Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим

Майер-Шенбергер Виктор

Кукьер Кеннет

Глава 4

Корреляция

 

 

В 1997 году 24-летний Грег Линден на время отложил свою докторскую диссертацию в области искусственного интеллекта в Вашингтонском университете, чтобы поработать над местным стартапом по продаже книг в интернете. Этот онлайн-магазин появился всего два года назад, но уже вел оживленную торговлю. «Мне очень понравилась идея продавать книги, продавать знания, а еще помогать людям находить следующий источник знаний, с которым они с удовольствием бы ознакомились», — вспоминает Грег. Этим магазином был Amazon.com, и Линден был нанят в качестве инженера-программиста для обеспечения бесперебойной работы сайта.

Среди сотрудников компании Amazon были не только технари. В то время там работала дюжина литературных критиков и редакторов, которые писали отзывы и предлагали новые наименования. Хотя история сайта Amazon хорошо знакома большинству людей, мало кто помнит о том, что его контент первоначально создавался вручную. Редакторы выбирали наименования, которые рекомендовались на веб-страницах Amazon. Редакторский отдел отвечал за так называемый «голос Amazon», который по праву считался гордостью компании и источником ее конкурентного преимущества. Примерно в то же время вышла статья в Wall Street Journal, в которой сотрудников отдела чествовали как самых влиятельных литературных критиков страны, поскольку им удавалось стимулировать высокий уровень продаж.

Затем Джефф Безос, основатель и СЕО Amazon, начал экспериментировать с многообещающей идеей: что если рекомендовать конкретные книги отдельным клиентам в зависимости от их предыдущих покупок? С момента начала деятельности Amazon компания накопила массу данных о каждом клиенте: о покупках, о просмотренных, но не приобретенных книгах и времени, затраченном на их просмотр, а также о книгах, приобретенных одновременно.

Объем данных был настолько внушительным, что поначалу Amazon приходилось обрабатывать их обычным способом — путем отбора выборки и ее анализа с целью выявить сходство между клиентами. Рекомендации выходили приблизительными. Купив книгу о Польше, вы получили бы массу предложений по Восточной Европе, а купив книгу о детях — завалены подобной литературой. «Как правило, вам предлагались небольшие вариации на тему вашей предыдущей покупки. И так до бесконечности, — вспоминает Маркус Джеймс, литературный критик Amazon в 1996–2001 годах, в своих мемуарах Amazonia. — Создавалось ощущение, что вы отправились за покупками с бестолковым советчиком».

Грег Линден нашел решение. Он понял, что рекомендательной системе, по сути, не нужно сравнивать одних людей с другими, что к тому же было технически обременительно. Нужно всего лишь найти ассоциации среди самих продуктов. В 1998 году Линден и его коллеги заявили патент на метод совместной фильтрации «предмет-предмет». Изменение подхода принесло большую пользу.

Поскольку расчеты проводились заранее, рекомендации выдавались молниеносно. К тому же они были универсальными и включали товары из разных категорий. Поэтому, когда компания Amazon расширила ассортимент, рекомендательная система могла предлагать не только книги, но и фильмы или, скажем, тостеры. Кроме того, рекомендации стали намного точнее, поскольку система использовала все данные. «В отделе шутили, что, если система отлично себя зарекомендует, на сайте Amazon достаточно будет показывать только одну книгу — ту, которую вы купите следующей», — вспоминает Линден.

Теперь перед компанией стоял выбор, что отображать: отзывы, написанные штатными литературными критиками Amazon, или контент, созданный компьютером (личные рекомендации, списки бестселлеров и пр.); то, что говорят критики, или то, на что указывают действия клиентов? Это в буквальном смысле была борьба человека против компьютера.

Линден сравнил продажи, которые последовали за отзывами литературных критиков, и контент, созданный компьютером. Разница оказалась внушительной. По словам Линдена, материалы, полученные на основе данных, принесли практически в сто раз больше продаж. Возможно, компьютеру и было неизвестно, почему клиент, читающий Хемингуэя, пожелает приобрести Фрэнсиса Скотта Фицджеральда. Но, похоже, это не имело значения. Продажи текли рекой. Редакторам озвучили точный процент продаж, которые компания Amazon недополучала при каждой публикации их отзывов в интернете, и отдел распустили. «Мне было очень жаль, что результат редакторского отдела оказался ниже, — вспоминает Линден. — Но данные не лгут, а цена была очень высока».

Сегодня считается, что третью всех своих продаж компания Amazon обязана своим рекомендательным системам, а также системам персонализации. С их помощью компания не только вытеснила с рынка большие книжные и музыкальные магазины, но и сотни местных книготорговцев, которые думали, что их личный подход укроет их от ветра перемен. Работа Линдена поистине произвела революцию в сфере электронной коммерции, поскольку этот метод был подхвачен практически всеми. Компания Netflix, которая занимается сдачей фильмов напрокат в интернете, три четверти новых заказов получает благодаря рекомендациям. Следуя примеру Amazon, тысячи сайтов могут рекомендовать продукты, контент, друзей и группы для подписки, не зная толком, чем это все может заинтересовать их пользователей.

Для рассматриваемой задачи знание почему может быть полезно, но не столь важно. А вот знание что приводит к конкретным действиям. Эта истина способна изменить помимо электронной коммерции многие отрасли. Продавцам из разных сегментов рынка долгое время твердили, что им нужно понять, что заставляет клиентов совершить покупку, понять причины их решений. Высоко ценились профессиональные навыки и многолетний опыт работы. Но большие данные показывают, что есть и другой, в некотором смысле более эффективный подход. Рекомендательным системам Amazon удалось выявить любопытные корреляции, не зная их первопричины. Так что знания что, а не почему вполне достаточно.

 

Прогнозы и предрасположенности

Корреляции полезны в области малых данных. Но по-настоящему они раскрывают свой потенциал в контексте больших данных. С их помощью мы можем рассматривать явления проще, быстрее и отчетливее, чем раньше.

По сути, корреляция — количественное выражение статистической связи между двумя значениями. Сильная корреляция означает, что при увеличении одних значений данных другие значения, вероятнее всего, тоже увеличатся. Такие корреляции мы наблюдали, когда описывали Google Flu Trends: чем больше людей в конкретном географическом регионе ищут определенные ключевые слова в поисковой системе Google, тем выше заболеваемость гриппом в этом регионе. С другой стороны, слабая корреляция означает, что при увеличении одних значений данных другие значения практически не изменятся. Так, если провести корреляцию между размером обуви людей и тем, насколько они счастливы, мы обнаружим, что размер обуви мало что может рассказать о счастье человека.

Корреляции помогают анализировать объекты, выявляя не принципы их работы, а полезные закономерности. Безусловно, даже сильные корреляции не идеальны. Вполне возможно, что похожее поведение двух объектов — не более чем совпадение. Нет никаких гарантий, что даже сильные корреляции сумеют объяснить каждый случай. Не каждая рекомендация книг на сайте Amazon безошибочна. Корреляции дают не определенность, а лишь вероятность. Но в случае сильной корреляции между явлениями высока вероятность, что они взаимосвязаны. Многие могут подтвердить это, указав на полку, уставленную книгами по рекомендациям Amazon.

Корреляции дают возможность определять ценные закономерности явлений, чтобы подмечать их в настоящем и прогнозировать в будущем. Например, если событие А часто сопровождается событием B, нужно следить за B, чтобы спрогнозировать А. Такой подход позволяет уловить, чего вероятнее всего ожидать от события А, даже если мы не можем измерить или проследить его напрямую. Более того, это позволяет нам спрогнозировать дальнейшие события. Конечно, корреляции не могут предсказывать будущее — они лишь могут спрогнозировать его с определенной вероятностью. Но и это чрезвычайно ценно.

Walmart — крупнейшая в мире сеть розничной торговли, которая насчитывает более двух миллионов сотрудников. Ее объем продаж составляет около 400 миллиардов долларов — больше, чем ВВП большинства стран. Перед наплывом огромных массивов данных, порожденных интернетом, компания Walmart располагала, пожалуй, самым большим хранилищем данных среди коммерческих компаний в США. В 1990-х годах она произвела переворот в розничной торговле, внедрив учет всей продукции в виде данных с помощью сети Retail Link. Компания Walmart предоставила поставщикам возможность самим контролировать темпы и объемы продаж и запасов. Благодаря такой прозрачности Walmart удалось вынудить поставщиков самостоятельно заботиться о своей логистике. В большинстве случаев Walmart не выступает «собственником» продукта до момента продажи, тем самым снимая с себя риск обесценения запасов и снижая затраты. По сути, с помощью данных Walmart удалось стать крупнейшим комиссионным магазином.

О чем могут рассказать все эти накопленные данные, если их проанализировать должным образом? В сотрудничестве с экспертом в области обработки чисел Teradata (ранее — почитаемая корпорация NCR) компания Walmart стремилась выявить интересные корреляции. В 2004 году она взялась за изучение своих гигантских баз данных прошлых операций, которые включали не только информацию о товарах, приобретенных каждым клиентом, и общей сумме покупки, но и об остальных товарах в корзине, о времени суток и даже о погоде. Это дало компании возможность заметить, что перед ураганом росли объемы продаж не только фонариков, но и печенья PopTarts, а также сладких сухих американских завтраков. Поэтому, как только надвигалась буря, в магазинах Walmart поближе к витрине выкладывались коробки Pop-Tarts и припасы на случай урагана для удобства клиентов, снующих снаружи и внутри магазина, и, разумеется, для увеличения продаж.

В прошлом специалистам из главного офиса пришлось бы заранее собрать данные и проверить идею. Теперь же, имея столько данных и улучшенные инструменты работы с ними, выявлять корреляции стало куда быстрее и дешевле.

Корреляционный анализ показал свою высокую эффективность задолго до больших данных. Эту концепцию в 1888 году выдвинул сэр Фрэнсис Гальтон, двоюродный брат Чарльза Дарвина, заметив взаимосвязь между ростом мужчин и длиной их предплечий. Математические расчеты, лежащие в основе корреляционного анализа, относительно просты и надежны. Благодаря этим характерным особенностям анализ стал одним из наиболее широко используемых статистических показателей. Но до перехода на большие данные корреляции имели ограниченную эффективность. Поскольку данные были скудными, а их сбор — дорогостоящим, специалисты по сбору статистики нередко интуитивно определяли вероятную закономерность, а затем собирали соответствующие данные и проводили корреляционный анализ, чтобы выяснить, насколько эта закономерность соответствовала действительности. В контексте службы Google Flu Trends это означало бы, что нужно предположить условия поиска, которые коррелируют с распространением гриппа, а затем провести корреляционный анализ, чтобы убедиться в правильности этих предположений. Учитывая набор данных Google из 50 миллионов различных условий поиска и более трех миллиардов запросов в день, интуитивно выбрать наиболее подходящие из них для тестирования не представляется возможным.

Таким образом, в эпоху малых данных корреляционный анализ утратил свою первостепенность. Даже сегодня термин «интеллектуальный анализ данных» в научных кругах звучит неодобрительно. Его противники острят: «Поиздевайтесь над данными достаточно долго — и они будут готовы признать что угодно».

Вместо того чтобы полагаться на простые корреляции, эксперты пытались интуитивно нащупать подходящие закономерности, исходя из гипотез в рамках определенных теорий — абстрактных представлений о принципах работы чего-либо. Затем эксперты получали соответствующие данные и проводили корреляционный анализ для проверки этих закономерностей. Если они оказывались ошибочными, эксперты, как правило, упрямо пробовали еще раз (на случай, если данные были собраны неправильно), пока, наконец, не признавали, что исходная гипотеза (или даже теория, на которой она основана) требует доработки. Знания совершенствовались путем проб и ошибок, связанных с гипотезами. Процесс был очень медленным, поскольку личные и общие предубеждения мешали объективно оценить разработанные гипотезы, их применение и выбранные в итоге закономерности. И все это для того, чтобы в большинстве случаев в итоге узнать, что мы ошибались. Это был трудоемкий процесс, зато он годился для работы с малыми данными.

В эпоху больших данных невозможно определить переменные, которые следует рассматривать, лишь на основе личных предположений. Наборы данных слишком велики, а рассматриваемые области, пожалуй, слишком сложны. К счастью, многие ограничения, которые вынуждали нас применять подход на основе гипотез, уже не столь существенны. Теперь у нас настолько много данных и вычислительной мощности, что не приходится вручную выбирать одну закономерность или небольшую горстку наиболее вероятных, а затем изучать их по отдельности. Теперь сложные вычислительные процессы сами выбирают лучшую закономерность, как это было в службе Flu Trends, которая легко и точно обнаруживала лучшие условия поиска из 50 миллионов самых популярных запросов, протестировав 450 миллионов математических моделей.

Для того чтобы понимать окружающий мир, теперь не обязательно изучать рабочие гипотезы о том или ином явлении. А значит, не нужно развивать гипотезу о возможных поисковых запросах людей, чтобы узнать время и территорию распространения гриппа. Не нужно вдаваться в подробности того, как авиакомпании назначают цены на билеты. Не нужно заботиться о кулинарных вкусах покупателей Walmart. Вместо этого достаточно провести корреляционный анализ на основе больших данных, чтобы узнать, какие поисковые запросы наиболее характерны для гриппа, грядет ли рост цен на авиабилеты или чем обеспокоенные домоседы запасаются на время бури. Вместо подверженного ошибкам подхода на основе гипотез благодаря корреляциям между большими данными у нас есть подход, построенный на данных. И он может быть менее предвзятым, более точным и наверняка менее трудоемким.

В основе больших данных лежат прогнозы на основе корреляций. Они используются все чаще, и мы порой недооцениваем их новизну. Практическое применение прогнозов со временем будет только расширяться.

Для прогнозирования поведения отдельных лиц существует кредитная оценка заемщика. Компания Fair Isaac Company, известная как FICO, ввела это понятие в 1950-х годах. В 2011-м FICO ввела еще одно понятие — «оценка приверженности лечению». Она анализирует множество переменных, в том числе тех, которые, казалось бы, не имеют отношения к делу (например, как долго люди не меняли место жительства или работы, состоят ли они в браке и имеют ли собственный автомобиль), для того чтобы определить вероятность того, примет ли пациент назначенное лекарство. Оценка помогла бы медицинским сотрудникам экономить средства: они знали бы, кому следует делать напоминания. Между владением автомобилем и приемом антибиотиков нет причинно-следственных связей. Это чистой воды корреляция. Но она вдохновила исполнительного директора компании FICO гордо заявить на встрече инвесторов в 2011 году: «Мы знаем, что вы собираетесь делать завтра».

Крупное кредитное бюро Experian предлагает продукт Income Insight, который прогнозирует уровень доходов людей на основе их кредитной истории. Проанализировав огромную базу данных кредитных историй в сравнении с анонимными данными о налогах, полученными из налоговой службы Америки, эта программа подготовила соответствующую оценку. В то время как проверка доходов определенного лица стоит около 10 долларов, Experian продает свою оценку менее чем за 1 доллар. Таким образом, в некоторых случаях использование закономерностей экономически выгоднее, чем волокита с получением нужных данных. Тем временем другое кредитное бюро, Equifax, продает «индекс платежеспособности» и «индекс дискреционных расходов», которые сулят прогноз благосостояния отдельных лиц.

Поиск корреляций находит все более широкое применение. Изучив идею использования кредитных отчетов и данных потребительского маркетинга, крупная страховая компания Aviva внедрила ее вместо анализа образцов крови и мочи для определенных заявителей. Полученная информация помогала выявлять лиц, наиболее подверженных риску развития высокого артериального давления, диабета или депрессии. Этот метод основывался на данных об образе жизни, включая сотни переменных (таких как хобби, посещаемые сайты и время, затрачиваемое на просмотр телевизора), а также смете поступлений.

Прогнозная модель компании Aviva, разработанная компанией «Делойт», по праву считалась полезной для выявления рисков для здоровья. Свое намерение внедрить аналогичные проекты подтвердили страховые компании Prudential и AIG. Преимущество подхода заключалось в том, что он позволял заявителям избежать неприятных анализов. Этот подход экономил страховым компаниям по 125 долларов с человека, в то время как стоимость самого подхода на основе данных составляла около пяти долларов. Некоторые ужаснутся, словно компании станут использовать кибердоносчиков, которые шпионят за каждым щелчком мыши. Возможно, люди подумали бы дважды, прежде чем посетить сайт экстремальных видов спорта или посмотреть комедийное шоу, прославляющее домоседов, если бы знали, что это может привести к повышению их страховых взносов. Это было бы страшным нарушением свободы взаимодействия с информацией. С другой стороны, польза системы состояла в том, что она способствовала бы увеличению количества застрахованных лиц. А это хорошо как для общества, так и для страховых компаний.

Корреляции между большими данными применялись и в американском розничном магазине сниженных цен Target, пример которого достоин подражания. Уже не первый год Target опирается на прогнозы, основанные на корреляциях между большими данными. В своем непривычно кратком отчете Чарльз Дахигг, бизнес-корреспондент New York Times, рассказал, откуда Target узнает, что женщина беременна, если она явно об этом не сообщала. Если коротко, нужно принимать в расчет все возможные данные и позволить корреляциям выявить нужные закономерности.

Знать о том, что в семье клиента ожидается пополнение, очень важно для магазинов розничной торговли, поскольку в этот переломный момент в жизни пары ее торговое поведение открыто для перемен — разведки новых магазинов и новых брендов. Розничные продавцы сети Target обратились в свой отдел аналитики, чтобы узнать, возможно ли по модели покупок определенного человека судить о том, что он ожидает пополнение.

В первую очередь отдел аналитики обратил внимание на историю покупок женщин, которые зарегистрировались в реестре Target на получение подарка к рождению ребенка. Специалисты Target заметили, что популярной покупкой среди зарегистрировавшихся женщин примерно на третьем месяце беременности был лосьон без запаха. Спустя несколько месяцев женщины, как правило, покупали пищевые добавки (магний, кальций, цинк и пр.). В итоге компания выявила около двух десятков характерных продуктов, по которым каждому клиенту можно было присвоить оценку «прогнозируемой беременности». С помощью корреляций розничным магазинам даже удавалось определять дату родов с небольшой погрешностью, и они стали отправлять соответствующие купоны на каждом этапе беременности. Такое нацеливание рекламных кампаний и впрямь соответствовало названию компании — Target (англ. цель).

Поиск закономерностей в социальном контексте — лишь один из способов применения методов работы с большими данными. Не менее эффективны корреляции при работе с новыми типами данных, которые используются для решения повседневных задач.

В бизнесе все шире применяется метод прогностической аналитики для определения предстоящих событий. Это может быть алгоритм для выявления музыкальных хитов, который популярен в музыкальной сфере и позволяет звукозаписывающим лейблам лучше ориентироваться, на кого стоит делать ставки. Или же алгоритм предотвращения больших механических неисправностей и разрушений конструкции: все чаще на машинах, двигателях и элементах инфраструктуры, таких как мосты, размещают датчики для отслеживания получаемых данных (показателей тепла, вибрации, нагрузки, звука и пр.).

Если речь идет о поломке, она, как правило, происходит не сразу, а развивается постепенно, с течением времени. Собрав все данные, можно заметить явные признаки, предшествующие поломке: жужжание и перегрев двигателя. Система сравнивает эту модель поведения с обычной и выявляет несоответствия. Обнаружив отклонения на ранней стадии, система отправляет предупреждение. Таким образом, вы успеете заблаговременно заменить поврежденную часть на новую и предупредить проблему. Система определяет, а затем отслеживает закономерности, тем самым прогнозируя будущие события.

Транспортная компания UPS с середины 2000-х годов использует прогнозный анализ для контроля своего 60-тысячного автопарка в США и выполнения своевременного профилактического обслуживания. Поломка на дороге причиняет массу неудобств, включая отправку запасного грузового автомобиля, задержки поставок и погрузок, а также привлечение дополнительных сотрудников. Поэтому в компании UPS существовало правило заменять отдельные части раз в два-три года. Но это было неэффективно, поскольку некоторые части оставались в хорошем состоянии. Благодаря измерению и отслеживанию деталей транспортного средства компания UPS сэкономила миллионы долларов, заменив только те части, которые нуждались в замене. Однажды компании даже удалось определить, что группа новых транспортных средств содержала бракованную деталь, которая неминуемо привела бы к неприятностям, не будь вовремя замечена.

Подобным образом к мостам и зданиям крепят датчики, чтобы отслеживать признаки износа. Такие же датчики внедряются на крупных химических и нефтеперерабатывающих заводах, где поломанная деталь оборудования может остановить все производство до момента ее замены. Стоимость сбора и анализа данных для принятия своевременных мер экономит средства по сравнению с тем, во что обходятся простои. Отметим, что прогностическая аналитика не в состоянии объяснить причину проблемы (из-за чего перегрелся двигатель — из-за потертого ремня вентилятора или плохо закрученного винта) — она только выявляет саму проблему. Корреляции показывают что, а не почему. Но, как видно, в большинстве случаев этого достаточно.

С помощью подобных методов обеспечивается нормальное функционирование человеческого организма. Когда к пациенту в больнице прикрепляют массу трубок, проводов и инструментов, формируется большой поток данных. Одна только ЭКГ выдает 1000 показателей в секунду. В настоящее время используется или хранится только часть получаемых данных. Большинство данных попросту выбрасывается, хотя и несет в себе важную информацию о состоянии пациента и его реакции на лечение. А в совокупности с аналогичными данными других пациентов эти сведения могли бы составить уникальную аналитическую картину того, какое лечение эффективно, а какое — нет.

Возможно, отсеивание данных было рациональным в то время, когда их сбор, хранение и анализ были дорогостоящими и трудоемкими. Но ситуация изменилась. Теперь Кэролин Макгрегор вместе с командой исследователей из Технологического института университета провинции Онтарио и компании IBM сотрудничает с рядом больниц для разработки программного обеспечения, которое получает и обрабатывает данные о состоянии пациента в режиме реального времени. Затем они используются для принятия более взвешенных диагностических решений в отношении преждевременно рожденных («недоношенных») младенцев. Система отслеживает 16 различных потоков данных, таких как частота сердечных сокращений, частота дыхания, температура, артериальное давление и уровень кислорода в крови, что вместе составляет около 1260 точек данных в секунду.

Система способна обнаружить едва уловимые изменения в состоянии недоношенных детей, которые сигнализируют о начале развития инфекции за сутки до появления явных симптомов. «Вы не можете увидеть их невооруженным глазом, но компьютеру это под силу», — поясняет доктор Макгрегор. Система полагается не на причинно-следственные связи, а на корреляции. Она сообщает, что происходит, а не почему. И это вполне отвечает ее назначению. Заблаговременное предупреждение позволяет врачам раньше и к тому же с более щадящим медицинским вмешательством приступить к лечению инфекции или же раньше узнать, что лечение неэффективно. И то и другое благотворно сказывается на результатах лечения пациентов. В будущем эта технология наверняка будет реализована для всех пациентов и условий. И пусть алгоритм не принимает решения, зато компьютеры делают все от них зависящее, чтобы помочь медикам как можно лучше выполнять свои обязанности.

Поразительно, как с помощью анализа больших данных доктору Макгрегор удалось выявить корреляции, которые в известном смысле бросают вызов традиционным представлениям врачей. Она обнаружила, что выраженное постоянство жизненно важных показателей, как правило, служит предвестником серьезной инфекции. Звучит странно, ведь мы полагаем, что именно ухудшение этих показателей должно предшествовать полномасштабной инфекции. Можете представить себе поколения врачей, которые по окончании рабочего дня проверяют состояние пациента и, убедившись, что оно стабилизировалось, решают, что все в порядке и можно идти домой. И только безумный звонок медсестры посреди ночи разбудит их и сообщит, что, вопреки их предположению, состояние пациента резко пошло на ухудшение.

Полученные данные свидетельствуют о том, что стабильность состояния недоношенных детей не служит признаком улучшения, а скорее больше похожа на затишье перед бурей: тело как будто велит крошечным органам мобилизовать все силы и приготовиться к предстоящим трудностям. Но мы не можем быть абсолютно уверены, ведь это лишь корреляция — здесь нет места причинно-следственным связям. Чтобы выявить эти скрытые взаимосвязи среди множества составляющих, понадобилось непостижимое количество данных. Вне всякого сомнения, большие данные спасают жизни.

 

Иллюзии и иллюминации

В мире малых данных корреляционный анализ не был намного лучше или дешевле исследований причинно-следственных связей. Ввиду небольшого количества данных, как правило, и то и другое исследования начинались с гипотезы, которая затем проверялась и находила свое подтверждение либо опровергалась. Поскольку в обоих случаях отправной точкой служила гипотеза, оба подхода были одинаково чувствительны к предвзятости и ошибочным предположениям. Необходимые данные для корреляционного анализа часто были недоступны, а их сбор влек за собой большие расходы. Сегодня при наличии огромного количества данных это не такие уж весомые препятствия.

Существует еще одно отличие, которое только начинает приобретать все большее значение. В эпоху малых данных в большинстве случаев корреляционный анализ ограничивался поиском линейных отношений, в частности из-за недостаточной вычислительной мощности. При таких отношениях усиление закономерности привело бы к определенным известным изменениям рассматриваемого явления. Но, безусловно, в жизни многое куда сложнее. Полноценный комплексный анализ определяет так называемые нелинейные отношения между данными. Наглядно их можно увидеть, когда данные нанесены на график. Для того чтобы выявить эти данные, нужно воспользоваться техническими инструментами. Нелинейные отношения не только гораздо подробнее линейных, но и более информативны для руководителей.

В течение многих лет экономисты и политологи считали, что счастье напрямую связано с уровнем доходов: чем больше доход, тем человек счастливее. Однако график данных показывает, что там, где статистические инструменты проводят линейную корреляцию, в игру вступают более сложные динамические изменения. При уровне доходов ниже 10 000 долларов каждое их увеличение приводило к большему ощущению счастья, но рост доходов выше этого уровня мало что менял. Если нанести эти данные на график, получилась бы скорее кривая линия, чем прямая, которую сулил статистический анализ.

Это стало важным открытием для политиков. При линейной корреляции было понятно: для того чтобы сделать народ счастливее, нужно увеличить его доходы. Но как только удалось определить нелинейные отношения, эта рекомендация изменила свой ракурс: нужно сосредоточиться на увеличении доходов бедных слоев населения, поскольку, как показали данные, это даст большую отдачу от затраченных средств.

Более сложные корреляционные отношения только добавляют беспорядочности. Неравномерность прививок от кори среди населения и суммы, которые люди тратят на здравоохранение, казалось бы, взаимосвязаны. Тем не менее корреляция представлена не в виде аккуратной линии, а несимметричной кривой. По мере того как расходы людей на здоровье растут, неравномерность охвата населения прививками, как ни странно, снижается, но если затраты на здравоохранение одного человека продолжают расти, неравномерность охвата прививками неожиданно увеличивается. Для сотрудников здравоохранения это важнейшее открытие, которое невозможно было бы совершить с помощью простого линейного корреляционного анализа.

Эксперты только начали разрабатывать необходимые инструменты для определения и сравнения нелинейных корреляций. Развитию методов корреляционного анализа способствует быстро растущий набор новых подходов и программ, которые способны выделять связи, отличные от причинно-следственных, с разных точек зрения, подобно тому как художники-кубисты изображали лицо женщины одновременно с нескольких ракурсов. Один из самых ярких примеров — быстро растущая область сетевого анализа. С ее помощью можно определять, измерять и рассчитывать самые разные узлы и связи — от друзей на Facebook до событий, предшествовавших судебным решениям, и сведений о том, кто кому звонит по мобильному телефону. Вместе эти инструменты предоставляют новые мощные способы отвечать на непричинные, эмпирические вопросы.

В эпоху больших данных корреляционный анализ вызовет волну новых идей и полезных прогнозов. Мы обнаружим связи, которые не замечали прежде, и поймем сложные технические и социальные движущие силы, суть которых уже давно перестали улавливать, несмотря на все усилия. А самое главное, корреляции помогают нам познавать мир, спрашивая в первую очередь что, а не почему.

Поначалу может показаться, что это противоречит здравому смыслу. Людям свойственно постигать мир сквозь призму причинно-следственных связей, исходя из убеждения, что все имеет свою причину, стоит только хорошенько присмотреться. Узнать причину, которая стоит за тем или иным явлением, — разве не это должно быть нашим высшим устремлением?

Из глубины веков тянется философская дискуссия о том, существует ли причинность на самом деле. Если каждое явление имеет свою причину, то логика подсказывает, что мы, по сути, ничего не решаем. Выходит, человеческой воли на самом деле не существует, поскольку наши мысли и принимаемые решения имеют причину, которая имеет свою причину, и т. д. Вся линия жизни определяется причинами, которые приводят к определенным последствиям. Таким образом, философы спорили о роли причинности в нашем мире, а порой и противопоставляли ее свободе выбора. Однако обсуждение этой полемики не входит в наши планы.

Говоря о том, что люди смотрят на мир сквозь призму причинно-следственных связей, мы, как правило, имеем в виду два основных способа постижения мира: с помощью быстрых, иллюзорных причинно-следственных связей и путем медленных, методичных казуальных экспериментов. Корреляции между большими данными изменят роль и того и другого, и в первую очередь — нашего интуитивного желания искать причинно-следственные связи.

Мы склонны предполагать причины даже там, где их нет. Это не связано ни с культурой или воспитанием, ни с уровнем образования человека. Такова особенность человеческого мышления. Когда мы рассматриваем два последовательных события, наш ум одолевает желание увидеть связь между ними. Вот три предложения: «Родители Фреда прибыли поздно. Вот-вот должны были подойти поставщики. Фред злился».

Читая их, мы сразу интуитивно определяем, почему Фред злился: не потому что поставщики были уже на подходе, а потому что его родители припозднились. Это не следует из предоставленной информации. Однако мы не можем удержаться от умозаключения, что наши предположения — причинно-следственные связи, основанные на полученных фактах.

Дэниел Канеман, профессор психологии в Принстоне, который получил Нобелевскую премию по экономике в 2002 году, на этом примере показывает, что нам свойственны две формы мышления. Одна — быстрая и не требует больших усилий. Она позволяет делать выводы за считаные секунды. Другая форма — медленная, трудоемкая и требует «обдумывания» того или иного вопроса.

Быстрый способ мышления по большей части склонен находить причинно-следственные связи даже там, где их нет. Он предвзято воспринимает информацию для подтверждения имеющихся знаний и убеждений. В древние времена быстрый способ мышления был полезен и помогал выжить в опасном окружении, где, как правило, приходилось принимать решения мгновенно и в условиях ограниченной информации, но зачастую он далек от установления истинной причины тех или иных следствий.

Канеман утверждает, что, увы, очень часто в повседневной жизни мозг ленится думать медленно и методично. Тогда в дело вступает быстрый способ мышления. В результате мы часто «видим» мнимые причинно-следственные связи, а значит, совершенно неправильно воспринимаем окружающий мир.

Подхватив грипп, дети нередко слышат от родителей, что заболели из-за того, что не носят шапку и варежки в холодную погоду. Однако между заражением гриппом и тем, чтобы одеться теплее, нет прямой причинно-следственной связи. Почувствовав недомогание после ресторана, мы интуитивно будем пенять на еду, которую съели там (и, возможно, обходить стороной этот ресторан в будущем), хотя внезапное острое расстройство пищеварения может быть вызвано и другими причинами, например, если пожать руку зараженному человеку. Быстрое мышление запрограммировано быстро переходить к казуальным выводам, которые выдает мозг. И это часто приводит нас к неправильным решениям.

Вопреки общепринятому мнению, внутреннее ощущение причинности не углубляет нашего понимания мира. Во многих случаях это не более чем мыслительный «сокращенный путь», который дает нам иллюзию понимания, а на самом деле оставляет в неведении. Так же как выборки упрощали задачу, когда мы не могли обработать все данные, наш мозг использует познание причинности, чтобы избежать долгих и мучительных раздумий.

В мире малых данных могло пройти немало времени, прежде чем становилось ясно, насколько предполагаемые причинно-следственные связи ошибочны. В дальнейшем это изменится. Корреляции больших данных станут регулярно использоваться для опровержения предполагаемых причинно-следственных связей, убедительно показывая, что часто между следствием и его предполагаемой причиной мало, а то и вовсе нет статистической связи. А пока «быстрое мышление» заменяет нам масштабную и длительную проверку действительности.

Будем надеяться, что стремление познать мир заставит нас думать глубже (и размереннее). Но даже медленное мышление — второй способ, которым люди распознают причинные связи, — изменится ввиду корреляций между большими данными.

Категории причинности настолько прочно вошли в нашу повседневную жизнь, что мы полагаем, что причинные связи легко показать. Это не так. В отличие от корреляций, математика которых относительно проста, причинность не имеет очевидных математических «доказательств». Мы не можем с легкостью выразить ее в виде обычных уравнений. Таким образом, даже если думать медленно и старательно, то отыскать убедительные причинно-следственные связи непросто. Наш мозг привык к тому, что информации всегда недостаточно, поэтому мы склонны делать выводы на основе ограниченного количества данных. Хотя, как правило, внешних факторов слишком много, чтобы сводить результат к определенной причине.

Возьмем, к примеру, вакцину против бешенства. 6 июля 1885 года к французскому химику Луи Пастеру привели девятилетнего Йозефа Майстера, которого укусила бешеная собака. Пастер как раз работал над экспериментальной вакциной против бешенства. Родители Майстера умоляли Пастера применить вакцину, чтобы вылечить их сына. Он согласился, и Йозеф Майстер выжил. В прессе пошла слава о том, что Пастер спас мальчика от верной мучительной смерти.

Но спас ли на самом деле? Как оказалось, в среднем лишь один из семи человек, укушенных бешеной собакой, заболевает. Даже если предположить, что экспериментальная вакцина Пастера была эффективной, она понадобилась бы только в одном из семи случаев. С вероятностью около 85% мальчик выжил бы и так.

В данном случае считалось, что Йозеф Майстер вылечился благодаря введению вакцины. Но под вопросом остаются две причинно-следственные связи: одна — между вакциной и вирусом бешенства, другая — между укусом бешеной собаки и развитием болезни. Даже если первая связь верна, то вторая — лишь в редких случаях.

Ученым удалось решить вопрос наглядности причинно-следственных связей с помощью экспериментов, в которых можно было применить или исключить отдельно взятую предполагаемую причину. Если применение причины влияло на результат, это означало наличие причинно-следственной связи. Чем тщательнее контролировались обстоятельства, тем выше была вероятность того, что эта связь правильная.

Таким образом, как и корреляции, причинность редко удается (если вообще возможно) доказать. Можно лишь показать ее с высокой степенью вероятности. Но, в отличие от корреляций, эксперименты для подтверждения причинно-следственных связей, как правило, неприменимы на практике или ставят непростые этические вопросы. Какие эксперименты помогут определить лучшие среди 50 миллионов условий поиска, прогнозирующих грипп? А в случае прививки от бешенства — неужели мы смогли бы допустить мучительную смерть десятков, а может, и сотен пациентов в качестве «контрольной группы», которой не сделали прививку, имея нужную вакцину? Даже применимые на практике эксперименты остаются дорогостоящими и трудоемкими.

Расчет корреляций, как правило, проводится быстрее и с меньшими затратами. В отличие от причинно-следственных связей, существуют математические и статистические методы для анализа корреляций, а также необходимые цифровые инструменты для уверенной демонстрации силы взаимосвязей.

Корреляции не только ценны сами по себе, но и указывают способ исследования причинно-следственных связей. Демонстрируя потенциальную взаимосвязь между явлениями, они могут стать предметом дальнейшего исследования с целью убедиться в наличии причинно-следственной связи и выяснения ее причин. Этот недорогой и быстрый механизм фильтрации снижает затраты на причинно-следственный анализ за счет специально контролируемых экспериментов. Благодаря корреляциям мы имеем возможность уловить важные переменные и с их помощью провести эксперименты для исследования причинности.

Однако необходимо проявить осторожность. Корреляции — мощный инструмент не только потому, что они показывают полную аналитическую картину, но и потому, что делают ее понятной. Но, как правило, эта картина омрачается, как только мы снова начинаем искать причинность. Kaggle — компания, которая организует открытые конкурсы по интеллектуальному анализу данных среди компаний, — провела конкурс по анализу качества подержанных автомобилей. Агент по продаже подержанных автомобилей предоставил данные, на основе которых конкурсанты-статистики должны были создать алгоритм, прогнозирующий, какие из автомобилей, представленных на аукционе перекупщиков, вероятнее всего, имеют неисправности. Корреляционный анализ показал, что вероятность неисправностей автомобилей, окрашенных в оранжевый цвет, гораздо ниже (примерно наполовину), чем среди остальных автомобилей.

Даже сейчас, читая об этом, мы тут же задумываемся, в чем причина. Может быть, владельцы оранжевых автомобилей — настоящие автолюбители и лучше заботятся о своих автомобилях? Может, индивидуальная покраска означает, что автомобиль обслуживался более внимательно? Или оранжевые автомобили более заметны на дороге, а значит, ниже вероятность их участия в ДТП и потому они в лучшем состоянии на момент перепродажи?

Быстро же мы попали в сети альтернативных причинных гипотез! Наши попытки пролить свет на положение вещей делают эти гипотезы еще более размытыми. Корреляции есть, и мы можем показать их математически, чего не скажешь о причинно-следственных связях. Так что было бы неплохо удержаться от попыток объяснить причину корреляций в поиске ответа на вопрос почему вместо что. Иначе мы могли бы смело советовать владельцам автомобилей красить свои развалюхи в оранжевый цвет, чтобы сделать их запчасти менее дефектными (что само по себе полный вздор).

Становится понятно, что корреляции на основе достоверных данных превосходят большинство интуитивно понятных причинно-следственных связей, то есть результат «быстрого мышления». Растет и количество случаев, когда быстрый и понятный корреляционный анализ оказывается более полезным и, очевидно, более эффективным, чем медленное причинное мышление, воплощенное в виде тщательно контролируемых (а значит, дорогостоящих и трудоемких) экспериментов.

В последние годы ученые пытались снизить затраты на такие эксперименты, например, искусно сочетая соответствующие опросы для создания «псевдоэкспериментов». Благодаря этому можно было повысить рентабельность некоторых исследований причинности. Однако эффективность корреляций трудно превзойти. Кроме того, как мы говорили, корреляционный анализ сам по себе служит помощником в таких исследованиях, подсказывая экспертам наиболее вероятные причины.

Таким образом, наличие данных и статистических инструментов преобразует роль не только быстрых, интуитивно улавливаемых причинно-следственных связей, но и взвешенного причинного мышления. Когда нам нужно исследовать не само явление, а именно его причину, как правило, лучше начать с корреляционного анализа больших данных и уже на его основе проводить углубленный поиск причинно-следственных связей.

На протяжении тысячелетий люди пытались понять принципы мироздания, стараясь найти причинно-следственные связи. Какую-то сотню лет назад, в эпоху малых данных, когда не было статистики, оперировали категориями причинности. Но все меняется с приходом больших данных.

Причинно-следственные связи не утратят своей актуальности, но перестанут быть главным источником знаний о том или ином предмете. В эпоху больших данных то, что мы считаем причинностью, на самом деле не более чем частный случай корреляционной связи. Хотя порой мы по-прежнему хотим выяснить, объясняют ли причинно-следственные связи обнаруженную корреляцию. Большие данные, напротив, ускоряют корреляционный анализ. И если корреляции не заменяют исследование причинности, то направляют его и предоставляют нужную информацию. Наглядным примером служат загадочные взрывы канализационных люков на Манхэттене.

 

Задача с канализационными люками

Ежегодно несколько сотен люков в Нью-Йорке начинают тлеть из-за возгорания частей канализационной инфраструктуры. От взрыва чугунные крышки люков весом до 300 фунтов взмывают на высоту в несколько этажей, а затем с грохотом падают, подвергая опасности окружающих.

Con Edison, коммунальная компания, которая занимается электроснабжением Нью-Йорка, из года в год проводит регулярные проверки и техобслуживание люков. Раньше специалисты в основном полагались на волю случая, надеясь, что взрывоопасными окажутся именно те люки, которые планируется проверить. Такой подход был едва ли полезнее, чем блуждание по Уолл-стрит. В 2007 году компания Con Edison обратилась к статистикам Колумбийского университета, расположенного на окраине города, в надежде, что статистические данные о сети (например, сведения о предыдущих неполадках и инфраструктурных соединениях) помогут спрогнозировать, какие люки вероятнее всего небезопасны, и это позволит компании целенаправленно использовать свои ресурсы.

Это сложная проблема, связанная с большими данными. Общая протяженность подземных кабелей в Нью-Йорке — 94 000 миль (достаточно, чтобы обхватить Землю 3,5 раза). В одном только Манхэттене около 51 000 люков и распределительных коробок. Часть этой инфраструктуры построена еще во времена Томаса Эдисона (тезки компании), а один из 20 кабелей заложен до 1930 года. Сохранились записи, которые велись с 1880 года, но не систематизированные, поскольку их не собирались анализировать. Данные предоставили бухгалтерия и диспетчеры аварийной службы, которые вручную писали «заявки на устранение неисправностей». Назвать их беспорядочными — ничего не сказать. К примеру, один лишь термин «распределительная коробка» (англ. service box), обозначающий обычную часть инфраструктуры, был записан в 38 вариантах, в том числе: SB, S, S/B, S.B, S?B, S.B., SBX, S/BX, SB/X, S/XB, /SBX, S.BX, S &BX, S?BX, S BX, S/B/X, S BOX, SVBX, SERV BX, SERV-BOX, SERV/BOX и SERVICE BOX. Распознать все это предстояло компьютерному алгоритму.

«Взглянув на это, мы подумали, что нам не удастся проанализировать данные, поскольку они были невероятно сырыми, — вспоминает Синтия Рудин, статистик и руководитель проекта. — У меня имелись распечатки таблиц для всех видов кабелей. Вытаскивая какие-то из них, мы не могли удержать их в руках — все тут же летело на пол. И в этом всем нужно было разобраться. Без какой-либо документации. Мне оставалось только думать, как из всего этого извлечь пользу».

Для работы Синтии Рудин и ее команде следовало использовать все данные, а не только выборку, поскольку любой из десятков тысяч люков грозил оказаться бомбой замедленного действия. Таким образом, только подход «N = всё» мог прийти на помощь. Совсем не мешало бы продумать причинно-следственные связи, но на это ушла бы сотня лет, притом что правильность и полнота результатов оставались бы сомнительными. Лучшим решением этой задачи было найти корреляции. Синтию интересовал не столько вопрос почему, сколько что, хоть она и осознавала, что, когда команде феноменальных специалистов по статистике придется отвечать перед руководством Con Edison, им придется обосновать свой рейтинг. Прогнозы выполнялись компьютерами, но их потребителем выступал человек. А людям, как правило, нужны причины, чтобы понять.

Интеллектуальный анализ данных обнаружил те самые «золотые самородки», которые Синтия Рудин надеялась найти. Очистив беспорядочные данные для обработки с помощью компьютера, команда определила 106 прогностических факторов основной аварии, связанной с канализационными люками. Затем из них отобрали несколько самых сильных сигналов. Проверяя электросеть Бронкса, специалисты проанализировали все имеющиеся данные вплоть до середины 2008 года. Затем на основе этих данных спрогнозировали проблемные участки с расчетом на 2009 год и получили блестящий результат: из 10% первых по списку люков 44% были связаны с серьезными происшествиями.

Основными факторами оказались возраст кабелей и наличие неполадок в люках в прошлом. Как ни странно, эти сведения были полезными, поскольку легко объясняли руководству Con Edison, на чем основан рейтинг. Но, помилуйте, возраст и неполадки в прошлом? Разве это не достаточно очевидно? И да и нет. С одной стороны, как любил повторять математик Дункан Уоттс (в своей книге), «все очевидно, когда вы уже знаете ответ». С другой стороны, важно помнить, что модель изначально содержала 106 прогностических факторов. И не так уж очевидно, как их взвесить, а затем ранжировать десятки тысяч люков, учитывая множество переменных, связанных с каждым фактором. В итоге получаются миллионы точек данных, притом что сами данные изначально непригодны для анализа.

Этот случай наглядно демонстрирует, как данные находят новое применение для решения сложных задач реального мира. Для этого понадобилось изменить подход к работе и использовать все данные, которые удалось собрать, а не только их небольшую часть. Нужно было принять естественную беспорядочность данных, а не рассматривать точность как высший приоритет. К тому же пришлось рассчитывать на корреляции, не зная полностью причин, которые легли в основу прогнозирования.

 

Конец теории?

Большие данные меняют наш подход к познанию мира. В эпоху малых данных мы руководствовались гипотезами о том, как устроен мир, а затем старались проверить их путем сбора и анализа данных. В дальнейшем наше понимание будет зависеть от изобилия данных, а не от гипотез. Получая и анализируя данные, мы увидим связи, о которых и не подозревали раньше.

Гипотезы часто являются продуктом теорий естественных и социальных наук, которые помогают объяснить, а иногда и спрогнозировать события окружающего мира. По мере того как мир переходит от гипотез к данным, велико искушение решить, что теории тоже больше не нужны.

В 2008 году главный редактор журнала Wired Крис Андерсон высказал мнение, что «ввиду огромного потока данных научные методы уже неактуальны». В статье «Век петабайтов» он заявил, что это означает не что иное, как «конец теории». Традиционный процесс научного открытия (проверка гипотезы на достоверность с помощью модели основополагающих причин), по утверждению Андерсона, уже отжил свое и заменен статистическим анализом корреляций, в котором нет места теории.

В подтверждение Андерсон пояснил, что квантовая физика стала практически полностью теоретической областью, поскольку эксперименты слишком сложные, дорогостоящие и слишком масштабные для реализации. Эта теория, как считает Андерсон, уже не имеет ничего общего с действительностью. Чтобы объяснить новый метод, он приводит в пример поисковую систему Google и генетическое секвенирование. «Это мир, в котором большие объемы данных и прикладная математика заменяют любые другие нужные инструменты, — пишет Андерсон. — При достаточном количестве данных числа говорят сами за себя. И петабайты позволяют сказать, что корреляций вполне достаточно».

Статья вызвала оживленное обсуждение, хотя Андерсон быстро отказался от своих смелых заявлений. Но его основная идея достойна внимания. По сути, он считает, что до недавнего времени в стремлении проанализировать и понять окружающий мир нам требовались теории, которые проверялись на достоверность. В эпоху больших данных, напротив, основная идея состоит в том, что нам больше не нужны теории — достаточно взглянуть на данные. Предполагается, что все обобщенные правила (о том, как устроен мир, как ведут себя люди, что покупают потребители, как часто ломаются детали и т. д.) могут утратить свою актуальность, когда в ход идет анализ больших данных.

«Конец теории» позволяет предположить: несмотря на то что предметные области, такие как физика и химия, полны теорий, анализ больших данных не нуждается в каких-либо концептуальных моделях. Но это абсурд!

Большие данные имеют теоретическую основу. При анализе больших данных используются статистические и математические теории, а иногда и теоретические знания из области компьютерных наук. Да, это не теории о причинной динамике того или иного явления (например, гравитации), но все же теории! И, как было показано ранее, модели на основе этих теорий, лежащих в основе анализа больших данных, открывают полезные возможности прогнозирования. На самом деле анализ больших данных может предложить свежий взгляд и новые идеи именно потому, что не обременен рамками традиционного мышления и присущими ему предубеждениями, которые неявно представлены в теориях конкретной области.

Поскольку анализ больших данных основан на теориях, эту основу невозможно игнорировать — более того, нужно признать, что она тоже влияет на результат. Все начинается с того, как мы выбираем данные. Их сбор может быть обусловлен удобством (доступны ли данные) или экономией (можно ли получить данные по дешевке). Наш выбор в данном случае зависит от теорий. Как полагают Дана Бойд и Кейт Кроуфорд, наши находки зависят от того, что мы выбираем. В конце концов, специалисты Google использовали в качестве закономерности условия поиска, связанные с гриппом, а не с размерами обуви. Точно так же, анализируя данные, мы выбираем инструменты, которые опираются на теории. Наконец, интерпретируя результаты, мы снова применяем теоретические знания. Эпоха больших данных отнюдь не лишена теорий — они повсюду, со всеми вытекающими последствиями.

Большие данные не предрекают «конец теории», но принципиально меняют наше представление об окружающем мире. Обществу предстоит еще ко многому привыкнуть ввиду этих изменений. Многие учреждения столкнутся с новыми трудностями. Но огромные преимущества, которые мы получим, делают такой компромисс не только целесообразным, но и неизбежным. При этом следует отметить, как это произойдет. Большинство специалистов в области высоких технологий, поскольку сами занимаются их созданием, сказали бы, что все дело в новых инструментах — от быстрых чипов до эффективного программного обеспечения. Однако эти инструменты не настолько важны, как можно подумать. Более глубокая причина сложившихся тенденций лежит в том, что у нас появилось намного больше данных, так как стало фиксироваться больше факторов действительности. Об этом — в следующей главе.