В середине семнадцатого века Джеймс Ашер, весьма уважаемый ученый и прелат Англиканской церкви, широко известный в Ирландии и Англии, вычислил, что Земля была сотворена в 4004 году до нашей эры. Он пришел к этому заключению, тщательно изучив и дословно истолковав хронологию родословных Ветхого Завета. Следуя освященной временем традиции таких исследований, другие ученые его времени, — не утруждая себя поиском иных методов определения возраста Земли, — проверили расчеты Ашера. Они признали, что он правильно определил год, но можно было добиться куда большей точности: оказывается, Земля была сотворена в 9 часов пополудни 26 октября 4004 года до н.э.!

До сих пор геологические факультеты некоторых университетов в знак иронического уважения к Ашеру отмечают 26 октября день рождения Земли. Однако на самом деле Земля в миллион раз старше, чем вычислил достопочтенный Ашер. Ее истинный возраст равен четырем с половиной миллиардам лет. Ученые же начали осознавать всю безмерность геологического времени, когда после опубликования трудов Ашера минуло более столетия.

Таким образом, по человеческим меркам наша планета невероятно стара: четыре с половиной миллиарда лет — это такой отрезок времени, по сравнению с которым вся история человечества — лишь краткий миг. Геологические временные шкалы столь обширны, что только по аналогии можно получить некоторое слабое представление о бездне времени, отделяющем нас от возникновения Земли. Одна из таких аналогий представляет историю Земли в виде трехчасового фильма. По этому сценарию мы — как вид, конечно, а не лично вы или я — торжественно появились бы в кадре лишь в последнюю секунду. Эта книга, подобно трехчасовому фильму, представляет собой очень краткое путешествие по истории Земли — от возникновения солнечной системы до наших дней. Ее содержание выстроено в хронологическом порядке с некоторыми отклонениями, необходимыми для лучшего понимания истории Земли. Но читателя следует предупредить, что она лишь касается некоторых из главных фактов. Чтобы овладеть всеми известными подробностями захватывающего прошлого Земли, понадобится по крайней мере несколько человеческих жизней.

Для большинства из нас природный ландшафт кажется более или менее постоянным. Если не брать всякого рода бедствия, такие как извержения вулканов или мощные землетрясения, геологическая панорама ощутимо не меняется на протяжении отдельной человеческой жизни. Но Земля за свою историю была свидетелем множества трансформаций. За миллиарды лет своего существования наша планета претерпела не одну глобальную катастрофу, масштабы которой не имеют подобия в рамках человеческого опыта, видела возникновение и исчезновение бесчисленных видов животных и растений, которые более не населяют Землю, наблюдала, как возникают и затем исчезают целые океаны и горные цепи. Откуда же мы знаем о таких вещах? Частично наше понимание опирается на данные лабораторных экспериментов и математическое моделирование геологических процессов или даже на логические рассуждения, но большая часть его является результатом изучения горных пород.

В горных породах записана вся история Земли, в них же находятся ключи к ее прошлому. Их расшифровка не всегда является легким делом, и хотя многое уже известно, еще больше только предстоит открыть. Эта книга имеет целью удовлетворить ваш аппетит к такому знанию, ибо мало что приносит такое удовлетворение, как понимание происхождения нашей природной среды обитания или, может быть, нашего места в этом мире.

Наука о Земле, подобно другим научным дисциплинам, переполнена специальными словами и выражениями. Частично это вызвано тем, что горные породы, минералы, ископаемые остатки животных и растений, формы земного рельефа и т. п. нуждаются в именах, если мы хотим рассуждать о них научным образом. Второй причиной является необходимость учитывать огромную протяженность геологического времени. Геологи разделили историю Земли на определенные временные единицы и дали им названия, которые незнакомы большинству негеологов. Эти имена обычно взяты из названия какой-либо конкретной географической местности, где породы, характерные для конкретного временного периода, особенно широко распространены. В этой книге я старался свести к минимуму геологический жаргон, но незнакомые слова все же будут в ней время от времени появляться, причем некоторые из них довольно часто. В конце книги помещен небольшой словарик терминов. Рисунок 1.1 поможет вам также разобраться в геологической временной шкале. Эта временная шкала является проклятием для студентов подготовительных курсов по геологии, но большинство студентов все же преодолевает себя и заучивает названия эр, периодов и даже более дробных подразделений — после того, как им напомнят, что существуют такие вещи, которые просто заучиваются, — как, например, названия месяцев или результаты игр вашей любимой футбольной команды. Скоро это знание терминологии становится привычкой.

Рис. 1.1. Шкала геологического времени. Значения возраста показаны в миллионах лет от нашего времени, указаны также некоторые важные события истории Земли. Обратите внимание на два изменения на шкале в протерозойской ее части.  

Границы между эрами, периодами и эпохами геологической временной шкалы первоначально определялись на основе ископаемых остатков животных и растений — составной части летописи, записанной в горных породах. На протяжении истории Земли различные виды и классы живых существ появлялись, расцветали на некоторое время и затем исчезали. Но временами по не совсем еще понятным причинам происходило быстрое и полное исчезновение целых отделов животного и растительного царства. Обычно после таких кризисов наступал быстрый расцвет новых, иногда совершенно непохожих видов. Такие внезапные изменения растительных и животных сообществ отражались в ископаемой летописи. Лишь совсем недавно геологи стали исследовать эти массовые вымирания с точки зрения возможности периодических катастроф, таких как, например, столкновения Земли с кометами или астероидами или драматические изменения климата всей Земли. Тем не менее, хотя интерпретации этих явлений могут меняться, сами записи об этих событиях всегда присутствовали в горных породах и были доступны для всех. Они и составили ту логическую основу, которая позволила первым исследователям Земли определить временные подразделения ее истории. Границы между ними были проведены там, где резко менялся характер ископаемых остатков. Упрощенная версия геологической временной шкалы показана на рис. 1.1. Читая эту книгу, вы, вероятно, не раз обратитесь к ней.

На первых порах связь между временной шкалой и горными породами может показаться не столь уж очевидной. Но картина проясняется, если подумать о том, как возникают осадочные породы, которые прежде всего использовались для определения временной шкалы.

Осадки накапливаются на земной поверхности зерно за зерном, иногда даже атом за атомом, обычно в воде. Осадочный материал является результатом эрозии (то есть размывания и разрушения пород поверхностными водами) и выветривания на суше, после чего составные части пород переносятся водными потоками в озера или моря. Большая часть осадков сначала представляет собой неконсолидированный (рыхлый, незатвердевший) материал наподобие ила или песка, который в результате действия ряда процессов твердеет и превращается в твердую породу. Осадки в процессе своего образования поглощают и сохраняют раковины, скелеты, листья, перья и другие части животных и растений, которые и образуют летопись биологической эволюции. Единичный выход таких пород может представлять собой результат тысяч или даже миллионов лет непрерывных отложений — при этом самые древние пласты всегда располагаются внизу, а самые молодые наверху разреза. Большая часть временной шкалы, приведенной на рис. 1.1, была построена путем сопоставления и обобщения тех частей этой летописи, изученных в самых разных частях света, которые по содержанию ископаемых остатков перекрывают друг друга. Но все же следует признать, что как накопление, так и сохранение ископаемых остатков зависит от капризов природы. Более того, когда понижается уровень моря или поднимаются толщи осадков, начинается эрозия, которая стирает часть геологической летописи. Следовательно, в ней имеется много пробелов. Это обстоятельство было серьезной проблемой для Дарвина, которому пришлось объяснять, почему летопись органических остатков не показывает подробно каждый шаг эволюции. В его знаменитой книге «Происхождение видов» этому вопросу посвящен целый раздел «О неполноте геологической летописи».

Однако, предоставляя нам практически непрерывные страницы исторической летописи, осадочные породы не являются единственным материалом, представляющим интерес для геологов. Изверженные и метаморфические породы также содержат информацию о своем происхождении и истории, хотя и по-другому. В противоположность осадкам, изверженные породы возникают в глубинах Земли в результате плавления и кристаллизуются, приобретая свой нынешний вид, когда расплавленная магма — этим термином геологи обозначают жидкую породу — охлаждается на земной поверхности или вблизи от нее. Знакомые примеры таких пород — розовый гранит, который украшает фасады банков и других зданий, или темноцветный базальт, образующийся из лавы, которая вытекает из вулкана Килауэа на Гавайских островах. Химический состав таких пород содержит ключи к познанию той геологической обстановки, в которой возникли эти породы. Хотя для молодых излившихся пород это и не такая уж потрясающая умы информация, — мы ведь и так знаем, что Килауэа есть один из вулканов посредине Тихого океана, и нам для этого нет необходимости исследовать химический состав его лав, — эта информация является крайне важной для познания древних пород, поскольку она позволяет нам реконструировать физический мир прошлого.

Метаморфические породы совершенно отличны от изверженных. Состоявшие первоначально из осадочного или изверженного материала, они впоследствии значительно изменились — обычно в результате глубокого погружения и нагревания, которые трансформируют их минеральный состав и облик. Само их существование есть признак изменчивости Земли во времени. Метаморфические породы, по которым мы ходим или карабкаемся, особенно над этим не задумываясь, могли возникнуть в далеком прошлом как зерна в выветренных остатках других пород, будучи затем перенесенными в море у берегов древних континентов, где и отложились слой за слоем. Однако метаморфические минералы, которые они сейчас содержат, являются немыми свидетелями другой, не такой пассивной стадии их истории, когда их погребло на глубину, может быть, двадцать или более километров, — и сильно нагрело. Такое часто происходит на разных этапах процесса горообразования, и мы знаем, что такие метаморфические породы существуют и сейчас в недрах Альп или Гималаев. Но каким образом такие минералы попадают на поверхность Земли? Ответ заключается в том, что даже самые величественные горные хребты являются эфемерными образованиями по стандартам геологического времени. Являясь жертвами медленной, но постоянной эрозии и поднятия, они постепенно разрушаются. Наш глубоко погребенный осадок, являющийся сейчас метаморфической породой, в результате действия этого процесса рано или поздно опять оказывается на поверхности. Такие циклы являются естественной частью процесса геологической истории Земли, и хотя они слишком растянуты во времени, чтобы их можно было наблюдать непосредственно, они оставляют свои записи в геологической летописи.

Не так давно даже геологи не могли понять, почему существуют вулканы в Японии, или почему в центре России тянутся Уральские горы. Теория тектоники плит все это изменила. Неожиданно и геология, подобно большинству других научных дисциплин, нашла опору, благодаря которой многие, казалось бы, разрозненные наблюдения получили свое объяснение. С точки зрения этой теории, земная поверхность состоит из ряда больших жестких плит толщиной около 100 километров, которые медленно движутся относительно друг друга.

В некоторых местах эти плиты раскалываются на части и растут в результате поступления из глубин нового материала вдоль расходящихся границ этого раскола. В других местах эти плиты сталкиваются друг с другом, причем обычно одна из них ныряет под другую и погружается в глубины Земли. В третьих местах гигантские плиты просто скользят своими краями друг по другу, размалывая земную кору в этом процессе, как это происходит вдоль разлома Сан- Андреас в Калифорнии. Почти вся геологическая активность сосредоточена вдоль границ плит. Если нанести на карту мира эпицентры всех землетрясений, которые произошли за последнее десятилетие, то места их концентрации четко обрисуют очертания всех тектонических плит. Большая часть вулканической активности Земли также приурочена к границам плит.

Тектоническая карта мира с нанесенными границами плит представляет собой гигантскую мозаику, каждый элемент которой — тектоническая плита, правда, в отличие от обычной мозаики, все составляющие ее кусочки движутся, а их очертания — хоть и медленно, но неуклонно — изменяются. Через пятьдесят миллионов лет на такой карте Лос-Анджелес окажется на острове где-то напротив центральной части Британской Колумбии, а Австралия переползет к островам Индонезии. Нью-Йорк окажется дальше от Лондона, чем сейчас, но ближе к Токио, потому что Атлантический океан расширится за счет Тихого.

Вопреки некоторым распространенным мнениям, тектонические плиты не плавают по поверхности лежащего ниже слоя наподобие льда, плывущего по воде. Напротив, они движутся путем своеобразного пластического течения в своем основании. Внутренность Земли является твердой, но также и горячей, что позволяет ей деформироваться и течь. Такое течение заметно только за длительные промежутки времени, подобно движению ледников. В противоположность лежащим ниже слоям Земли, поверхностные плиты являются холодными и довольно жесткими. Их физические свойства отделяют их от лежащей ниже конвектирующей зоны Земли.

Рис. 1.2. Схематический разрез Земли, показывающий ее слоистое строение. Увеличенный фрагмент внешней оболочки Земли показывает, что континенты и океаническая кора различаются по толщине и что и те и другие представляют собой части литосферы — жесткой внешней кожи Земли, которая образует плиты, изучаемые тектоникой плит.  

Конвекция во внутренних частях Земли фактически является главным механизмом, посредством которого Земля теряет тепло. Горные породы, образующие оболочку, называемую мантией (рис. 1.2), настолько плохо проводят тепло, что потребовалось бы много миллиардов лет, чтобы одна только теплопроводность могла перенести тепло из глубин Земли к ее поверхности. Тем не менее процесс конвекции в мантии физически перемещает вещество из глубин к поверхности, а уравновешивающий нисходящий поток перемещает более холодное вещество от поверхности вглубь. Вероятно, что эта конвекционная циркуляция, по крайней мере, частично обусловливает движение поверхностных плит.

Хотя внутренность Земли в основном твердая, очень плотная часть земного ядра в самом центре (рис. 1.2), составляющая приблизительно третью часть ее массы, — по-видимому, жидкая. О ядре мы более подробно расскажем ниже, но пока достаточно отметить, что оно состоит в основном из железа и что именно вследствие конвекции его жидкой внешней части Земля имеет магнитное поле. Мы знаем это, хотя никому еще не удалось получить образцы вещества из ядра. Оставив в стороне путешествие к центру Земли, созданное воображением Жюля Верна, следует признать, что никому из людей не удалось еще проникнуть вглубь Земли более, чем на несколько километров, и что даже самые глубокие буровые скважины не достигли еще и 10-километровой глубины. Отметим для контраста, что внешняя граница ядра находится на глубине 2900 км, а радиус ядра от центра его до этой границы составляет приблизительно 6370 километров.

Не имея прямой информации о глубинах Земли, приходится пользоваться данными, которые дают геофизические методы исследования. Несомненно, что самая полезная информация о внутреннем строении Земли получена в результате исследований сейсмических волн, возникающих при землетрясениях и идущих сквозь толщу Земли. Очевидно, что крупные землетрясения освобождают огромные количества энергии, которая распространяется сквозь Землю в виде звуковых (сейсмических) волн.

Их можно записать с помощью чувствительных приборов (сейсмографов) в очень удаленных частях земной поверхности, подобно тому как, ударив молотком по концу стола, мы можем почувствовать вибрации на другом конце. Размах и ширина колебаний, которые чертит перо сейсмографа на движущейся бумаге (или луч света на движущейся фотопленке), являются реакцией прибора на колебания земной коры. Подробности интерпретации записей сейсмических колебаний довольно сложны, и мы не будем их здесь рассматривать. Тем не менее, конечным результатом многолетней работы по записи и интерпретации сигналов от землетрясений на разбросанных по всей поверхности Земли сейсмических станциях является определение средней скорости прохождения сейсмических волн через различные части Земли. Поскольку скорость прохождения сейсмических волн прямо связана с плотностью различных сред, через которые они проходят, геофизики смогли рассчитать плотности различных частей Земли и на их основе сделать выводы о минеральном составе этих частей. Эти данные показали, что Земля имеет слоистое строение (рис. 1.2) и что главные оболочки Земли имеют различные плотности и химический состав. Хотя на рис. 1.2 приведена упрощенная картина строения Земли, видно, что химический состав главных оболочек различен. Это крайне важно для познания ранней истории нашей планеты, поскольку большинство ученых считает, что эти ныне разделенные компоненты в первоначальный период формирования Земли были перемешаны в более или менее однородную массу. Насколько можно судить по имеющимся данным, другие подобные Земле планеты (Меркурий, Венера и Марс) так же, как и Луна, подверглись глобальной химической дифференциации. В большей части этой книги рассматриваются процессы, происходящие на поверхности или внутри земной коры, то есть самой верхней из твердых оболочек Земли. Достаточно беглого взгляда на рис. 1.1, чтобы увидеть, что объем земной коры совершенно незначителен по сравнению с другими оболочками планеты. Это только тонкая кожица на поверхности Земли толщиной всего 5-6 километров под океанами и от 30 до 40 километров на континентах. Если бы Землю можно было пропорционально сжать до размеров яблока, то самые толстые части земной коры едва достигли бы в этом масштабе толщины кожицы. Но все равно именно кора содержит месторождения минералов, именно на ней возникла жизнь и именно на ней мы живем. Это наиболее известная нам часть планеты, поскольку ее можно изучать, анализировать и измерять. Она возникла за долгий геологический период в результате плавления внутренних частей Земли и переноса кипящих жидкостей к поверхности.

Граница между земной корой и лежащей ниже оболочкой — мантией — отмечается резким возрастанием скорости сейсмических волн, отражающим переход к более плотным породам глубин Земли. Породы мантии богаче железом и магнием по сравнению с корой и беднее более легкими элементами, такими как алюминий. Это установлено как на основании сейсмических исследований, так и по реальным образцам пород. Но как же можно получить образцы пород из мантии, если даже самые глубокие буровые скважины не проникают сквозь всю земную кору? Оказалось, что природа нам помогла — есть несколько мест на Земле, где вулканические лавы, образовавшиеся в мантии, захватили с собой обломки таких пород и вынесли их на поверхность. Благодаря этому в числе прочего мы (по крайней мере некоторые из нас) можем носить украшения из бриллиантов. Бриллианты — это одна из форм углерода, являющегося также главной составной частью каменного угля — не очень популярного материала для украшений. Тем не менее при высоких давлениях, существующих в мантии, обычный каменный уголь превращается в алмазы, из которых изготавливают и бриллианты. Необходимое для этого давление начинается на глубинах порядка 200 километров; алмазы Южной Африки, да и других месторождений, были вынесены на поверхность вулканическими магмами, которые образовались по меньшей мере на такой глубине. Конечно, тот факт, что алмазы находят в горных породах, происходящих из мантии, отнюдь не означает, что внутренность Земли состоит из алмазов, — сами алмазы в породах, происходящих из мантии, встречаются редко, но именно твердые обломки пород, в которых изредка находят алмазы, дают нам ключи к выяснению состава мантии. 

Рис. 1.2 показывает, что тектонические плиты, слагающие земную поверхность, включают как кору, так и материал мантии. Их основание не отмечено сменой типов пород, скорее, оно представляет собой физическую границу, ниже которой скорость сейсмических волн резко снижается. Считается, что эта граница соответствует той глубине, на которой породы мантии ближе всего к своей точке плавления и, в силу возросшей температуры и высокого давления, ведут себя пластически, позволяя верхней жесткой плите медленно перемещаться по нижней конвектирующей мантии. Жесткая внешняя часть Земли, состоящая из плит, изучаемых тектоникой плит, получила в науке название «литосфера» — от греческого слова «литое», означающего камень или горную породу. 

Масса мантии составляет около двух третей всей массы Земли. Эта оболочка Земли подразделяется на основании некоторых тонкостей распределения скоростей сейсмических волн на две части — внутреннюю и внешнюю. Внутри нее располагается ядро Земли, которое включает остающуюся треть общей массы Земли и состоит, как уже указывалось, в основном из железа. На границе между ядром и мантией отмечается резкий скачок скорости распространения сейсмических волн, отражающей смену вещественного состава от пород мантии к металлу ядра. Некоторые типы волн не распространяются через жидкие среды. Установлено, что они не проходят через внешнюю часть ядра, указывая тем самым на его жидкое состояние. Однако внутренняя часть ядра является твердой.

Никто не знает в подробностях, как образовалась наша Земля. Тем не менее, исходя из того, что нам уже известно, и экстраполируя эти данные на прошлое, можно построить вполне приемлемый сценарий развития событий. Мы знаем, что Вселенная гораздо старше Земли и что большая часть атомов, ныне составляющих воздух, которым мы дышим, камни (или асфальт), по которым мы ходим, как и все остальное на Земле, были когда-то ядрами элементов в глубинах звезд. Некоторые из самых тяжелых элементов, такие как золото, свинец или уран, образовались во время грандиозных взрывов сверхновых звезд, которыми заканчивалась их эволюция; при этом в межзвездное пространство выбрасывалась огромная масса вещества. Мы знаем, что в конце концов вещество, слагающее сейчас Землю, станет частью большого газопылевого облака, весьма похожего нате, которые астрономы наблюдают в других частях нашей галактики.

По пока еще не ясным причинам это облако около 4,5 миллиардов лет назад начало сжиматься. По мере сжатия центральные его части уплотнялись и разогревались, подобно тому, как разогревается сжатый воздух в велосипедном насосе. В самом центре этого сжимающегося облака, где температура и давления были максимальны, начались ядерные реакции, которые и сейчас поддерживают жизнь Солнца. Солнце, ближайшая к нам звезда, содержит около 99,9 процента всего вещества солнечной системы; планеты и астероиды являются остатками первоначального облака. По крайней мере в самом центре солнечной системы, где находится наша Земля, температура при образовании Солнца была столь высока, что любые ранее существовавшие зерна, вероятно, целиком испарились и большая часть этих остатков первоначального облака находилась в газовой форме. По мере охлаждения этого раскаленного облака газ начал конденсироваться, образуя твердые зерна минералов, которые, слипаясь, постепенно образовали более крупные тела. Одни тела росли быстро, поглощая все, что встречалось им на пути во время их путешествия по орбите вокруг первоначального Солнца, другие разрушались во время грандиозных столкновений крупных обломков. Процесс разрастания (аккреции) Земли за счет захвата пыли и обломков из окружающего пространства в начальный период происходил очень бурно, и непрерывный дождь падающих тел должен был привести к ее значительному нагреванию. Хотя первоначальная смесь веществ могла быть довольно однородной в большом масштабе, разогрев Земли вследствие гравитационного сжатия и бомбардировки ее обломками приводили к расплавлению, и возникавшие жидкости отделялись от оставшихся твердыми частей смеси под воздействием силы тяжести. В частности, железо, которое плавится при несколько меньшей температуре, чем многие другие вещества Земли, должно было выплавиться раньше и в силу своей большей плотности быстро погрузиться в глубину земли, образовав там ядро.

Крупномасштабная химическая дифференциация Земли на металлическое ядро и перекрывающую его каменную оболочку — мантию — должна была произойти в самом начале существования нашей планеты. Что касается возникновения земной коры, то это уже другая история. Мы знаем, что и она тоже образовалась в результате плавления, но в этом случае расплавленные материалы, в отличие от расплавленного железа, обладали меньшей плотностью, чем породы окружающей мантии, и поднимались к поверхности. Этот процесс все еще продолжается и в наше время. Лавы, изливающиеся в наши дни из вулканов, являются результатом процессов плавления, происходящих в мантии и, застывая, они образуют новый материал земной коры. Земная кора, в частности континентальная кора, выросла на протяжении истории Земли, хотя ученые спорят, был ли ее рост непрерывным или эпизодическим, а также изменялась ли его скорость во времени.

Геология — древняя наука. В примитивной форме ею занимались первобытные люди, когда искали месторождения таких пород, как кремень или обсидиан, из которых потом изготавливали (путем отщепления) орудия с острыми краями, необходимые для охоты или вскапывания земли и разделки туш животных. Поиски месторождений негорючих и горючих полезных ископаемых, дающих материалы и энергию, необходимые для функционирования современного общества, по-прежнему являются важнейшей задачей для геологов. Не менее важным, независимо от возможности немедленного практического применения, является познание процессов, происходящих в Земле. В конце концов, геология окружает нас каждый день и на каждом шагу, хотя, вероятно, нелегко распознать этот факт, живя в сердце большого города. Но посетив Великий каньон или Йосемитскую долину, вы приобретете совершенно новый опыт, особенно если хотя бы немного познакомитесь с геологией. Увидеть, что красота Йосемитской долины с ее водопадами, низвергающимися крутыми каскадами, это плод работы возвышающихся над нею ледников, изрезавших породы горной цепи Сьерра-Невада во время недавнего оледенения, или понять, что моря наступают и отступают, потому что много миллионов лет назад отложили слои осадочных пород, ныне обнаженные в стенах Большого Каньона, — все это большинство людей будут переживать снова и снова.

Чтобы прийти к современному пониманию строения Земли и ее истории, геологам пришлось побывать историками, детективами, исследователями-первопроходцами, инженерами и, в первую очередь, пытливыми наблюдателями. А в наши дни им все больше приходится быть биологами, физиками, химиками и математиками, потому что изучение Земли охватывает все эти области знания. Поиск ответов на вопросы, которые поднимают науки о Земле, буквально не дает камням покоя.