Entscheidungsproblem, или проблема разрешения 160, 161

ignorabimus 52, 53

Pnncipia mathematica 121-122, 156

Аккерман, Вильгельм 13, 111, 141, 149, 150, 152

аксиома

выбора 126, 128, 130, 131, 141, 162

параллельных прямых 28, 29, 31, 32, 36, 38, 42, 44, 162

анализ 8-11, 18, 26, 35, 44, 46, 50, 53, 56, 60, 61, 65, 69, 72, 77, 80, 81, 92-96, 101, 104, 106, 107, 112, 114, 130, 131, 137, 138, 147-149, 155, 164, 167

Банах, Стефан 98, 132, 168

Бернайс, Пауль 13, 111, 113, 128, 141, 150, 153, 158, 162, 168

бесконечность 11, 29, 93-95, 105, 107, 109, 112, 121, 124, 126-128, 134, 136, 137, 147, 151-154, 160, 161

актуальная 152

Бибербах, Людвиг 59, 167

Блюменталь, Отто 65, 67, 168

Бойяи, Янош 31-32, 85

Борн, Макс 99, 102, 103

Брауэр, Лёйтзен Эгберт Ян 11, 109, 131-137, 139-143, 148, 167

Бурбаки 166

вариационное исчисление 13, 60, 61, 63, 79, 72, 79-83, 88, 90, 94

Варинга гипотеза 85

Вейерштрасс, Карл 17, 67, 79, 83, 114

Вейль, Герман 64, 67, 102, 123, 138, 139-140, 142, 143, 167

Гаусс, Карл Фридрих 7, 8, 12, 18, 23, 24, 31, 32, 35, 39, 43, 65, 71, 78, 87, 134, 136

Гейзенберг, Вернер 99, 100, 102, 103, 104, 108

Гейтинг, Аренд 136, 138, 154

геометрия

евклидова 18, 28, 30-36, 40, 42-45, 89, 95, 112

неевклидова 15, 18, 26, 28-34, 38, 40, 42-44, 46, 87

Герц, Генрих Рудольф 41, 56, 71

Гёдель, Курт 9, 11, 13, 42, 53, 62, 112, 113, 138, 145, 150, 154- 162, 164, 165, 167

теорема о полноте 37, 150, 158, 160

теоремы о неполноте 11, 42, 154, 156, 158, 159

Гёттингенский университет 9, 13, 19, 24, 35, 39, 49, 55, 65, 67, 71, 72, 84, 88, 90, 93, 99, 100, 103, 111, 121, 127, 142, 153, 167, 168

Гильберта

бесконечный отель 121

кривая 133

проблемы 53, 57, 62, 64, 65, 82, 100, 162

программа 140, 145, 147, 150, 153, 154, 162

гильбертово пространство 10, 69, 93-97, 106-108

Гордан, Пауль 19-22, 45, 142

Гордана проблема 13, 15, 19, 22

Дедекинд, Рихард 37, 114, 117, 124, 126, 138, 143

Ден, Макс 54, 62, 67

Дирак, Поль 103-107

Дирихле, Петер Густав Лежён 77

проблема 13, 77-79, 82, 83, 93

доведение до абсурда 20, 21, 136, 137

доказательство 8, 20-22, 24-26, 28, 41, 52, 57, 61, 102, 114, 125, 128, 134, 141, 142, 149-152, 154, 156-159, 161, 167

конструктивное 12, 20, 22, 112, 135, 136, 138, 142

экзистенциальное 12, 20, 22, 112, 136, 141, 142

Евклид 7, 21, 25-28, 31, 32, 35-37, 44, 142, 166

инварианты 13, 19, 20, 22-24, 35, 49, 85

интуиционизм 11, 132-143, 147, 154, 163

истина 8, 27, 38, 41-44, 52, 53, 112, 116, 120, 122, 123, 134, 135, 136, 142, 145, 150, 151, 154, 155-159, 162-163

Кант, Иммануил 7, 17, 35, 43, 132, 134, 137, 139

Кантор, Георг 11, 24, 43, 53, 112— 114, 124-127, 129, 130, 133, 136, 137, 141, 143, 161, 162 категориальность 161

квантовая механика 10, 13, 62, 65, 69, 72, 83, 92-94, 98-100, 103-108

класс 113, 116-119, 122, 123, 127-129

Клейн, Феликс 13, 19, 21, 22, 24, 30, 40, 50, 55, 60, 67, 71, 84, 91, 131

континуум-гипотеза 10, 53, 60, 62, 126, 130, 149, 161, 162

Коэн, Пол 62, 161, 162

Кронекер, Леопольд 17, 20, 58, 63, 67, 127, 132, 136, 137, 139, 142, 143, 147

Лобачевский, Николай 31, 32

логицизм 11, 109, 115, 118, 121, 134, 141, 153, 163

Международный конгресс математиков

1897 г., Цюрих 50

1900 г., Париж 9, 13, 47, 49, 51, 60, 71, 72, 140, 147, 156

1904 г., Гейдельберг 147

1928 г., Болонья 91, 160

Минковский, Герман 9, 13, 18, 24, 50, 55, 71, 85-87, 89, 96, 97, 139

множество

кардинальное число 124, 127

несчетное 124, 125, 129, 137, 160

счетное 124-126, 129, 137, 138, 158, 160, 161, 167

независимость 38, 40, 42, 162

Нейман, Джон фон 9, 62, 72, 95, 97, 106-108, 128-129, 152, 154, 155

непротиворечивость 11, 13, 37, 40-42, 54, 61, 62, 141, 147-154, 156, 158, 160, 162

Нордгейм, Лотар Вольфганг 72, 106

оснований кризис 109, 111, 140, 147, 153, 164

«Основания геометрии» 9, 15, 35, 39, 42-46, 71, 148

«Отчет о числах» 26, 35

парадокс 109, 118-124, 127, 128, 129-132, 136, 137, 141, 149, 159

Банаха — Тарского 132

Кантора 127, 128, 129

лжеца 120, 156, 159

Рассела 118, 119, 121, 122, 127-129

Скулема 160

Паш, Мориц 34-36, 41

Пеано, Джузеппе 34, 35, 41, 65, 117, 120, 133, 138, 152, 156, 160

аксиомы 117, 152, 160

платонизм 112, 113, 135, 141, 163

полнота 36. 37, 42, 150, 152-154, 157, 158, 160

принцип

индукции 117, 120, 123, 134, 148, 152, 153

исключенного третьего 136, 142

Пуанкаре, Анри 8, 9, 11, 19, 26, 40, 45, 50-52, 59-61, 63-65, 84-86, 97, 119, 120, 132-135, 139, 148, 152

Рассел, Бертран 11, 109, 118-123, 127-131, 134, 148

Риман, Бернхард 24, 32, 34, 40, 64, 71, 78, 87, 92, 93, 96, 124, 134

Римана гипотеза 10, 57, 61, 62, 64, 94

Робинсон, Джулия 58, 159

Тарский, Альфред 42, 159, 164, 165

теорема о невыразимости 159

теория

множеств 10, 54, 62, 104, 109, 112, 123, 124, 126-128, 136, 137, 141, 149, 150, 153, 155, 161, 162, 164, 167, 168

относительности 13, 69, 71, 72, 83, 84, 86-91, 97, 167

типов 122

чисел 13, 15, 18, 19, 24, 34, 35, 49, 53, 57, 58, 61, 85

Тьюринг, Алан 160, 161

Уайтхед, Альфред Норт 120-123, 148

уравнение

в частных производных 72-77, 82, 100

дифференциальное 18, 59, 60, 61, 63, 72-75, 77, 81, 93, 102, 103

интегральное 13, 69, 72, 73, 92-96, 103, 105-107

потенциала, или Лапласа 75- 77, 82, 93

формализм 11, 13, 36, 86, 94, 107, 108, 132, 134, 138, 141, 147, 154, 156, 162, 163

Фреге, Готлоб 11, 43-46, 109, 115— 120, 123, 134, 143, 149

Хаусдорф, Феликс 130, 168

Цермело, Эрнст 67, 127, 128, 130— 132, 134, 149, 156, 159

Чёрч, Алонзо 160

Шмидт, Эрхард 67, 96, 106

Шрёдингер, Эрвин 100, 102-104, 106, 108

Эйнштейн, Альберт 7, 9, 10, 13, 69, 84, 86-92, 97, 99, 143, 167

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, - гильбертово пространство. Среди коллег этого незаурядного ученого выделяла невероятная харизма, а знаменитые 23 кардинальные проблемы, сформулированные им в 1900 году, предопределили развитие самой дисциплины на десятилетия вперед. Он превратил город Гёттинген в мировую столицу математики, но стал свидетелем того, как его разоряют нацистские зачистки. Знаменитая фраза «Мы должны знать. Мы будем знать», выгравированная на его могиле, передает жажду знаний последнего великого математика-универсала.