы, климата и экономики могут демонстрировать похожую динамику, для которой характерны частичная непредсказуемость, бифуркации и переход к хаосу».

Чтобы в полной мере понять смысл заявлений, касающихся глобального изменения климата, следует понимать, что ни погоду, ни климат нельзя смоделировать так, чтобы с абсолютной точностью можно было предсказать, что произойдет через неделю или через 100 лет. Результаты, получаемые с помощью компьютерного моделирования, представляют собой сценарии с важной вероятностной составляющей, которую в каждом случае следует оценивать отдельно. Любой сценарий или модель, описывающие, к примеру, среднюю температуру на планете в 2100 году, зависят от ряда предпосылок (уровня выбросов парниковых газов, изменений солнечной активности и пр.). Основная проблема при составлении прогнозов по большей части заключается в том, чтобы определить, какие из этих предпосылок соответствуют текущему положению вещей. Мы еще не знаем, какие аспекты климата можно предсказать в долгосрочном периоде, поскольку ненаблюдаемые нами колебания могут вызвать значительные изменения в будущем.

Тем не менее достаточно непросто осознать, что погода и климат априори непредсказуемы в долгосрочном периоде в силу присутствия хаоса. В 1970-е годы многие исследователи ожидали, что путем добавления все новых и новых переменных они смогут стабилизировать систему и спрогнозировать состояние атмосферы в долгосрочном периоде. К примеру, Жюль Чарни оптимистично заявлял: «Не существует причины, по которой нельзя будет предсказать жизненный цикл атмосферы с помощью численных моделей, — все дело в том, что современные модели обладают серьезными недостатками». Однако один из этих серьезных недостатков был и остается неустранимым — это хаос.

Для некоторых ученых, как отмечает Тим Палмер (один из ведущих климатологов Межправительственной группы экспертов по изменению климата) в статье под названием «Глобальное потепление нелинейно. Можем ли мы быть в этом уверены?», хаос проявляется не столько в предсказании климата, сколько в метеорологических прогнозах. Следуя терминологии, предложенной Лоренцем, составление метеорологических прогнозов относится к задачам о начальных условиях, в которых эффект бабочки играет важную роль, поскольку при решении таких задач рассматриваются различные траектории. Если мы хотим составить прогноз погоды, нужно следовать вдоль траектории-решения уравнений, начальные условия которых описывают погоду на сегодня (температуру, давление, влажность и пр.). Прогнозирование климата, напротив, основано на решении так называемой краевой задачи, в которой влияние эффекта бабочки не столь заметно, поскольку основную роль в ней играют аттракторы, а не траектории. При изучении климата интерес представляет поведение системы в долгосрочном периоде, которое описывается аттрактором. Иными словами, если мы хотим предсказать климат, не нужно следовать вдоль какой-либо конкретной траектории — напротив, необходимо будет проанализировать, как ведут себя траектории в долгосрочном периоде по мере приближения к аттрактору, ведь именно аттрактор описывает средний погодный режим, то есть климат. Если мы также хотим понять, какое влияние оказывают на климат различные факторы и величины (концентрация СО2 в атмосфере, солнечное излучение и пр.), необходимо рассмотреть, как эти параметры меняют форму аттрактора.

Если мы представляем климат в виде аттрактора атмосферной системы, то эффект бабочки проявляться не будет. Однако, поскольку климатическая система нелинейна и, предположительно, обладает хаотическим поведением, то аттрактор будет странным и, возможно, будет иметь впадины, изобилующие крупными и мелкими деталями, то есть не слишком нестабильным. Представим, что климат описывается аттрактором системы Лоренца, и поворот вокруг его правого «крыла» означает, что пойдет дождь, а поворот вокруг левого «крыла» соответствует ясной погоде. В этом случае мы сможем определить закономерность, которой будет подчиняться климат в целом: в какие-то дни будет идти дождь, в другие — нет. Тем не менее нам сложно будет получить более подробную информацию, так как траектории вращаются вокруг каждого «крыла» аттрактора случайным образом.

Сегодня, спустя более 40 лет с момента открытия Лоренца, методы краткосрочного и среднесрочного прогнозирования существенно улучшились, поскольку развитию теории сопутствовало совершенствование суперкомпьютеров, способных снизить хаотичность погоды и климата. Одним из результатов этого развития стало появление так называемого ансамблевого, или комплексного прогноза (ensemble forecasting), который заключается в одновременном использовании нескольких множеств начальных условий и множеств математических моделей. Этот метод позволяет снизить ошибки при определении начальных условий и скомпенсировать ошибки, присущие непосредственно моделям.

Для краткосрочных (метеорологических) прогнозов, где преобладают ошибки, связанные с неопределенностью начальных условий, уже много лет успешно используется ансамблевый прогноз с одной моделью и множеством начальных условий. Иными словами, при прогнозировании погоды рассматривается развитие модели для похожих начальных условий, после чего путем сравнения различных результатов составляется итоговый прогноз. Как правило, эти результаты (порядка пятидесяти) для первых дней прогноза достаточно похожи, но после третьего или четвертого дня начинают проявляться расхождения, которые постепенно растут.

Комплексный прогноз температуры в Лондоне, составленный 26.06.1994 Европейским центром среднесрочного прогнозирования погоды (ECMWF). Начиная с четвертого дня разница в прогнозах составляет почти 16 °C (от 14 до 30 °С).

Для долгосрочных (климатических) прогнозов, где основную роль играют ошибки самих моделей, используется комплексный прогноз с несколькими моделями.

Иными словами, для одинаковых начальных условий рассматривается несколько моделей, после чего составляется итоговый прогноз путем взвешивания результатов. К примеру, на основе различных моделей Межправительственная группа экспертов по изменению климата определила, что рост средней мировой температуры к 2100 году относительно 2000 года составит от 2,2 до 4,7 °С. Результаты, полученные с помощью различных компьютерных моделей, неидентичны, и расхождения в результатах отражают степень неопределенности наших знаний о климате Земли.

Согласно глобальным моделям, средняя температура на планете к 2100 году возрастет на 2,2–4,7 °С, следовательно, неопределенность составляет почти 3 °С.

Развитие методов комплексного прогнозирования вызывает огромный интерес: ожидается, что они будут крайне полезны при прогнозировании глобальных изменений климата. Как бы то ни было, можно быть уверенными в одном: следует отказаться от мысли, что мы сможем найти универсальный алгоритм, позволяющий точно спрогнозировать динамику атмосферы в долгосрочной перспективе.

Когда математика превращается в экономику…

Заслуга Лоренца заключается в том, что он доказал: погода и, следовательно, климат, обладают хаотической, неустойчивой и непредсказуемой динамикой. Атмосфера — нелинейная и, очевидно, хаотическая система. Здесь хаос следует понимать не как нечто неупорядоченное, а скорее как порядок без периодичности. Климат — это хаотическая система в том смысле, что в ней могут наблюдаться непредсказуемые изменения даже в отсутствие внешнего воздействия. Одна из основных задач, стоящих перед исследователями сегодня, заключается в том, чтобы найти корректные математические модели хаотического климата, позволяющие совершить невозможное — предсказать будущее.

Как вы увидели, климатические модели — это математические модели, описывающие климат в прошлом и предсказывающие его в будущем. Существует сложная иерархия климатических моделей, начиная от самых простых, описывающих динамику средней мировой температуры посредством всего нескольких уравнений, до самых сложных, которые требуют использования суперкомпьютеров и описывают изменение нескольких климатических переменных (средней мировой температуры, ветра, влажности, океанических течений). Но даже самые сложные модели климата — это упрощения, так как до сих пор не найдены модели, позволяющие в точности описать прошлое и предсказать климат на локальном, а не на глобальном уровне. Недостаток вычислительных мощностей и ограниченные возможности прогнозирования затрудняют создание подробных моделей, необходимых для анализа изменений климата на уровне стран и регионов.

При решении этой нелинейной задачи ученые вынуждены делать выбор: или составить точную модель для прогнозирования (существование такой модели по определению невозможно), или остановиться на упрощенной модели, чтобы понять рассматриваемое явление в общих чертах. Один из великих физиков XX века Фримен Дайсон говорил: «Климатические модели — по сути, инструменты для понимания климата, которые все еще не позволяют предсказывать его. Не следует верить числам только потому, что они получены с помощью суперкомпьютера». Так как земной климат непредсказуем и имеет хаотическую природу, при его изучении не следует спешить с выводами.

Основная проблема, связанная с глобальным изменением климата, заключается в том, что его последствия могут оказаться фатальными. Мы не можем быть уверенными в том, как именно изменится климат, однако нельзя сидеть сложа руки и ждать — слишком велика потенциальная угроза экономике, а следовательно, и всем нам.

Расскажем, какой путь прошло международное сообщество от Монреальского до Киотского протокола. На прошедшей в Стокгольме в 1972 году конференции ООН, посвященной окружающей среде, было принято решение сделать основным принципом экологической политики принцип предосторожности. Иными словами, было принято решение о международном регулировании окружающей среды, чтобы скомпенсировать недостатки, присущие рынку. Первым шагом на этом пути стало обсуждение и принятие в 1980-е годы международного Монреальского протокола по веществам, разрушающим озоновый слой.

С учреждением Межправительственной группы экспертов по изменению климата в 1988 году (этой группой были опубликованы доклады в 1990, 1995, 2001 и 2007 годах) Организация Объединенных Наций начала борьбу с глобальным изменением климата. Позднее крайне важную роль сыграл саммит, прошедший в Рио-де-Жанейро в 1992 году (недаром он получил название «Саммит Земли»), где была принята Рамочная конвенция ООН об изменении климата, подготовленная вышеупомянутой группой экспертов. Спустя пять лет, в 1997 году, был принят так называемый Киотский протокол, целью которого было снижение выбросов газов, играющих важнейшую роль в парниковом эффекте, на 5,2 % по отношению к уровню выбросов базового 1990 года в период с 2008 по 2012 год. Этот протокол требует умеренного снижения выбросов чуть более чем на 1 млрд тонн СО2 (для сравнения, все люди при дыхании выделяют около 2,5 млрд тонн СО2  ежегодно). В 2004 году Россия подписала Киотский протокол, и он окончательно вступил в силу, так как его ратифицировали более 55 из 167 стран — членов рамочной конвенции.

Как мы уже неоднократно отмечали, глобальное изменение климата — многогранная проблема, и к неопределенности в научных моделях следует прибавить неопределенность в части затрат и результатов, связанных с выполнением Киотского протокола. В то время как члены международного сообщества быстро пришли к соглашению относительно Монреальского протокола по веществам, разрушающим озоновый слой (затраты на его реализацию были не слишком велики), Киотский протокол оказался непосильным для экономики некоторых стран. Суть этого протокола коротко можно выразить так: кто загрязняет, тот и платит.

Отметим, что ущерб, вызванный глобальным изменением климата, превышает затраты на реализацию Киотского протокола — так, в противоречивом докладе Николаса Стерна, подготовленном в 2007 году по заказу правительства Великобритании, указывается, что затраты, вызванные бездействием, составят от 5 до 20 % мирового ВВП. Однако истинная проблема заключается в том, что даже при успешной реализации протокола рост температуры уменьшится всего на 0,18 °С, то есть к 2100 году средняя мировая температура возрастет не на 3 °С, а на 2,82 °С. В этом сценарии глобальное потепление замедлится всего на 6 лет, и уже к 2106 году средняя мировая температура возрастет на 3 °С. Если сравнить затраты на исполнение протокола (примерно 4 % мирового ВВП) с выгодой от его реализации (разница в 0,18 °С), то результат кажется не слишком убедительным.

И даже если учесть, что борьба с глобальным изменением климата связана не только с экономикой, но и напрямую затрагивает жизни людей, то число умерших в результате глобального изменения климата будет не слишком ощутимым по сравнению, например, с числом умерших от болезней, которые до сих пор одолевают страны третьего мира. К примеру, число умерших в результате глобального изменения климата составит менее 5 % умерших от СПИДа, поэтому доступные ресурсы скорее следует потратить на решение более насущных проблем. Эколог-скептик Бьорн Аомборг отмечал, что половины совокупных расходов на реализацию Киотского протокола (около 8 млрд долларов) хватит на то, чтобы решить проблему голода во всем мире. Возможно, истинные проблемы третьего мира — это голод и контроль рождаемости, а не глобальное изменение климата и бережное отношение к окружающей среде. Многие экономисты указывают, что Африке нужно не экологическое сельское хозяйство, а сельское хозяйство как таковое. Более выгодным окажется распространение экологически чистых технологий в странах второго и третьего мира наряду с экономией электроэнергии и применением ядерной, гидравлической, ветровой и солнечной энергетики в развитых странах.

* * *

СОСТОЯНИЕ ВОПРОСА

В последнем докладе Межправительственной группы экспертов по изменению климата, публикуемом каждые пять лет, указано: «Весьма вероятно, что на протяжении последних 50 лет на всех континентах, за исключением Антарктиды, наблюдалось значительное антропогенное потепление». Также отмечается, что слова «весьма вероятно» означают вероятность в 67 % — иными словами, с вероятностью в 33 % это утверждение ошибочно, и такой погрешностью никак нельзя пренебрегать. Кроме того, по данным Межправительственной группы экспертов по изменению климата, к концу нынешнего столетия средняя мировая температура возрастет примерно на 3 °С, и крайне маловероятно, что рост температуры составит менее 1,5 °С. Ожидается, что период потепления продлится несколько десятков или сотен лет.

* * *

…а экономика — в политику

Как мы уже говорили, экономический аспект проблемы тесно связан с остальными, в особенности с политическим. Перейдем от экономического анализа Киотского протокола к политическому. Что мы увидим, взглянув на проблему с этой стороны?

Мы увидим многое, в том числе нечто весьма интересное…

Можно задаться вопросом: почему большинство государств (за исключением стран Европейского союза) не хотят объединить усилия в борьбе с глобальным изменением климата? Ответ на этот вопрос дает теория игр, в частности так называемая дилемма заключенного.

Теория игр — это математическая теория, объясняющая принятие решений в конфликтной среде, то есть в среде, в которой решения принимают стороны с противоположными интересами. Эта теория крайне полезна в бизнесе, политике и даже военном деле, она успешно применялась при анализе различных стратегий в гонке ядерных вооружений, в так называемых военных играх. В число создателей теории игр входят гениальные Джон фон Нейман и Джон Форбс Нэш.

Дилемма заключенного, строгую формулировку которой привел Альберт Такер, представляет собой модель распространенного конфликта: двоих заключенных держат в отдельных камерах так, что они не могут общаться между собой. Полиция подозревает, что заключенные участвовали в ограблении банка (это преступление наказывается десятью годами тюремного заключения), однако против них почти нет улик, и их можно обвинить только в незаконном владении оружием, что наказывается двумя годами тюрьмы. Но если один из воров предаст сообщника, начнет сотрудничать со следствием и предоставит доказательства его вины, его срок будет уменьшен наполовину (и составит всего год), а второй вор должен будет отбыть наказание за ограбление банка (десять лет тюрьмы). А если оба признаются в совершенном преступлении, судья назначит каждому из них срок заключения в пять лет.

Таким образом, каждый заключенный может выбрать одну из двух стратегий: молчать или свидетельствовать. Так как ни один заключенный не может узнать стратегию другого, всегда выгоднее свидетельствовать. Если первый заключенный будет хранить молчание, а второй будет свидетельствовать, то первому грозит десять лет тюрьмы. Если же первый заключенный будет свидетельствовать, то в худшем случае отсидит всего пять лет (если сообщник также будет свидетельствовать).

Тем не менее решение парадоксально: для обоих заключенных выгоднее молчать (в этом случае каждый получит по году тюрьмы), а не свидетельствовать (в этом случае каждый получит пять лет).

Глобальное изменение климата, как и другие масштабные экологические задачи, можно представить как дилемму заключенного, так как решение, выгодное каждой стране по отдельности, в целом будет неоптимальным.

Рассмотрим две страны А и В, каждая из которых может выбрать одну из двух стратегий, связанных с Киотским протоколом: снизить выбросы или нет. Если страна А снизит выбросы, а В — нет, то затраты А превысят выгоду, а В воспользуется снижением уровня СО2, не понеся никаких затрат (так как воздух общий). И напротив, если В снизит выбросы, а А — нет, то В окажется в экономически невыгодном положении по сравнению с А. Таким образом, оптимальной стратегией и для А, и для В будет невыполнение Киотского протокола, несмотря на то что если бы А и В сотрудничали и вместе снизили выбросы, то выгода оказалась бы больше. Поведение каждой страны по отдельности рационально, а совокупный результат отрицательный. Остается еще один вопрос: почему Европейский союз и Соединенные Штаты, два мировых лидера по объему выбросов парниковых газов, которые понесут наибольшие убытки от выполнения Киотского протокола, заняли диаметрально противоположные позиции? Почему страны Европейского союза приняли решение сотрудничать, хотя из теории игр следует обратное? Можно предположить, что европейцы более внимательно относятся к экологии, чем американцы. Но на самом деле ответ вовсе не так прост.

На этой карте мира выделены страны, обязавшиеся снизить объем выбросов СО 2 в период с 2008 по 2012 год (по состоянию на 26 ноября 2010 года).

Страны, имеющие наибольший вес в Евросоюзе — Германия, Франция и Великобритания, — не собираются выполнять требования Киотского протокола в полном объеме. С 1990 года, который был принят в качестве базового, геополитическая картина мира существенно изменилась. В Германии с падением Берлинской стены в 1989 году в связи с ухудшением экономической обстановки начали закрываться неэффективные предприятия тяжелой промышленности в Восточной Германии, что привело к снижению выбросов: в 1997 году объем выбросов объединенной Германии был на 12 % ниже, чем 1990 году, принятом в Киотском протоколе в качестве базового. Если говорить о Франции, то в 1997 году совокупный объем выбросов стабилизировался ввиду изменений в структуре энергетики страны: в 2000 году уже 40 % всей потребляемой французами электроэнергии вырабатывалось на атомных электростанциях. И наконец, в Великобритании в 1997 году наблюдалось значительное снижение выбросов благодаря дальновидной энергетической политике Маргарет Тэтчер, заключавшейся в замене угля природным газом. В результате к 2000 году природный газ использовался при выработке почти 50 % электроэнергии. Поддержка Киотского протокола странами бывшего СССР объясняется тем, что развал советской промышленности привел к снижению выбросов СО2 более чем на 30 %. В результате Россия, Украина и некоторые другие страны начали продавать квоты на выброс парниковых газов, получив немалую выгоду.

США не ратифицировали Киотский протокол, а Австралия вступила в число участников очень поздно, поскольку оба этих государства широко используют уголь: по объему потребления угля США занимает второе место в мире после Китая, а Австралия является лидером мирового экспорта угля. Таким образом, участие в протоколе оказалось для этих стран экономически невыгодным.

* * *

КИОТСКИЙ ПРОТОКОЛ И ИСПАНИЯ

Испания — мировой лидер по увеличению объемов выбросов по сравнению с 1990 годом (более 45 %). Однако, по мнению некоторых специалистов, испанские власти подписали Киотский протокол на невыгодных условиях: в базовом 1990 году квота на выбросы парниковых газов в пересчете на душу населения в Испании была наименьшей по сравнению со всеми странами Евросоюза. Испании было разрешено повысить квоты лишь на 15 %, при этом никто не подозревал, что в конце XX — начале XXI века страна будет переживать бурный экономический рост.

* * *

Будущее. Возможные сценарии

Развитие небогатых государств и поддержание экономики развитых стран на прежнем уровне будет зависеть от того, какое решение мы найдем для сложной проблемы глобального изменения климата. Перед нами открывается несколько возможных сценариев будущего. Какой из них станет реальностью, будет зависеть от наших решений.

Мы должны заботиться об окружающей среде, поскольку это система, в которой мы живем. Кроме того, прежде чем принимать любое политическое решение, затрагивающее окружающую среду, необходимо рассмотреть всю доступную информацию, которую могут дать ученые. Политика должна считаться с наукой, экономикой и математикой, поскольку принятие неадекватных мер может оказаться даже более рискованным, чем бездействие.

Проблема глобального изменения климата привлекает такой интерес потому, что в ее решении должны принять участие все: климатологи, метеорологи, физики, математики, экономисты, биологи, политики и даже мы с вами, обычные граждане.

При решении этой нелинейной проблемы большая роль отводится теории хаоса, которой посвящена эта книга. Теория хаоса учит: во-первых, сложные системы, в частности погода и климат, обладают упорядоченностью и внутренней структурой; во-вторых, простые системы также могут обладать сложной динамикой. В конце концов, прав оказался Фридрих Ницше, сказавший: «Каждый должен организовать в себе хаос».

 

Библиография

GLEICK, J., Caos. La creation de una ciencia, Barcelona, Seix Barral, 1988.

KELLERT, S., In the Wake of Chaos: Unpredictable Order in Dynamical Systems, Chicago, University of Chicago Press, 1993.

LOMBORG, B., En frio. La guia del ecologista esceptico para el cambio climatico, Ma¬drid, Espasa, 2008.

LORENZ, E., La esencia del caos, Madrid, Debate, 1995.

RUELLE, D., Azar у caos, Madrid, Alianza Editorial, 1993.

SMITH, P., El caos. Una explication a la teoria, Madrid, Cambridge University Press, 2001.

STEWART, I., ¿Juega Dios a los dados? Barcelona, Critica Drakontos, 2007.

TOHARIA, M., El clima. El calentamiento global у el futuro del planeta, Barcelona, Debate, 2006.

* * *

Ссылки

[1] Перевод  Н. Лосского . — Примеч. ред .

[2] Перевод Я. Лесюка . — Примеч. ред .