Фрактальная геометрия природы

Мандельброт Бенуа

VIII СТРАТИФИЦИРОВАННЫЕ СЛУЧАЙНЫЕ ФРАКТАЛЫ

 

 

23 СЛУЧАЙНЫЙ ТВОРОГ: КОНТАКТНЫЕ КЛАСТЕРЫ И ФРАКТАЛЬНАЯ ПЕРКОЛЯЦИЯ

 

В этой группе глав мы поговорим о том, как с помощью различных, порой до смешного простых, приемов можно получить весьма эффективные случайные фракталы. Предметом главы 23 является рандомизация створаживания – процедура, используемая для приблизительного построения канторовой модели шума (см. главу 8), модели распределения галактик на основе пространственной канторовой пыли (см. главу 9), модели турбулентной перемежаемости (см. главу 10) и т.п. Глава 24 посвящена в основном представлению моих сквиг-кривых – нового рандомизированного варианта кривой Коха. В главе 25 мы коснемся броуновского движения, а в главе 26 определим другие фракталы со «случайным срединным смещением»

Вынесенный в заголовок этой группы глав термин «стратифицированный» (иначе – расслоенный, от латинского strata «слой») означает, что во всех рассматриваемых прецедентах мы будем иметь дело с фракталами, построенными посредством наложения друг на друга слоев, причем каждый из последующих слоев дает более мелкие по сравнению с предыдущим детали. Во многих случаях слои располагаются в иерархической последовательности. Вообще говоря, до сих пор мы изучали исключительно стратифицированные фракталы, пусть никто об этом прямо и не говорил. Однако в последующих главах мы убедимся в том, что случайные фракталы отнюдь не обязаны быть стратифицированными.

Фракталы в данной главе строятся на сетке или решетке, составленной из интервалов, квадратов или кубов, каждый из которых делится на bE подынтервалов, подквадратов или подкубов (b - решеточная база).

 

РАНДОМИЗИРОВАННАЯ ЛИНЕЙНАЯ ПЫЛЬ

Построение простейшей случайной пыли, способной усовершенствовать канторову модель ошибок при передаче (см. главу 8), начинается с простейшей формы канторова створаживания: с решетки интервалов с базой b и некоторого целого числа N

Любая принадлежащая творогу точка P определяется последовательностью вложенных «предтворожных» интервалов с длинами Rk =b−k . Если общая исходная масса рана 1, то каждый предтворог содержит одинаковую массу . Масса, содержащаяся в интервале длины 2Rk с центром в точке P, равна произведению на некоторую случайную величину, лежащую в интервале от 1 до 2 и не зависящую от k.

Заметим, что размерность D ограничена последовательностью ln(b−1)/lnb, ln(b−2)/lnb,.... Это ограничение часто причиняет неудобства. Что более важно, вышеприведенное определение створаживания сложно реализуется в компьютерной программе и вообще плохо поддается аналитическим манипуляциям. Так как главное достоинство модели створаживания заключается в ее простоте, более предпочтительным, очевидно, окажется альтернативное определение, которое мы дадим в последующих разделах. Во избежание путаницы будем называть определение, приведенное в этом разделе, ограниченным (в [378] я предлагал иной термин: микроканоническое определение).

 

СТВОРОЖЕННАЯ СЛУЧАЙНАЯ ЛИНЕЙНАЯ ПЫЛЬ

Более удобное определение створаживания (предложенное в [378], где я называю его каноническим) можно получить с помощью последовательности случайных двоичных выборов, каждый из которых определяется простым броском монеты. Бросок монеты на первом этапе решает последующую судьбу каждого из bподынтервалов. Если выпадает орел (событие с вероятностью p<1), то данный подынтервал «выживает» как часть предтворога; в противном случае мы с ним больше не встретимся. Изолированные точки, остающиеся между «мертвыми» подынтервалами любой длины, после каждого этапа стираются. Здесь, конечно, от них вреда немного, однако их плоскостные или пространственные аналоги (изолированные линии и т.д.) порождают в множестве ложную связность. Ожидаемое количество выживших подынтервалов равно . Далее процесс возобновляется, причем каждый подынтервал обрабатывается независимо от других.

Формализм процесса рождения. Если назвать подынтервалы «детьми», а весь каскад – «семьей», то сразу станет ясно, что распределение количества детей определяется известным процессом рождения и гибели (см. [196]).

Фундаментальным следствием этого наблюдения является существование для величины критического значения: этот факт был открыт в 1845 году Иренеем Бьянеме (см. [212]) и вполне заслуженно называется эффектом Бьянеме.

Значение является критическим в том смысле, что количество N(m) наличествующих в m - м поколении отпрысков ставит нас перед очень простой альтернативой. Если , то семейство почти наверняка вымрет, и в настоящей интерпретации это означает, что каскад даст, в конце концов, пустое множество. Если же , то генеалогическая линия каждого творога имеет ненулевую вероятность продолжиться на бесконечное число поколений. В этом случае случайное створаживание дает в пределе случайную линейную пыль.

Смысл размерности подобия. Так как отношение lnN(m)/ln(1/r) здесь изменяется случайным образом, понятие размерности подобия требует переосмысления. Из почти истинного соотношения

можно предположить, что обобщенная размерность подобия выглядит следующим образом:

.

При таком определении D* условие существования непустого предельного множества принимает весьма логичный вид: D* >0. Если D* >0, то D=D* . Если же мы формально применим эту формулу к случаю , то получим D≤0, однако фактически размерность D пустого множества всегда равна 0.

 

ВЛОЖЕННЫЕ ТВОРОГИ С УМЕНЬШАЮЩЕЙСЯ РАЗМЕРНОСТЬЮ

D

Построим последовательность случайных творогов с уменьшающейся размерностью D, каждый из которых вложен в предыдущий.

Предварительный этап не зависит от величины D и заключается в присвоении каждому вихрю (неважно какого порядка) некоторого случайного числа U из интервала от 0 до 1. Из главы 21 нам известно, что все эти числа, взятые в совокупности, эквивалентны одному – единственному числу, которое служит мерой вклада случайности в данный процесс. Далее выбираем значение D и определяем из последней записанной нами формулы порог вероятности p. Наконец, происходит собственно створаживание посредством, если можно так выразиться процесса «фрактальной децимации». При U>p вихрь «умирает», переходя в простоквашу и унося с собой все свои субвихри. Если же U≤p, то вихрь можно считать выжившим и готовым к дальнейшему створаживанию.

Этот метод позволяет представлять все характеристики творога, простокваши и всех остальных интересующих нас множеств в виде функций от непрерывно изменяющейся размерности. Достаточно зафиксировать случайные числа U, уменьшая при этом значение p от 1 до 0, и мы получим размерность D, уменьшающуюся от 3 до 0.

Пусть даны твороги Q1 и Q2 , соответствующие вероятностям p1 и P2

 

СТВОРАЖИВАНИЕ ГАЛАКТИК ПО ХОЙЛУ

У ограниченного створаживания имеется пространственный аналог, который можно использовать при геометрической реализации творожной модели распределения галактик, предложенный Хойлом (см. рис. 310 и 311).

Рис. 310 и 311. Реализация модели Хойла (размерность D=1) с использованием случайного створаживания на решетке

Основой модели Хойла (см. главу 9) является газовое облако очень низкой плотности, которое в результате последовательных сжатий образует скопление галактик, затем собственно галактики и т.д. Однако описание Хойла страдает чрезвычайной схематичностью, поэтому реальное геометрическое воплощение его модели требует некоторых специальных допущений. На рисунках показаны проекции простейшего такого воплощения на плоскость.

Рис. 311. В качестве инициатора выступает куб со стороной 1, который на первом этапе каскада разделяется на 53 =125 подкубов со стороной 5−1 ; далее процедура повторяется, и на k - м этапе мы получаем уже 125k подкубов k - го порядка, длина стороны каждого из которых равна 5−k , и при этом содержащееся в любом из подкубов (k−1) - го порядка вещество, сжимаясь, образует набор из 5 подкубов k - го порядка, который мы будем называть k - предтворогом. Створаживание по Хойлу всегда понижает размерность D с 3 до 1.

На этом рисунке вы можете видеть первые три этапа каскада, совмещенные друг с другом, причем более темный оттенок серого символизирует бóльшую плотность газа. В сравнении с рисунком, приведенным в [230] (с. 286), наша картинка может показаться приближенной. Это не так: рисунок выполнен с очень тщательным соблюдением масштаба, поскольку вопросы, связанные с размерностью, требуют точности.

Ввиду того, что мы представляем здесь плоскую проекцию трехмерного творога, нередко случается так, что два куба проецируются в один квадрат. Однако в пределе совпадения проекций двух точек практически исключены. Образующаяся пыль настолько разрежена, что пространство, в сущности, остается прозрачным.

Рис. 310. Здесь показан только четвертый этап каскада (с другой затравкой). Лежащая в основе построения решетка практически не прослеживается, и это хорошо, поскольку в природе мы никаких решеток не наблюдаем (см. главу 27). Верхний участок вихря, обрезанный краем страницы, в настоящем примере пуст.

Регулирование лакунарности. Понятие лакунарности, представленное в главе 34, непосредственно применимо к створаживанию на прямой и к створаживанию по Хойлу. Если у Хойла заменить N=5 «реальным» значением Фурнье N=1022 (см. рис. 141), то лакунарность случайного творога становится очень и очень малой.

 

СТВОРАЖИВАНИЕ В МОДЕЛИ ТУРБУЛЕНТНОГО РАССЕЯНИЯ НОВИКОВА – СТЮАРТА

Пространственное случайное створаживание можно наблюдать и в одной очень ранней модели перемежаемости турбулентности. Новиков и Стюарт [451] предполагают, что пространственное распределение рассеяния генерируется каскадным процессом: в начале каждого этапа берется предтворог предыдущего этапа и створаживается дальше, давая в результате N меньших в r раз частей. См. рис. 312 – 315.

Эта модель очень приблизительна, она даже грубее модели, предложенной в [21] для описания определенных избыточных шумов (см. главы 8 и 31). Она почти не привлекла к себе сколько-нибудь благосклонного внимания, ее никто не исследовал и не разрабатывал. Однако такое пренебрежительное отношение лишено всяких оснований. Мои исследования показывают, что в створаживании, согласно этой модели, уже присутствовали многие черты, характерные для более совершенных и более сложных современных моделей.

Рис. 312 – 315. Случайный творог Новикова – Стюарта на плоской решетке (размерности от D=1,5936 до D=1,9973) и перколяция

Каскад Новикова – Стюарта дает полезное общее представление о том, каким образом турбулентное рассеяние в жидкости приходит в итоге к относительно малому объему. Концептуально он очень похож на каскад Хойла, проиллюстрированный на предыдущих рисунках; Однако между фрактальными размерностями D получаемых в пределе этих каскадов множеств имеется значительное различие. Размерность распределения галактик близка к единице, тогда как в турбулентности D>2, причем хорошим приближением считается значение в интервале от 2,5 до 2,6. Для более общего понимания процесса створаживания на рисунках представлены примеры с различными размерностями. Во всех примерах r=1/5, а N принимает следующие значения:

N=5×24, N=5×22, N=5×19, N=5×16 и N=5×13.

Размерности же, соответственно, равны:

D=1+ln24/ln5=2,9973; D=2,9426, D=2,8505, D=2,7227 и D=2,5936.

Сыворотка изображается серым цветом, а творог черным или белым. Белая область представляет собой перколяционный контактный кластер, т.е. вы можете, двигаясь только по белому, пройти от нижнего края рисунка до верхнего. Черным цветом представлены все остальные контактные кластеры.

Так как размерность турбулентности больше 2, твороги эти, в сущности, непрозрачны, а на рисунках показаны (в отличие от творогов Хойла) их плоские сечения со следующими размерностями:

D=1,9973, D=1,9426, D=1,8505, D=1,7227 и D=1,5936.

Правый нижний угол рис. 312 отведен под пример с размерностью D~1,9973, не представляющий большого интереса, остальная часть рисунка иллюстрирует случай D~1,9426.

Порождающая программа и затравка одинаковы для всех примеров, и мы можем проследить постепенное исчезновение серых пятен по мере увеличения размерности. Для начала возьмем 25 субвихрей любого вихря и наложим их случайным образом друг на друга. Серыми окажутся 25−N верхних субвихрей, где N=5D .

В двух примерах с наименьшими размерностями перколяции не происходит. При N=19 на рисунке остается несколько черных пятен и появляется много белых. Некоторые затравки перколируют уже при N=18. Однако на иллюстрациях показан слишком ранний этап каскада, чтобы можно было делать достоверные оценки порога Dкрит.

Сыр. Образ, стоящий за термином створаживание (равно как и за термином сыворотка, обозначающим дополнение творожного множества), не следует, разумеется, воспринимать буквально, однако известно, что образование реального сыра может быть вызвано биохимической нестабильностью – точно так же, как створаживание Новикова – Стюарта происходит, согласно предположению, вследствие нестабильности гидродинамической. Как бы то ни было, неопровержимых данных в пользу того, что какой-нибудь съедобный сыр может оказаться, ко всему прочему, еще и фрактальным, у меня нет.

 

СЛЕДСТВИЯ «ПРОМЕЖУТОЧНОСТИ» СЛУЧАЙНОГО ТВОРОГА

Известно, что в трехмерном пространстве стандартные фигуры с размерностью D<3 (точки, линии и поверхности) имеют нулевой объем. Это верно и для случайного творога.

Площадь предтворогов также ведет себя довольно просто. При D>2 она стремится к бесконечности, а при D<2 - к нулю. При D=2 створаживание практически не изменяет величину площади.

Аналогичным образом, по мере того, как m→∞, суммарная длина краев предтворогов стремится к бесконечности при D>1 и к нулю при D<1.

Эти свойства можно считать еще одним подтверждением того, что творог с фрактальной размерностью, заключенной в интервале 2

Доказательства. Самым простым оказывается доказательство для случая ограниченного створаживания. Объем m - го предтворога равен , и величина эта стремится к нулю по мере уменьшения внутреннего масштаба η=rm . Что касается площади, то случай D<2 устанавливается по верхнему пределу. Площадь предтворога m - го порядка не может превышать суммы площадей соответствующих вихрей, так как упомянутая сумма включает в себя те стороны субвихрей, которые, являясь общими для соседних творогов, нейтрализуют одна другую. Поскольку площадь каждого вихря m - го порядка составляет 6L2 r2m , их общая площадь не может превышать . При D<2 верхний предел стремится к нулю по мере того, как m→∞, что доказывает наше утверждение. В случае D>2 мы можем получить нижний предел, отметив, что объединение вихрей m - го порядка, содержащихся в предтвороге m - го порядка, включает в себя, по крайней мере, один квадрат с длиной стороны rm и площадью r2m , каковой квадрат достается нам в наследство от предтворога (m−1) - го порядка и никак не может быть меньше, чем , а эта величина стремится к бесконечности вместе с m. Наконец, при D=2 оба предела оказываются конечными и положительными.

 

РАЗМЕРНОСТЬ

D

ФРАКТАЛЬНЫХ СЕЧЕНИЙ: ПРАВИЛО СЛОЖЕНИЯ КОРАЗМЕРНОСТЕЙ

Наша следующая тема уже неоднократно упоминалась ранее. И вот теперь мы созрели для того, чтобы рассмотреть ее в полном и явном виде на примере одного особого случая.

Для начала припомним следующее стандартное свойство евклидовой геометрии плоскости: если размерность D некоторой фигуры удовлетворяет условию D≥1, то сечение этой фигуры прямой (если оно не пусто) «обычно» имеет размерность D−1. Например, непустое линейное сечение квадрата (D=2) представляет собой отрезок с размерностью 1=2−1. А линейное сечение прямой (D=1) - это точка (размерность 0=1−1), за исключением случая, когда обе прямые совпадают.

Стандартные геометрические правила, определяющие поведение размерности при пересечении, можно свести к следующему, более общему виду: если сумма коразмерностей C=E−D меньше E, то эта сумма является коразмерностью типичного пересечения; в противном случае пересечение, как правило, оказывается пустым. (Я приглашаю читателя самостоятельно проверить справедливость данного утверждения для различных пространственных конфигураций плоскостей и прямых.)

Упомянутое правило, к счастью, распространяется и на фрактальные размерности. Благодаря этому обстоятельству многие относящиеся к фракталам рассуждения становятся гораздо более простыми, чем можно было опасаться. Не следует, однако, забывать и о многочисленных исключениях из правила. Так, в частности, в главе 14 мы наблюдали, что при пересечении неслучайного фрактала особым образом расположенной прямой или плоскостью далеко не всегда можно вывести размерность получающегося сечения из размерности фрактала . Случайные фракталы в этом смысле заметно проще.

 

РАЗМЕРНОСТЬ

D

СЕЧЕНИЙ СЛУЧАЙНЫХ ТВОРОГОВ

Для доказательства применимости этого фундаментального правила к фрактальному творогу рассмотрим следы (квадраты и интервалы), оставляемые вихрями и субвихрями каскада створаживания на поверхности либо на краю исходного вихря со стороной L. На каждом этапе каскада каждый участок предтворога замещается некоторым количеством меньших участков, причем количество это определяется процессом рождения и гибели. Обозначим количество «отпрысков» m - го поколения, расположенных вдоль края исходного вихря, через N1 (m). Классические выводы, уже использованные ранее в этой главе, показывают, что величина N1 (m) не оставляет нам богатого выбора. Если (т.е. D≤2), то можно быть почти уверенным, что семейство, в конце концов, вымирает, иными словами край вихря становится пустым, а размерность его, как следствие, равной нулю. Если же (т.е. D>2), то генеалогическая линия каждого края имеет, напротив, ненулевую вероятность продолжиться на бесконечное число поколений. Размерность подобия в этом случае равна D−2 согласно следующему почти всегда верному соотношению:

.

К двумерным следам вихрей применимы те же рассуждения, только нужно заменить величину N1 на некоторую случайную величину N2 - такую, что . Если (т.е. D≤1), то поверхность каждого вихря становится, в конце концов, пустой. Если же (т.е. D>1), то размерность подобия равна D−1 согласно следующему почти верному соотношению:

.

При ограниченном створаживании результаты остаются такими же.

Тождественность поведения фрактальной и евклидовой размерности при пересечении подтверждается и следующим наблюдением: при пересечении нескольких створоженных фракталов, носителем которых является одна и та же решетка, а размерности равны, соответственно, Dm , выполняется равенство .

 

ТОПОЛОГИЯ ТВОРОГА: КЛАСТЕРЫ

Рискуя показаться занудным, все же позволю себе повториться: фундаментальные неравенства - D<2 для галактик (глава 9) и D>2 для турбулентности (глава 10) – являются не топологическими, но фрактальными.

При неслучайном створаживании в E≥2 (см. главы 13 и 14) топология предельного множества однозначно определяется выбранным в начале процесса генератором. Любой ковер Серпинского (D

DT =2) - пространственный связной творог. Остальные твороги – это либо σ - кластеры, либо пыли. Таким образом, при E=3 и D>2 (т.е. в тех случаях, которые интересуют исследователей турбулентности) неслучайный каскад может привести либо к DT =0 (пыль), либо к DT =1 (кривые или σ - кривые), либо к DT =2 (поверхности или σ - поверхности). Когда же E=3, а D<2 (этими случаями, как правило, занимается астрономия), топологическая размерность DT может быть равна либо 0, либо 1.

Случайное же створаживание использует статистически смешанный генератор; о топологии предельного множества в этом случае можно говорить лишь «почти наверное» (см. конец главы 21). Сама неточность такого створаживания делает его настолько простым, что существенным становится тщательно исследовать имеющиеся в нем на этот счет предсказания. Наше теперешнее знание складывается из доказанных фактов и выведенных из косвенных свидетельств умозаключений.

Критические размерности. Топологическая размерность DT творога дискретно изменяется, когда значение D пересекает определенные критические пороги, которые мы будем обозначать как Dкрит,D2 крит ,...,D(E−1) крит . Иными словами, почти невозможно встретить смешанный творог, т.е. такой, который состоял бы из отдельных частей с различной размерностью DT .

Порог Dкрит - самый важный. Он, кроме того, является верхним пределом для тех значений D, при которых данный творог почти наверняка представляет собой пыль, а также нижним пределом для тех значений D, при которых данный творог почти наверняка распадается на бесконечное количество непересекающихся участков, каждый из которых представляет собой связное множество. По причинам, изложенным в главе 13, эти участки называются контактными кластерами.

Следующий порог, D2 крит , отделяет значения D, при которых творог представляет собой σ - кривую, от тех, при которых он становится σ - поверхностью, и т.д. Если (или когда) мы всерьез займемся исследованием топологии сыворотки, она, вполне возможно, одарит нас новыми критическими порогами.

Размерность кластеров. Когда D>Dкрит, фрактальная размерность контактных кластеров Dc

Распределение размеров кластеров. Распределение , и т.д. можно получить путем простой замены на с соответствующих формулах главы 13.

Пределы для D крит и D 2 крит . Очевидно, что Dкрит≥1 и D2 крит ≥2. В следующем разделе доказывается, что для порога Dкрит существует верхний предел, меньший E, из чего можно заключить, что вышеприведенные определения и в самом деле имеют вполне конкретный смысл.

Кроме того, существуют и более связанные нижние пределы, не зависящие от b. Чуть позже я покажу, что достаточным условием для DT =0 является D<½(E+1). Следовательно, Dкрит>½(E+1)>1. Достаточным же условием для равенства DT либо 0, либо 1, является D<½E+1. Следовательно, D2 крит >½E+1>2.

При E=3 находим D<½(E+1)=2, что вполне согласуется (даже с запасом) как со значением Фурнье – Хойла D=1, так и с эмпирическим значением для галактики, D~1,24. Таким образом, случайный творог с любым из этих значений D представляет собой пыль – чего мы, собственно, от него и добивались.

Условие D<½E+1 дает при E=3 размерность D<2,5. Это пороговое значение (как ни странно) также хорошо вписывается в нашу картину и вполне соответствует оценке размерности носителя турбулентной перемежаемости. Опыт подсказывает, что достаточные условия, полученные с помощью приближенных методов, редко бывают оптимальными. Следовательно, можно предположить, что, согласно модели створаживания, носитель турбулентности должен представлять собой нечто меньшее, чем участок поверхности.

Отыскание нижних пределов. Существование нижних пределов обусловлено тем фактом (см. главу 13), что контактные кластеры в твороге возникают там, где сливается содержимое соседних ячеек. Рассмотрим в этой связи пересечение творога с плоскостью, перпендикулярной некоторой оси с координатой вида ab−β , где α и β - целые числа. Известно, что при D>1 существует положительная вероятность того, что это пересечение непусто. Однако для слияния необходимо перекрытие между частичными вкладами в пересечение соседних ячеек с общей стороной, длина которой равна b−β . Если эти вклады непусты, то они статистически независимы друг от друга; следовательно, размерность их перекрытия формально определяется выражением D* =E−1−2(E−D)=2D−E−1.

Если D* <0 (т.е. если D<½(E+1)), то вклады не перекрываются. Следовательно, данный творог никак не может содержать в себе непрерывную кривую, пересекающую нашу плоскость, и DT <1.

Если D* <1 (т.е. если D<½E+1), то перекрытие вкладов (при условии, что оно существует) не может содержать кривую. Следовательно, творог не может содержать в себе непрерывную поверхность, пересекающую плоскость, и DT <2.

При D* 1 (т.е. при D<½(E+1+F)), аналогичное рассуждение исключает возможность существования какой бы то ни было гиперповерхности с размерностью DT =F.

С учетом этих результатов не составляет большого труда завершить доказательство приведенных в предыдущем подразделе неравенств: если творог содержит в себе кривую (или поверхность), то любая точка P на этой кривой (поверхности) содержится внутри блока со стороной вида b−β , который кривая (поверхность) пересекает в некоторой точке (или кривой). Можно утверждать, что таких точек (или кривых) почти наверняка не существует при D<½(E+1) (или при D<½E+1).

 

ПЕРКОЛЯЦИОННЫЕ ФРАКТАЛЬНЫЕ КЛАСТЕРЫ

Обсуждение топологии лучше всего продолжать в рамках перколяционной терминологии. В соответствии с определением, приведенным в главе 13, мы говорим, что некая фигура внутри квадрата или куба перколирует, если она содержит в себе связную кривую, соединяющие противоположные стороны этого квадрата или куба. Под термином «перколяция» обычно понимают бернуллиеву перколяцию, которую мы рассматривали в главах 13 и 14. Однако аналогичная задача возникает и в контексте случайных фракталов. Ниже мы попытаемся решить эту задачу на примере случайного творога.

Опираться мы будем на фундаментальный факт, заключающийся в том, что если упомянутая фигура представляет собой σ - кластер, то она перколирует в том и только в том случае, если перколирует один из принадлежащих ей контактных кластеров. Когда контактные кластеры фрактальны и их длины подчиняются безмасштабному гиперболическому распределению, вероятность перколяции не зависит от длины стороны квадрата и не вырождается в 0 или 1. В бернуллиевой перколяции упомянутое в предыдущем предложении «когда» сводится к весьма жесткому условию: p=pкрит. Перколяция сквозь фрактальный творог довольствуется условием более мягким, а именно: D>Dкрит. Разница очень значительна. И все же понимание бернуллиевой перколяции помогает понять перколяцию творога, и наоборот.

Верхний предел для D крит . Я утверждаю, что при b≥3 пороговое значение Dкрит удовлетворяет неравенству . Точнее, при фиксированном N (ограниченное створаживание) выполнение этого условия почти гарантирует перколяцию. При неограниченном створаживании оно означает, что существует некая положительная, но малая вероятность того, что перколяция не произойдет.

Прежде всего рассмотрим случай неслучайного N. При сильном условии bE −N≥ ≥½bE−1 −1 любая заданная поверхность, заключенная между двумя ячейками предтворога, всегда выживает. Даже в самой опасной ситуации, когда вокруг упомянутой поверхности скапливаются все не выживающие субвихри, их количества совершенно недостаточно для разрыва существующей тропы (причем не почти наверное, а абсолютно точно). Более слабое условие bE −N≥½bE−1 дает тот же результат, но уже на абсолютно, а лишь почти наверное. Получающийся творог состоит из листов поверхности, окружающих отдельные лакуны, заполненные сывороткой. Две точки сыворотки, расположенные в разных лакунах, нельзя соединить никаким образом. Топология такого творога почти наверняка тождественна топологии ковра Серпинского или фрактальной пены (см. главу 14).

Если применить то же условие к неограниченному створаживанию, то отсутствие перколяции из разряда совершенно невозможных событий перейдет в просто маловероятные.

Рассмотрим некоторые численные примеры на плоскости (E=2). При b=3 более слабое (и более полезное) из вышеприведенных условий дает неравенство N>7,5, которое имеет единственное решение: N=8 (равное значению N для ковра Серпинского). По мере того как b→∞ верхний предел для Dкрит подходит все ближе к 2.

Нижний предел для D крит . При b≫1 справедливо неравенство Dкритz>E+logb pкрит, где pкрит - критическая вероятность в бернуллиевой перколяции. Существование этого предела обусловлено тем, что первый этап случайного фрактального створаживания сводится к построению бернуллиевой решетки, каждая ячейка которой является проводящей с вероятностью bD−E . Если эта вероятность меньше pкрит, то электропроводность решетки – событие маловероятное. А если такая решетка все-таки проводит ток, то происходит это, скорее всего, благодаря одной-единственной цепочке проводящих ячеек. На втором этапе случайного фрактального створаживания мы строим бернуллиеву решетку с вероятностью bD−E уже в каждой проводящей ячейке решетки первого этапа. И это наверняка разорвет существующую перколяционную цепочку.

При b→∞ новый предел стремится к E и, в своей области применения (b≫1), превосходит предел ½(E+1). Таким образом, Dкрит→E.

исывается в обязательном порядке.

Общие вершины, рассматриваемые первыми, порождают «случайные цепи», которые представляют собой прямое обобщение некоторых кривых Коха или Пеано.

Что касается общих сторон, то от них берет начало гораздо более интересное и привлекательное семейство фракталов, представленное впервые в [393] и [394]. Одни представители этого семейства – «простые» кривые, неветвящиеся и не содержащие самопересечений, другие имеют вид петель и деревьев; кроме того, процесс может порождать и поверхности. Я предлагаю называть такие фигуры сквиг - кривыми и сквиг - поверхностями.

Я отдаю сквиг - кривым предпочтение перед случайными цепями главным образом потому, что их меньшее непостоянство, по всей видимости, отражает некое фундаментальное свойство пространства.

Линейные сквиг – кривые можно считать приближенными моделями линейных полимеров и речных русел, петлеобразными сквиг – кривыми моделируются береговые линии, а древовидными – речные бассейны.

 

СЛУЧАЙНЫЕ ЦЕПИ И ЦЕПНЫЕ КРИВЫЕ

Совокупность белых областей на рис. 71 можно рассматривать как цепь, составленную из треугольников, соединенных вершинами. Следующий этап построения заменяет каждый треугольник подцепочкой, целиком заключенной внутри него, и дает в результате цепь, составленную из меньших треугольников, снова соединенных вершинами. Такая последовательность вложенных друг в друга цепей сходится в пределе к кривой Коха. (Процедура напоминает построение цепей Пуанкаре в главе 18.)

Подобным образом можно поострить и многие другие кривые Коха – например, салфетку Серпинского (рис. 205); цепью в этом случае послужит фигура, остающаяся после удаления центральных треугольных трем.

Этот метод построения прекрасно рандомизируется – например, можно заменить треугольник двумя треугольниками с коэффициентом r=1/√3, как на рис. 71, либо тремя треугольниками с r=1/3.

 

ПРОСТЕЙШИЕ СКВИГ – КРИВЫЕ [393]

Простейшей сквиг – кривой является случайная фрактальная кривая, построенная в [393, 394] и более подробно изученная в [473, 474, 475]. Эта модель русла реки, созданная по образу и подобию известных картинок из учебников по географии и геологии, на которых изображены последовательные этапы развития реки, промывающей себе путь через долину; с каждым этапом будущее русло приобретает все более четкие очертания.

Перед началом k- го этапа река течет в «предсквиг – долине», составленной из ячеек правильной треугольной решетки со стороной 2−k . Разумеется, ни в одну ячейку нельзя наведываться более чем однажды, к тому же каждое звено в решетке должно касаться сторонами двух соседних звеньев, оставляя третью сторону «свободной».

На k- м этапе эта предсквиг – кривая заменяется другой, более точной, построенной на интерполированной решетке со стороной 2−k−1 . Очевидно, что предсквиг – кривая (k+1)- го порядка обязательно содержит половину каждой стороны, общей для двух соседних звеньев k- го порядка. Верно также строгое обратное утверждение, а именно: положение общих (несвободных) половин сторон однозначно определяет вид предсквиг – кривой k- го порядка.

Симметрично – случайные сквиг – кривые. Будем выбирать половину стороны, которую следует оставить свободной, случайным образом, полагая, что каждый из вариантов равновероятен. Тогда число звеньев (k+1)- го порядка внутри звена k- го порядка равно 1 с вероятностью 1/4 или 3 с вероятностью 3/4. Среднее значение составит 2,5.

С каждым этапом долина сужается и в пределе асимптотически сходится в некую фрактальную кривую. Я, естественно, предположил, что размерность этой предельной кривой равна D=ln2,5/ln2=1,3219. Доказательство (весьма деликатное, надо сказать) можно найти в [473].

Асимметрично – случайные сквиг – кривые. Предположим, что вероятность того, что после разделения стороны треугольника на две половины поддолина выберет, скажем, «левую», не равна 1/2. Понятия «правый» и «левый» можно определять либо с позиции наблюдателя, смотрящего в направлении вниз по реке, либо с позиции наблюдателя, находящегося в центре разделяемого треугольника. В первом случае и может принимать значения от 1 до ln2,5/ln2. Во втором случае и может принимать значения от ln2,5/ln2 до ln3/ln2. В общей сложности допустимы все значения D от 1 до ln3/ln2.

 

АЛЬТЕРНАТИВНЫЕ РЕШЕТКИ И СКВИГ – КРИВЫЕ

Используя другие интерполированные решетки, можно получить сквиг – кривые иного вида. Во всех случаях, когда для идентификации предсквиг – кривой (k+1) - го порядка достаточно знать, в каких интервалах она пересекает границу между двумя ячейками k - го порядка возможно непосредственное обобщение. В качестве примера можно привести прямоугольную решетку, в которой отношение длинной стороны ячейки к короткой имеет вид √b, и каждая ячейка интерполируется в b ячеек, расположенных поперек исходной ячейки.

Иначе обстоит дело с треугольными решетками, ячейки которых интерполируются в b2 ≥9 треугольников, или с квадратными решетками, где ячейки интерполируются в b2 ≥4 квадратов. В обоих случаях интерполяция предсквиг – кривых требует дополнительных шагов.

При b=3 (треугольная решетка) или b=2 (квадратная решетка) достаточно одного дополнительного шага – вполне, впрочем, естественного. В самом деле, представьте себе четыре «луча», исходящего из центра квадрата и разделяющих его на четыре части (либо шесть лучей, разделяющих треугольник на девять частей). Как только мы оставляем свободным один из этих лучей, поддолина оказывается полностью определена. Согласно моему описанию сквиг – кривых, луч, который следует оставить свободным, выбирается случайным образом, причем каждый из вариантов равновероятен. Размерности при этом принимают следующие значения: D~1,3347 (для треугольников, разделенных на девять частей) и D~1,2886 (для квадратов, разделенных на четыре части). Учитывая, что для простейших сквиг – кривых D~1,3219, можно заключить, что все сквиг – кривые характеризуются приблизительно одинаковой размерностью D, значение которой находится в окрестности 4/3.

В тех случаях, когда ячейка разделяется на b2 частей, где b>3 (для треугольников) или b>2 (для квадратов), для определения поддолины необходимо вводить различные дополнительные факторы, отчего конструкция приобретает все более произвольный характер. При этом сущность сквиг – построения, понимаемая в свете рассуждений последующего раздела, оказывается потерянной.

 

ЦЕПНЫЕ КРИВЫЕ И СКВИГ – КРИВЫЕ: СРАВНЕНИЕ

Остановимся на минуту и припомним, что независимо от того, получаем ли мы фрактальную кривую цепным методом Чезаро или с помощью оригинального метода Коха, погрешность, возникающая при остановке процесса, распределяется вдоль кривой очень неоднородно. Полезным здесь может оказаться тот факт, что некоторые точки уже после конечного числа этапов подходят к своему предельному положению бесконечно близко. Это обстоятельство, к примеру, помогло Коху в отыскании простейшей кривой, не имеющей касательных ни в одной своей точке. Однако сущность понятия кривой становится гораздо яснее, если рассматривать кривую как предел полосы однородной ширины. Мои сквиг – кривые вполне отвечают этому условию.

Следующий пункт сравнения связан с числом произвольных решений, которые приходится принимать «создателю» при том и другом подходе. Подход Коха к построению неслучайных или случайных фракталов необычайно эффективен (он, в частности, позволяет достичь любой желаемой размерности в рамках относительно простой кривой), однако он требует от создателя принятия многочисленных специфических решений, причем все они, так или иначе, зависят друг от друга. Значение b здесь также не является внутренней характеристикой.

Все мы знаем, что наука немало настрадалась от недостатка в евклидовой геометрии моделей для описания негладких природных форм, а потому известие о том, что фрактальная геометрия способна справиться с этим, несомненно, бедственным положением, должно, казалось бы, наполнить наши сердца восторгом. Боюсь, однако, что на настоящей стадии развития теории восторги придется несколько попридержать и постараться обойтись как можно меньшим числом произвольных решений.

В этом свете факт наличия весьма серьезных ограничений, налагаемых геометрией плоскости на построение сквиг – кривых (в результате чего сквиг - кривые получаются более предсказуемыми и менее разнообразными), выглядит достоинством.

 

РАЗМЕРНОСТЬ

D~4,3

Следует обратить самое пристальное внимание на размерность сквиг – кривых D~4,3. То, что мы еще не раз встретимся с этим значением – в главе 25 (рис. 341) и в главе 36 – вряд ли можно объяснить простым совпадением; не исключено, что он приведет нас к более глубокому проникновению в основы геометрической структуры плоскости.

 

ВЕТВЯЩИЕСЯ СКВИГ - КРИВЫЕ

Вернемся к построению речного русла. Вот мы заменили треугольный интервал долины участком поддолины, состоящим из одного или трех подтреугольников; представьте теперь, что оставшиеся три (или один) подтреугольника вдруг решают отвести от основного русла собственную поддолину. Построение нового русла полностью определяется уже известным процессом. Точки, в которых подреки пересекают границы между треугольниками, выбираются с помощью той же системы, что используется в главной реке. В пределе конструкция сходится к древовидной кривой, которая заполняет треугольник случайным образом, как можно видеть на рисунке:

 

ОЧЕНЬ КРАТКО ЕЩЕ О ДВУХ ПРЕЦЕДЕНТАХ

Тот факт, что столь грубая модель, как мои линейные сквиг – кривые, может дать результат, вполне сносно – хоть и приблизительно – согласующийся с наблюдаемой размерностью реальных речных русел и бассейнов, представляется мне весьма интересным и даже многозначительным.

С помощью этих кривых можно также найти размерность общепринятой модели для сильно разбавленных растворов линейных полимеров – случайного блуждания без самопересечений (СББС) на решетке (см. главу 36).

Лучшая (чем в случае СББС) приспособленность сквиг – кривых к ограничениям, налагаемым геометрией плоскости, объясняется, очевидно, интерполяционным характером их построения.

 

СКВИГ–ПОВЕРХНОСТИ

Сквиг – поверхности строятся на кубе, разделенном на b3 подкубов; я определил соответствующие «освобождающие» процедуры, которые однозначно определяют получаемую в результате фигуру – нечто вроде скомканного шерстяного шарфа постоянной и в то же время уменьшающейся толщины. К сожалению, не представляется возможным привести здесь алгоритм построения, из-за его чрезмерной громоздкости.

Во многих случаях кривую Коха с заранее заданной размерностью D и без самопересечений можно получить несколькими различными способами, используя при этом одну и ту же общую решетку и одинаковые инициаторы. Кроме того, предположим, что существуют, по крайней мере, два генератора, которые дают одинаковый общий контур фигуры. Теперь можно легко рандомизировать построение, случайным образом выбирая на каждом этапе один из двух упомянутых генераторов. Генераторы могут, например, выглядеть вот так:

Рис. 322. Случайное побережье Коха (размерность D=1,6131)

Общая форма случайного острова Коха, построенного таким способом, сильно зависит от исходной фигуры. В частности, все начальные симметрии явственно прослеживаются на любом из этапов построения. По этой причине (равно как и по другим, описанным в главе 24) метод построения случайной кривой Коха путем случайной перетасовки ее элементов имеет весьма ограниченную область применения.

Рис. 323. Случайная кривая Пеано (размерность D=2)

Изображенный ниже генератор вкупе с инициатором [0,1] дает в пределе кривую, заполняющую треугольник.

Положение и вид генератора определяется четностью номера интервала в терагоне. На интервалах с нечетными номерами вышеприведенный (т.е. прямой, S) вариант генератора располагается справа от кривой. К интервалам же с четными номерами применяется обратный (F) вариант генератора, и располагается он слева от кривой. Суть метода рандомизации, результат которой показан на рисунке; состоит в том, что выбор этих фокальных точек производится случайным образом. В данном примере распределение симметрично относительно средней точки интервала. Каждый подтреугольник разбивается позднее на четыре подтреугольника, причем независимым от соседей образом, и процесс продолжается до бесконечности.

Для того чтобы за изменениями терагона было легче проследить, каждый интервал заменен двумя, причем добавочная концевая точка является серединой «крыши» этого интервала.

Рис. 324. Треугольник и сквиг — кривая

Здесь проиллюстрировано поэтапное построение простейшей сквиг – кривой – каждый последующий этап совмещен с предыдущим и показан более темным оттенком серого цвета. Обратите также внимание на следующее обстоятельство: то, что мы не видим светлого оттенка под темным, не означает, что светлая область в этом месте прерывается. Начинается построение светло-серым треугольником, а заканчивается кривой черного цвета. Масштаб изображения этапов с 6 по 10 несколько больше масштаба для этапов с 0 по 5. Сами этапы описаны в тексте главы.

Рис. 325. Шестиквиговая береговая линия

На этом рисунке изображены шесть сквиг – кривых, соединенных концами и образующих петлю без самопересечений. Размерность фигуры очень близка к D=4/3. Это же значение фигурирует и во многих других примерах кривых без самопересечений – например, границы броуновской оболочки на рис. 341, сходство которой с нашим «шестисквигом», безусловно, заслуживает упоминания.

 

25 БРОУНОВСКОЕ ДВИЖЕНИЕ И БРОУНОВСКИЕ ФРАКТАЛЫ

 

Место этой главы в настоящем эссе представляет собой в некотором роде результат компромисса. Логичнее было бы поместить такую главу в следующей части, однако некоторые ее разделы являются необходимым предисловием к главе 26.

 

РОЛЬ БРОУНОВСКОГО ДВИЖЕНИЯ

Как мы знаем из главы 2, Жану Перрену пришла однажды в голову блестящая идея сравнить физическое броуновское движение с непрерывными недифференцируемыми кривыми. Идея Перрена послужила источником вдохновения для юного Норберта Винера, примерно в 1920 г. определившего и исследовавшего математическую реализацию броуновского движения, которую и сейчас нередко называют винеровским процессом. Много позже стало известно, что тот же процесс был подробно, хотя и не так строго, рассмотрен в докторской диссертации Луи Башелье [12] (см. также главы 37 и 39).

Странно, что само по себе броуновское движение – при всей своей чрезвычайной важности во многих других областях – не находит в настоящем эссе никакого нового приложения. Время от времени оно помогает вчерне набросать проблему, однако, и в этих случаях при дальнейшем ее рассмотрении оно непременно заменяется каким-либо другим процессом. И все же во многих случаях можно зайти, на удивление, далеко просто модифицируя броуновское движение; нужно только следить за тем, чтобы модификации оставались масштабно-инвариантными.

По этой и иным причинам остальные случайные фракталы нельзя оценить по достоинству без досконального изучения и понимания конкретных свойств этого их прототипа. Однако миллионы страниц, посвященных данной теме, либо упоминают вскользь, либо вовсе опускают некоторые весьма важные моменты, рассмотрением которых мы и займемся в настоящей главе. Если читатель сочтет, что мы заходим слишком далеко, он – как здесь принято – вполне может перейти к следующему разделу или даже к следующей главе.

 

БРОУНОВСКИЕ ФРАКТАЛЫ: ФУНКЦИЯ И СЛЕД

К сожалению, термин «броуновское движение» неоднозначен. Во-первых, этим термином можно обозначить график выражения B(t) как функции от t. Если B(t) - ордината точки на плоскости, то график представляет собой плоскую кривую, подобным изображенным на рис. 338. Если B(t) - это точка в E - пространстве, то график представляет собой кривую (1+E) - пространстве (к E координатам точки B добавляется временнáя координата). Однако во многих случаях нас интересует всего лишь кривая в E - пространстве, которую броуновское движение оставляет за собой в виде следа. Когда след изгибается через равные промежутки времени, функция и след легко выводятся друг из друга. Однако в случае непрерывного броуновского движения эти два аспекта вовсе не эквивалентны, и обозначение их одним термином вносит путаницу.

Когда неоднозначность начинает угрожать ясности моих рассуждений, я разделяю термины и говорю либо о броуновской функции, либо о броуновском следе. Мы уже сталкивались с такой неоднозначностью при рассмотрении кривых Коха, однако здесь она более очевидна благодаря термину «движение».

Кроме того, переменная в броуновских функциях, рассматриваемых в главах 28 – 30, многомерна. Например, в одной из моделей земного рельефа в главе 28 предполагается, что высота точки поверхности является броуновской функцией от ее широты и долготы. Таким образом, часто возникает потребность в уточнении терминологии. При необходимости мы различаем броуновские функции и следы из прямой в прямую, из прямой в пространство, из пространства в прямую, из прямой в E - пространство и т.д.

Броуновские «поля». «Случайное поле» есть в действительности не рандомизированное (алгебраическое) поле, а всего лишь модный синоним (см., например, [13]) для термина «случайная ф1 нескольких переменных». Синоним этот ничем не оправдан, и его следует как можно скорее изъять из обихода, пока он не успел укорениться. Возник он, судя по всему, вследствие некомпетентного перевода с русского, как и термин «автомодельный» (его распространение я, к счастью, успел вовремя пресечь), появившийся в результате бездумного перевода русского термина «самоподобный».

 

ПЛОСКИЙ БРОУНОВСКИЙ СЛЕД, ПОСТРОЕННЫЙ КАК СЛУЧАЙНАЯ КРИВАЯ ПЕАНО (

N=2

)

Изучение броуновских следов проливает свет на природу кривых Пеано – и это при том, что броуновский след, как выяснилось, представляет собой не что иное, как рандомизированный вариант кривой Пеано. Я провел небольшой опрос среди случайно выбранной группы ученых, и ни один из них не признал идентичности этих двух построений; не упоминается об этом и в случайным образом отобранной мною (и тщательно просмотренной) пачке книг, посвященных данному предмету. Математики любыми способами избегают такого подхода, поскольку основная его составляющая (иерархия слоев с возрастающей детализацией, регулируемая двоичной временнóй решеткой) никак не связана с результатом построения. Это обстоятельство, по мнению математиков, придает данному подходу искусственный и надуманный характер – однако именно благодаря этому обстоятельству он замечательно вписывается в настоящее эссе.

Процесс можно начинать с любой кривой Пеано с N=2 и r=√2. Хитрость заключается в последовательном снятии различных ограничений при продвижении по этапам.

Промежуточные фракталы – «пеано – броуновские гибриды» - заслуживают отдельного подробного изучения в более подходящей обстановке.

Трансверсальное срединное смещение. В конструкциях, изображенных на рис. 98 – 102, на (k+1)-м этапе построения k-й терагон трансформируется путем трансверсального срединного смещения каждого прямолинейного интервала на величину влево или вправо, в зависимости от четности числа k.

Обозначим смещения кривой Пеано за промежуток времени Δt=t−k и за два половинных промежутка Δ1 t и Δ2 t через, соответственно, ΔP, Δ1 P и Δ2 P. Теперь теорему Пифагора можно записать так:

.

Направления изотропных смещений. В качестве нашего первого отступления от правил построения любой кривой Пеано попробуем рандомизировать направления смещения. Один подход предполагает равную вероятность смещений вправо и влево, давая в результате этакую «случайную прыг – скок – кривую». Другой подход состоит в случайном (однородной плотности) выборе точки на окружности, размеченной в градусах, и использовании полученной таким образом угловой величины. Смещения, определяемые такой процедурой, называются изотропными.

Теорема Пифагора применима к любому из упомянутых способов рандомизации: приращения изотропного движения на двоичных подынтервалах двоичного же интервала геометрически ортогональны.

Длины случайных смещений. Второе отступление от правил неслучайного построения: рандомизации подвергается и длина смещения. Начиная с настоящего момента, под величиной 2−k−1 следует понимать уже не квадрат неслучайного , а среднеквадратическое значение случайного . В результате величины смещения ΔP* удовлетворяют следующим выражениям:

;

.

Случайный инициатор. Следующим шагом будет использование в построении случайного инициатора, среднеквадратическая длина которого равна 1. Отсюда неизбежно следует, что , и мы получаем пифагорову теорему для средних:

.

Иными словами, геометрически ортогональные отрезки заменяются отрезками, которые в теории вероятности называются статистически ортогональными или некоррелированными.

Независимые приращения. Срединные смещения можно теперь считать статистически независимыми, как внутри каждого отдельного этапа, так и между этапами.

Гауссовы приращения. Рандомизированная кривая Пеано становится броуновским следом B(t) тогда, когда срединные смещения следуют изотропному гауссову распределению. В плоскости квадрат модуля этой переменной распределяется экспоненциально. Следовательно, при прямом построении нам следует случайным образом выбрать на однородном интервале [0,1] точку U и определить модуль как .

Обобщение на пространство. Окончательное построение имеет смысл и при E>2.

Размерность D=2 . Теорема Пифагора для средних представляет собой обобщенное определение размерности подобия. Она применима и к броуновскому следу, поскольку размерность Хаусдорфа – Безиковича в этом случае также равна 2. В применимости же ее к случаю негауссова распределения величины смещения средней точки еще предстоит разобраться.

 

БРОУНОВСКИЕ ФРАКТАЛЬНЫЕ СЕТИ (РЕШЕТКИ)

Множественные самопересечения. Даже если остановить рандомизацию после первого же этапа, описанного в предыдущем разделе процесса, она успевает полностью нарушить идеальные дальний и ближний порядки, благодаря которым кривые Пеано избегают самопересечений. Рандомизированные терагоны самопересекаются уже на начальных этапах построения, а предельный след почти, наверное, содержит бесконечное количество самопересечений.

Броуновские пустоты. Общеизвестно, что броуновский след, экстраполированный для всех значений t от −∞ до +∞, плотно заполняет плоскость. Это свойство мы вскоре выведем заново. Однако след, ограниченный определенным промежутком времени, обладает собственной весьма примечательной геометрией – и я не припомню, чтобы ее кто-либо где-либо описывал.

Очевидно, в качестве компенсации за те точки, которые броуновский след B(t) покрывает за время несколько раз, остальные точки плоскости остаются непокрытыми. Эти непокрытые точки образуют открытое множество, которое разделяется на внешнее множество, содержащее точку в бесконечности, и бесконечное количество непересекающихся броуновских пустот. И внешнее множество, и каждая пустая область ограничены фрактальными кривыми, которые являются подмножествами следа. Следовательно, броуновский след можно считать фрактальной сетью – наглядные подтверждения этому вы найдете на рис. 340 и 341.

В главе 14 описана сеть с размерностью D, в которой число пустот площади U, превышающей некоторое заданное значение u, определяется соотношением . В случайном контексте при D=E=2 формальное обобщение имеет вид . Однако в данном случае оно неприменимо, так как должен сходиться интеграл . В связи с этим я предполагаю, что , где L(u) - некая медленно изменяющаяся функция, которая убывает достаточно быстро для обеспечения сходимости упомянутого интеграла. Из-за необходимости введения непостоянной величины L(u) размерность D=2 в самоподобной разветвленной сети оказывается недостижима – точно так же, как недостижима она и в самоподобной простой кривой (см. главу 15).

Нулевая площадь броуновской сети. Несмотря на размерность броуновской сети (D=2), ее площадь равна нулю. То же должно быть верно и для пеано – броуновских гибридов.

Неограниченный след плотен в плоскости. Это свойство основывается на том факте (который мы установим несколько позже, когда будем говорить о нуль - множествах), что неограниченный след бесконечно часто «возвращается» в любую заданную плоскую область - такую, например, как диск. А если взять любую произвольно малую область и совместить ее центр с произвольной точкой Pна плоскости, то станет ясно, что неограниченный броуновский след подходит к каждой точке плоскости бесконечно много раз и на произвольно близкое расстояние.

Однако – в чем мы убедимся при рассмотрении тех же нуль – множеств – вероятность того, что некий конкретный след точно попадет в некую заданную точку, равна нулю, т.е. заданная точка почти наверняка оказывается не затронутой неограниченным следом.

Часть неограниченного следа, заключенную внутри области , можно приближенно представить себе в виде исчислимо бесконечного множества независимых ограниченных сетей, наброшенных на область . Результат напоминает исчислимо бесконечное множество точек, выбранных случайным образом и независимо друг от друга из интервала [0,1]. Общеизвестно, что такое множество везде плотно, однако длина его равна нулю.

 

ЗАВИСИМОСТЬ МАССЫ ОТ РАДИУСА

Величина √t в качестве коэффициента подобия характерна для большинства аспектов броуновского движения. Например, если измерить по прямой расстояние, которое покрывает броуновское движение за время t, то мы получим случайную величину, кратную √t. Аналогичным образом и общее время, проведенное броуновской точкой внутри окружности радиуса R с центром в точке B(0)=0, представляет собой случайную величину, кратную R2 .

Определив величину, пропорциональную времени, затраченному броуновским следом на прохождение того или иного своего участка, как «массу», а затем «взвесив» эти самые участки, мы обнаружим, что – как в плоскости, так и в пространстве (E≥2) - общая масса, заключенная внутри окружности радиуса R, определяется соотношением .

Формально это соотношение полностью идентично тому, что мы получили для кривых Коха (глава 6) или канторовой пыли (глава 8). И тем более идентично соотношению для классических случаев интервала, диска или шара однородной плотности.

 

БРОУНОВСКИЙ СЛЕД: ОТСУТСТВИЕ «СКЛАДОК» И СТАЦИОНАРНЫЕ ПРИРАЩЕНИЯ

Рандомизировав кривую Пеано, мы нежданно - негаданно получили гораздо больше, чем предполагали. В качестве предваряющего комментария заметим, что в моменты времени вида N−k неслучайные кривые Коха и Пеано непременно демонстрируют «складки». Разделив, например, треть границы снежинки на четыре части, мы обязательно обнаружим, что угол между первой и второй четвертями отличается от угла между второй и третьей. То есть спутать левую четверть со средней просто невозможно.

Броуновский же след лишен таких «складок». Имея перед глазами броуновский след на некотором интервале времени t, никак нельзя сказать, где именно на временнóй оси расположен этот интервал. В терминологии теории вероятности принято говорить, что броуновский след имеет «стационарные приращения».

Это свойство заслуживает внимания по двум причинам: во-первых, на нем основывается альтернативное, «безрешеточное», определение броуновского движения, данное несколько дальше в этой же главе, а во-вторых, оно не имеет соответствий среди свойств аналогичных рандомизированных форм простых фрактальных кривых и поверхностей.

 

БРОУНОВСКИЙ СЛЕД: САМОПОДОБИЕ

Из отсутствия складок вытекает весьма сильная форма статистического самоподобия. Положим B(0)=0, выберем два положительных числа h и h' и воспользуемся разделом теории вероятности, который называется теорией слабой сходимости. Согласно этой теории, функции h−½ B(ht) и h'−½ B(h't) статистически тождественны. Положив далее T<∞ и h<1 и изменяя t в интервале от 0 до T, мы обнаруживаем, что функция h−½ B(ht) представляет собой некоторое подобие участка функции B(t) в уменьшенном масштабе. Эту статистическую тождественность части целому можно рассматривать как форму самоподобия.

Самоподобие в приложении к случайным множествам – понятие не столь строгое, как то, с которым мы познакомились в главе 5, так как здесь части не обязательно должны быть в точности подобны целому. Достаточно того, что части и уменьшенное в масштабе целое имеют одинаковые распределения.

Заметим, что кривые Коха допускают только коэффициенты подобия вида r=b−k , где b - целое число, для броуновского же следа сгодится любое r. Весьма ценное свойство.

 

БРОУНОВСКОЕ НУЛЬ – МНОЖЕСТВО САМОПОДОБНО . . .

Особое значение для изучения броуновских функций имеют множества постоянства, или изомножества, координаты функций X(t) и Y(t). Например, нуль – множество определяется в те моменты времени t, когда X(t)=0.

Изомножества самоподобны; их очевидная чрезвычайная разреженность подтверждается и их фрактальной размерностью D=1/2. Они представляют собой особый случай пыли Леви, которую мы рассмотрим в главе 32.

Распределение пустот в броуновских нуль – множествах. Длины пустот броуновского нуль – множества удовлетворяют соотношению , где D=1/2. Аналогичное соотношение , как нам известно, применимо к длинам «пауз» в канторовой пыли; только здесь мы заменили на , а ступени исчезли из-за рандомизации.

 

А БРОУНОВСКАЯ ФУНКЦИЯ ВСЕГО ЛИШЬ САМОАФФИННА

Что же касается графиков функций X(t) и Y(t), а также векторной функции B(t), то они являются не самоподобными, а всего лишь самоаффинными. То есть участок кривой от t=0 до t=4 можно покрыть M=4 его уменьшенными копиями только при условии, что вдоль оси (осей) пространственных координат уменьшение по-прежнему происходит с коэффициентом подобия r=1/2, а временнáя координата при этом уменьшается с другим коэффициентом r2 =1/M. Следовательно, размерность подобия для графиков функций X(t), Y(t) и B(t) не определена.

Более того, аффинные пространства таковы, что расстояния вдоль оси t и расстояния вдоль осей X(t) и Y(t) нельзя сравнивать друг с другом, а это означает, что диски определить невозможно. В результате соотношение не имеет в случае броуновских функций аналога, который мог бы послужить для определения размерности D.

С другой стороны, к ним применимо определение Хаусдорфа – Безиковича. Это вполне согласуется с высказанным в главах 5 и 6 утверждение о том, что определение размерности Хаусдорфа – Безиковича представляет собой наиболее общий – и наиболее громоздкий! – способ интуитивного постижения содержания понятия фрактальной размерности. Значение D для функции X(t) равно 3/2, а для функции B(t) D=2.

Набросок доказательства. На протяжении временнóго промежутка Δt значение разности maxX(t)−minX(t) есть величина порядка √Δt. Для покрытия этого подграфика функции X(t) квадратами со стороной Δt потребуется порядка 1/√Δt квадратов. Следовательно, для покрытия графика на интервале от t=0 до t=1 потребуется порядка (Δt)−3/2 квадратов. А поскольку это число равно также (Δt)−D (см. главу 5), можно эвристически заключить, что D=3/2.

 

ФРАКТАЛЬНЫЕ РАЗМЕРНОСТИ СЕЧЕНИЙ

Нуль – множество броуновской функции из прямой в прямую представляет собой горизонтальное сечение броуновской функции X(t). Применив правило, сформулированное в главе 23, можно предположить, что размерность нуль –множества составляет 3/2−1=1/2; как нам уже известно, так оно и есть. Другие приложения этого правила также обладают огромной эвристической ценностью, в чем мы убедимся немного позже. Правило это имеет и исключения, особенно в случае не изотропных фракталов. Например, вертикальное сечение броуновской функции из прямой в прямую – это всего лишь точка.

Рассуждая аналогичным образом, находим размерность линейного сечения броуновского следа из прямой в плоскость: 2−1=1, и это в самом деле так.

В более общем виде стандартное правило можно сформулировать следующим образом: если не считать особых конфигураций, коразмерности E−D при пересечении складываются. Следовательно, коразмерность пересечения k плоских броуновских следов равна k⋅0=0. В частности, можно ожидать, что точки самопересечения броуновского следа образуют множество с размерностью 2 (в самом деле, образуют). (И все же многочисленные точки самопересечения броуновского следа, равно как и сам броуновский след, не в состоянии заполнить плоскость.)

Правило сложения коразмерностей можно использовать для доказательства следующего утверждения (некоторое время назад мы уже говорили об этом): броуновское движение почти наверное не возвращается в свою начальную точку B(0)=0, однако почти наверное бесконечно часто проходит в произвольной окрестности этой точки. Для того чтобы придать нашим рассуждениям более общий вид и сделать их пригодными для последующего применения в главе 27 без дополнительной корректировки, обозначим размерность броуновского нуль – множества буквой H.

В моменты возвращения B(t) в 0 одновременно выполняются следующие равенства: X(t)=0 и Y(t)=0. Следовательно, эти моменты должны принадлежать пересечению нуль – множеств функций X(t) и Y(t), каковые множества не зависят друг от друга. Размерность пересечения равна 1−2H, что при H=½ составляет D=0. Такое значение размерности можно расценивать как явный намек (но всего лишь намек, так как полное доказательство гораздо сложнее) на то, что B(t) почти наверное не возвращается в точку B(0)=0.

А теперь рассмотрим множество моментов времени, когда B(t) попадает в точку, расположенную внутри горизонтального квадрата со стороной 2ε и центром в точке 0. Это множество можно приближенно представить как пересечение множеств моментов t, находящихся на расстоянии ε1/H от точек нуль – множеств функций X(t) и Y(t), соответственно. Для каждого из этих множеств масса, заключенная во временнóм промежутке , пропорциональна ε1/H t1−H , а вероятность того, что именно этот промежуток содержит нужный момент t, пропорциональна ε1/H t−H . Следовательно, вероятность того, что момент tпринадлежит пересечению этих множеств, пропорциональна ε2/H t−2H . Поскольку H=½, получаем ; на этом основании в теореме, предложенной Борелем и Кантелли, делается вывод, что количество возвращений B(t) в квадрат с центром в точке 0 почти наверное бесконечно. Впрочем, можно сказать и «чуть ли не бесконечно». Как следствие, пустоты в ограниченных броуновских сетях начинают – медленно и с видимой неохотой – заполняться.

 

СЛУЧАЙНЫЕ БЛУЖДАНИЯ НА ЧАСТОЙ РЕШЕТКЕ

Можно генерировать броуновское движение и случайным блужданием на решетке. Здесь мы только упомянем о возможности такого подхода; более подробное обсуждение, ввиду наличия в нем некоторых сложностей, отложим до главы 36.

Мы говорим, что точка , вложенная в , совершает случайное блуждание, если в каждой из последовательных моментов времени, разделенных интервалом Δt, она перемещается на некоторое фиксированное расстояние в направлении, которое выбирается случайным образом из доступных в данной решетке.

Если решетка состоит из точек плоскости, координаты которых – целые числа, то величины (X+Y)/√2 и (X−Y)/√2 изменяются при каждом шаге на ±1. Говорят, что каждая из этих величин совершает случайное блуждание на прямой (см. рис. 338). В приблизительном масштабе, т.е. при малом Δt и , случайное блуждание неотличимо от броуновского движения.

Рис. 338 Выборочное случайное блуждание как приближение броуновской функции из прямой в прямую (размерность D=3/2) и ее нуль – множества (размерность D=1/2)

Самая долгая (и самая простая!) из всех азартных игр началась приблизительно в 1700 г., когда в теории вероятности еще заправляла семья Бернулли. Если наша неизменно симметричная монета падает орлом вверх, то пенни выигрывает Генри, если же выпадает решка, пенни достается Томасу. (На самом деле их звали Петер и Пауль, но я так и не смог запомнить, который из них ставил на орла.)

Некоторое время назад понаблюдать за игрой заходил Уильям Феллер; результаты своих наблюдений он обобщил в виде графика зависимости совокупного выигрыша Генри от количества бросков монеты, каковой график вы можете видеть на рисунке вверху. (Воспроизводится по книге Феллера «Введение в теорию вероятности и ее приложения» (т.1) с любезного разрешения ее издателей, компании J, Wiley & Sons © 1950.)

Средний и нижний рисунки представляют совокупный выигрыш Генри за более продолжительную игру; данные снимаются через каждые 20 бросков.

Увеличивая длину наборов данных и уменьшая длину шага, асимптотически получаем выборку значений броуновской функции из прямой в прямую

На одной из своих лекций Феллер сообщил, что данные рисунки «нетипичны» и были выбраны среди нескольких других, графики на которых выглядели неправдоподобно разбросанно. Как бы то ни было, бесконечное (так мне казалось) созерцание этих графиков сыграло решающую роль в развитии двух теорий, включенных в настоящее эссе.

О графике в целом. В [342] имеется высказывание в том смысле, что форма всего графика целиком напоминает силуэт горного массива или вертикальный разрез земной коры. Пройдя через несколько обобщений, это наблюдение привело, в конце концов, к нескольким моделям, описанным в главе 28.

Нуль – множество графика. Нуль – множество графика есть множество моментов, когда кошельки Генри и Томаса возвращаются к тому состоянию, в котором они пребывали в момент начала наблюдения. По способу построения графика временные интервалы между нулями взаимно независимы. Однако совершенно очевидно, что положения этих нулей независимыми назвать никак нельзя – они образуют весьма явственные скопления. Например, если рассматривать вторую кривую в том же масштабе, что и первую, то почти каждый нуль предстает в виде целого скопления точек. Имея дело с математическим броуновским движением, эти скопления можно подразделять иерархически до бесконечности.

Когда ко мне обратились за помощью в построении модели распределения ошибок в телефонных линиях, я очень кстати вспомнил о графиках Феллера. Хотя было известно, что ошибки группируются в пакеты (в этом, собственно, и состояла практическая суть возникшей проблемы), я предположил, что интервалы между пакетами могут оказаться взаимно независимыми. Тщательное эмпирическое исследование подтвердило мое предположение и привело к созданию моделей, описанных в главах 8 и 31.

Броуновское нуль – множество образует простейшую пыль Леви, т.е. случайную канторову пыль с размерностью D=1/2. Таким же образом можно получить и пыль любой другой размерности D в интервале между 0 и 1, нужно только взять нули другой случайной функции. С помощью этой модели можно даже определить фрактальную размерность телефонного канала. Точность значений D зависит от точности измерения характеристик моделируемого функцией физического процесса.

Рис. 340 и 341. Броуновские оболочки / острова; Броуновское движение без самопересечений

Броуновская петля. Под этим термином я подразумеваю след, покрываемый за некоторое конечное время Δt плоским броуновским движением, возвращающимся к своей исходной точке. Этот след представляет собой случайную кривую Пеано, длина инициатора которой равна нулю.

Рис. 341. Броуновская оболочка. Будучи (почти наверное) ограниченной, броуновская петля разбивает плоскость на две области: внешнюю, любая точка которой может быть соединена с некой отдаленной точкой без пересечения петли, и внутреннюю, которую я предлагаю называть броуновской оболочкой или броуновским островом.

Рис. 340. На этом рисунке представлена оболочка броуновского следа, не образующего петли.

Комментарий. Я не знаю, проводил ли кто-нибудь исследование броуновских оболочек, но полагаю, что они заслуживают самого пристального внимания. Образцы, изображенные справа, являются результатом 200 000 броуновских шагов, каждый из которых построен на растре 1200×1200.

По способу построения броуновские оболочки, соответствующие различным значениям Δt, статистически тождественны, за исключением масштаба. И имеются все основания полагать, что мелкие детали границы оболочки асимптотически самоподобны (нет только конкретных доказательств). Граница не может быть масштабно-инвариантной в строгом смысле, так как петлю нельзя разделить на участки одинаковой структуры, однако малые подучастки подходят к масштабно - инвариантности весьма близко.

Броуновское движение без самопересечений. По причинам, подробно изложенным в главе 36, где мы рассмотрим случайное блуждание без самопересечений, я предлагаю для обозначения границы броуновской оболочки термин броуновское движение без самопересечений.

Размерность броуновского движения без самопересечений. Интерпретировав некоторые известные соотношения (они приведены в главе 36) в том смысле, что размерность случайного блуждания без самопересечений составляет 4/3, я предполагаю, что это верно и для броуновского движения без самопересечений.

Эмпирическая проверка этого предположения дает замечательную возможность проверить заодно и соотношение между длиной и площадью, полученное в главе 12. Плоскость покрывается квадратными решетками (с каждым разом все более частыми), а мы считаем количество квадратов со стороной G, пересекаемых а) оболочкой – получается G - площадь – и б) ее границей – получается G - длина. Графики зависимости G - длины от G - площади в двойном логарифмическом масштабе оказываются замечательно прямыми, причем их угловые коэффициенты практически совпадают с D/2=(4/3)/2=2/3.

Сходство между кривыми на рис. 341 и 325 – и между их размерностями – также заслуживает упоминания.

Замечание. Наибольшие открытые области на рис. 341, которую B(t) не посещает, показаны серым цветом. Их можно рассматривать как тремы, ограниченные фрактальными кривыми; следовательно, петля представляет собой сеть – в том смысле, который мы вкладывали в этот термин в главе 14.

Возникает вопрос: чем же является петля с точки зрения степени ветвления – салфеткой или ковром? Я предполагаю, что верно последнее, так как броуновские сети удовлетворяют свойству Уайберна, описанному на с. 201 (пока неопубликованной). Следовательно, броуновский след также можно считать универсальной кривой в смысле, определенном на с. 209.

 

ПРЯМЫЕ, «БЕЗРЕШЕТОЧНЫЕ», ОПРЕДЕЛЕНИЯ БРОУНОВСКОГО ДВИЖЕНИЯ

B(T)

Предыдущие определения броуновского движения основывались либо на временнóй решетке, либо и на временнóй, и на пространственной, однако в окончательном результате эти «подпорки» никак себя не проявляют. Я полагаю, что и при описании этого самого результата вполне возможно обойтись без них.

В прямом описании Башелье [12] постулируется, что на некоторой произвольной последовательности равных приращений времени Δt векторы смещения ΔB(t) независимы, изотропны и случайны с гауссовым распределением вероятности. Таким образом,

.

Следовательно, среднеквадратическое значение ΔB равно . Это определение не зависит от системы координат, но проекция вектора смещения ΔB(t) на любую ось представляет собой гауссову скалярную случайную переменную с нулевым средним и дисперсией, равной .

Определение, полюбившееся математикам, идет дальше и обходится без разделения времени на равные промежутки. Оно требует изотропии движений между любой парой моментов времени t и t0 >t. Оно требует независимости движения от предыдущего положения точки. Наконец, оно требует, чтобы вектор из точки B(t) в точку B(t0 ), деленный на , имел приведенную гауссову плотность распределения для всех t и t0 .

 

ДРЕЙФ И ПЕРЕХОД К

D=1

Движение коллоидной частицы в однородно текущей реке или электрона в медном проводнике можно представить как B(t)+δt. След этой функции неотличим от следа функции B(t) при t≪1/δ2 и от следа функции δt при t≫1/δ2 . Таким образом, при и размерность следа понижается от D=2 к D=1. В терминологии критических феноменов величина δ символизирует расстояние от критической точки, а показатели в формулах для tc и rc представляют собой критические показатели.

 

АЛЬТЕРНАТИВНЫЕ СЛУЧАЙНЫЕ КРИВЫЕ ПЕАНО

Рандомизация кривых Пеано через срединное смещение проходит так гладко только благодаря исключительным обстоятельствам. Аналогичные конструкции, имеющие в своей основе кривую Пеано с N>2, значительно более сложны. Кроме того, если смещение средней точки следует гауссову распределению среднеквадратического значения, равного (т.е. r1 и r2 суть гауссовы независимые переменные, связанные уже знакомым нам соотношением ), то тем самым достигается более тесный параллелизм с неслучайным скейлингом. Получаемый в этом случае процесс весьма интересен. Только он не является броуновским движением. И все из-за складок.

 

РАЗМЕРНОСТЬ ТРАЕКТОРИЙ ЧАСТИЦ В КВАНТОВОЙ МЕХАНИКЕ

В качестве достойного завершения этого обсуждения можно упомянуть об одной фрактальной морщине, появившейся недавно на лике квантовой механики. Фейнман и Хиббс [150] отмечают, что типичная траектория квантовомеханической частицы непрерывна и недифференцируема; кроме того, многие авторы усматривают явное сходство между броуновским и квантовомеханическим движениями (см., например, статью [441] и список литературы к ней). Вдохновившись этими параллелями и моими первыми эссе, Эббот и Уайз [2] показали, что наблюдаемая траектория частицы в квантовой механике представляет собой фрактальную кривую с размерностью D=2. Интересная аналогия – по крайней мере, в педагогическом смысле.

 

26 СЛУЧАЙНЫЕ КРИВЫЕ СРЕДИННОГО СМЕЩЕНИЯ

 

Повествование, продолжаемое в этой главе, имеет логическое начало в середине предыдущей главы, сразу после раздела о генерации броуновского движения посредством рандомизации кривой Пеано.

Напомним, что k - й терагон броуновской функции B(t) прямолинеен между двумя последовательными моментами времени вида h2−k , а (k+1) - й терагон получается посредством случайного смещения средних точек сторон k - го терагона. То же относится и к терагонам Xk (t) и Yk (t) координатных процессов X(t) и Y(t) функции B(t).

Поскольку процедура срединного смещения проходит совершенно гладко с кривыми, размерность которых D=2, возникает вполне естественное желание попробовать адаптировать ее к оригинальной снежинке и другим кривым Коха с N=2, а затем применить упомянутую процедуру к построению поверхностей. Этим мы сейчас и займемся.

Пытаясь воспроизвести и улучшить графику «Фракталов» 1977 г. и обойтись при этом наиболее прямыми и наименее дорогостоящими процедурами, многочисленные художники, специализирующиеся в создании фильмов и графических работ с помощью компьютера, применяли, как правило, один и тот же общий подход. Эти специалисты оказались не способны осознать, что метод случайного срединного смещения дает результаты, существенно отличающиеся от тех, что они стремились достичь. Простота и в самом деле входит в число достоинств этого метода, однако вместе с тем он обладает многими другими, часто вовсе нежелательными особенностями.

 

ПРОСТРАНСТВЕННО НЕОГРАНИЧЕННЫЕ СЛУЧАЙНЫЕ КРИВЫЕ КОХА С ВРЕМЕННÓЙ РЕШЕТКОЙ

Напомним, что можно построить снежинку Коха с основанием N=2, используя генератор, составленный из двух интервалов длины 1/√3. В этом случае – вообще говоря, в любом случае, когда генератор состоит из двух интервалов длины 2−1/D , где D<2, - само построение определяет, в каком направлении смещаются средние точки сторон - го терагона: влево или вправо. Смещение всегда ортогонально к соответствующей стороне, и квадрат его длины задается следующей разностью:

2−2(k+1)/D −2−2(k/D+1) .

Рандомизация такого построения происходит так же, как и преобразование кривой Пеано в броуновское движение. Направление смещения полагаем случайным и изотропным, вне зависимости от того, каким оно было на предыдущем этапе; распределение длины смещения полагаем гауссовым, а вышеприведенную формулу применяем к среднеквадратическому смещению. При этом мы не предпринимаем ничего для предотвращения самопересечений, и предельная фрактальная кривая просто изобилует ими. Обозначим ее через , где H=1/D, что вскоре получит исчерпывающее объяснение.

В результате соотношение между смещением на временнóм промежутке 2−k и двумя интерполированными смещениями и принимает вид

,

где D - некоторая произвольно заданная величина, меньшая 2.

Отсюда следует, что если временной интервал является двоичным, т.е. если t'=h2−k и t''=(h+2)2−k , то верно следующее:

.

Величину H в качестве параметра мы выбрали потому, что она представляет собой показатель при среднеквадратическом смещении.

Можно также показать, что если , то функция статистически самоподобна относительно отношений приведения вида 2−k . Это – весьма желательное обобщение наших знаний о конструкциях с размерностью D=2.

 

НЕСТАЦИОНАРНЫЕ ПРИРАЩЕНИЯ

Не будем, однако, радоваться слишком бурно. Функция является статистически самоподобной относительно отношений приведения иного, нежели 2−k , вида только в пеано – броуновском случае (D=2), когда она сводится к B(t).

Более серьезная проблема возникает тогда, когда интервал не является двоичным, хотя и имеет ту же длину Δt=2−k - например, если t'=(h−0,5)2−k и t''=(h+0,5)2−k . На таких интервалах приращение имеет иную и меньшую дисперсию, зависимую от k. Нижняя граница этой дисперсии выглядит как 21−2H Δt2H . Более того, если известна величина Δt, а время t не известно, то распределение соответствующего приращения не является гауссовым, но представляет собой случайную смесь различных гауссовых распределений.

В результате складки, возникающие в двойных точках аппроксимирующего терагона, остаются и в предельной кривой. При размерности D чуть меньше 2 (т.е. при H чуть больше ½) складки довольно незначительны. Однако когда значение H приближается к 1 (в главе 28 мы увидим, что при моделировании рельефа поверхности Земли нам приходится иметь дело с H~0,8÷0,9), складки становятся очень заметными – их можно увидеть и на выборочных функциях. Единственным способом избежать их оказывается отказ от рекурсивной схемы срединного смещения, что мы и сделаем в следующем разделе и в главе 27.

 

СЛУЧАЙНО РАЗМЕЩЕННЫЕ СЛОИ

Для того чтобы установить причину нестационарности кривых и поверхностей срединного смещения, рассмотрим координатную функцию X(t) некоторой кривой . На каждом этапе построения мы получаем некоторую ломаную функцию Δk X(t)=Xk (t)−Xk−1 (t), нуль – множество которой, во-первых, периодично с периодом 2−k и, во-вторых, включает в себя нуль – множество функции Δk−1 X(t). То есть можно сказать, что каждая такая ломаная функция находится в синхронии со всеми последующими.

Из-за того, что нуль - множества периодичны и синхронны («иерархичны»), приращения не могут быть стационарными. И наоборот, стационарности можно достичь путем устранения этих свойств.

Один из подходов состоит в построении ломаной функции следующим образом. Выберем пуассоновскую последовательность моментов времени со средним числом точек на единицу времени, равным 2k , затем положим, что функция принимает независимые и одинаково распределенные случайные значения, и, наконец, произведем линейную интерполяцию между моментами времени . Бесконечная сумма таких вкладов представляет собой некую стационарную случайную функцию, впервые описанную в докторской диссертации гидролога О. Дитлефсена (1969). (См. также [424] и [370].)

Оглянувшись назад, мы видим, что такое обобщение вовсе не требует, чтобы среднее число нулей было равно 2k . Оно может иметь вид bk , где b - любая вещественная база, большая 1.

Допустимые отношения приведения соответствующего фрактала задаются дискретной последовательностью r=b−k . По мере того, как b→1, эта последовательность становится все более плотной, - в сущности, асимптотически непрерывной. Таким образом, функция становится как нельзя более приемлемой для тех, кому нужны стационарность и широкий выбор коэффициентов подобия. Однако при этом она, к сожалению, теряет свою специфичность. Из рассуждений в [370] явствует, что функция сходится к случайной функции BH (t), которую мы рассмотрим в следующей главе.

Рис. 345. В роли художника – ошибка в программе, опус 1

Авторство этой иллюстрации можно частично приписать ошибочному программированию. Ошибку вовремя распознали и исправили (после сохранения результата, разумеется!); конечным результатом вы можете полюбоваться на рис. 424 – 427.

Изменения, явившиеся результатом пустяковой ошибки в критическом месте, далеко превзошли наши наихудшие опасения.

Очевидно, что по замыслу в «правильных» иллюстрациях должен был наличествовать весьма строгий порядок. Здесь этот порядок оказался нарушен, причем никакого другого порядка также не наблюдается.

То, что эта иллюстрация – по крайней мере, на первый взгляд, - вполне может сойти за произведение высокого искусства, явно не случайно. Свои соображения на этот счет я вкратце высказал в [399] и намерен изложить их в полном виде в самом ближайшем будущем.