— Так какие, как ты говоришь, «мирные», открытия можно сейчас уже публиковать?

— Ну, например, высокотемпературные сверхпроводники. Плюс теория, объясняющая хотя бы приближённо эффект сверхпроводимости. Кстати, я знаю, как можно сделать сверхпроводники, становящиеся сверхпроводящими аж при температуре пятисот градусов Цельсия!

— Ничего себе! Это тот самый эффект, если я правильно тебя понял, который обнаружил в замороженных жидким гелием ртути и свинце, Каммерлинг-Оннес? Эффект полного исчезновения сопротивления электрическому току?

— Он самый. Причём, что любопытно, прорыв в область высоких температур, больших тридцати градусов выше абсолютного нуля, состоялся в моей истории в восемьдесят седьмом году. Двое исследователей, Мюллер и Беднорц, обнаружили превышение температуры сверхпроводящего перехода в тридцать кельвинов в особой металлокерамике. До этого, почти три четверти века существенных подвижек в область высоких температур этот эффект не имел. Топтались в области гелиевых-водородных температур. То бишь, температур жидкого гелия и водорода.

— Понятно. В Бронштейне проснулся азарт. А в чём причина, каков механизм возникновения этого эффекта?

— Долго объяснять. Коротко же — в проводнике образуется «электронное поле», когда утрачивается различимость между разными электронами, и в результате дефекты кристаллической решётки, рассеяние на которых и является преимущественно причиной возникновения сопротивления электрическому току, становятся для таких «коллективных» электронов «прозрачными».

— Однако же, сверхпроводимость — это так сказать, «присказка» к настоящей работе нобелевского уровня. Запомни, Бронштейн, Нобеля дают за работы, которые мировое научное сообщество «ожидает». Простой пример — Эйнштейн. Его слава очень сильно раздута. Тогда как созданные им теории — СТО и ОТО, пожалуй, за исключением первой — пример непрактичности. Да и создал СТО, если как следует разобраться, не Эйнштейн, а Пуанкаре, который её Альберту подарил. А ОТО Эйнштейну фактически написала его жена — Милева Марич. Он кстати, поэтому и отдал ей часть своей нобелевки при разводе. Во всяком случае, математическую обработку идей Альберта, а то и помощь с самими идеями она ему оказывала.

Мюллеру и Беднорцу нобелевку дали потому, что уж очень долго орешек высокотемпературной сверхпроводимости «не раскалывался». Дадут ли нобелевку за повторение их открытия сейчас — не знаю. Скорее всего, нет, ибо нет эффекта длительного ожидания. Посчитают лишь дальнейшим развитием работ Каммерлинга-Оннеса.

— А тогда что может быть такой работой?

— За что Альберту дали Нобеля? Отнюдь не за создание новой физической теории, а за то, что в этой теории фактически было обосновано новое мировоззрение. Премия имени Нобеля — во многом политическая. Это кстати, озвучено в завещании Альфреда. Так что тебе нужна такая работа, которая сотрясёт мозги исследователей всего мира не хуже СТО и ОТО. И такая концепция у меня есть — это квантовая электродинамика. Сокращённо КЭД. Вот за неё Нобеля просто не смогут не дать — не поймут-с в мировом сообществе физиков.

Высокотемпературный сверхпроводник состава иттрий-барий-медь-кислород я знаю, как изготовить буквально на школьном оборудовании. Правда, школы конца этого века. Но, думаю, в бывшем Киевском университете лаборатории оборудованы не хуже. Лишь бы была установка получения не то что жидкого гелия, а хотя бы жидкого воздуха.

— А если не будет? — затаив дыхание от волнения, спросил Бронштейн.

— Тогда — есть ещё варианты. Наиболее оптимальны следующие:

— синтез супермагнита кобальт-самарий. Или неодим-железо-бор. Их рецептуры и технологии получения я представляю, бо работал пару месяцев над новыми материалами для сверхмагнитов. Если удастся разжиться хорошим химическим оборудованием, то можно вообще, потрясти научный мир, пожалуй, что и покруче, чем Каммерлинг-Оннес. Супермагнитами на десять-двадцать тесла индукцией. Причём постоянными! То есть, намагниченными кусками вещества. Но с такой магнитной индукцией, о которой сейчас и думать бояться.

— Тесла это сколько в Гауссах? — полюбопытствовал Бронштейн. Я знаю хорошо лишь систему мер СГС.

— Понятно, система СИ, к которой я привык, появилась намного позже даты твой смерти в моей истории. Один Тесла — это десять тысяч Гауссов.

— Ого! Магнит силой в сто тысяч гауссов — это впечатляет! В сто тысяч раз более сильный, чем магнитное поле Земли! Это действительно будет серьёзное изобретение в технике.

— Увы, не слишком радуйся, Митя, — осадил восторг Бронштейна Макаров. Для самого простого супермагнита — неодим-железо-бор, как следует из названия, нужен неодим. И если с железом и бором думаю, проблем в киевском университете не будет, то вот неодим… Это редкозём, как впрочем и самарий. Сомневаюсь, что они там найдутся, нужной степени очистки. Хотя, если РЗЭ в универе есть, то я могу их разделить. Дёшево и быстро. Как-никак работал в Германии и по этой теме.

— А как? Я читал, что РЗЭ потому и плохо изучены, как индивидуальные вещества, что их сложно разделить. Они похожи по химическим свойствам друг на друга, — выразил озабоченность возможными осложнениями Бронштейн.

— Видишь ли. В моё время начали активно развиваться нанотехнологии. Их практичнее было бы назвать атомно-молекулярными технологиями. Это, одним словом, манипуляция отдельными атомами и молекулами против манипуляции их массивами из квадрильонов единиц в самых продвинутых методах микроанализа ныне.

— Нанос — это карлик на латыни. И приставка, означающая одну миллиардную. Скорее всего, в твоём случае, от метра. Тогда да, как раз область атомов и молекул и получается.

— Проще было бы синтезировать супермагнит из нитрида железа. Если бы не одно но технологического плана. И азот и железо даже сейчас ни разу не дефицит. Но нитрид-железные магниты, кстати, самые мощные из мне известных, увы, очень непросты в технологии их изготовления. Как раз это и есть наноманипуляции веществом, когда молекулы в реагирующей смеси растут строго по заданному технологом плану.

— Да, жаль. Нет простого старта, к сногсшибательным достижениям, — огорчился Бронштейн.

— Ну почему нет? Например, есть ещё одна точка приложения усилий, не требующая сложного оборудования. И в то же время это революция в кристаллографии. Потрясение для кристаллографов сродни СТО и ОТО Альбертыча. И имеет важное народохозяйственное значение, да и не только — идеологически это тоже будет аховый урок мировой науке. «Не сотвори себе кумира», в этом плане.

— Это что за тема такая? — удивился Матвей Бронштейн.

— О группах Фёдорова что-либо слышал? — с подколкой спросил пришелец.

— Подобно тому, как в арифметике существует всего несколько действий над любыми числами, ученый нашёл 230 пространственных вариантов, которые могут занимать атомы в кристаллических телах, — без задержки мысленно выпалил Митя.

— Молодец! Хорошо подкован, посмотрю, — уже без иронии похвалил пришелец.

— Так что там такое с группами Фёдорова? — нетерпеливо спросил Бронштейн. Неужели существуют кристаллы вне его групп? То есть число возможных кристаллических решёток больше чем число 230???!!!

— Угу. Так и есть. Фёдоров допусти ту же ошибку, что и древние греки! Греки-математики считали, что множество действительных числе исчёрпывается числами натуральными и простыми дробями. И были буквально потрясены и раздавлены, обнаружив, что отношения сторон в произвольно взятом треугольнике — могут быть числами иррациональными, ни натуральными числами, ни простыми дробями точно не выразимые!

— Вот это да! — потрясённо произнёс Бронштейн. Так значит, можно получить монокристаллы групп симметрий запрещённого порядка?!

— Ну да. Например, вырастить из сплава марганца и алюминия правильный… додекаэдр, что Фёдоров запретил якобы. А ты — сможешь, и объяснишь! Это будет, при минимальном пиаре с твоей стороны, потрясение основ не хуже чем у Эйнштейныча! И практическое значение этого открытия — громадно! Ибо объясняет свойства алюминиевых сплавов. Из-за отсутствия понимания, что образующиеся в теле сплава микрокристаллы имеют запрещённые группы симметрий, технология алюминиевых сплавов долго развивалась «на ощупь», чисто опытным путём. И более того, даже обнаруживая «запрещённую» симметрию у изучаемых микрокристаллитов, извлечённых из алюминий-марганцевых сплавов, опытным путём, например, рентгеновским просвечиванием, эти результаты отбрасывали, даже не утруждая себя их проанализировать, — бо невозможна такая симметрия, и дело с концом!

— Есть и ещё у меня «научные плюшки», типа фуллеренов, например, но это оставим как запасной вариант.

Итак, тема для бакалавриата или что там у Вас сейчас? — спросил Макаров. МНС-ов и СНС-ов уже ввели взамен бакалавров и магистров?

— Не знаю — честно признался Бронштейн.

— Тогда, подведём итоги. Тебе нужно сделать себе имя. И получить Нобеля. Эта премия и международная известность, кстати, неплохие индульгенции от репрессий, в том случае, если мы решим остаться в СССР.

План же действий таков:

— Завтра идём в киевский университет. Пытаемся экстерном сдать экзамены за курс физики. Например, общей физики. Если это получиться, то попытаем себя и в химии, и в биологии. Три диплома лучше, чем один.

Тема кандидатской может быть такая: Квантовая Теория Бронштейна и её приложения к Теории Вещества. Звучит? — довольным тоном закончил Макаров.

— Звучит, конечно. Уши Бронштейна покраснели. Хотя это вообще-то плагиат, или даже мегаплагиат! Ты же отберешь, таким образом, достижения у целой кучи исследователей!

— Ну да. Бор и Гайзенберг в основном пострадают.

— А чем я прославился? Почему бы мои работы не опубликовать? — предложил Бронштейн.