Обзор ядерных аварий с возникновением СЦР (LA-13638)

Маклафлин Томас П.

Монахан Шан П.

Прувост Норман Л.

Фролов В. В.

Рязанов Б. Г.

Свиридов В. И.

II. Аварии при экспериментах с реакторами и при критических экспериментах

 

 

В настоящем разделе выявляются ошибки, которых следует избегать при проведении экспериментов с реакторами и экспериментов по изучению критичности. Поскольку возникновение критичности при таких экспериментах ожидается заранее, то уроки, которые можно извлечь из данного раздела, не вносят непосредственного вклада в ту отрасль знания, которая решает проблемы безопасности в отношении критичности при технологической обработке материалов. Из 38 изученных аварий 5 произошли на таких установках, которые следует классифицировать как работающие реакторы (кипящий реактор, «Годива», «Дрэгон», SL-1 и канадский исследовательский экспериментальный реактор NRX), а 33 аварии произошли на критических установках, на которых исследовались свойства самих критических сборок.

Главное изменение в части II этой второй редакции, по сравнению с предыдущими редакциями, состоит в добавлении описаний шести аварий, случившихся в Российской Федерации. Четыре из них произошли с небольшими металлическими урановыми и плутониевыми сборками, две произошли на критических сборках с макетами активной зоны реактора.

Некоторые данные об авариях при экспериментах с реакторами и при критических экспериментах сведены в таблице 11. Там, где это является возможным и уместным, энергия деления при резком увеличении мощности разделяется на ту, которая была выделена в пике, и на ту, которая была выделена на плато зависимости выделенной энергии от времени. Для некоторых выбросов мощности почти все акты деления имели место на плато; другие выбросы мощности состояли лишь из единственного пика.

Таблица 11. Аварии при экспериментах с реакторами и при критических экспериментах

 

A. Системы растворов делящихся материалов

 

1. Лос-Аламосская национальная лаборатория, декабрь 1949 г

Реактор-бойлер; поглощающие стержни удалялись вручную; единичный всплеск мощности; незначительная доза облучения.

Эта авария произошла при испытании двух новых поглощающих стержней в реакторе, названном «бойлером» из-за своей схожести с этим аппаратом. Реактор представлял собой сферу из нержавеющей стали диаметром 12 дюймов (305 мм), содержащую 13,6 л водного раствора уранилнитрата с обогащением урана 88,7 %. В 1949 году в качестве отражателя в реакторе использовался толстый слой графита. Реактор имел биологическую защиту из бетона сверху и с боковых сторон. Стержни перемещались в каналах в графите.

Стержни были смонтированы, и оператор вынимал их вручную, проверяя время падения в активную зону. Испытание стержней поодиночке являлось безопасной процедурой, так как одного стержня в активной зоне было достаточно для поддержания подкритичности. После нескольких проверок каждого из стержней по отдельности были извлечены оба стержня, их подержали в поднятом положении 5 секунд, а затем одновременно сбросили в активную зону.

При извлечении обоих стержней реактивность превысила на 3 цента уровень критичности на мгновенных нейтронах, что соответствовало периоду разгона мощности 0,16 с. Вероятно, за этот интервал времени мощность достигла величины от 2 до 3 х 1016 делений в секунду и оставалась примерно на таком уровне в течение около полутора секунд. Всплеск мощности не был сразу обнаружен, потому что все приборы были выключены, за исключением термометра, предназначенного для прямых измерений, который показал повышение температуры на 25 °C, что соответствовало энерговыработке от 3 до 4 х 1016 делений.

Оператор, находящийся за защитой, получил дозу радиации, равную 2,5 рад. Механических повреждений реактора не было.

 

2. Завод в Ханфорде, шт. Вашингтон, 16 ноября 1951 г.

38 40

Сборка с плутониевым раствором; слишком быстрое извлечение кадмиевого стержня; единичный всплеск мощности; незначительные дозы облучения.

Критическая сборка, в которой произошел разгон мощности, содержала 1,15 кг плутония в форме нитрата плутония, находящегося внутри алюминиевой сферы без отражателя диаметром 50,8 см. Целью экспериментальной программы было определение критической массы плутония для емкостей различной геометрии и различных концентраций плутония в растворе. Всплеск мощности произошел при подходе к состоянию критичности, когда сфера была заполнена на 93 %, в результате удаления полого кадмиевого стержня СУЗ. Стержень выводился с пульта управления постепенно, шагами, причем промежуток времени между шагами оказался недостаточным. Энерговыход в результате всплеска мощности составил 8 х 1016 делений. Небольшое количество топлива оказалось выплеснутым через прокладки в верхней части критсборки. Поскольку до аварии система уплотнения удерживала около 18 литров воздуха над поверхностью топлива, давление в процессе аварии должно было намного превышать атмосферное.

Опубликованные данные предполагают, что скорость ввода реактивности в результате извлечения стержня СУЗ должна была составлять примерно 4,7 р/с, что соответствует (если использовать известные температуры и значения пустотных коэффициентов реактивности) выходу делений, в два раза превышающему наблюдавшееся значение. В данном случае, однако, действие аварийной системы было достаточно быстрым, так что сам кадмиевый стержень, скорее всего, тоже способствовал гашению цепной реакции. Небольшое уменьшение скорости ввода реактивности по сравнению с приведенной величиной удлинило бы время разгона и сделало бы его таким, что еще с большей вероятностью можно было бы предположить, что всплеск мощности был погашен падающим стержнем-поглотителем.

В результате этого всплеска мощности никто из персонала не пострадал, хотя произошло загрязнение экспериментальной зоны раствором нитрата плутония. Через несколько дней здание было успешно дезактивировано, но до окончания полной очистки экспериментальной зоны в нем произошел пожар, и здание больше не использовалось.

 

3. Окриджская национальная лаборатория, 26 мая 1954 г. 38 41 42

Сборка с урановым раствором; центральный поглощающий цилиндр отклонился от нормального положения; единичный всплеск мощности; незначительные дозы облучения.

Данный эксперимент был одним из серии экспериментов по изучению критических свойств водных растворов в кольцевых цилиндрических емкостях. Внешний цилиндр имел диаметр 10 дюймов (25,4 см), а облицованный кадмием внутренний цилиндр — диаметр 2 дюйма (5,08 см). Система не имела отражателя и содержала 55,4 л водного раствора UO2F2. Масса высокообогащенного урана (93 %) составляла 18,3 кг. Всплеск мощности произошел, когда уровень жидкости достиг 40 дюймов (101,6 см), но продолжался процесс слива раствора в емкость. На рисунке 40 изображена схема эксперимента до и после аварии. Внутренний цилиндр, по сути дела, выполнял роль поглощающего стержня. Когда он отсоединился от места крепления в верхней части установки и наклонился в сторону стенки внешнего цилиндра, эффективность поглощения понизилась, и произошло увеличение реактивности системы. Уровень критичности на запаздывающих нейтронах был существенно превышен, и произошел всплеск мощности с энерговыделением 1017 делений.

Ход этой аварии был восстановлен самым тщательным образом. В результате наклона внутреннего цилиндра реактивность вводилась со скоростью 3,33 р/с и продолжала вводиться, когда система стала критической на мгновенных нейтронах. Используя известные коэффициенты и время генерации нейтронов, можно рассчитать, что в начальном пике выход составил 5,1 х 1016 делений. На развитие пика мощности после того, как система достигла критичности на мгновенных нейтронах, потребовалось лишь 0,07 с (0,43 секунды с момента начала отклонения цилиндра). Это означает, что цилиндр продолжал наклоняться. Особенностью таких аварий является то, что после начального пика скорость ввода реактивности компенсируется ростом мощности. Для данного раствора требовалась мощность в несколько мегаватт, которая поддерживалась достаточно стабильно, пока внутренний цилиндр не достиг максимального отклонения через 0,91 секунды после начала падения. В этот момент мощность резко упала, и, когда жидкость начали сливать, система оказалась в глубоко подкритическом состоянии.

Вследствие наличия толстой защиты никто из персонала не получил более 0,9 бэр. Из цилиндра выплеснулось несколько десятков кубических сантиметров раствора. Через три дня на установке возобновились эксперименты.

Рисунок 40. Схема сборки с урановым раствором в Окриджской национальной лаборатории с указанием нормального и смещенного положений центрального поглощающего цилиндра.

 

4. Окриджская национальная лаборатория, 1 февраля 1956 г.

41,42

Сборка с раствором урана; падающий лист кадмия создал волну; единичный всплеск мощности; незначительные дозы облучения.

В ходе данного эксперимента изучались параметры реактора путем измерения периодов разгона реактора. Система представляла собой цилиндрический бак диаметром 76 см, заполненный до уровня 130 мм 58,9 литрами водного раствора UO2F2, содержащего 27,7 кг 235U. Раствор подавался из емкости для хранения в экспериментальный реактор посредством создания избыточного давления воздуха в емкости для хранения. Расход раствора регулировался с пульта управления клапаном на трубопроводе диаметром 1/2 дюйма. Когда переключатель находился в положении «заливка раствора», клапан был открыт и давление подавалось в систему; когда переключатель находился в положении «слив», клапан также был открыт, но подкачка воздуха прекращалась, а давление в емкостях для хранения стравливалось до атмосферного. Когда переключатель находился в промежуточном, «нейтральном», положении, клапан закрывался и стравливалось давление в емкостях для хранения.

К этому моменту объем раствора был примерно на 100 миллилитров меньше критического. После добавления порции раствора период разгона быстро сократился до 30 с и, как казалось, стабилизировался на этом уровне. Вскоре после этого переключатель подачи раствора (топлива) перевели в положение «слив». Порог срабатывания автоматики был установлен на величину периода разгона в 10 секунд. Периодомер показал быстрое уменьшение периода разгона, и произошло почти мгновенное срабатывание системы аварийной защиты по сигналам оператора и автоматики. Сразу же после этого произошел всплеск мощности. Энерговыделение составило 1,6 х 1017 делений, и в данном случае значительный объем раствора был с силой выброшен из емкости.

Последовавшие за аварией проверки показали, что, если продолжительность времени, в течение которого стравливалось рабочее давление, была недостаточной, раствор мог продолжать поступать в реактор в течение нескольких секунд после того, как переключатель подачи топлива устанавливался в положение «слив». Такая добавка раствора может объяснить сокращение периода разгона, в результате которого сработала аварийная защита, однако при этом не могла быть добавлена реактивность, достаточная для объяснения наблюдавшегося всплеска мощности.

Реактивность таких неглубоких (плоских) сборок большого диаметра очень чувствительна к уровню раствора в установке и мало чувствительна к изменению диаметра. Для рассматриваемой системы разница между состояниями критичности на запаздывающих и мгновенных нейтронах определялась разницей в уровнях раствора, составлявшей всего 1 мм. При уменьшении эффективного диаметра до 50 см для сохранения состояния критичности на запаздывающих нейтронах высота должна была увеличиться только на 12 мм. Предполагается, что падающий в раствор кадмиевый лист, слегка деформированный в нижней части, вызвал возникновение волн в жидкости, в результате сложения которых по крайней мере один раз должна была образоваться конфигурация с критичностью на мгновенных нейтронах.

В данном случае анализ был направлен на определение величины скорости ввода реактивности, которая могла вызвать пик мощности с соответствующим энерговыделением. Результаты анализа сравнивались с известными фактами с целью выявления противоречий. В результате анализа оказалось, что скорость ввода реактивности, равная 94 р/с, достаточна для образования пика длительностью 8 миллисекунд с соответствующим энерговыходом. Максимальная избыточная реактивность на 2 р превышала уровень критичности на мгновенных нейтронах, а газовыделение могло быть в 12 раз больше, чем во время аварии 26 мая 1954 года в Окриджской лаборатории (см. аварию 3 в разделе А части II), что объясняет выброс раствора. Механизм возникновения газовыделения в виде сливающихся микропузырьков (образующихся вследствие диссоциации молекул воды продуктами деления) обсуждается в части III «Самоподдерживающаяся цепная реакция и механизмы гашения».

Для очистки от выплеснувшегося раствора потребовалась трудоемкая химическая дезактивация помещения, где располагалась сборка. Деформация дна цилиндра свидетельствовала о небольшом механическом повреждении. Максимальная доза не превысила 0,6 бэр.

 

5. Окриджская национальная лаборатория, 30 января 1968 г.

43

Сфера с раствором урана-233; введение реактивности вследствие движения воздушных пузырьков; единичный всплеск мощности; незначительные дозы облучения.

Проводились штатные критические эксперименты по определению критической концентрации водного раствора уранилнитрата в тонкой алюминиевой сфере (объем 5,84 литра) с толстым водяным отражателем. Уран содержал 97,6 % урана-233 при концентрации 167 г/л. Плотность раствора составляла 1,23 г/см3.

Тонкая регулировка уровня раствора в сфере осуществлялась вертикальным перемещением цилиндра диаметром 55 мм. Регулирующий цилиндр был соединен со сферой гибкой прозрачной трубкой диаметром 13 мм. Система достигла критичности, и проводились измерения при изменении реактивности. Опускание регулирующего цилиндра не привело к ожидаемому снижению реактивности. В трубке, соединяющей регулирующий цилиндр и сферу, был виден воздушный пузырек. При попытке удалить пузырек в емкость, откуда осуществлялась подача раствора, в хранилище слился раствор в количестве, достаточном для того, чтобы система стала подкритической. Затем регулирующий цилиндр поочередно поднимался и опускался для того, чтобы сдвинуть пузырек. Движение было повторено как минимум два раза. В то время, когда никакого регулирования вообще не проводилось, произошло быстрое возрастание реактивности, сработали все механизмы аварийной защиты, сработала аварийная сигнализация.

Предполагается, что движение воздушного пузырька привело к вытеснению в сферу раствора в количестве, достаточном для того, чтобы перевести систему из состояния подкритичности в критическое состояние на мгновенных нейтронах. Впоследствии было определено, что энерговыделение при всплеске мощности составило 1,1 х 1016 делений. Приблизительно 90 миллилитров раствора выплеснулось из сферы в водяной отражатель, на пол и оборудование. Была оперативно проведена дезактивация.

Впоследствии возникновение воздушных пузырьков было исключено в результате простой модификации экспериментальной установки.

 

В. Металлические сборки с отражателями и без отражателей

 

1. Лос-Аламосская национальная лаборатория, 21 августа 1945 г.

38

Плутониевая активная зона с отражателем из карбида вольфрама; единичный всплеск мощности; один человек погиб, один человек получил значительную дозу облучения.

 

2. Лос-Аламосская национальная лаборатория, 21 мая 1946 г.

38

Плутониевая активная зона с отражателем из бериллия; один человек погиб, семь человек получили значительные дозы облучения.

Обе аварии произошли с одной и той же активной зоной и были похожи во многих отношениях. Активная зона состояла из двух полусфер плутония в дельта-фазе, покрытых 1,25 мм никеля. Общая масса активной зоны составляла 6,2 кг, плотность плутония составляла около 15,7 г/см3.

В первом случае критическая сборка собиралась вручную: вокруг плутониевой активной зоны укладывались блоки из карбида вольфрама весом 4,4 кг каждый. На рисунке 41 воссоздана конфигурация сборки в тот момент, когда была уложена половина вольфрамовых блоков. Экспериментатор без помощника собирался установить последний блок в сборку, заканчивая монтаж отражателя весом 236 кг, когда по показаниям находящихся вблизи нейтронных счетчиков он заметил, что установка этого блока приведет сборку в состояние критичности. Он отдернул руку, но блок выскользнул и упал в центр сборки. Добавочного отражения нейтронов оказалось достаточно для того, чтобы система перешла в надкритическое состояние. Возник всплеск мощности. Экспериментатор быстро убрал последний блок и начал разбирать сборку. Он получил 510 бэр в результате интегрального энерговыделения, составившего 1016 делений. Через 28 дней он умер.

Часовой, охранявший здание, но не участвовавший в экспериментах, получил дозу радиации, составившую около 50 бэр. Никелевая оболочка, которой была покрыта плутониевая активная зона, не была повреждена.

Во втором случае нескольким специалистам демонстрировался способ монтажа металлических критических сборок. Система состояла из такой же плутониевой сферы, но на сей раз с бериллиевым отражателем. Последней операцией являлась установка верхней полусферической бериллиевой оболочки. Ее медленно опускали на место, так что один край касался нижней бериллиевой полусферы, а другой, диаметрально противоположный, конец удерживался в приподнятом состоянии отверткой (рис. 42). Человек, проводивший демонстрацию, придерживал верхнюю полусферу, просунув большой палец левой руки в отверстие в верхней ее части.

Энерговыход в результате всплеска мощности составил 3 х 1015 делений. Механического разрушения никелевой оболочки и в этом случае не наблюдалось. Восемь человек, находившихся в комнате, получили дозы, составившие 2100, 360, 250, 160, 110, 65, 47 и 37 бэр. Человек, проводивший демонстрацию, умер через 9 дней.

На рисунке 43 показаны результаты расчета мощности энерговыделения в сфере как функции времени для нескольких значений избыточной реактивности. На рисунке 44 для тех же значений избыточной реактивности приведены соответствующие значения интегрального энерговыделения в зависимости от времени. Эти данные можно применять к обеим описываемым авариям, так как разный материал отражателя очень мало сказывается на кинетике цепной реакции. Если в случае первой аварии избыточная реактивность не превышала 15 центов, то вся конструкция должна была удерживаться в собранном виде в течение нескольких секунд, что вполне соответствует реальной картине событий. Во втором случае экспериментатор был лучше подготовлен к тому, чтобы быстро разобрать конструкцию. Считается, что это удалось сделать за доли секунды, возможно, меньше чем за полсекунды. Тогда известные параметры процесса можно объяснить, если положить избыточную реактивность равной 10 центам.

Рисунок 41. Сфера из плутония с частичным отражателем из карбида вольфрама.

Р исунок 42. Конфигурация отражателя из бериллиевых оболочек до аварии, произошедшей 21 мая 1945 года.

Рисунок 43. Расчетные значения мощности энерговыделения для плутониевой сферы массой 6,2 кг.

Рисунок 44. Расчетные значения энерговыхода для плутониевой сферы массой 6,2 кг.

 

3. Лос-Аламосская национальная лаборатория, 1 февраля 1951 г.

38, 42, 44, 45

Эксперимент по взаимодействию; две большие массы урана (93,5 %) в воде; многократные всплески мощности; незначительные дозы облучения.

В 1949 году была создана установка для изучения размножающих свойств сборки из металла в воде. Установка имела две системы аварийной защиты. Первая, с быстрым срабатыванием, состояла из пневматического цилиндра, поднимавшего из воды изделие; вторая, более медленная, опустошала бак. Впоследствии установка была оборудована подвижной консолью, предназначенной для определения критических расстояний между двумя взаимодействующими частями, и была добавлена дополнительная система аварийной защиты в виде падающей кадмиевой пластины (рис. 45).

К всплеску мощности привел эксперимент по измерению критического расстояния между двумя частями сборки из обогащенного урана (с обогащением 93,5 %), помещенными в воду. Одна часть представляла собой сплошной цилиндр массой 24,4 кг, а вторая — полый цилиндр массой 38,5 кг. Наружная поверхность сплошного цилиндра и внутренняя поверхность полого цилиндра были облицованы листовым кадмием с толщиной слоя, равной 2,54 мм. Полый цилиндр был заполнен парафином.

По завершении эксперимента по определению критического расстояния (при коэффициенте умножения, равном 65,5) сборка была заглушена. Начался слив воды, была сброшена кадмиевая пластина, происходил подъем сплошного цилиндра (слева на рисунке 45). В этот момент произошел всплеск мощности (позже было определено, что выход составил 1017 делений), о чем свидетельствовали захлебнувшиеся нейтронные счетчики и появление облака пара над поверхностью воды, которое было видно на телеэкране.

Рисунок 45. Установка, использовавшаяся в Лос-Аламосской национальной лаборатории при измерении критических расстояний между взаимодействующими частями сборки.

Последующее воспроизведение событий показало, что первой сработала пневматическая система аварийной защиты (подъемник для извлечения из воды), что вызвало осложнения двух типов. Во-первых, максимальная реактивность системы имела место при слегка поднятом положении левого цилиндра относительно его нижнего состояния. Эта реактивность реализовалась в процессе подъема сплошного цилиндра (в момент всплеска мощности). Во-вторых, быстрый подъем из воды вызвал возникновение гидродинамических сил, под действием которых цилиндры приблизились друг к другу. Комбинация этих двух факторов оказалась достаточной для того, чтобы сборка перешла в критическое состояние на мгновенных нейтронах, причем реактивность поддерживалась бы в этом случае, по крайней мере, на том же уровне в течение 0,2 с, если бы не произошел всплеск мощности. По оценкам, энерговыход в первом пике составил 6 х 1015 делений. Возможно, что за первым пиком последовали один или несколько всплесков мощности при движении блока в области реализации мгновенной критичности, поскольку основным механизмом гашения цепной реакции было кипение.

При этой аварии с полным энерговыделением 1017 делений персонал не был облучен, не произошло загрязнения экспериментальной установки. Повреждение урановых блоков выразилось в небольшом коррозионном отслаивании и вздутии за счет образования оксида урана. Работы на экспериментальной установке были возобновлены уже через два дня.

 

4. Лос-Аламосская национальная лаборатория, 18 апреля 1952 г.

38, 42, 44, 46

«Джемайма» — цилиндрическая сборка из металлического урана (93 %) без отражателя; ход энерговыделения неизвестен; незначительные дозы облучения.

Система, в которой произошел разгон мощности, представляла собой цилиндрическую сборку из металлического урана с обогащением, равным 93 %, составленную из нескольких пластин диаметром 26,7 см и толщиной 0,8 см.

Полная сборка состояла из двух частей, причем нижняя часть была собрана из шести пластин, а верхняя собиралась сначала из трех, а потом из четырех пластин.

График обратного умножения в зависимости от числа пластин, или общего количества урана в системе, явно указывает на то, что систему не следовало делать из 11 пластин. Тем не менее, такую систему попытались собрать после того, как два человека независимо сделали одну и ту же ошибку в расчетах. В нарушение правил эксплуатации данные не были представлены в виде графика. Энерговыделение в пике составило 1,5 х 1016 делений.

Без воспроизведения условий эксперимента невозможно установить, как изменялась мощность, выделяемая в массе урана, равной 92,4 кг. В тот момент, когда система была близка к критичности на мгновенных нейтронах, нижняя часть сборки двигалась по инерции вверх, и ввод реактивности, наверное, не превышал 2 или 3 р/с. Такая скорость ввода реактивности может дать пик в 1015 делений. После этого мощность стабилизировалась на уровне около 1017 делений/с, что было как раз достаточно для компенсации введенной реактивности. Большая часть из 1,5 х 1016 делений должна была произойти на этом плато. Мощность упала практически до нуля, когда автоматическая система аварийной защиты развела в стороны две массы металла.

Система была оборудована дистанционным управлением, никакого механического повреждения системы или делящегося материала не было. Никто из персонала не облучился, экспериментальная зона осталась чистой. Очевидное свойство самогашения, продемонстрированное при данном всплеске мощности, стимулировало дальнейшие исследования на сборке «Леди Годива» 47,48,49, которая использовалась в качестве установки для генерации мощных импульсов нейтронов деления с длительностью менее 100 микросекунд.

 

5. ВНИИЭФ, г. Саров (Арзамас-16), 9 апреля 1953 г.

50

Активная зона (центральная часть сборки) из плутония массой ~8 кг с отражателем из природного урана; управление экспериментом дистанционное из пультового помещения с биологической защитой.

Авария произошла при проведении эксперимента, целью которого являлось изучение ядерно-физических характеристик размножающей системы (РС), содержащей плутониевую центральную часть (активную зону) внешним диаметром ~100 мм в отражателе из природного урана внешним диаметром 300 мм. Активная зона (АЗ) состояла из четырех полусферических слоев плутония в δ-фазе, покрытых слоем никеля толщиной ~0,1 мм.

Отражатель из природного урана состоял из шести полусферических слоев, вкладывающихся друг в друга. В плоскости разъема в урановых оболочках имелся канал диаметром 26 мм.

В центре АЗ в полости диаметром 28 мм находился нейтронный источник мощностью ~107 н/с.

Рисунок 46. Схема опыта с исследуемой РС на стенде ФКБН.

В диаметральной плоскости слои РС разделялись диском из дюралюминия толщиной 5 мм с радиальным пазом, в котором располагались 24 таблетки из U3O8 (90 % обогащения по 235U) весом 80 мг каждая.

PC была собрана на установке ФКБН 51, первый вариант которой в 1950–1953 гг. представлял собой гидравлический подъемник с дистанционным управлением. Стенд ФКБН размещался в здании Б реакторной площадки, удаленной от жилой зоны на расстояние ~7 км. Управление стендом осуществлялось из смежного пультового помещения (рис. 47).

Исследуемая PC была разделена на две части (рис. 46):

• верхнюю, содержащую урановые слои диаметром от 120 мм до 300 мм, установленную неподвижно на трех опорах, сцентрированных относительно вертикальной оси подъемника с нижней частью PC;

• нижнюю, содержащую плутониевую A3 и остальные урановые оболочки.

Рисунок 47. Планировка здания Б.

В исходном состоянии расстояние между нижней и верхней частями РС составляло 200 мм. Минимальное расстояние, на которое могли быть сближены части РС, определялось толщиной стальных упоров (прокладок), которые перед началом сближения устанавливались оператором вручную на горизонтальном срезе нижней части PC (подъемнике). При достижении заданного зазора подъемник автоматически отключался, и оператор производил замер величины потока нейтронов из PC и расчет соответствующей подкритичности.

Комиссия, расследовавшая причины аварии, констатировала:

"…Устройство ФКБН и его предохранительной автоматики таковы, что обеспечивается защита только от медленных переходов через критическое состояние. ФКБН не защищен от небрежной работы, и поэтому инструкция предусматривает ведение работы так, как если бы никакой предохранительной автоматики не было.

Непосредственной причиной аварии и выхода ФКБН из строя 9 апреля 1953 г. явилась халатность, допущенная оператором, который, проводя работу один, установил прокладку толщиной 5 мм вместо прокладки толщиной 10 мм".

В результате поток нейтронов при сближении частей PC резко возрос, что привело к значительному выделению тепла, плавлению и вытеканию части плутония (масса ~70 г) из A3 в горизонтальный канал уранового отражателя.

По сигналу аварийной тревоги нажатием кнопки на пульте управления оператор опустил стол подъемника с нижней частью PC в исходное положение и остановил цепную реакцию. Указанные события произошли в обеденный перерыв, когда основная группа экспериментаторов (~10 чел.) отсутствовала. Спустя ~2 часа прибывший руководитель работы вместе с оператором зашли в помещение ФКБН и произвели внешний осмотр установки. По результатам дозиметрического контроля интегральная доза за время осмотра составила у них 1,6 P и 1 P, соответственно.

Последующий осмотр РС комиссией специалистов показал, что три (из четырех) плутониевых полусфер сплавились с дюралюминиевым диском, разделяющим РС, поэтому для дальнейшей разборки РС была направлена на комбинат "Маяк".

Обработка урановых индикаторов, имевшихся в РС, подтвердила первоначальную оценку интегрального энерговыделения, составившего ~1016 делений.

3начительного радиоактивного загрязнения помещения стенда установки не произошло, и в дальнейшем, после дезактивации, на этом месте был установлен новый стенд для работы с РС.

По результатам анализа обстоятельств аварии было признано, что установка ФКБН в ее первоначальном варианте не удовлетворяет техническим требованиям по обеспечению безопасности работ с критическими системами, и установка была демонтирована. Взамен ее во ВНИИЭФ были спроектированы и сооружены новые варианты: ФКБН-1 (1955 г.), ФКБН-2 (1963 г.), ФКБН-2М и др., снабженные быстродействующей аварийной защитой.

 

6. Лос-Аламосская национальная лаборатория, 3 февраля 1954 г.

38 42 48

Сборка «Леди Годива», голая сфера из металлического урана (93,7 %); сбой в работе стержня регулирования; единичный всплеск мощности; незначительные дозы облучения.

 

7. Лос-Аламосская национальная лаборатория, 12 февраля 1957 г.

42 48 49–52 53-54

Сборка «Леди Годива», голая сфера из металлического урана (93,7 %), добавлен отражатель; единичный всплеск мощности; незначительные дозы облучения.

Эти два разгона мощности произошли на критсборке без отражателя с металлическим топливом «Леди Годива», состоящей из трех секций, которые в сборе образуют сферу. На рисунке 48 показана сборка «Леди Годива» в подкритическом состоянии. Центральная секция неподвижно закреплялась с помощью маленьких трубчатых стальных опор, а верхняя и нижняя секции могли перемещаться с помощью пневматических цилиндров, и таким образом обеспечивались две независимые системы аварийной защиты. Критическая масса составляла приблизительно 54 кг урана с обогащением, равным 93,7 %. Система управлялась дистанционно с расстояния 1/4 мили (402 м).

Первый всплеск мощности произошел во время приготовлений к плановому эксперименту, входящему в программу измерений параметров разгона. Обычно такой нейтронный импульс получали, приводя сборку в состояние критичности на запаздывающих нейтронах. Достигалось это следующим образом: выбиралось положение стержней регулирования, верхняя секция поднималась для снижения реактивности и спада потока нейтронов, после чего нижняя часть приводилась в нужное положение и быстро вводился стержень с весом, превышающим 1 β, для того чтобы инициировать вспышку нейтронов.

3а этим следовал всплеск мощности с выходом, который обычно составлял 1016 делений за 100 микросекунд, а через 40 миллисекунд система заглушалась. Поскольку единственным источником нейтронов служило спонтанное деление, сборку, как правило, настраивали на избыточную реактивность в 70 центов, чтобы генерировать достаточное количество нейтронов для определения значений параметров, соответствующих критичности на запаздывающих нейтронах, за приемлемое время. Эта авария произошла, скорее всего, из-за того, что по ошибке после ввода 70 центов была введена дополнительная реактивность до начала цепной реакции.

Энерговыделение в пике составило 5,6 X 1016 делений, что в среднем в шесть раз больше выхода при штатном импульсе нейтронов. При аварии не возникала угроза радиационного поражения, не произошло радиоактивного загрязнения, не было облучения персонала или существенного разрушения основных урановых деталей. Одна деталь была слегка покороблена и потребовала обработки на станке. Погнулись или сломались несколько легких стальных опорных конструкций (рис. 49).

Второй всплеск мощности произошел во время подготовки к эксперименту, во время которого предполагалось получить импульс быстрых нейтронов на сборке «Леди Годива». Вспышка нейтронов в этом случае опять произошла во время сближения секций с достижением опорной точки по избыточной реактивности на уровне 80 центов. Необходимо было выполнить настройку регулирующих стержней для обеспечения определенной величины периода. Дополнительная реактивность, как считают, оказалась внесенной за счет присутствия большой массы графита и полиэтилена, которые предполагалось облучать. Непосредственно перед всплеском мощности эта масса была придвинута к сборке, при этом, возможно, оказалось недооцененным дополнительное отражение нейтронов, или разложенный материал оказался ближе от сборки, чем предполагалось.

Вспышка дала 1,2 X 1017 делений, что почти в 12 раз больше стандартного импульса при эксперименте. Металлический уран сильно окислился, покорежился и, очевидно, подплавился вблизи своего центра. Центральный стержень для быстрого ввода реактивности был почти разорван, в его центре температура, вероятно, не достигла температуры плавления урана примерно на 100 °C. На рисунке 50 показан внешний вид некоторых деталей. Внешние повреждения ограничились опорной конструкцией, радиоактивное загрязнение было в виде чешуек из оксида урана, его удалось быстро убрать. Ремонтировать «Леди Годиву» не имело смысла, поэтому ускоренными темпами приступили к созданию сборки «Годива-II» 54, которая была специально предназначена для получения импульсов нейтронов. Несмотря на масштаб всплеска мощности, персонал не получил существенной дозы облучения, так как сборка и пультовая были расположены на большом расстоянии друг от друга.

Поведение сборки «Леди Годива» во время всплесков мощности при критичности на мгновенных нейтронах хорошо изучено экспериментально и теоретически 48,53,54. На сборке было получено намного больше 1000 безопасных, контролируемых нейтронных импульсов. Расчеты, выполненные с помощью сопряженных компьютерных программ для теплогидравлического и нейтронно-физического расчета, адекватно описывают поведение системы.

Первый всплеск мощности (5,6 X 1016 делений), должно быть, характеризовался периодом, равным 6,4 секунды, что эквивалентно 15 центам избыточной реактивности по отношению к уровню критичности на мгновенных нейтронах. Избыточная реактивность в наиболее мощном пике (1,2 X 1017 делений) составила 21 цент по отношению к уровню критичности на мгновенных нейтронах, что соответствует периоду, равному 4,7 секунды.

Энерговыделение во время второй аварии, равное 1,2 X 1017 делений, эквивалентно по энергии 1,7 фунтам (772 г) взрывчатки, однако причиненный ущерб оказался намного меньше, чем в результате подрыва такого количества взрывчатых веществ. Вышеупомянутая компьютерная программа позволяет рассчитать долю энергии деления, которая переходит в кинетическую энергию. В данном случае только 1,4 % энергии (что эквивалентно 0,024 фунтам (11 г) взрывчатки) перешло в кинетическую энергию и могло вызвать механические повреждения. Реальная картина повреждений согласуется с этой цифрой, отсюда очевидно, что основная часть энергии деления перешла в тепло.

Рисунок 48. Критсборка «Леди Годива» в Лос-Аламосской национальной лаборатории (сфера из обогащенного урана без отражателя) в заглушенном состоянии.

Рисунок 49. Критсборка «Леди Годива» после аварии 3 февраля 1954 г.

Рисунок 50. Регулирующий стержень для импульсного ввода реактивности и несколько секций критсборки «Леди Годива». На деталях видны следы окисления и деформации поверхности в результате второй аварии 12 февраля 1957 г.

 

8. Лос-Аламосская национальная лаборатория, 17 июня 1960 г

Сборка из металлического урана (93 %), графитовый отражатель; единичный всплеск мощности; незначительные дозы облучения.

Исследовались критические параметры металлических урановых цилиндров (уран высокого обогащения — 93 %), окруженных толстым отражателем из графита (около 9 дюймов, или 23 см) и почти бесконечным отражателем из воды. В ходе рассматриваемого эксперимента было выстроено кольцо из примерно 48 кг урана на графитовом цилиндре, который был установлен на гидравлическом подъемнике. Движение кольца управлялось из пультовой. Кольцо было поднято в графитовый отражатель, установленный на стационарной стальной платформе. Система перешла в состояние критичности до завершения операции, когда кольцо не доходило на один дюйм (2,54 см) до конечного положения. Произошло срабатывание системы управления и защиты по сигналам оператора и автоматики. После срабатывания системы управления и защиты подъемник быстро упал вниз, и система стала подкритической, однако около 1/3 массы металла застряло на несколько секунд в графитовом отражателе перед тем, как упасть вниз. Энерговыход составил около 6 X 1016 делений. Не наблюдалось радиоактивного загрязнения, металл не был поврежден. Дозы, полученные персоналом, были очень малы.

Во многих отношениях эта авария похожа на аварию, произошедшую на критсборке «Джемайма» (часть II, раздел В, авария 4). В этом эксперименте не проводились измерения чувствительности системы к изменению реактивности после разгона, в то же время анализ аналогичных систем указывает на то, что скорость ввода реактивности, скорее всего, не превысила нескольких β в секунду, при этом первый пик мог дать 1015 делений.

Энерговыделение было очень близко к величине в первой аварии на критсборке «Леди Годива» (3 февраля 1954 г., 5,6 X 1016 делений), массы делящегося вещества в обоих случаях вполне сопоставимы. В аварии на критсборке «Леди Годива» вся энергия выделилась в пике мощности, были деформированы части критсборки, наблюдалось повреждение опорных конструкций. В данном же случае металлический уран не был поврежден, что подтверждает мнение о том, что первый пик мощности был мал по сравнению с полным энерговыходом.

 

9. Окриджская национальная лаборатория, 10 ноября 1961 г.

55

Металлический уран (93 %), парафиновый отражатель; единственная вспышка; незначительные дозы облучения.

Неконтролируемый разгон произошел в блоке из высокообогащенного (около 93 %) металлического урана массой около 75 кг, когда одна часть активной зоны, установленная на платформе вертикального подъемника, приближалась к другой, неподвижной, части. Эксперимент был последним из серии экспериментов, в ходе которых постепенно добавляли уран или парафин, меняя реактивность всей сборки. Все предыдущие эксперименты проходили в подкритическом состоянии при полностью сформированной конфигурации сборки. В данном случае система стала надкритической во время движения подъемника, а полный энерговыход составил от 1015 до 1016 делений.

Скорость подъемника составляла 16 дюймов/мин (41 см/мин), критичность на запаздывающих нейтронах, как это было определено впоследствии, возникла при достижении расстояния между сдвигаемыми частями, равного 2,7 дюйма (6,9 см). В этой точке чувствительность системы равнялась 8,6 β/дюйм (3,39 β/см). Таким образом, скорость ввода реактивности составила 2,3 β/с (0,9 β/с), и замедление движения подъемника, начавшееся на расстоянии, равном 1,94 дюйма (4,93 см), не повлияло на развитие разгона.

Изменение во времени реактивности и мощности должно было проходить так же, как это было в случае аварии на критсборке «Джемайма», однако время срабатывания системы аварийной защиты в этом случае составляло всего 50 миллисекунд. Первый пик не мог превышать 1015 делений, а выделение оставшейся энергии происходило, должно быть, на плато, последовавшем за пиком мощности. Внешний вид металла (гладкий, без следов окисления) и тот факт, что парафин не расплавился, качественно подтверждают оценку энерговыхода в интервале от 1015 до 1016 делений. Персонал получил незначительные дозы, лаборатория была готова к нормальной работе через полтора часа.

 

10. ВНИИЭФ, г. Саров (Арзамас-16), 11 марта 1963 г.

50

Активная зона (центральная часть сборки) из плутония массой 17,35 кг с отражателем из дейтерида лития; управление экспериментом дистанционное, из пультового помещения с биологической защитой; одна вспышка; два оператора серьезно переоблучились.

Авария произошла при проведении эксперимента, целью которого являлось изучение ядерно-физических характеристик размножающей системы (РС), содержащей плутониевую центральную часть (активную зону) внешним диаметром 135 мм в отражателе из дейтерида лития с внешним диаметром -350 мм, в состоянии, близком к критическому с учетом запаздывающих нейтронов (коэффициент умножения потока нейтронов от центрального источника <= 103). Активная зона (АЗ) состояла из набора вкладывающихся друг в друга полусферических слоев металлического плутония в 5-фазе, покрытых слоем никеля толщиной -0,1 мм.

Отражатель нейтронов состоял из набора полусферических слоев прессованного LiD суммарной толщиной -107 мм.

В центре АЗ в полости диаметром 63 мм находился нейтронный источник мощностью -106 н /с.

Рисунок 51. Схема эксперимента с исследуемой РС на стенде МСКС.

Работа с описанной РС проводилась на стенде установки МСКС (малый стенд критических сборок), принципиальная схема которого приведена на рисунке 51 56. Стенд МСКС размещался в экспериментальном зале здания Б реакторной площадки (рис. 52). МСКС был предназначен для изучения динамических процессов в РС с использованием импульсного нейтронного генератора. Данные эксперименты разрешалось проводить только с предварительно проверенными критическими (с учетом запаздывающих нейтронов) РС, для которых геометрия, состав, максимальный коэффициент умножения потока нейтронов от центрального источника (<= 1000), порядок безопасной сборки-разборки, влияние используемых приспособлений и оборудования уже определены в специальном калибровочном опыте на установке ФКБН, размещенной в том же здании Б реакторной площадки (рис. 52).

9 марта 1963 г. без калибровочного опыта на установке ФКБН описанная РС была собрана на стенде МСКС (рис. 51). Сборку и пробное сближение частей РС производил начальник установки МСКС, которому ассистировал инженер по эксплуатации. Сближение частей РС осуществлялось дистанционно с пульта управления, установленного за биологической защитой (рис. 52).

11 марта 1963 г. начальник установки и ассистент в помещении стенда возобновили работу по подготовке экспериментов с собранной ими ранее РС. Экспериментаторы попытались внести изменения в механическую часть стенда, используя нештатные приспособления и не контролируя состояние сборки (что являлось грубым нарушением правил работы). Аварийный импульс делений возник в тот момент, когда они, находясь рядом со стендом, производили настройку подъемного устройства. Увидев вспышку света, экспериментаторы быстро убежали в пультовую, откуда начальник установки произвел сброс подъемника с нижней частью РС, нажав соответствующую кнопку на пульте.

Рисунок 52. Планировка здания Б.

На основе проведенного анализа обстоятельств аварии было сделано заключение, что РС перешла в критическое (а, возможно, слегка надкритическое) по мгновенным нейтронам состояние. Энерговыделение во вспышке, по оценкам, составило ~5 X 1015 делений. Установка МСКС никаких повреждений не получила и находилась в полностью исправном состоянии. Радиоактивного загрязнения помещения не произошло. Детали РС не получили повреждений, что позволило использовать их для проведения специального эксперимента с целью уточнения доз облучения персонала, находившегося рядом со стендом, а также в смежных помещениях.

Причиной несчастного случая явились грубые нарушения установленных правил работы на МСКС со стороны начальника установки и его помощника. Аварийная вспышка произошла за счет случайного смыкания частей РС при манипуляциях экспериментаторов с механизмом стенда.

Оба сотрудника были немедленно госпитализированы и направлены для лечения в специализированную клинику в Москву.

Начальник установки (1929 г. рождения) получил дозу 370 бэр (острая лучевая болезнь (ОЛБ) средней тяжести (2 степень)). Он вернулся к работе через несколько месяцев. Он работал на ускорителе Ван-де-Граафа. Потом переехал в Москву, где и умер в возрасте ~60 лет.

Ассистент (1932 г. рождения) получил дозу 550 бэр (ОЛБ тяжелой формы (3 степень)). После возвращения на работу периодически проходил курсы лечения в клинике в течение нескольких лет. Он занимался разработкой радиоэлектронной аппаратуры для реакторных исследований. В 1998 г. вышел на пенсию. Сейчас проживает в г. Сарове (Арзамас-16).

В результате аварии облучению подверглись еще 4 сотрудника. Они находились в смежных помещениях, и дозы их были незначительны: ~7, ~1, ~1 и ~0,02 бэр.

Стенд МСКС после описанного случая в течение длительного времени использовался в различных экспериментах.

 

11. Ливерморская лаборатория им. Лоуренса, 26 марта 1963 г. 57

Сборка из металлического урана с бериллиевым отражателем; единичный всплеск мощности; незначительные дозы облучения.

Критическая сборка состояла из концентрических цилиндров, изготовленных из высокообогащенного металлического урана, окруженных бериллиевым отражателем. Общая масса обогащенного урана, составлявшая 47 кг, была поделена на две части: центральный блок находился на подъемнике, а кольца большего диаметра и отражатель находились на неподвижной платформе. Критичность достигалась путем пошагового подъема центрального блока внутрь кольцевого слоя, окруженного отражателем. Эксперименты проводились в оборудованном мощной защитой боксе, который примыкал к зоне с импульсным реактором «Кукла», дававшим импульсы мгновенных нейтронов.

Были успешно осуществлены семь шагов подъема, и были выполнены эксперименты по измерению размножения на каждом шаге. На восьмом шаге, когда все шло практически нормально, экспериментальная сборка внезапно перешла в надкритический режим. Раздался звук, похожий на взрыв, и сработала система аварийной защиты и аварийная сигнализация. Спустя несколько секунд можно было видеть, как плавится и горит уран. Позднее был измерен энерговыход, составивший 3,76 X 1017 делений. При этом практически не было выделения механической энергии. Около 15 кг урана сгорело, около 10 кг расплавилось и растеклось по полу. Дозы облучения персонала, находившегося в здании или вблизи него, были низкими и не превысили 0,12 бэр. В результате аварии было сильно загрязнено помещение, в котором располагалась сборка.

Считается, что авария произошла потому, что центральный металлический цилиндр, стоявший на платформе подъемника, оказался слегка сдвинутым от центра. Когда он был поднят и вошел в неподвижную секцию экспериментальной сборки, одно или несколько металлических колец приподнялись. После восьмого шага кольца сами по себе просели, заняв свое нормальное положение относительно центральной цилиндрической секции сборки, при этом резко возросла реактивность. Ни скорость ввода, ни максимальная реактивность не известны.

Первый пик, вероятно, не превысил 1016 делений, большая часть энергии выделилась, по-видимому, когда мощность системы стабилизировалась и находилась на высоком плато. Гашение СЦР произошло вследствие теплового расширения и плавления сборки.

 

12. Ракетный полигон Уайт Сэндз, 28 мая 1965 г.

58

Импульсный быстрый реактор с уран-молибденовой активной зоной без отражателя; единичный всплеск мощности; незначительные дозы облучения.

После того как реактор «Годива» был успешно применен для генерации коротких мощных импульсов нейтронов со спектром, близким к спектру деления, было разработано несколько подобных импульсных реакторов для целей облучения. Один из таких импульсных реакторов, содержавший 96 кг сплава высокообогащенного урана и молибдена (10 %), был построен на ракетном полигоне Уайт Сэндз, расположенном на юге штата Нью-Мексико. Конструкция этого реактора в чем-то похожа на конструкцию реактора «Годива II» 54: семь колец и верхняя пластина образовывали большое пространство в центре, которое в критическом состоянии было заполнено блоком безопасности. Через отверстия в кольцах проходили два регулирующих стержня и импульсный стержень. Вся система удерживалась в сборе с помощью трех металлических болтов. Первоначально болты были сделаны из нержавеющей стали, но непосредственно перед аварией их заменили на болты, изготовленные из уран-молибденового сплава. В эксперименте определялся вклад в реактивность, вносимый разными компонентами сборки. Были измерены новые веса регулирующих стержней, импульсного стержня, реактивность, вводимая разными мелкими компонентами, а также реактивность, обусловленная извлечением блока безопасности на один дюйм.

Для дальнейшей калибровки реактивности блока безопасности нужен был более мощный нейтронный поток, чем тот, который давал полоний-бериллиевый нейтронный источник. Чтобы получить мощность в 1 ватт, сняли (зашунтировали) блокировку, и блок безопасности вдвигался внутрь, приближаясь, как думали, к известному состоянию. Всплеск мощности произошел, когда блок безопасности приблизился к полудюймовой отметке.

Все механизмы защиты реактора сработали как положено, при этом за короткий промежуток времени выделилась большая энергия, и всплеск мощности был погашен вследствие теплового расширения металла. Новые уран-молибденовые болты не выдержали (отлетели головки), и два верхних кольца вместе с мелкими деталями были отброшены на расстояния от 1,5 м до 4,6 м.

По данной аварии сохранился полный набор показаний приборов. Минимальный период был 9,2 микросекунды, максимальная реактивность на 15 центов превысила уровень критичности на мгновенных нейтронах, скорость ввода реактивности составила 2,2 β/с, длительность нейтронного импульса составила 28 микросекунд. Увеличение внутренней температуры на 290 °C говорит о выходе, составляющем 1,5 X 1017 делений, что всего в 1,4 раза больше максимального выхода, наблюдавшегося в нормальных условиях эксперимента.

Во время неожиданной вспышки были разрушены только крепежные болты и немного откололось никелевое покрытие колец. Дозы облучения персонала были очень маленькими. Через час после всплеска мощности камеру вскрыли и измерили уровень радиации, который оказался выше обычного фона, но не намного выше уровня, наблюдавшегося после плановой вспышки.

 

13. Челябинск-70, 5 апреля 1968 г.

59,60

Сборка из металлического урана, U(90 %), с отражателем из природного урана; единичный всплеск мощности; два человека погибли.

Авария произошла 5 апреля 1968 г. в Российском Федеральном Ядерном Центре (ВНИИТФ), расположенном в южной части Уральских гор между Екатеринбургом и Челябинском. Эксперименты с критическими сборками, использующие механизм вертикального подъема на установке ФКБН, начались во ВНИИТФ в 1957 г. Акронимом ФКБН обозначается «физический котел быстрых нейтронов».

В те годы велись интенсивные работы по разработке мощных реакторов для исследования радиационной стойкости. На ФКБН, в частности, был реализован ряд критических конфигураций с толстым отражателем и большой внутренней полостью, обеспечивающих работу в импульсном режиме и в статическом режиме на мощности несколько кВт.

В рассматриваемом случае проводились исследования влияния полиэтиленового сферического образца на кинетические характеристики реакторной системы методом котельных шумов.

Механизм сборки в установке ФКБН и компоненты системы в том виде, как они были составлены во время аварии, показаны схематически (но не в масштабе) на рисунке 53. Активная зона сборки состояла из сферической металлической оболочки U(90 %) с внутренней полостью. Активная зона могла быть окружена толстым сферическим металлическим отражателем из природного урана. На рисунке 53 показано, что внешний отражатель разделен на верхнюю и нижнюю половины. Аварийный выброс привел к смерти двух знающих и полностью квалифицированных специалистов по ядерной критичности, стоявших рядом со сборкой во время выброса. Система аварийной сигнализации о критичности была установлена, но не работала во время эксперимента Можно провести некоторую аналогию между этой аварией и аварией, которая случилась почти тридцать лет спустя 17 июня 1997 г. в Арзамасе-16 (ВНИИЭФ) при использовании абсолютно идентичных полусферических слоев U-90 %, из которых собиралась активная зона.

Верхний отражатель состоял из металлического природного урана, полная масса урана в нем была 308 кг. Внутренний радиус составлял 9,15 см, а наружный радиус — 20,00 см. Активная зона представляла собой сферическую оболочку из металлического урана с обогащением 90 %, с внутренним радиусом 5,50 см и наружным радиусом 9,15 см (диаметры: 110-120-135-151-167-183 мм). Масса урана в активной зоне составляла 47,7 кг, или 43,0 кг 235U. Наружный радиус полиэтиленовой сферы составлял 5,50 см. Нижний отражатель представлял собой полусферу из природного урана с внутренним радиусом 9,15 см и наружным радиусом 20,00 см.

Авария произошла в пятницу вечером после обычного рабочего дня. В этот самый день с утра проводилась сборка на стенде ФКБН. Два экспериментатора, участвовавшие в сборке в течение рабочего дня, решили продолжить работу вечером для того, чтобы завершить вторую сборку. Вечерняя сборка должна была повторить дневную сборку с одним отличием: сплошной полиэтиленовый шар нужно было вставить в полость активной зоны, которая оставалась в дневной сборке пустой, и заполнить эту полость. С ручного пульта управления, находясь в зале, ответственный руководитель работы (старший научный сотрудник) стал оперировать верхним талем (тельфером), чтобы опустить верхнюю половину отражателя и привести ее в соприкосновение с активной зоной. Оператор (старший инженер), стоя рядом с ФКБН, рукой направлял опускавшийся отражатель. Авария произошла, когда верхняя половина отражателя опускалась по направлению к активной зоне и почти пришла в соприкосновение с ней. После того, как мощность выброса достигла киловаттного уровня, сработала быстродействующая аварийная защита, и нижняя половина отражателя была сброшена, что было достаточно для приведения системы в глубоко подкритическое состояние и прекращения цепной реакции.

Рисунок 53. Схематическое изображение приблизительной конфигурации сборочного механизма вертикального подъема и активной зоны ФКБН во время аварии. Схема приведена не в масштабе.

Ответственный руководитель сделал ошибку в рассуждении, ожидая, что полиэтиленовый шар приведет к малому влиянию на реактивность системы, сделав вечернюю сборку менее реактивной, чем дневная сборка. Расследование, последовавшее за аварией, установило, что полиэтиленовый шар имел на самом деле положительное влияние на реактивность системы, сделав вечернюю сборку более чувствительной, чем дневная сборка. Расследование после аварии установило, что в дополнение к ошибке в рассуждениях, экспериментатор нарушил несколько рабочих инструкций. При монтаже вечером нижняя половина уранового отражателя не была помещена на 2,0 см выше его нижнего упора, как требовалось для гарантии адекватного запаса в отношении критической безопасности в процессе сборки. Вместо этого, нижний отражатель был установлен на 9,0 см выше его нижнего упора, то есть на 3,0 см ниже его верхнего упора, соответствовавшего тому, что нижний отражатель приходит в контакт с активной зоной. Тот факт, что положение нижнего отражателя не было изменено после дневного эксперимента, был определен как главная причина аварии.

Расследование выявило несколько дополнительных нарушений инструкций.

• Руководитель сам выписал себе наряд на работу, что категорически запрещено!

• Измерительная система, достаточно чувствительная, чтобы привлечь внимание экспериментаторов к тому, что размножение нейтронов в системе быстро увеличивается при опускании верхней половины отражателя, не работала. Эта система была выключена по окончании дневного эксперимента и не была включена при проведении вечерней сборки в целях ускорения проведения процесса сборки.

• Требовалось, чтобы при вечерней сборке в диспетчерской присутствовал третий специалист, но в диспетчерской никого не было.

• При вечерней сборке должен был присутствовать дозиметрист. Дозиметрист отсутствовал, поскольку он не был уведомлен о вечерней сборке.

После аварийного выброса оба специалиста оставались в сознании и не теряли самоконтроля. Они были в состоянии проинформировать администрацию о том, что произошла авария, и вызвать по телефону скорую помощь. Ответственный руководитель работы провел оценки дозы для себя и оператора (старшего инженера). Он сделал следующую запись в своем экспериментальном журнале.

«Вынута заглушка [цилиндрическая заглушка из 238 U в канале верхнего отражателя — подстраховка для уменьшения критичности не сработала] диаметром 80 мм, зазор 30 мм. Вставлен полиэтилен. При опускании оболочки произошел импульс. Защита сработала. Оператор стоял на расстоянии 0,5 метра от оболочки, ответственный руководитель — на расстоянии 1,7 м от пульта кран-балки. Видна была вспышка, слышен удар, лицо обдало жаром. Вклад полиэтилена превысил ожидаемую величину».

Два специалиста по критической безопасности, работая с этой сборкой во время аварийного выброса мощности, были знакомы с нейтронной физикой и экспериментальными процедурами, необходимыми при критических измерениях. Ответственный руководитель (старший научный сотрудник) родился в 1929 году, поступил на предприятие в 1955 году и был квалифицирован как могущий работать с делящимися материалами в 1958 году. Оператор (старший инженер) родился в 1938 году, поступил на предприятие в 1961 году и был допущен к работе с делящимися материалами в 1962 г. Оба имели квалификацию, нужную для проведения экспериментальных процедур, имевших место во время аварийного выброса. Аварийный выброс привел к смерти двух знающих и полностью квалифицированных специалистов по ядерной критичности, стоявших рядом со сборкой во время выброса. Во время выброса оператор стоял приблизительно в 0,5 м от оси сборки. Ответственный руководитель располагался примерно в 1,7 м от оси сборки. Исполнитель (оператор) получил суммарную дозу нейтронного и гамма-излучения в диапазоне 20–40 Зв [3000 бэр]. Ответственный руководитель получил суммарную дозу нейтронного и гамма-излучения в диапазоне 5 — 10 Зв [800 бэр]. После аварии оба специалиста были взяты в местную больницу и сразу перевезены в Москву в Институт биофизики. Оператор умер через три дня после аварии, старший научный сотрудник прожил после аварии еще 54 дня.

Оцененный выход при выбросе составил 6 X 1016 делений. В начале выброса мощности верхняя половина отражателя из природного урана опускалась на активную зону со скоростью приблизительно 10 см/с, приведя сборку в мгновенное надкритическое состояние. Такая скорость опускания соответствовала скорости ввода реактивности примерно 40 центов/с. Источник 238Pu-Be с интенсивностью испускания 5,2 X 106 нейтронов в секунду размещался в небольшой полости вблизи центра системы. Реактивная способность при зазоре в 3,0 см, отделяющем положение нижнего отражателя от полного смыкания его с нижней частью активной зоны, была оценена как 2,2 β.

Расследование пришло к заключению, что, хотя специалисты были очень опытными в работе с критическими сборками, именно их чрезмерная уверенность и торопливость привела к потере их жизней. Оба специалиста имели театральные билеты на тот вечер, когда произошла авария. Ответственный руководитель подготавливал процедуру вечерней сборки, пренебрегая основным правилом критической безопасности, которое гласит, что всякая неизвестная система критична. Расследование пришло к выводу, что «авария произошла в результате грубых нарушений правил техники безопасности и действующих инструкций, связанных с недостаточным контролем со стороны вышестоящего руководства и дозиметрической службы».

 

14. Испытательный полигон Абердин, шт. Мериленд, 6 сентября 1968 г.

61

Быстрый импульсный реактор с металлической уран-молибденовой активной зоной; единичный всплеск мощности; незначительные дозы облучения.

Армейская импульсная реакторная установка (APRFR) была построена в штате Мериленд в США для целей облучения. Это был еще один из серии реакторов, подобных критсборке «Годива». Конструкция реактора APRFR явилась дальнейшим развитием концепции реактора, построенного для исследований в области радиационной безопасности в Окриджской национальной лаборатории. Он предназначался для формирования мощных нейтронных потоков с высокими плотностями нейтронов.

Во время предварительных испытаний по программе оптимизации параметров реактора были изучены некоторые варианты небольшого изменения его конфигурации. Во время этих испытаний произошла неожиданно большая вспышка (6,09 X 1017 делений). Она приблизительно в три раза превышала максимум, который реактор мог выдержать без повреждений. Внутри активной зоны температура дошла до 1150 °C, т. е. до точки плавления топлива. Начальный период составил 9,1 микросекунды, реактивность, по оценкам, на 18 центов превышала уровень критичности на мгновенных нейтронах. Расчетная избыточная реактивность для этой вспышки должна была составлять 8,05 центов, что соответствует энерговыделению в пике, равному 1,68 X 1017 делений.

Последующий анализ аварии показал, что избыточная реактивность была результатом возникшей конфигурации реактора: стержень, с помощью которого инициировалась вспышка, вносит максимальную реактивность на пути движения до того, как он достигнет конечного положения. Никто не предполагал, что может возникнуть такое состояние. По-видимому, в предыдущих случаях стержень, инициирующий вспышки, успевал достичь конечной позиции до того, как появлялся инициирующий реакцию нейтрон. Если нет сильного внешнего источника нейтронов, время для развития всплеска мощности может быть долгим.

Были повреждены топливные компоненты реактора, некоторые части были деформированы, растрескались, вытянулись болты. Четыре центральных кольца сплавились друг с другом по внутренней поверхности и местами растрескались.

Не было измеряемых уровней радиоактивного загрязнения и аэрозольной активности за пределами здания. Переоблучения персонала также не было.

 

15. ВНИИЭФ, г. Саров (Арзамас-16), 17 июня 1997 г.

50, 62, 63, 64

Стенд для исследования характеристик простых критических сборок (ФКБН-2М), активная зона (центральная часть сборки) из урана-235 (90 %) с медным отражателем, сборка вручную; один человек погиб.

Стенд ФКБН-2М предназначен для изучения ядерно-физических характеристик простых критических сборок. Стенд расположен в экспериментальном зале размером 12 X 10 X 8 м в отдельном здании реакторной площадки, удаленной от жилой зоны на ~7 км. Схема расположения экспериментального оборудования приведена на рисунке 54.

Схема стенда приведена на рисунке 55. Исследуемые сборки (размножающие системы (РС)) разделяются на 2 части. Нижняя часть РС собирается на столе, который может перемещаться вверх и вниз в вертикальном направлении. Верхняя часть РС собирается на каретке, которая может перемещаться в горизонтальной плоскости и надвигаться в положение над столом с нижней частью РС. Процедура сборки представляет собой последовательное вложение одного в другой полусферических слоев различных материалов, как в кукле-матрешке. Для проведения разнообразных экспериментов имеются наборы полусфер из различных делящихся (уран, плутоний) и инертных (сталь, медь, полиэтилен и т. д.) материалов стандартизованных размеров.

Сближение верхней и нижней частей РС (накат каретки и подъем стола) производятся дистанционно из пультовой, расположенной за биологической защитой (~3 м железобетона). При превышении потока нейтронов утечки установленной величины выдается сигнал на аварийный сброс — стол с нижней частью РС падает в нижнее положение.

Рисунок 54. Планировка здания установки ФКБН-2М.

Авария произошла 17 июня 1997 г. в 10:40 во время ручной сборки РС в виде шара из высокообогащенного урана с медным отражателем, параметры которой предполагалось изучить. Сборка производилась в одиночку без оформления соответствующих документов (что являлось грубым нарушением инструкций). Работу выполнял опытный экспериментатор, который был уверен, что собирает уже проверенную ранее (в 1972 г.) РС. Размеры составных частей РС он взял из журнала измерений 1972 г., но допустил ошибку: для отражателя вместо размера DВНУТР/DВНЕШН = 167/205 мм он записал размер 167/265 мм. Используя ошибочные данные, экспериментатор собрал на столе стенда (рис. 56) нижнюю часть РС (нижний отражатель полностью, урановый шар полностью, в центре сборки — источник нейтронов мощностью ~105 нейтрон/с) и при попытке установить первую верхнюю медную оболочку уронил ее на сборку. Это привело к СЦР, в результате чего произошел сброс стола в нижнее положение и сработала аварийная сигнализация.

Рисунок 55. Схема стенда ФКБН-2М.

Увидев вспышку, экспериментатор немедленно покинул зал, закрыл защитную дверь и сообщил о факте аварии находившимся в пультовой инженеру и дежурному дозиметристу, а затем по телефону — начальнику лаборатории, а также продиктовал прибывшему в пультовую начальнику установки состав РС, который был зафиксирован в журнале измерений.

РС после импульса делений вышла на стационарную мощность.

Измерения плотности потока нейтронов от аварийной сборки (19.06.97) и проведенные компьютерные расчеты позволили восстановить параметры аварийной вспышки (рис. 57). Асимптотическая мощность сборки была получена равной 480 Вт, она соответствует инциденту, в котором величина введенной на начальном этапе избыточной реактивности равна 7,45 X 10-3, то есть 1,065 βэф. В сборке после кратковременного всплеска мощности на мгновенных нейтронах с энерговыделением -0,12 МДж (4 X 1015 делений) произошел импульс делений на запаздывающих нейтронах длительностью 3–5 мин с энерговыделением 5,7 МДж (2 X 1017 делений). За этим импульсом последовали быстро затухающие осцилляции мощности с периодом -40 мин. Через несколько часов мощность сборки и температура активной зоны и отражателя вышли на асимптотические равновесные уровни. Максимальная температура урана достигала, по оценкам, 865 °C.

Рисунок 56. Схема аварийной сборки.

Кроме экспериментатора, проводившего сборку РС, никто не пострадал. Радиационная обстановка в пультовой установки и на прилегающей к зданию территории оставалась нормальной.

Причиной аварии явилась ошибка экспериментатора в оценке степени критичности собираемой РС при проведении сборки вручную.

СЦР была прекращена около 00:48 ночи 24 июня 1997 г., когда с помощью вакуумного захвата основная часть РС была отделена от нижней оболочки медного отражателя и переставлена на подставку, установленную в зале (рис. 58). Все операции выполнялись дистанционно. Суммарное энерговыделение в РС составило -1019 делений.

В последующем с РС были сняты еще две нижние оболочки отражателя, после чего РС была разделена на две части и упакована в контейнеры. После спада мощности γ-излучения до приемлемого уровня запланировано проведение разборки РС на отдельные слои и восстановление поврежденного защитного медно-никелевого покрытия деталей из ДМ.

Механизмы стенда и технологическое оборудование из-за аварии практически не пострадали. Радиоактивного загрязнения зала не произошло.

После аварии эксперименты на установке ФКБН-2М были прекращены для выполнения работ по ее реконструкции с целью повышения безопасности проводимых исследований.

Экспериментатор при аварии получил поглощенную дозу по нейтронам — 4500 рад, по гамма-квантам — 350 рад. Он был в тот же день доставлен в Москву в специализированную клинику, где скончался в ночь с 19 на 20 июня 1997 года.

Рисунок 57. Зависимость мощности аварийной сборки от времени. (Соответствующие расчеты были выполнены В. Ф. Колесовым и В. X. Хоружим.)

Рисунок 58. Отделение основной части РС от нижней оболочки медного отражателя.

 

С. Системы с металлическим или оксидным топливом с замедлителем

 

1. Лос-Аламос, шт. Нью-Мексико, 6 июня 1945 г

Псевдосфера из кубических урановых элементов, водяной отражатель; единичный всплеск мощности; 3 человека получили значительные дозы облучения.

Данный эксперимент проводился в то время, когда еще не были разработаны системы дистанционного управления. Цель эксперимента состояла в определении критической массы обогащенного металлического урана, окруженного водородсодержащим материалом. Масса урана составляла 35,4 кг при среднем обогащении, равном 79,2 %. Она была собрана в виде псевдосферы из кубических элементов со стороной, равной половине дюйма (1,27 см), и из блоков размером 0,5 X 0,5 X 1 дюйм (1,27 X 1,27 X 2,54 см). Активная зона помещалась в полиэтиленовом боксе кубической формы со стороной 6 дюймов (15,24 см). Пустоты заполнялись полиэтиленовыми блоками. Вся сборка помещалась в большом баке, частично заполненном водой.

Перед тем как полиэтиленовый бокс был полностью покрыт водой, сборка неожиданно пришла в критическое состояние. Ситуацию усугубило отсутствие системы для быстрой остановки реактора, а также то, что впускные и выпускные задвижки находились на расстоянии 15 футов (4,57 м) друг от друга. Прежде чем система спустя 5-10 секунд перешла в безопасное подкритическое состояние, произошло от 3 до 4 X 1016 делений, причем выделилось достаточно энергии для того, чтобы средняя температура металла повысилась более чем на 200 °C. Последующее обследование полиэтиленового бокса показало, что он пропускал воду. Возможно, что при этом вода медленно проникала в урановую сборку, по мере того как поднимался уровень воды в боксе. Дополнительное замедление нейтронов послужило причиной развития надкритического режима, который был погашен в результате начавшегося кипения воды в боксе непосредственно вблизи кладки из металлических кубических элементов.

Расчеты позволили получить некоторое представление об этой аварии. При этом рассматривалась конфигурация, состоявшая из вложенных друг в друга урановых сфер с обогащением 79,2 % толщиной 8 мм и общей массой 35,4 кг, зазор между которыми составлял 0,5 или 1 мм. При добавлении воды в зазоры увеличение коэффициента размножения для зазора, равного 1 мм, составило 0,04, а для случая 0,5-миллиметрового зазора Δk составило 0,02. Эти результаты относятся к сборке с полным водяным отражателем при расчетных значениях keff, равных 1,024 и 1,018, соответственно. Вклад водяного отражателя в величину к оказался равным 0,21. Расчетная геометрия лишь приблизительно описывает реальную сборку, однако вряд ли необходимо ее уточнять. Очевидно, что кладка из урановых кубических элементов была нерегулярной, поэтому невозможно точно определить объем, который могла заполнить вода.

Имеющиеся знания о характеристиках всплесков мощности, которые происходят в больших массах делящегося материала, находящегося в воде, можно определить, в лучшем случае, как недостаточно хорошие. Расчеты, сделанные Хансеном, показывают, что в сфере из металлического урана радиусом 6,85 см, погруженной в воду, 15 % делений происходит во внешнем слое толщиной 0,5 мм, и плотность делений в этой области в шесть раз превышает плотность делений в центре. Пик в 3 X 1015 делений дает увеличение температуры на поверхности на 130 °C, при этом температура в центре практически не повышается (прирост температуры в центре составляет всего 19 °C). Вероятно, первый пик имел примерно такой порядок величины, и большая часть делений произошла, когда средняя мощность уже существенно понизилась.

В результате этой аварии три человека получили дозы облучения, равные соответственно 66, 66 и 7,4 фэр (см. Приложение А). Радиоактивного загрязнения не было, и через 3 дня материал активной зоны использовался вновь.

 

2. Лаборатория Чок-Ривер, конец 40-х — начало 50-х годов.

65, 66

Критическая сборка ZEEP; единичный всплеск мощности; три человека получили значительные дозы облучения.

Критсборка ZEEP состояла из стержней металлического урана в алюминиевой оболочке, находящихся в замедлителе из тяжелой воды. Цилиндрический корпус сборки, изготовленный из алюминия, по бокам и снизу имел графитовый отражатель; он также был окружен с боков биологической защитой в виде контейнеров с водой толщиной 3 фута (91,5 см). Сверху защиты не было. Реактивность регулировалась путем изменения уровня тяжелой воды, которая подавалась из бака электрическим насосом. Из соображений безопасности насос управлялся таймером, который отключал насос каждые 10 секунд, и его требовалось заново включать нажатием кнопки.

В качестве стержней СУЗ использовались покрытые кадмием пластины, которые были подвешены на тросах в пространстве между активной зоной и графитовым отражателем. Система управления и защиты была настроена на срабатывание при достижении уровня мощности около 3 ватт.

Во время аварии двое физиков работали на верху реактора, вставляя фольгу в каналы. Техник, который осуществлял подъем уровня воды в реакторе, управляя насосом, по инструкции должен был прекратить операцию по достижении заранее определенного уровня подкритичности с большим запасом по времени работы насоса.

Один из физиков попросил техника поднять инструмент на верх сборки. Чтобы не терять времени и напрямую нарушая правила, техник прижал контрольную кнопку насоса деревянной щепкой, чтобы таймер не останавливал насос. Затем он отправился на верх сборки и там присоединился к работе; уровень тяжелой воды в это время продолжал подниматься.

Реактор достиг критичности, и, как было предусмотрено конструкцией, сработала система аварийной остановки. Насос был автоматически остановлен системой блокировки, являвшейся частью системы аварийной остановки реактора. Под воздействием проникающего излучения произошла остановка реактора NRX, расположенного в соседнем здании. Последующие проверки обнаружили, что уровень мощности реактора ZEEP мог в десять раз превысить уставку для срабатывания системы аварийной остановки реактора.

Три человека, работавшие в верхней части реактора, получили дозы облучения, превысившие предельно допустимую дозу за квартал, а может быть, и предельную годовую дозу.

 

3. Аргоннская национальная лаборатория, 2 июня 1952 г.

38, 67

Двуокись урана в полистироле, водяной замедлитель; единичный всплеск мощности; 4 человека получили значительные дозы облучения.

Данная авария произошла в активной зоне реактора с легководным замедлителем, где 6,8 кг оксида урана были внедрены в полоски из полистирола. Десять процентов частиц оксида имели диаметр в пределах 10 микрон, остальные — 40 микрон. Семь пластиковых полос, соединенных с шестью циркониевыми полосами (0,91 X 0,110 X 43 дюймов, или 2,31 X 0,28 X 109 см), составляли один стандартный топливный элемент. Активная зона имела форму неправильного цилиндра и содержала 324 топливных элемента. Объемные доли циркония, пластиковых полос с топливом и воды составляли соответственно 60 %, 7,71 % и 32,2 %.

Эксперимент, во время которого произошла авария, заключался в сравнении реактивностей центральных регулирующих стержней разной конструкции. Система перешла в надкритическое состояние на мгновенных нейтронах после того, как была сделана попытка (в нарушение правил эксплуатации) заменить центральный регулирующий стержень, когда в активной зоне было нормальное количество воды. Периферийные стержни-поглотители были на месте, но их оказалось недостаточно, чтобы предотвратить развитие аварии.

Механизм, с помощью которого был погашен всплеск энерговыделения, достигавшего 1,22 X 1017 делений, заключался в почти равномерном тепловом расширении пластика при разогреве частиц размером 10 микрон, а вблизи частиц размером 40 микрон происходило образование пузырей. Этот процесс вытеснил почти всю воду из активной зоны, и СЦР полностью завершилась через 0,6 секунды после того, как оператор начал извлекать регулирующий стержень. Максимальная величина обратного периода составила почти 100 с-1, максимальная мощность — 1,7 X 108 ватт, полуширина пика мощности — 18,5 миллисекунд.

В результате этого всплеска мощности топливные элементы активной зоны были разрушены, однако при этом не было значительных потерь делящегося материала. Уровень радиации в реакторном зале в течение одних суток превышал допустимый предел. Через 5 дней были удалены элементы активной зоны, была проведена однократная дезактивация с применением стирального порошка и теплой воды. Четыре человека получили дозы облучения, равные 136, 127, 60 и 9 фэр (см. Приложение А).

 

4. Лаборатория Чок-Ривер, компания «Атомик Энерджи оф Канада Лимитед», 12 декабря 1952 г.

65, 66, 68, 69

Реактор NRX, стержни из природного урана, тяжеловодный замедлитель, графитовый отражатель; многократные всплески мощности; незначительные дозы облучения.

Реактор NRX представлял собой систему, работающую на природном уране с тяжеловодным замедлителем, в которой урановые стержни охлаждались тонким слоем легкой воды, прокачиваемой в промежутке между алюминиевой оболочкой топливного стержня и немного большим по размеру концентрическим алюминиевым наружным цилиндрическим каналом. Тяжеловодный замедлитель в достаточной степени снижал энергию нейтронов, так что имело место поглощение нейтронов легководным теплоносителем.

В результате очень сложной последовательности ошибок оператора, а также электрических и механических сбоев в системе аварийной остановки, реактор вышел в надкритический режим с избыточной реактивностью примерно 60 центов. Сначала мощность росла очень быстро, но из-за медленного движения регулирующего стержня появились признаки стабилизации мощности реактора на уровне приблизительно 20 МВт. В обычных условиях такой уровень мощности являлся повышенным, но терпимым, и ситуация была бы под контролем, если бы проходившие эксперименты не потребовали обеспечения режима пониженного теплосъема с помощью легководного теплоносителя в нескольких каналах. На уровне мощности около 17 МВт теплоноситель начал закипать в тех каналах, где был пониженный расход теплоносителя. Этот автокаталитический процесс (легкая вода являлась поглотителем) привел к повышению реактивности примерно на 20 центов, и за интервал времени от 10 до 15 секунд мощность опять возросла. Когда мощность достигла 60–90 МВт, тяжеловодный замедлитель был слит, и реактор был заглушен.

Превышение мощности реактора над уровнем 1 МВт длилось не более 70 с, общий выход энергии, по оценкам, составил 4000 МДж, что соответствует примерно 1,2 X 1020 делений. Активная зона и каландр (опорная конструкция для топливных элементов) были повреждены так, что последующий ремонт был невозможен. Долгоживущие продукты деления с радиоактивностью около 104 Ки вместе с массой охлаждающей воды (106 галлонов, или 3,78 X 106 л) вылились в подвальное помещение. Персонал, по-видимому, получил небольшие дозы; чуть больше чем через год реактор был полностью восстановлен.

 

5. Национальная станция испытания ядерных реакторов, Айдахо, 22 июля 1954 г.

38, 70, 71, 72, 73

Реактор «БОРАКС»; топливо в виде сплава алюминия и урана; водный замедлитель; единичный всплеск мощности; незначительные дозы облучения.

Национальная станция испытания ядерных реакторов располагалась неподалеку от Айдахо-Фоллз в штате Айдахо (США). Этот всплеск мощности может считаться аварией только в том смысле, что уровень мощности превысил ожидаемый. Реактор БОРАКС-I создавался специально для проведения программы испытаний. Исследования стационарных и переходных режимов считались законченными, и было принято решение перед окончательной разборкой реактора провести проверку короткого разгона для того, чтобы получить в максимальном объеме экспериментальную информацию. Выбрали такое значение избыточной реактивности, чтобы в результате увеличения энерговыхода вызвать расплавление 4 % топливных пластин.

Реактор «БОРАКС-I» состоял из 28 топливных элементов типа MTR с легководным замедлителем. Каждый элемент содержал 18 топливных пластин размером 2,845 X 0,060 X 24,6 дюймов (7,226 X 0,152 X 62,48 см), изготовленных из сплава урана и алюминия в алюминиевой оболочке толщиной 0,020 дюйма (0,05 см). Общая масса загружаемого урана составляла 4,16 кг. Активная зона целиком помещалась внутри бака диаметром 4 фута (1,22 м) и высотой 13 футов (4 м), наполовину погруженного в шахту.

В результате выполненных ранее контролируемых разгонов мощности на мгновенных нейтронах была сделана оценка, в соответствии с которой увеличение к на 4 % приводило к переходному процессу с периодом от 2,0 до 2,5 миллисекунд с выделением энергии при всплеске мощности, равной 80 МДж. Для проведения такого эксперимента потребовалась повышенная загрузка топливом и более эффективный центральный регулирующий стержень.

Всплеск мощности и связанный с ним паровой взрыв с последующим быстрым выбросом регулирующего стержня полностью разрушили активную зону реактора и разорвали реакторный бак (рис. 59). Произошло обширное расплавление топливных пластин, при этом некоторые элементы остались в баке, а мелкие детали были обнаружены на расстоянии до 200 футов (60 м) от него.

О силе взрыва говорит то, что механизм управления регулирующим стержнем оказался вырванным и выброшенным в сторону. Механизм весом 2200 фунтов (1 т) был установлен на опорной плите на высоте 8 футов (2,44 м) над поверхностью реакторного бака. За исключением этой опорной плиты площадью 4 квадратных фута (0,37 м2), выступающая поверхность 10-футового (3 м) бака была ничем не прикрыта. Взрывная волна плюс динамический удар воды и осколков об опорную плиту оторвали плиту от ее крепления и, как показала ускоренная съемка, подбросили механизм в воздух примерно на 30 футов (9 м).

Всего выделилось 135 МДж энергии вместо предполагаемых 80 МДж, или, при величине удельного энерговыделения, равной 180 МэВ на деление, 4,68 X 1018 делений. Эта энергия эквивалентна 70 фунтам (31,8 кг) тротила, однако в соответствии со сделанными оценками сопоставимый ущерб мог быть нанесен при взрыве тротила массой от 6 до 17 фунтов (от 2,7 до 7,7 кг). Минимальная длительность всплеска мощности равнялась 2,6 миллисекундам, максимальная мощность составила 1,9 X 1010 ватт. Ясно, что всплеск реактивности закончился до того, как система была разрушена паровым взрывом.

В результате данного всплеска мощности реактор был разрушен, но так как он находился на удаленной площадке, других разрушений не было. Никто из персонала не облучился.

Рисунок 59. Взрыв, разрушивший реактор «БОРАКС-I» 22 июля 1954 г.

 

6. Институт Бориса Кидрича, Югославия, 15 октября 1958 г.

[6]

74, 75

Сборка из природного урана с тяжеловодным замедлителем без отражателя, без защиты; один человек погиб, пятеро получили высокие дозы облучения.

Критическая сборка располагалась в Институте Бориса Кидрича в Винке, Югославия. Авария произошла в сборке без отражателя с тяжеловодным замедлителем, собранной из топливных стержней из природного урана. Стержни в алюминиевой оболочке имели диаметр 2,5 см и длину 2,1 м, масса загружаемого в активную зону урана составляла 3,995 кг, объем активной зоны равнялся 6,36 м3. Имелось два кадмиевых стержня СУЗ, которые не управлялись по электрическим цепям, включающим датчики нейтронов. В нормальных условиях реактивность системы регулировалась уровнем жидкости (уровень, соответствующий достижению критичности, составлял 1,78 м).

Авария случилась во время подкритического эксперимента по измерению скорости счета облученных фольг. Чтобы добиться максимальной активации фольги, было желательно поднять умножение до соответствующего уровня, тем не менее остававшегося подкритическим.

Это было достигнуто; в результате камеры (BF3) работали как обычно, т. е. отследили возросший уровень потока, а третья камера вела себя неустойчиво и была отключена.

Система оставалась на этом уровне D2O в течение 5–8 минут, после чего один из экспериментаторов почувствовал запах озона и понял, что система перешла в надкритическое состояние с неизвестным уровнем мощности. Цепную реакцию остановили с помощью кадмиевых стержней СУЗ.

Последующее расследование показало, что обе камеры, про которые думали, что они работают исправно, достигли насыщения и после этого показывали достигнутую постоянную максимальную величину сигнала, в то время как уровень мощности продолжал возрастать.

Персонал получил высокие дозы облучения, составившие, в соответствии со сделанными оценками, 205, 320, 410, 422 и 433 бэр 76. Из шестерых облучившихся один умер, а остальные пятеро выздоровели после тяжелой лучевой болезни. Критическая сборка выдержала энерговыделение 80 МДж (2,6 X 1018 делений); о механическом разрушении не сообщалось.

 

7. Центр ядерных исследований в Сакле, Франция, 15 марта 1960 г.

26, 27

Критсборка со стержнями из UO 2 (1,5 %); замедлитель и отражатель — легкая вода; единичный всплеск мощности; незначительные дозы облучения.

Критическая сборка "Ализ" представляла собой систему с водяным отражателем и водяным замедлителем, в которой в качестве топлива использовался UO2 с обогащением урана, составлявшим 1,5 %. Стержни имели длину 1 метр и диаметр 1 см, общая масса UO2 равнялась 2,2 тоннам.

Для эксперимента, во время которого произошла авария, требовалось достичь стабильный положительный период реактора на очень низком уровне мощности. Экспериментально была найдена критическая конфигурация стержней, и было вычислено положение стержней, соответствующее нужному периоду. Подождав, пока спадут запаздывающие нейтроны, стержни подняли в заданное положение. Однако вслед за этим оператор по неизвестной причине полностью извлек стержень, который до этого был извлечен не полностью. Из-за этого в системе установился период, составлявший 0,25 с.

Последовавший за этим всплеск мощности дал 3 X 1018 делений, однако максимальные температуры в двуокиси урана не превышали 550 °C. Активная зона не пострадала, облучение персонала было незначительным.

Было установлено, что гашение реакции произошло в результате эффекта Доплера на 238U. Этот вывод подтвердили эксперименты на сборке «Сперт» с аналогичной активной зоной, в которой уран был обогащен до 4 % (часть II, раздел C, авария 9).

 

8. Национальная станция испытания ядерных реакторов, шт. Айдахо, 3 января 1961 г.

77

Реактор SL-1, уран-алюминиевое топливо, водяной замедлитель; единичный всплеск мощности; три человека погибли…

Реактор SL-1 (сначала назывался Аргоннский реактор низкой мощности) был кипящим водо-водяным реактором прямого цикла тепловой мощностью (брутто) 3 МВт, с топливными элементами в виде пластин из обогащенного урана в алюминиевой оболочке. Реактор был спроектирован на время кампании без перегрузок топлива длительностью 3 года, поэтому в активную зону загружался избыток топлива. Для компенсации избыточного топлива к некоторым элементам активной зоны был добавлен выгорающий поглотитель (10В) в виде сплава алюминия, бора и никеля. Так как пластины из бора могли прогибаться (и, очевидно, также корродировали, что приводило к росту реактивности), в ноябре 1960 года некоторые из них заменили на кадмиевые полоски, запаянные между тонкими алюминиевыми пластинами. При этом была определена величина уставки для срабатывания системы аварийной остановки реактора, равная 3 % (около 4β), при том, что исходное значение составляло 3,5–4%. Регулирующие стержни крестообразной формы имели тенденцию прилипать. Они состояли из больших кадмиевых листов, проложенных между алюминиевыми пластинами. Ядерная авария произошла, скорее всего, не в результате плохого состояния активной зоны.

После того, как реактор SL-1 проработал около двух лет, он был остановлен для проведения плановых ремонтных работ, а 4 января его предполагалось снова запустить. Группе из трех человек, дежурившей в ночь на 3 января, было поручено заново собрать приводы регулирующих стержней и подготовить реактор к пуску. По-видимому, они этим и занимались, когда произошел всплеск мощности.

Самая надежная из имеющейся информации (косвенная, но достаточно убедительная) говорит о том, что центральный стержень был извлечен оператором вручную с максимальной скоростью. Такое быстрое увеличение реактивности перевело реактор в режим с периодом, равным 4 миллисекундам. Мощность продолжала расти до тех пор, пока тепловое расширение и формирование парообразований не погасили всплеск мощности. Мощность в пике была 2 X 104 МВт, общее энерговыделение составило 133 ± 10 МДж.

Последовавший паровой взрыв разрушил реактор и мгновенно убил двух операторов. Третий скончался через два часа от травмы головы. Реакторное здание и особенно реакторный зал были сильно загрязнены охлаждающей водой, содержавшей продукты деления. Проведению обследования в начальный период после аварии мешал высокий уровень радиации (от 500 до 1000 Р/ч) в реакторном зале. Несмотря на большой выброс радиоактивности из активной зоны, очень малая ее часть вышла за пределы здания, которое не было герметичным.

Во многих отношениях эта авария со всплеском мощности в реакторе напоминает аварию реактора «БОРАКС» и разрушающие эксперименты на критсборке «Сперт». Каждая из этих аварий, особенно эксперименты на сборке «Сперт» (часть II, раздел C, авария 9), должна была закончиться именно такими всплесками мощности. У. Найер 78 отмечает, что основным фактором является плотность энерговыделения в активной зоне. У реактора SL-1 этот показатель был больше других, но не намного больше (на 12 %), чем у реактора БОРАКС, и на 60 % больше, чем у сборки «Сперт». Установившийся период у реактора SL-1 был немного ниже. В результате развития всех трех аварий паровой взрыв вызвал серьезные разрушения реакторов, особенно реакторов БОРАКС и SL-1. Активная зона SL-1 находилась внутри корпуса, и практически вся вода была, очевидно, мгновенно выброшена вверх единой массой. Энергия, приобретенная водой, оказалась так велика, что весь корпус реактора был подброшен на 9 футов (2,75 м), после чего он упал на место.

В экспериментах на сборке «Сперт» паровые взрывы следовали за пиками мощности с интервалом 15 миллисекунд. Неизвестно, наблюдалось ли такое запаздывание в случае реактора SL-1.

 

9. Национальная станция испытания ядерных реакторов, шт. Айдахо, 5 ноября 1962 г.

79

Сборка из топливных элементов «Сперт»; единичный всплеск мощности; незначительные дозы облучения.

Сборка «Сперт» представляла собой маленькую испытательную установку, предназначенную для изучения переходных режимов в водо-водяных реакторах с топливными элементами в виде пластин. Топливо было изготовлено в виде пластин из сплава высокообогащенного урана с алюминием с оболочкой из того же материала. Из предыдущих испытаний были получены данные о переходных режимах с начальным периодом, превышающим 8 миллисекунд. Эти эксперименты носили неразрушающий характер и вызывали лишь небольшую деформацию топливных пластин. Кроме того, имелись данные о разрушении реактора, которые были получены после испытаний, проводившихся в 1954 году на реакторе «БОРАКС-I», в результате которых произошел взрыв, разрушивший реактор. Цель экспериментов на сборке «Сперт» состояла в том, чтобы исследовать переход от условий разгона реактора без его разрушения к всплескам мощности, разрушающим реактор.

После завершения обширной экспериментальной программы были выполнены два испытания с периодами, составлявшими 5,0 и 4,6 миллисекунды. Их результатом стали деформация пластин и ограниченное плавление топлива. Поведение реактора в переходных режимах явилось логической экстраполяцией результатов более ранних экспериментов с более длительными периодами. Ничто не указывало на то, что нельзя экстраполировать эти результаты дальше.

В последнем испытании с периодом 3,2 миллисекунды (выход энергии 30,7 МДж) все 270 пластин до определенной степени расплавились, в среднем оплавление составило 35 %. С точки зрения ядерной физики это испытание прошло очень близко к тому, что предсказывалось. Было видно, что ядерные аспекты процесса гашения всплеска мощности в реакторе практически совпадали с тем, что наблюдалось в предыдущих переходных состояниях, и включали в себя тепловое расширение топлива и замедлителя, а также кипение воды. Однако примерно через 15 миллисекунд после окончания переходного процесса сильный гидравлический удар полностью разрушил активную зону. Это приписывается паровому взрыву, произошедшему в результате быстрого переноса тепла от расплавленного топлива к воде. Топливо, вода и элементы активной зоны были с силой выброшены из корпуса, в котором проводился эксперимент.

В ходе эксперимента использовались приборы для измерения активности любых выделяющихся продуктов деления, хотя и не предполагался такой мощный всплеск мощности. Измерения показали, что имела место утечка в атмосферу 7 % благородных газов, выделившихся во время разгона. Еще до начала испытания были сняты крыша и часть стен реакторного здания, так что оно обеспечивало лишь ограниченную локализацию. В атмосфере не было обнаружено присутствие твердых продуктов деления и радиоактивного йода.

Основываясь на чувствительности измерительных приборов и отсутствии признаков загрязнения радиоактивным йодом, установили, что менее 0,01 % всех образовавшихся радиоизотопов йода попало в атмосферу.

 

10. Мол, Бельгия, 30 декабря 1965 г.

26, 27

Критическая сборка «ВЕНУС», твэлы из UO 2 с обогащением 7 % в H 2 O-D 2 O; единичный всплеск мощности; один человек получил значительную дозу облучения.

Сборка «ВЕНУС» являлась критической сборкой корпусного типа с водяным замедлителем, которая использовалась в экспериментах наряду с реактором «Вулкан». Это был реактор с плавающим спектром нейтронов, потому что исходный замедлитель D2O можно было разбавлять H2O для смягчения спектра и поддержания реактивности по мере выгорания делящегося материала. Во время проводившихся на критсборке экспериментов замедлитель и отражатель состояли из 70 % H2O и 30 % D2O. Отражатель был на 0,3 м выше активной зоны. Размер активной зоны по высоте и диаметру составлял около 1,6 м. Топливом служил UO2 в виде таблеток, собранных в твэлы. Общая масса UO2 составляла 1,2 X 103 кг, обогащение по урану-235 равнялось 7 %.

Основным способом регулирования реактивности было перемещение поглощающих стержней (восемь стержней САОР и два регулирующих стержня). Дополнительно имелось восемь поглощающих стержней, предназначенных для ввода в активную зону вручную.

Непосредственно перед аварией в активную зону были опущены все стержни системы аварийной остановки реактора, один регулирующий стержень и семь стержней ручного управления. Еще один регулирующий стержень находился в процессе погружения, реактор находился в подкритическом состоянии, соответствующем весу одного стержня САОР и одного регулирующего стержня.

Для проведения эксперимента с новой конфигурацией стержней оператор реактора решил понизить реактивность путем погружения в активную зону последнего стержня ручного управления после того, как завершится введение в активную зону второго регулирующего стержня. При этом реактор должен был находиться в подкритическом состоянии, соответствующем весу одного стержня САОР, двух регулирующих стержней и одного стержня ручного управления. Тогда можно было извлечь из активной зоны другой стержень ручного управления, расположенный около стержня, вставленного последним, а затем перевести сборку в состояние критичности путем извлечения двух стержней САОР.

Такая программа предполагала, что оператор будет вводить один стержень и вынимать другой. Оператор пренебрег инструкцией, согласно которой запрещалось проводить какие-либо манипуляции стержнем ручного управления без предварительного удаления воды из корпуса реактора. Он дал технику письменное указание ввести один стержень ручного управления, а затем извлечь другой. Техник не дождался, когда движущийся регулирующий стержень достигнет конечного нижнего положения, и провел операцию в неправильном порядке. Вместо того, чтобы сначала ввести один стержень, а после этого извлекать второй, он сразу же извлек первый стержень.

Во время подъема стержня ручного управления сборка пришла в критическое состояние. Левая ступня техника выступала над краем бака, опираясь на решетку в 5 см над отражателем, правая нога была слегка отставлена назад и частично экранирована. Он заметил свечение на дне реактора, тут же бросил регулирующий стержень и покинул помещение.

Выделилась энергия, равная 13 МДж (4,3 X 1017 делений). По-видимому, всплеск мощности был остановлен падающим стержнем ручного управления, хотя возможно, что аварийная остановка была ускорена комбинацией эффекта Доплера и опорожнением корпуса, которое произошло при автоматическом срабатывании системы аварийной остановки реактора. Точной информации об этом нет.

Образование пара не наблюдалось, топливо не было повреждено, радиоактивного загрязнения не было. Техник получил очень большую дозу, в основном, из-за гамма облучения. Грубая оценка, сделанная через восемь дней после облучения по результатам 300 измерений, выполненных на фантоме человека, показала, что дозы облучения составляли 300–400 бэр для головы, 500 бэр для груди и 1750 бэр для левой лодыжки. На ступне доза облучения достигала 4000 бэр. Лечение пациента было успешным, но левую ступню пришлось ампутировать.

 

11. Российский научный центр "Курчатовский институт", г. Москва, 15 февраля 1971 г.

80

Твэл из двуокиси урана, U(20 %), в сборке с отражателем из железа и бериллия; несколько всплесков мощности; два случая тяжелой степени облучения.

На стенде проводились исследования относительной эффективности железо-водного отражателя нейтронов и отражателя из металлического бериллия для активной зоны энергетического реактора. Активная зона размерами Н = 1200 мм и D = 1000 мм набиралась из 349 кассет с тепловыделяющими элементами стержневого типа. Компенсация оперативного запаса реактивности осуществлялась компенсирующей решеткой из стержней с карбидом бора, охватывающей центральную часть активной зоны. Три периферийных ряда кассет не охватывались решеткой. Компенсация реактивности на выгорание урана осуществлялась выгорающим поглотителем.

На первом этапе экспериментов изучалась активная зона с невыравненным по радиусу зоны распределением потока нейтронов. Измерения показали, что активная зона, полностью залитая водой при погруженной компенсирующей решетке, глубоко подкритична (~10 %), а изменение реактивности при замене железо- водного отражателя на бериллиевый невелико (+0,8 %).

На втором этапе предполагалось исследовать активную зону с выравненным по радиусу распределением потока нейтронов. В центральную часть активной зоны, перекрываемую компенсирующей решеткой, помещалось 147 кассет с наибольшим содержанием выгорающего поглотителя нейтронов. Далее шли два ряда кассет (118 шт.) с уменьшенным содержанием поглотителя. Периферийный ряд кассет (84 шт.) не содержал поглотителя нейтронов.

Второй этап экспериментов должен был начаться с применением бериллиевого отражателя, поскольку на нем закончилась первая серия опытов.

Расчеты критичности новой композиции активной зоны были сделаны только для варианта с применением железо-водного отражателя, а на основании результатов сравнения эффективности бериллиевого и железо-водного отражателей для первой композиции руководитель работы Д. А. Мастин считал, что замена стали на бериллий не даст существенного увеличения оперативного запаса реактивности.

Новая композиция активной зоны была собрана в сухом баке критстенда и оставлена на ночь. На следующий день утром Д. А. Мастин пришел в помещение стенда (рис. 60) и, не дожидаясь прихода оператора пульта управления и контролирующего физика, считая, что система глубоко подкритична, включил насос подачи воды в бак критсборки. Контрольно-измерительная аппаратура была включена, но нейтронный источник не был помещен в критсборку, и стержни аварийной защиты не были взведены.

Д. А. Мастин вместе с подошедшим стажером стояли у бака критсборки, обсуждая предстоящий эксперимент. Внезапно они увидели голубое свечение, отраженное от потолка зала, и услышали лавинообразное нарастание частоты звукового индикатора потока нейтронов (щелкуна). Подумав, что что-то произошло на соседнем стенде, на котором также производились подготовительные работы, они выбежали из зала критстендов. Другие сотрудники, находившиеся в зале, также покинули зал. О случившемся доложили начальнику сектора Н. А. Лазукову. Лазуков с дозиметристом попытались войти в зал, чтобы сбросить воду из бака критсборки, но радиационная обстановка и пар, заполнивший зал, не позволили подойти к пульту управления 2 критстенда. Насос продолжал подавать воду в бак критсборки. Через 5–7 минут зал критстендов был обесточен с электроподстанции, и подача воды в критсборку прекратилась.

Последующие оценки показали, что за то время, пока вода подавалась в критсборку, произошло примерно 50 вспышек. Поскольку нейтронного источника в критсборке не было, уровень воды в активной зоне поднимался до критического значения на мгновенных нейтронах, происходила быстротечная вспышка, вода вскипала и выплескивалась из бака, цепная реакция прекращалась. Затем вода доливалась до критического уровня, и процесс повторялся. Общее энерговыделение составило ~2 X 1019 делений (~103 МДж). Скорость ввода реактивности была сравнительно небольшой (~0,15 в в секунду), поэтому оболочки тепловыделяющих элементов не потеряли герметичности, и загрязнения зала критстендов радиоактивными веществами не произошло. Через три дня было произведено измерение критического уровня замедлителя. Он оказался равным 560 мм от низа активной зоны, т. е. половине высоты активной зоны, при полностью погруженной компенсирующей решетке. Разница в "свободном" запасе реактивности у активной зоны с бериллиевым отражателем и зоны с железо-водным отражателем при такой структуре зоны оказалась равной ~10 %.

Пострадали два человека: руководитель работы Д. А. Мастин и стажер Р. А. Леднев, которые в момент первой вспышки находились внутри отсека критсборки. Они получили ~1500 бэр на конечности ног. Остальной персонал, находившийся в зале за теневой защитой, не получил существенных доз. Таким образом, авария носила локальный характер.

Причинами аварии следует считать наложение двух фактов:

1) Небрежная оценка изменения реактивности при замене железо-водного отражателя на бериллиевый без проведения расчетов.

2) Грубейшее нарушение правил работы на критическом стенде, состоящих из следующих положений:

• любое воздействие на реактивность активной зоны (в данном случае заливание замедлителя) должно рассматриваться как критический эксперимент;

• критический эксперимент должен проводиться полным составом смены: научным руководителем, контролирующим физиком, оператором пульта управления, взаимно контролирующими действия каждого члена смены;

• до начала эксперимента (воздействия на реактивность) должна быть проверена контрольная аппаратура, в активную зону помещен источник нейтронов, задействована аварийная защита;

• любое изменение реактивности должно осуществляться порциями с регистрацией показаний контрольной аппаратуры и с экстраполяцией к критическому значению изменяемого параметра.

Рисунок 60. Помещение стенда, где произошла авария 15 февраля 1971 г.

Следует заметить, что при работе на критическом стенде роль "человеческого фактора" особенно велика, так как свойства каждой новой системы заранее неизвестны, и даже при наличии расчетов параметров критсистемы к любой системе надо подходить, как к неизвестной, и соблюдать все отработанные десятилетиями правила работы с критическими системами.

 

12. Российский научный центр "Курчатовский институт", г. Москва, 26 мая 1971 г.

80,81

Урановый твэл, U(90 %); сборка с водяным отражателем; единственный всплеск мощности; два человека погибли; два случая тяжелой степени облучения.

Авария произошла при следующих обстоятельствах. Для отработки новых программ расчета параметров активных зон проводились эксперименты по измерению "чистых" критических масс из стержневых тепловыделяющих элементов (твэлов). Определялось критическое количество твэлов при разном соотношении числа ядер водорода и U-235 в ячейке системы (ρH /ρ5). Это соотношение изменялось путем изменения шага расстановки твэлов при сохранении шестигранной формы ячейки. В таблице 12 указаны шаги расстановки твэлов и соответствующее критическое количество твэлов.

Таблица 12. Шаги расстановки твэлов и соответствующее критическое количество твэлов

Из таблицы видно, что критмасса резко уменьшается в диапазоне шагов 7–9 мм — в 3 раза.

Эксперименты старались сделать по возможности "чистыми", такими, чтобы возмущения в системе были минимальными. Для этого решетки, в которых закреплялись концы твэлов, были изготовлены из алюминиевых листов толщиной 2 мм, а опорная плита, на которую опиралась вся масса твэлов, из органического стекла (плексигласа) толщиной 20 мм. По содержанию водорода плексиглас близок к воде. Направляющие для стержней аварийной защиты и регулирования были вынесены в боковой отражатель. Концы твэлов высовывались из верхней дистанционирующей решетки на 2–3 мм.

Таким образом, конструкция была весьма ажурная и непрочная.

Эксперименты проводились следующим образом. Для каждого шага решетки в сухом баке критсборки собиралась система, содержащая несколько меньшее количество твэлов, чем критическое число, определенное расчетом. Затем система заливалась водой с соблюдением всех правил, перечисленных выше, так, чтобы верхний отражатель составлял не менее 20 см. Далее небольшими порциями с построением функции 1/n (обратного счета) добавляли тепловыделяющие элементы до тех пор, пока система не становилась критической.

В последнем опыте измерялось критическое количество твэлов при самом тесном шаге — 7,2 мм. Это количество составило 1790 шт. Оно превышало критмассу для оптимального шага в ~7 раз.

По окончании эксперимента руководитель работы В. Ерофеев дал указание опустить стержни регулирования и аварийной защиты. Четыре сотрудника зашли в отсек критсборки, осмотрели ее, и Ерофеев дал команду слить воду через клапан быстрого (аварийного) слива.

Вода из бака критсборки сливается через вентиль медленного слива в течение 15–20 минут или через клапан быстрого слива большого сечения (диаметр ~500 мм) за 20–30 секунд. В предыдущих опытах вода сливалась через вентиль медленного слива.

Плексигласовая опорная плита перекрывала почти все сечение бака, площадь зазора между краем плиты и стенкой бака была меньше, чем площадь отверстия клапана быстрого слива. Поэтому при быстром сливе воды опорная плита прогнулась, и тепловыделяющие элементы, концы которых входили в верхнюю дистанционирующую решетку всего на 3–5 мм, вывалились из решетки (рис. 61).

Активная зона "веером" развалилась, и шаг расстановки твэлов приблизился к оптимальному. Скорость ввода реактивности при этом, по оценке, могла составить ~2β в секунду, и произошел разгон критсборки на мгновенных нейтронах (нужно отметить, что источник нейтронов был из активной зоны удален).

Два периферийных ряда твэлов, для которых шаг увеличивался наиболее быстро, разрушились. Большинство осколков напоминало град от сварочных электродов. Вода выплеснулась из бака.

Интегральное энерговыделение во вспышке, оцененное по радиоактивности активной зоны, составило ~5 X 1018 делений (~200 МДж). Эта цифра, по-видимому, является универсальной для урано-водных систем в открытом баке при большой скорости ввода реактивности. Цепная реакция прерывается или за счет разрушения топлива, или за счет вскипания воды.

Авария носила локальный характер, существенного загрязнения зала критстендов радиоактивными веществами не произошло. Вне зала никаких загрязнений не было. Для персонала последствия аварии были трагическими.

Механик И. И. Васильев, находившийся в момент вспышки у самого бака критсборки, получил дозу ~6000 бэр и скончался на пятый день. В. Ерофеев получил дозу 2000 бэр и скончался через 15 дней. Два сотрудника, также находившиеся внутри отсека критсборки, получили дозы по 700–800 бэр. Врачам удалось спасти им жизнь, но не здоровье.

Основной причиной аварии явилась непродуманность конструкции критической сборки. Полноценной конструкторской проработки сделано не было, не были проведены расчеты на прочность элементов системы и всей конструкции. На это наложилась непродуманность действий и недопустимая торопливость персонала при завершении эксперимента.

Причины и исход двух аварий тщательно анализировались. По результатам анализа был предложен ряд технических усовершенствований систем критстендов и улучшена организация работы на них.

Введена система блокировок, определяющая обязательную последовательность операций на стенде и запрещающая последующие операции, если не выполнены предыдущие, а именно:

1) включена контрольно- измерительная аппаратура;

2) закрыта дверь в отсек критсборки;

3) в активную зону помещен источник нейтронов;

4) взведены стержни аварийной защиты;

5) разрешен либо подъем механического органа управления, либо разрешена заливка воды.

Установлена локальная биологическая защита непосредственно на баки критсборок, уменьшающая излучение в 2–3 раза.

Введено обязательное трехступенчатое планирование эксперимента:

1) Принципиальная программа, формулирующая смысл эксперимента.

2) Рабочая программа, в которой указываются этапы эксперимента и меры обеспечения ядерной безопасности.

3) Сменная программа — подробная программа на каждую рабочую смену.

4) Программа подписывается руководителем эксперимента и согласовывается с контролирующим физиком.

5) Любые отклонения от порядка проведения эксперимента, указанного в программе, требуют письменного подтверждения.

Принят порядок проведения эксперимента, при котором любые перестройки активной зоны производятся в сухом баке, а затем выход в критическое состояние осуществляется дистанционно с пульта управления заливкой воды и перемещением органов управления. Также дистанционно критсборка приводится в безопасное состояние сливом воды или опусканием механических органов управления.

Рисунок 61. Макет конфигурации установки во время аварии, случившейся 26 мая 1971 г.

 

13. Установка RA-2, Буэнос-Айрес, Аргентина, 23 сентября 1983 г

Критсборка с топливными элементами типа MTR; водяной отражатель; единичный всплеск мощности; один человек погиб, два человека получили значительные дозы облучения.

Установка ИА-2 находилась в Буэнос-Айресе в Аргентине. В качестве регулирующих стержней в этом экспериментальном реакторе нулевой мощности использовались элементы MTR, в которых 4 из 19 топливных пластин были заменены двумя кадмиевыми пластинами. Непосредственно за пределами активной зоны (размеры которой составляли примерно 305 мм X 380 мм) был установлен графитовый отражатель толщиной около 7,5 см. Во время работы большой реакторный корпус был заполнен дистиллированной водой. Во время выполнения операций, связанных с изменением конфигурации топлива, когда требовалось присутствие людей, вода должна была удаляться из корпуса.

Квалифицированный оператор, с 14-летним опытом работы, находился один в реакторном зале и выполнял операции по изменению конфигурации топлива. Замедлитель не был слит из бака, хотя этого требовали инструкции. Вместо того, чтобы удалить из бака два топливных элемента, их разместили за графитовым отражателем. Топливная конфигурация дополнялась двумя регулирующими элементами без кадмиевых пластин. Критическое состояние было достигнуто, очевидно, когда производилась установка второго из них, так как его нашли лишь частично погруженным.

Всплеск мощности дал от 3 до 4,5 X 1017 делений, оператор получил поглощенную дозу гамма-излучения около 2000 рад и 1700 рад нейтронного излучения. Облучение было крайне неравномерным, верхняя правая часть тела была облучена сильнее. Оператор прожил после этого два дня. Два оператора, находившиеся в пультовой, получили дозы в 15 рад нейтронного и 20 рад гамма-излучения. Шестеро других получили меньшие дозы, составившие около 1 рад, еще девять человек — менее 1 рад.

 

D. Смешанные системы

 

1. Лос-Аламосская национальная лаборатория, 11 февраля 1945 г.

84, 85

Критсборка «Дрэгон», UH 3 в пластике; единичный всплеск мощности; незначительные дозы облучения.

Критсборка «Дрэгон» была первой размножающей системой, предназначенной для формирования импульсов мощности на мгновенных нейтронах. Возможно, это вообще был первый реактор, реактивность которого превысила уровень критичности на мгновенных нейтронах. Это было осуществлено преднамеренно 18 января 1945 года. Сообщается о повышении температуры на 0,001 °C. Значение энерговыделения не сообщается, но может быть оценено примерно в 2 X 1011 делений.

Сборка «Дрэгон» была загружена обогащенным UH3, впрессованным в специальный пластик, стирекс, изготовленный в виде маленьких кубиков, имевших средний химический состав UC4H10. Во время заключительных экспериментов сборка содержала 5,4 кг этого материала, была разбавлена полиэтиленом и имела графитовый и полиэтиленовый отражатель.

Реактор держали в состоянии критичности на мгновенных нейтронах в течение около 1/100 с. Это осуществлялось сбросом части активной зоны через вертикальный канал в активной зоне, которая была установлена на стальном столе толщиной 3/8 дюйма (0,95 см). Сбрасываемый материал помещался в стальной параллелепипед, траектория движения которого задавалась четырьмя направляющими.

Энергия, выделявшаяся при делении, не вносила вклада в подавление всплеска мощности. Энерговыделение определялось остаточной скоростью деления и конечной конфигурацией материала, сложенного на столе. Величину вспышки можно было менять, приближая отражатель к сборке или увеличивая фоновую скорость деления. Часто использовались оба метода. Так, возможно, было и во время последнего эксперимента, поскольку осуществлялось постепенное наращивание мощности вспышек. Во время последней вспышки с выходом, составившим 6 X 1015 делений, кубики UH3 так разогрелись, что начали распухать и покрываться пузырями. Вся система расширилась приблизительно на 1/8 дюйма (3,2 мм).

При последнем всплеске мощности был поврежден материал активной зоны, но делящийся материал не был потерян, и не было радиоактивного загрязнения или облучения персонала.

 

2. Национальная станция испытания ядерных реакторов, шт. Айдахо, 29 ноября 1955 г.

38, 86, 87

EBR-1, быстрый реактор-размножитель на обогащенном уране; единичный всплеск мощности; незначительные дозы облучения.

Проектирование реактора EBR-1 на быстрых нейтронах началось в 1948 году с целью установить возможные значения величин коэффициентов воспроизводства ядерного топлива и продемонстрировать техническую возможность осуществления охлаждения реактора с металлическим топливом жидкометаллическим теплоносителем. Эти цели были достигнуты, и в начале 1952 г. установка уже с избытком обеспечивала реактор и реакторное здание электроэнергией. Избыточный пар сбрасывался на конденсатор.

Р. П. Фейнман отметил, что эти эксперименты похожи на щекотание хвоста дракона, поэтому их и назвали «эксперименты с драконом». Это название часто используется для класса импульсных экспериментов, где реактивность вводится и выводится механическими устройствами и где механизмы гашения, зависящие от энерговыхода, не влияют на процесс гашения цепной реакции.

Активная зона реактора состояла из цилиндрических стержней из высокообогащенного урана диаметром чуть менее 1/2 дюйма (12,7 мм) в оболочке из нержавеющей стали с NaK между чехлом и стержнем. Общая масса урана в активной зоне составляла около 52 кг. Теплосъем в активной зоне осуществлялся потоком эвтектики NaK, служившей теплоносителем.

Заключительный эксперимент планировался для изучения коэффициентов реактивности, в особенности положительного мощностного коэффициента при потере теплоносителя. Для этого систему привели в надкритическое состояние с периодом 60 секунд на уровне мощности 50 Вт. Приблизительно через 3 секунды мощность поднялась до 1 МВт, период сократился до 0,9 с, температура в активной зоне существенно возросла. Появился сигнал об аварийной остановке реактора, но по ошибке были задействованы медленные приводы регулирующих стержней вместо быстродействующей системы аварийной остановки реактора, которая действовала по принципу сбрасывания под собственным весом части зоны воспроизводства реактора, состоявшей из природного урана. Такой операцией обычно заканчивались все сходные эксперименты. Изменение реактивности при вводе поглощающих стержней вызвало моментальное падение мощности, но его оказалось недостаточно, чтобы скомпенсировать естественные процессы (стержни чуть-чуть прогнулись внутрь), вводившие в систему положительную реактивность. С задержкой не более 2 секунд автоматически и вручную была приведена в действие система аварийной остановки реактора, и эксперимент был закончен.

Поначалу не было очевидно, что активная зона повреждена. Последующая проверка обнаружила, что около половины активной зоны расплавилось, испарившийся NaK выбросил часть расплавившегося топлива в отражатель. Теоретический анализ показал, что всплеск мощности был остановлен сброшенным отражателем, после того как мощность достигла максимальной величины, составившей 9-10 МВт. Всего произошло примерно 4,6 X 1017 делений. Теоретический анализ был продолжен для того, чтобы понять, погасилась бы цепная реакция сама по себе без катастрофических последствий. В результате был сделан вывод, что энерговыделение в два с половиной раза больше того, которое наблюдалось во время аварии, не вызвало бы сильного разрушения активной зоны.

Во время этой аварии персонал получил незначительные дозы облучения за счет аэрозольных продуктов деления, доза прямого облучения практически равнялась нулю.

 

3. Лос-Аламосская национальная лаборатория, 3 июля 1956 г.

42, 44

Критическая сборка «Ханикоум», фольга из металлического урана с графитовым замедлителем; единичный всплеск мощности; незначительные дозы облучения.

Сборка, в которой произошел этот всплеск мощности, являлась типичной среди нескольких имевшихся тогда установок. Лос-Аламосская установка состояла из большой матрицы размером 3 дюйма X 3 дюйма X 6 футов (7,6 X 7,6 X 183 см), составленной из 576 квадратных алюминиевых труб. Матрица была разделена посередине, и одна из половин могла передвигаться по рельсам. На рисунке 62 сборка «Ханикоум» показана в разделенном виде. Установка использовалась для отработки конструктивных особенностей сложных реакторов, так как допускала многообразие вариантов расположения урановой фольги и различных замедляющих материалов. Неоднородность размещения материалов в этой и подобных установках характеризуется наименьшей отрицательной обратной связью по реактивности из всех существующих на сегодня критических сборок. Этот вывод следует из явного отсутствия какого-либо существенного механизма гашения, за исключением испарения урановой фольги, и отсутствия достаточно быстродействующей системы аварийной остановки.

3 июля 1956 года загрузка состояла из 58 кг обогащенного урана (с обогащением 93 %) в виде фольги толщиной 2 и 5 мил (0,05 и 0,127 мм), разложенной между брусками из графита. Активную зону окружал бериллиевый отражатель. Общая масса графита была 1139 кг. К этому эксперименту были сделаны изменения в отражателе и графитовом замедлителе, в результате которых состояние критичности наступало слишком быстро по сравнению с условиями штатных экспериментов. Когда тележка двигалась со скоростью около 0,2 дюйма в секунду (0,5 см/с), система перешла в состояние критичности на мгновенных нейтронах, произошла вспышка, и системой аварийной защиты были извлечены бериллиевые регулирующие стержни (снизившие реактивность) и было изменено направление движения тележки на противоположное. Энерговыделение при вспышке составило 3,2 X 1016 делений.

Очевидно, это был всплеск мощности того же типа, что и те, которые моделировались на сборке «Дрэгон», так как добавление и уменьшение избыточной реактивности осуществлялось механическим путем. Разрушений и радиоактивного загрязнения не было. Поскольку осуществлялось дистанционное управление с расстояния 1/4 мили (400 м), никто из персонала не облучился.

Рисунок 62. Сборка «Ханикоум», ЛАНЛ. Подвижная секция (справа) находится в отодвинутом положении, и алюминиевая матрица загружена частично.

 

4. Национальная станция испытания ядерных реакторов, шт. Айдахо, 18 ноября 1958 г

Реактор HTRE; сбой автоматики; единичный всплеск мощности; незначительные дозы облучения.

Опытный реактор для изучения теплопередачи (HTRE № 3) являлся сборкой, моделирующей энергетический реактор, и представлял собой большой реактор (активная зона диаметром 51 дюйм (129,54 см) и высотой 43,5 дюйма (110,5 см)) с топливными элементами из UO2 в оболочке из хромоникелевого сплава с замедлителем из гидрида циркония и бериллиевым отражателем. Цель эксперимента состояла в повышении мощности до 120 кВт, т. е. примерно в два раза по сравнению с мощностью, на которой сборка работала в течение этого дня. Увеличение мощности достигалось при помощи регулирующего стержня с ручным приводом, пока не был достигнут уровень мощности, составляющий 10 % от запланированной. В этот момент управление перешло к сервоприводу, который должен был вывести реактор на уровень мощности в 120 кВт с 20-секундным периодом. Когда был достигнут уровень в 80 % от запланированной мощности, поток, согласно показаниям устройства, регистрирующего уровень мощности, стал резко спадать, и сервосистема еще больше извлекла регулирующие стержни. Однако показания уровня мощности не увеличились, а продолжали падать. Такое развитие ситуации продолжалось около 20 с, после чего автоматически включилась система аварийной остановки реактора. Не более чем через 3 секунды оператор также дал команду на срабатывание системы аварийной защиты. Считается, что автоматическое срабатывание системы аварийной остановки произошло вследствие расплавления проводов термопар. Основной причиной аварии было падение напряжения на электродах ионизационной камеры, являвшейся частью сервосистемы, при увеличивающейся плотности потока нейтронов. Такое поведение было, в свою очередь, вызвано добавлением в электрическую схему специального фильтра, предназначенного для подавления электронных помех, идущих от источника высокого напряжения или его соединительных кабелей. Таким образом, данная авария является уникальной. Она произошла исключительно из-за отказа измерительной аппаратуры.

При всплеске мощности в 2,5 X 1019 делений произошло расплавление разной степени всех топливных элементов активной зоны. Были разрушены отдельные элементы замедлителя из гидрида циркония. Расплавление топливных элементов привело к небольшому перераспределению топлива с понижением реактивности примерно на 2 %. Имел место небольшой выброс радиоактивности, которая разносилась ветром, однако облучение персонала было, по-видимому, незначительным.

 

5. Лос-Аламосская национальная лаборатория, 11 декабря 1962 г

Критическая сборка «Зэпо» из урановой фольги с графитовым замедлителем; единичный всплеск мощности; незначительные дозы облучения.

Критическая сборка имела большую активную зону, состоявшую из обогащенного урана и графита и установленную на подъемнике стационарной платформы, на которой располагался отражатель из графита и бериллия, в который поднималась активная зона. Большая часть урана в виде тонкой фольги была распределена в графите, так что характеристики пиков мощности должны были быть сходными с пиками мощности в сборках типа «Ханикоум». Эксперимент был посвящен измерениям осевого распределения числа делений в активной зоне, которое было искажено по сравнению с нормальным режимом работы вследствие установки концевого отражателя из графита и полиэтилена. Поэтому в сборку загрузили необлученную фольгу из урана, чтобы получить достаточно точное значение распределения энерговыделения.

Смена, работавшая на сборке, предполагала, что днем ранее сборка работала и была проверена, однако в действительности это было не так. Система перешла в критическое состояние в тот момент, когда активная зона двигалась вверх. Когда мощность достигла уровня около 200 ватт, автоматически сработала система аварийной остановки. Прежде чем удалось остановить и начать опускать подъемник, реактивность системы примерно на 12 центов превысила уровень критичности на мгновенных нейтронах. Мощность в пике составила около 1 МВт, максимальный обратный период — 40 с-1, энерговыделение составило 3 X 1016 делений. Не было механических разрушений и облучения персонала. В помещение установки вошли через 30 минут.