Калифорнийский университет в Беркли на придирчивый взгляд Роберта Оппенгеймера «научная пустыня» — в противоположность зеленой университетской территории, живописно разбросанной среди холмов напротив бухты Сан-Франциско. Услышав слова «квантовая механика», там лишь плечами пожимают. Предыдущий год Оппенгеймер провел у Вольфганга Паули в Цюрихе и теперь здесь, на тихоокеанском побережье, хочет основать американскую школу квантовой механики, которая со временем сможет потягаться с Гёттингеном, Берлином, Кембриджем и Копенгагеном. Убийственный сарказм Паули и его иногда дьявольская критика по отношению к коллегам явно задели какую-то струну в Оппенгеймере. Как будто давно искали и в Швейцарии нашли друг друга два несравненных насмешника и глумителя. Паули такой теоретик, славит Оппенгеймер своего ментора, что как только он входит в лабораторию, аппаратура выходит из строя и все эксперименты срываются. Но и ту оценку, которую Паули дает своему бывшему докторанту, тоже следует считать похвалой: идеи американца всегда были оригинальны; только ему не хватало терпения и основательности, чтобы их развить. Кроме того, мол, складывалось впечатление, что физика для Оппенгеймера — побочное занятие, а вот психоанализ, напротив, есть его истинное призвание. Из того, что Дж. Дж. Томсон, Макс Борн и Вольфанг Паули всегда порицали в методе работы Оппенгеймера, в калифорнийском Беркли он вырабатывает свой господствующий стиль. Поначалу студенты не поспевают за скоростью мышления Оппенгеймера, но уже скоро спешат вместе с ним от одной идеи к другой, которые всегда находятся на острие европейской науки. Оппенгеймер не стремится блистать стилистически и писать статьи, проработанные до мельчайших математических деталей. Для него важнее внушить студентам волнующее чувство, что они пребывают в самом пекле дебатов по квантовой теории, заглядывая, так сказать, через плечо прямо в записные книжки авангарда физиков и добиваясь признания дерзкими умными комментариями.

В своем старом «крайслере» Оппенгеймер пускается наперегонки с поездами Тихоокеанской прибрежной железной дороги, пока однажды неподалеку от Лос-Анджелеса не теряет управление машиной и не попадает в аварию, в которой его спутница теряет сознание. Когда слухи об этом доходят до старшего Оппенгеймера, он дарит молодой даме подлинный рисунок Поля Сезанна, а своему сыну — новый автомобиль, который тот называет именем знаменитого еврейского патриарха Гамалиила. Первое ироническое признание своих еврейских корней? Свои многосторонние литературные и философские интересы он подсвечивает еще одним лучом, всерьез беря уроки санскрита у одного профессора в Беркли, чтобы читать в оригинале Бхагават-гиту, священную книгу индусов. Это уже восьмой язык, который он изучает.

Следующий «крайслер», которым отец одаривает его три года спустя, он называет Гаруда. Это индуистский птицебог, который несет по воздуху хранителя вселенского порядка Вишну. Ровно пятьсот восемьдесят километров по прямой линии отделяют Беркли от Пасадены в Южной Калифорнии. Весь зимний семестр Оппенгеймер преподает в Беркли, а каждой весной «Гаруда» везет его в Пасадену, поскольку он преподает и в тамошнем Калифорнийском технологическом институте. Его самые одаренные студенты следуют за ним повсюду, «словно хвост кометы». Он берет их с собой в гоночные поездки и щедро водит по дорогим ресторанам. Они подражают его манере речи, имитируют его жесты, меняют марку своих сигарет и курят только «Честерфилд» — как мастер. Но не каждому дается фокус Оппенгеймера — кончиком мизинца смахнуть пепел прямо с тлеющего кончика. Молодые люди не признают музыку Чайковского, потому что Оппенгеймеру она не по вкусу.

По прибытии в Беркли в конце лета 1929 года Оппенгеймер поселяется в комнате при факультетском клубе и сводит там дружеское знакомство с физиком-экспериментатором, который живет в том же холле, в комнате напротив. Эрнест Орландо Лоуренс на три года старше Оппенгеймера, родом он из Норвегии и уже сделал себе имя как технарь Божьей милостью. Он думает над машиной, которая могла бы заменить резерфордовский сложный метод бомбардировки атомных ядер. Хотя Ганс Гейгер своим усовершенствованным электрическим счетчиком облегчил физикам утомительный подсчет сцинтилляций, предел эффективности его метода давно достигнут. Ибо чем тяжелее элементы, тем больше электрически заряженных протонов теснится в ядре. А с увеличением заряда резерфордовским альфа-частицам из источников радия и полония уже не удается прорвать электрические барьеры атомного ядра. Альфа-частицы просто отскакивают от него.

Теперь Лоуренс задумал нечто совершенно новое. Он бьется над способом ускорять легкие атомные ядра в сильном электромагнитном поле. Теоретически ядерные частицы должны при этом достигать энергий в миллион электрон-вольт. Таким высокоэнергетичным лучом из частиц, размышляет Лоуренс, можно было бы вообще-то раздробить и ядра тяжелых элементов, которые Резерфорд со своей аппаратурой до сих пор не пробил. Роберт Оппенгеймер становится свидетелем, как его сосед по жилищу и друг Эрнест в конце концов выпускает протоны в вакуумную камеру, многократно переделанную и усовершенствованную, и при помощи электромагнита весом в две тонны разгоняет их по спиралевидной траектории, на которой они должны сделать сто оборотов. При этом с каждым новым кругом они ускоряются до все более высокой скорости, причем и энергия их нарастает. Затем они сжимаются в сфокусированный пучок и направляются на мишень. Эрнест Лоуренс открыл принцип циклотрона.

Лоуренс подсчитал, что интенсивность пучка, полученного в его ускорительной машине, соответствует источнику излучения ровно в пять килограммов радия — такого количества никогда не добыть из всех урановых запасов нашей планеты. А вдруг его ускоритель и впрямь позволит разбомбить любое атомное ядро и тем самым открыть доступ к потенциально неистощимому источнику энергии. И он срочно ищет спонсора, который профинансировал бы электромагнит весом в восемь тонн.

Вот уже и в дебатах по бюджету в рейхстаге в феврале 1931 года всплывает тема атомной энергий. В протокольных записях речь идет об одной заявке на финансирование. Ученые Общества кайзера Вильгельма планировали опыты, как значится в протоколе, «которые затрагивают важнейшую проблему расщепления атома. В будущем, когда иссякнут наши залежи угля, этот вопрос приобретет огромное значение, ибо в атомах таятся могучие энергии». Заявитель и ходатай — не кто иной, как сам президент исследовательского института Макс Планк.

По достоверным сведениям, первым заявку на патент для ускорителя частиц подал в 1928 году в Берлине Лео Силард. Правда, он так и не приложил усилий, чтобы построить машину. И принцип циклотрона он запатентовал в 1929 году, за год до первых набросков Лоуренса. Но пока страстный мыслитель Лео Силард предается своей привычке каждый день с 9 до 12 часов мокнуть в ванне, чтобы в полном расслаблении еще раз обдумать свои вчерашние физические придумки и прислушаться к новым озарениям, трудяга Эрнест Лоуренс копошится в кутерьме опытов и ошибок и действительно строит машину.

Отто Мандль, венский друг Лео Силарда, советует ему почитать роман Г. Дж. Уэллса «Освобожденный мир». Уэллс написал эту картину разрушенного атомными бомбами мира еще в 1914 году и посвятил его химику Фредерику Содди, открывшему как полезный, так и разрушительный потенциал распада урана. Он снабжал Уэллса научными обоснованиями для романа о будущем, в котором тот расписывал последствия, связанные с промышленным доступом к атомной энергии. Англия, Франция и США, объединившись, ведут атомную войну против Германии. Атомные бомбы превращают в руины крупнейшие города мира.

Тридцать первого июля 1932 года Национал-социалистическая немецкая рабочая партия становится сильнейшей партией в рейхстаге. В конце октября венгерский еврей и гражданин Германии Лео Силард собирает пожитки, освобождает свою квартиру в Вильмерсдорфе и переселяется в Далем, в гостевую комнату Харнак-хауза, принадлежащего Обществу кайзера Вильгельма. Силард готовится к тому, что ему придется покидать Германию в любой момент. «У меня там стояли в буквальном смысле только два собранных чемодана. Ключ торчал в замочной скважине, и мне оставалось только повернуть его, чтобы исчезнуть, как только станет совсем худо», — пишет Силард.

В первые дни декабря того же года Эльза и Альберт Эйнштейн тоже сидят на шести собранных чемоданах невдалеке от Харнак-хауза. Они ждут въездной визы в США. На территории элитного Принстонского университета вблизи Нью-Йорка основан Institute for Advanced Study, частно финансируемая фабрика мысли, в которой лучшие ученые мира смогут заниматься своими исследованиями, освобожденные от преподавательской нагрузки. И для начала учредители приглашают туда Альберта Эйнштейна, чтобы таким образом поднять планку как можно выше. За годы в Берлине Эйнштейн поневоле обрел свою еврейскую идентичность. Когда в начале 1920-х слава Эйнштейна стала распространяться и за пределы физических семинаров, антисемитские группы принялись устраивать на его лекциях выпады против него. И не только хулиганствующие студенты, но и высокопоставленные коллеги начали заметно осложнять жизнь Эйнштейна. Нобелевский лауреат по физике Филипп Ленард повел себя как его злейший личный враг. Он даже учреждает «Рабочую группу немецких естествоиспытателей для поддержания чистоты в науке». Причем чистота для членов группы равнозначна понятию «быть немцем по крови». Они отвергают теорию относительности Эйнштейна как «еврейскую физику... недоказанные гипотезы... и логически несостоятельный вымысел». Были и откровенные угрозы жизни, поэтому летом 1922 года, когда убили Вальтера Ратенау, немецкого министра иностранных дел с еврейскими корнями, Эйнштейн месяцами не показывался на людях.

Теперь, в конце 1932 года, когда супруги Эйнштейн запрашивают в американском консульстве визу, дело доходит до скандала. Служащий консульства задает неизбежный вопрос о его симпатиях к коммунистам и анархистам. Эйнштейн с негодованием отказывается отвечать на такие вопросы, назвав их «инквизиторскими», протестует против объявления его «подозрительным», предпочитая при таких унизительных условиях лучше отказаться от въезда в США, и в гневе покидает консульство. На следующий день визы предоставлены супругам без всяких оговорок. Десятого декабря 1932 года Эльза и Альберт Эйнштейн садятся на Лертском вокзале в поезд до Антверпена, а там пересаживаются на пароход до Нью-Йорка. Они еще не догадываются, что больше никогда не увидят Берлин и Германию.

Уже через месяц после перехода власти к национал-социалистам в Берлине двадцать седьмого февраля 1933 года горит рейхстаг, что дает новой власти желанный повод для ускоренного принятия чрезвычайного декрета «О защите народа и государства». Под этим названием цинично ставились вне закона основные права, а граждане подвергались государственному произволу. Критиков режима теперь можно арестовывать без предъявления обвинения — подготовительный шаг к принятому через три недели закону о полномочиях, который окончательно превращает правовое государство Веймарской республики в диктатуру. Во время ночных полицейских облав коммунистов и прочих неугодных именем народа утаскивают в тюрьмы и пыточные подвалы, подвергают там издевательствам, а иногда и забивают до смерти. И без того немногочисленные либеральные газеты подвергаются цензуре и вскоре после этого приобщаются к господствующей идеологии. «Арийский параграф», безобидно звучащий как «Закон о восстановлении профессиональных служащих» от седьмого апреля 1933 года, дает новой власти возможность увольнять с государственной службы всех евреев.

Из своей принстонской «башни из слоновой кости» Альберт Эйнштейн публично протестует против удушения политической свободы, против преследования инакомыслящих и возврата Германии в «варварство». При таких обстоятельствах, заявляет он, в Германию он больше не вернется. Верноподданные господа из Прусской академии наук в Берлине воспринимают критику Эйнштейна как предательство. Его слова явно задевают их национальную гордость. Макс Планк дает знать своему другу и партнеру по домашнему музицированию, что после этого заявления, облетевшего весь мир, больше не хочет иметь с ним ничего общего. За неделю до принятия «Арийского параграфа» Эйнштейн, предвосхищая официальное исключение из академии, объявляет о прекращении в ней своего членства — после почти двадцати лет. Несколько дней спустя он пишет заявление — уже второй раз в своей жизни — об отказе от немецкого гражданства.

В конце марта 1933 года Лео Силард подхватывает оба свои чемодана, поворачивает ключ в двери, покидает Харнак-хаус и садится в пустой поезд до Вены. На следующий день, рассказывает он впоследствии, тот же самый поезд был уже переполнен и задержан полицией на австрийской границе. Пассажирам пришлось выйти и подвергнуться допросу. «Я упоминаю об этом лишь для того, чтобы было понятно: совсем необязательно быть умнее других людей, чтобы утвердиться в этом мире. Достаточно быть всего лишь на день быстрее остальных». Вскоре Силард повернется спиной и к Вене, обосновавшись в Лондоне. Служа в организации взаимопомощи ученых, он помогает первым уволенным в Германии еврейским научным работникам устроиться в университетах Англии.

Пасхальные каникулы 1933 года Вернер Гейзенберг ощущает как «скорбное прощание с "золотым веком" атомной физики». Со времен Мюнхенской Советской Республики, когда он подростком служил в военизированном отряде, он остается подчеркнуто аполитичным человеком. За всеми политическими ходами он всегда усматривает некий денежный интерес. Он не хочет, чтобы его физика была в этом замарана. Тем не менее атмосферу страха и отчаяния, которая с приходом Гитлера к власти распространяется и в университетах, он больше игнорировать не может. Пасхальные каникулы совпадают с первыми увольнениями его лучших еврейских друзей и сотрудников. И вдруг оказывается, что денежный интерес тут ни при чем, а идет расистски мотивированное и чуть ли не с религиозным рвением форсируемое отторжение уважаемых коллег. Если до сих пор представление о «еврейской физике» было лишь абсурдной точкой зрения фанатичного академического меньшинства, то теперь этот лозунг повысился в чине до официальной государственной доктрины. Теория относительности теперь официально запрещена к преподаванию в немецких вузах, а имя Эйнштейна запрещено упоминать.

Идиллическая горная гостиница «Лунный свет» в южнотирольских Доломитовых Альпах становится в начале лета 1933 года пристанищем европейской физической элиты. Сюда перебрался со своей семьей Макс Борн, чтобы в покое спланировать свое академическое будущее за границей. Вольфганг Паули, Эрвин Шрёдингер и математик Герман Уэйл — постоянные гости Борна. Паули настойчиво призывает своего друга Гейзенберга в Лейпциге отложить запланированный летний альпинизм и присоединиться к клубу «Лунного света». Втайне физики надеются, что Гейзенберг — хотя бы из солидарности со своим учителем Максом Борном — тоже откажется от профессорской должности, чтобы подать знак, что он полон решимости освободиться из тисков нацистов, которые недоверчиво стерегут каждое его движение.

Однако Вернер Гейзенберг предпочитает объединиться с Максом Планком. Сообща они стараются убедить нееврейских коллег, настроенных на эмиграцию, остаться в Германии и пытаются остановить увольнения хотя бы знаменитых еврейских физиков. Чем, конечно, зарабатывают упреки в том, что молча терпят увольнение второстепенных и третьестепенных лиц. Свою стратегию персональных петиций они называют «тихой дипломатией». В мае Планку даже удается пробиться лично к Гитлеру. В ходе разговора Планк делает различие между «евреями, ценными для науки и не ценными...». Его предостережение от роковых последствий «Арийского параграфа» для науки не приводит ни к одному восстановлению на работе. Конечно, Гитлер обещает не чинить ему в науке никаких препятствий, которые выходили бы за рамки Закона о служащих. В качестве ответного шага Макс Планк как президент Общества кайзера Вильгельма распоряжается о скорейшем увольнении еврейских сотрудников и неделю спустя заверяет Гитлера, «что и наука Германии готова приложить все силы к восстановлению нового национального государства, которое берется быть ее защитой и опорой». Немецкие преподаватели высшей школы не организовали ни одной коллективной ноты протеста против дискриминации их еврейских коллег. Голландский физик Сэмюэль Гоудсмит, работающий в это время в Мичиганском университете в Энн-Арборе, уже предвидит, что вследствие антисемитской служебной политики Германия скатится в области науки к нации пятого сорта.

Макс Борн в Южном Тироле решил принять предложение Кавендишской лаборатории в Кембридже, а в это время ее руководитель Эрнест Резерфорд в своем докладе выражает личное мнение, от которого Лео Силард в лондонском отеле «Империал» вскакивает с газетой в руках. Резерфорд считает, что в ближайшем времени станет возможным превращение всех известных элементов путем бомбардировки их атомных ядер. Это предположение он высказывает одиннадцатого сентября 1933 года в Лейчестере, на ежегодной встрече Британской ассоциации развития науки. Однако он решительно отвергает оптимистические иллюзии некоторых коллег, что атомное ядро можно расщепить подходящими средствами — и при этом высвободится огромная связующая энергия, которая удерживает атомное ядро в целости. «Talking moonshine» — пустая болтовня — так он называет амбициозные обещания получить источник полезной энергии из превращения атомной структуры. Это оставляет Силарда в некотором недоумении. Его пониманию просто не поддается, как ядерный физик формата лорда Резерфорда считает заведомо недостижимой такую достойную цель, как извлечение атомной энергии. Две недели Силард тратит на изучение проблемы. Прибегая к своей испытанной технике медитации — продолжительные ванны, затем резвые прогулки по зеленому району Блумсбери, — он раздумывает, чем бы возразить решительному утверждению Резерфорда. Нейтрон был открыт Джеймсом Чедвиком полтора года назад. И Силард, разумеется, осознаёт тот факт, что электрически нейтральная частица в принципе представляет собой идеальный снаряд, который беспрепятственно мог бы преодолеть электрические барьеры атомного ядра и расщепить его. Однако до сих пор никто не предложил метод, позволяющий улавливать огромное количество энергии, которое высвобождалось бы при реакции между нейтроном и атомным ядром.

Сильная сторона Силарда — его интеллектуальная независимость и многогранность. Как свободно мыслящий творец и универсалист, Силард не обременен преподавательской нагрузкой и избавлен от необходимости заботиться о семье. Ему можно очертя голову пускаться в любые рассуждения, не рискуя потерять научную славу. Для него не табу даже такой источник вдохновения, как роман Уэллса «Освобожденный мир» с его сценарием атомных бомбежек. Благодаря приятной жизни в отеле «Империал» он может все свое время посвятить решению проблемы. В креативных играх ума он любит сводить вместе факты и теории из разных областей знания, открывая порой волнующие перспективы. И хотя ему чаще всего недостает упорства, чтобы проверить свои тезы на деле, на сей раз резерфордовская провокация с «Talking moonshine» становится для него особым вызовом. Она задевает его честолюбие. Не сам ли Резерфорд еще в первые годы XX века любил горячо порассуждать о разрушительной силе энергии, скрытой в атомном ядре, считая возможным, что «какой-нибудь придурок-лаборант» однажды невзначай взорвет планету. Возможно, его отрезвил тот факт, что за прошедшие тридцать лет никому — даже ему — так и не пришел в голову пусковой механизм для бомбы или катализатор для промышленного использования. И если даже он потерпел поражение, кто же еще может рассчитывать на успех? Как бы хотелось Силарду уличить нобелиата в отсутствии фантазии. Тем более что Резерфорд резко оборвал оживленный разговор с ним на эту тему и с треском вышвырнул его из своей лаборатории — без сомнения, за то, что этот пресловутый репей не выказывал никакого респекта перед авторитетами.

И вот, недели через две после доклада Резерфорда, Силард идет по запруженной транспортом Саутгемптон-роуд, на которой расположен его отель, и на светофоре ему приходится ждать перехода. В тот самый момент, когда загорается зеленый, его и настигает эврика: «...внезапно мне становится ясно: если мы найдем элемент, который можно расщепить нейтроном и который при этом испустит два нейтрона, поглотив лишь один, то такой элемент — при условии, что будет накоплено его достаточное количество, — мог бы запустить ядерную цепную реакцию». Принцип цепной реакции он, вероятно, позаимствовал из химии. Его добрый друг и земляк Майкл Поляный — эксперт в этой области, он и навел его на такие мысли. Два нейтрона, вылетев из лопнувшего ядра, расщепят, в свою очередь, еще два атома, что выдаст вдвое больше энергии, чем при первом столкновении. Да еще при этом буквально выскочат дополнительно четыре нейтрона. Эти четыре нейтрона расщепят четыре следующих атома, что приведет к высвобождению восьми нейтронов и новому выбросу энергии, пока таким образом за долю секунды не будут разрушены миллиарды атомов.

Тут в дело вступает второе наитие Силарда. Он первый, кто в связи с этим наметил принцип критической массы, хоть и не применил само понятие. Подходящий элемент должен быть в достаточном количестве и в довольно спрессованном виде, чтобы нейтроны не улетали, а оставались после их высвобождения в веществе и тут же натыкались на соседний атом. Если такая цепная реакция пойдет достаточно медленно и будет управляемой, то в распоряжении человечества появится, по мнению Силарда, совершенно новый источник энергии, а пессимистичный вердикт Эрнеста Резерфорда будет посрамлен. Если же высвобождение энергии произойдет в виде внезапного взрыва, то сценарий атомной бомбардировки из фантастического романа Г. Дж. Уэллса «Освобожденный мир» осуществится быстрее, чем автор считал возможным в 1914 году.

Представление о критической массе и цепной реакции как механизмах высвобождения атомной энергии — хоть и дерзкая идея, типичная для нетрадиционного мышления Силарда, однако она не противоречит законам природы и потому не является физической невозможностью. Но перед следующим за идеей практическим шагом он все же пасует. Ведь теперь ему следовало бы методично протестировать все известные элементы, чтобы выяснить, какое вещество подошло бы для цепной реакции. Более унылого занятия он не может себе представить. Но ему приходит в голову решение: он найдет спонсора и на его деньги наймет лаборанта, который и проделает эту работу. А пока что он мог бы приступить к патентной заявке на ядерную цепную реакцию.

Когда Г. Дж. Уэллс писал свой роман-предвидение, он относил время открытия искусственной радиоактивности к 1933 году. Осенью 1933 года Лео Силард пытается заразить ведущих физиков и химиков Англии своей идеей. Между тем Ирен Жолио-Кюри и Фредерик Жолио в Париже ломают голову над одной странной ядерной реакцией. Они поставили свою легендарную полониевую пушку перед тонкой алюминиевой фольгой и обстреляли этот легкий металл альфа-частицами. Но вместо ожидаемых протонов из атакованных ядер алюминия разлетались нейтроны и другие частицы. Когда Фредерик Жолио удаляет источник полония, алюминиевая фольга прекращает испускать нейтроны. Но он с удивлением видит, что счетчик Гейгера продолжает реагировать своим характерным жестким пощелкиванием. Это может означать лишь одно: в возбужденном алюминии идет радиоактивный процесс. Ядра алюминия превращаются в радиоактивные ядра фосфора, которые в природе не встречаются. Их период полураспада составляет ровно три минуты, и они превращаются, в свою очередь, в стабильные ядра кремния-30. При этом они испускают частицы, которые и регистрирует счетчик Гейгера. Сами того не ведая, супруги невзначай наткнулись на метод, как искусственно вызывать радиоактивный распад, который до сих пор всегда считался природным процессом, не поддающимся воздействию человека.

Преисполненная гордости Ирен Жолио-Кюри демонстрирует этот опыт своей знаменитой матери. Заслышав щелчки счетчика Гейгера перед алюминиевой фольгой, Мария Кюри понимает, что этот монотонный шум должен звучать в ушах ее дочери музыкой, увертюрой к нобелевскому торжеству. Сама она уже не застанет телеграмму, отправленную из Стокгольма супругам Жолио. Она на то время единственный человек, дважды в своей жизни удостоенный этой высшей награды — неповторимое признание необыкновенного ученого. Через несколько недель после грандиозного открытия ее дочери в институте радия Мария Кюри сляжет и 4 июля 1934 года в швейцарском санатории умрет от загадочной болезни крови, которую врачи истолкуют как следствие чрезмерного контакта с радиоактивными веществами. Когда-то в убогом сарае она создала понятие радиоактивности и выделила из смоляно-черной породы самосветящееся вещество, которое дало решающий толчок развитию атомной физики.

Теперь Ирен Жолио-Кюри и Фредерик Жолио своим открытием искусственной радиоактивности хронологически точно подтвердили предвидение писателя Герберта Уэллса. Сенсационные новости из Парижа воспламенили надежды Силарда в Лондоне. Коль оказалось возможным вызвать радиоактивный распад в таком от природы стабильном элементе, как алюминий, из которого в итоге получается искусственное атомное ядро и свободные нейтроны, то из этого обстоятельства можно, пожалуй, выковать инструмент для исследования цепной реакции.

Когда шестнадцатилетняя римлянка Лаура Капон отправляется весной 1924 года с друзьями на экскурсию и знакомится со своим будущим мужем, тот одет в черный костюм и с черной фетровой шляпой на голове, поскольку у него траур по недавно умершей матери. Невысокий, мускулистый доктор физики представился как Энрико Ферми. Он ходит, подавшись вперед и туда же вытянув шею, «неукротимо стремясь головой опередить ноги». Экскурсия заканчивается на зеленом лугу на берегу Тибра. Откуда-то берется, как по волшебству, надувной футбольный мяч. Под руководством Энрико могут играть даже девушки. Он наскоро посвящает Лауру в тайны защиты ворот, однако черный костюм не снимает даже во время игры. Внезапно он падает, потому что оторвалась подметка его ботинка. Он приматывает ее шнурком и играет отчаянней прежнего.

Ферми — прирожденный вожак, именно он определяет в компании, кому что делать, и ему все доверяют. Его серо-голубые глаза сияют радостью. Он основательно думает, прежде чем что-то сказать. Наверное, поэтому его суждения всегда разумны и справедливы. Его спортивное честолюбие непомерно. В походе он водружает себе на плечи самый тяжелый рюкзак, и чем круче подъем, тем одержимее он стремится опередить и оставить далеко позади себя всех. Вдвоем с другом Франко Разетти они ради удовольствия заучивают энциклопедические сведения из далеких им областей знания, чтобы произвести на друзей впечатление учеными диалогами и задать им каверзные вопросы, на которые обе эти ходячие энциклопедии сами же и отвечают, исполненные гордости, донимая невежд пристрастием к деталям. Преподавая в Римском университете, Ферми и Разетти сразу же получили прозвища. Ферми — это Папа, а Разетти — Кардинал. Манера Ферми передавать знания — от души и играючи — делает его любимым преподавателем вуза.

Хотя супруги Жолио открыли искусственную радиоактивность при помощи альфа-частиц, однако эти снаряды, пролетая через атомы мишени, тормозятся электронами. Большинство из-за этого так и не достигает ядра. Кроме того, они слишком слабы, чтобы расщепить атомное ядро тяжелого элемента. Когда Энрико Ферми весной 1934 года берется за исследование искусственной радиоактивности, о существовании нейтрона как электрически нейтральной частицы известно уже два года. Теоретически нейтроны должны бы пронизывать атом, не испытывая торможения, и быть в состоянии расщепить ядро. Но никто еще не пытался испробовать это всерьез.

Лео Силард хотя и думает над этим и уже воображает результаты, но в его распоряжении нет университетской лаборатории, а потенциальные меценаты так и не заразились его желанием исследовать ядерные цепные реакции посредством бомбардировки нейтронами. Оппенгеймерская «жертва отравленного яблока» Патрик Блеккет, который только что забрал Макса Борна в Кембридж, не оставляет Силарду надежды на поддержку в Англии. Безумцам его калибра с дорогостоящими идеями можно было бы сдвинуть свою карьеру с места разве что в России. Там для государственных физиков созданы райские условия. А пока Силард стучится во все двери и пожимает руки направо и налево, Энрико Ферми не останавливается перед тем, чтобы на деле воплотить игру ума Силарда и методично обстрелять нейтронами все девяносто два элемента. С той разницей, что итальянец при этом не думает о цепной реакции и о получении атомной энергии, а надеется лишь на углубленное понимание процесса искусственно вызванной радиоактивности.

В марте 1934 года он берется по своей инициативе за геркулесову задачу: исследовать все химические элементы на предмет искусственной радиоактивности. Его сотрудник Эмилио Сегре назначается главным закупщиком. В кармане у того всегда с собой неслыханный бюджет в 20 000 лир — около 1000 долларов, — когда он направляется с корзинкой в свой любимый магазин товаров для химиков и закупает там более редкие элементы, чем имеются в запасе на полках института Ферми. В это же время Ферми приходится заняться приборостроением, поскольку счетчики Гейгера не так-то просто раздобыть даже в 1934 году. А ему для обнаружения продуктов распада требуется сразу полдюжины приборов. Но еще важнее смастерить подходящий источник нейтронов. Ему помогает само «Божественное провидение». Оно является ему в образе профессора Джулио Чезаре Трабаччи. Он директор отдела здравоохранения и за свою легендарную готовность прийти на помощь снискал это прозвище — в Италии граничащее с кощунством.

В подвале Физического института стоит сейф, в котором Трабаччи хранит один грамм радия, предоставленный процессу распада. Энрико Ферми получает разрешение откачивать из бронированного шкафа возникающий при этом радон через систему стеклянных трубок. Радиоактивный газ попадает для очистки в специальный аппарат. Оттуда его берут для наполнения стеклянных ампул длиной один сантиметр, в которых находится небольшое количество порошка бериллия. Наполнение ампул — процесс деликатный. Тонкие трубочки иной раз нечаянно лопаются в пальцах сотрудников Ферми. Но если удается их запаять, источник нейтронов в течение нескольких дней — в соответствии с коротким периодом полураспада радона — фонтанирует достаточно сильно, чтобы провести эксперимент. А когда запаянному радону выходит срок, его альфа-частицы заставляют бериллий испускать миллион нейтронов в секунду. Ферми действует методично и вначале бомбардирует водород, легчайший элемент — без успеха. Также и в следующих элементах таблицы периодической системы — литии, боре, азоте — ничего не происходит. Только у фтора, девятого элемента, ему удается вызвать искусственную радиоактивность. До первой публикации результатов Ферми и его команда добились успеха у 47 из 68 исследованных к тому времени элементов. Так, например, облучаемое железо с порядковым номером 26 превращается в марганец, который в периодической системе занимает номер 25. И возбужденный кремний (14) становится искусственным ядром алюминия (13). Бросается в глаза тенденция оставаться в ближайшем соседстве.

Кто бы мог подумать, что спортивное честолюбие пригодится и в экспериментах. Поскольку выясняется, что некоторые радиоактивные продукты распада уже через минуту своего существования еще раз претерпевают превращение, а потом могут стать и необнаружимыми. Чтобы все-таки подтвердить радиоактивный процесс в облученном веществе, нужно поднести его к счетчику Гейгера непосредственно после бомбардировки нейтронами. Но счетчик непременно должен стоять на достаточном удалении от источника нейтронов, чтобы не регистрировать еще и излучение радона-бериллия, фальсифицируя тем самым результаты. Решить эту дилемму в Физическом институте Римского университета можно,только если разнести в противоположные концы коридора на втором этаже помещение для облучения и помещение для измерения. А это означает: быстрейшие бегуны группы Ферми мчатся с облученным материалом вдоль по коридору к счетчикам Гейгера, чтобы успеть идентифицировать короткоживущие продукты распада. Бегает главным образом начальник собственной персоной, поскольку считает себя непобедимым в спринте. Эдоардо Амальди, который в Лейпциге учился у Петера Дебая, коллеги Гейзенберга, утверждает о себе то же самое и при случае вызывает Ферми на состязание по коридору.

Лаура Ферми описывает посещение института одним испанским аристократом, который с благоговейным трепетом высказывает желание поговорить с «Его превосходительством Энрико Ферми» — и слышит в ответ: «Папа наверху». Когда он поднялся на второй этаж, мимо него, осклабившись, промчались два типа в грязных развевающихся халатах, с шелестящей серебряной фольгой в руках, под вопли коллег-болельщиков. Каков же был ужас посетителя, когда в измерительном помещении один из потных спринтеров как раз и оказался «Его превосходительством» — титул, которым его сподобил Бенито Муссолини и которым он не так уж и гордился. Разговор с испанцем проходил между считыванием показаний счетчика Гейгера и новой пробежкой Папы по коридору — вот этот титул, возникший из дружеской шутки, нравился Ферми куда больше.

Первую из своих десяти статей об экспериментах с нейтронами Энрико Ферми публикует в марте 1934 года. А летом его результаты становятся главной темой разговоров среди физиков и химиков во всем мире. Особенно пристально методы Ферми изучаются в Далеме. В конце летнего семестра группа Ферми успешно бомбардировала нейтронами и самый тяжелый и последний элемент в таблице периодической системы. В ядре урана теснятся 92 протона и 146 нейтронов. До сих пор альфа-лучи были бессильны против этой плотной скученности положительно заряженных и нейтральных ядерных частиц. После облучения нейтронами Ферми, к своему удивлению, находит сразу пять новых радиоактивных изотопов с периодом полураспада от десяти секунд до девяноста минут. Субстанция, исследованная им основательнее прочих, имеет период полураспада тринадцать минут, однако после химического анализа ей не достается места в непосредственном соседстве с ураном. Экскурсия «по окрестностям» приводит Ферми на десять ступенек ниже — до свинца с порядковым числом 82. Спускаться еще ниже, по его мнению, не стоит, поскольку все предыдущие опыты с нейтронным обстрелом показали, что активированные ядра превращаются в элемент, расположенный в таблице непосредственно рядом с элементом — до или после него.

Но если для нового тринадцатиминутного атомного ядра место перед ураном с порядковым числом 92 бесспорно исключено, то из имеющегося опыта можно сделать вывод, что Ферми открыл неизвестный элемент с порядковым номером 93, за ураном, а также за рамками природы. Первый химический элемент, произведенный руками человека? Шестнадцатого июня в специализированном журнале «Природа» должна появиться статья Ферми со скромным названием «О возможном производстве элементов с порядковым числом больше 92». Однако когда Орсо Марио Корбино, экзальтированный директор Физического института в Риме, на двенадцать дней раньше публикации заявляет как о свершившемся факте о чреватом славой открытии так называемых трансурановых элементов в его институте, у Ферми холодеют ноги. Загадочный термин «трансураны» тотчас же подхвачен мировой прессой и подается как сенсация. Сам бы он, говорит Ферми на срочном совещании со своим институтским шефом, не рискнул сделать такое рискованное заявление, пока не исключены все ошибки. И вскоре следует совместное заявление Корбино и Ферми — весьма сдержанное. Мол, следует еще провести «множество тщательных опытов, прежде чем создание элемента 93 можно будет считать доказанным».

Этого требует и женщина-химик Ида Ноддак из Германии. Она, судя по всему, не собирается взмывать вместе со всеми на волне воодушевления трансуранами и критикует методы доказательств Ферми как ненадежные. Она упрекает группу из Рима в том, что сравнение их новонайденного радиоактивного вещества с известными элементами было проведено недостаточно основательно. Почему сравнение произвольно и преждевременно оборвано на свинце? Раз уж в случае с трансуранами речь заходит о новаторском утверждении, Ферми тем более следовало сперва исключить и остальные элементы — если понадобится, вплоть до водорода.

В поиске новых элементов Ида Ноддак знает толк. В 1925 году она, совместно с мужем Вальтером Ноддаком, идентифицировала элемент с порядковым числом 75 и назвала его рений, увековечив свою рейнскую родину. В 1932 году она впервые была выдвинута на Нобелевскую премию по химии и в нынешнем году опять могла питать надежды. Чтобы подчеркнуть, что заключение Ферми, будто он нашел элемент с порядковым числом 93, не является единственным выводом из эксперимента, Ида Ноддак делает в авторитетном журнале «Прикладная химия» от пятнадцатого сентября 1934 года смелое альтернативное предложение. Дескать, пусть до сих пор при обстреле тяжелых элементов альфа-лучами происходили ядерные превращения, допускавшие возникновение лишь соседних элементов. Но ведь можно «точно так же принять, что при этом новом методе разрушении ядер нейтронами произойдут и существенно иные "ядерные реакции", чем наблюдались до этого... Вполне допустимо представить, что при обстреле тяжелых ядер нейтронами эти ядра распадутся на несколько крупных обломков...».

«Расщепление» ядра урана на «несколько крупных обломков». Она даже выделяет курсивом решающую часть этой провокации, словно вознамерившись спустить нерадивых итальянцев вниз по ступеням периодической системы в область средних порядковых номеров между сорока и пятьюдесятью — там пусть и собирают обломки ядра урана. Например, двумя такими крупными фрагментами могли быть кадмий (48) и рутений (44), вместе они дают 92, порядковый номер урана. Или серебро (47) и родий (45). Или ксенон (54) и стронций (38). Как же Ферми и его группа могут исключить эти возможности, если они оборвали свои сравнения на свинце с порядковым номером 82? Однако выступление Иды Ноддак безжалостно игнорируется. Ферми даже готов бы и принять критику Ноддак в адрес его химического анализа, но вот уж ее интерпретация ядерной реакции урана звучит на слух римских экспериментаторов совершенно нелепо. Не он ли сам бомбардировал нейтронами именно все элементы по очереди, всегда откалывая от них лишь минимальные фрагменты? И теперь с чего бы вдруг самый тяжелый элемент должен развалиться на крупные обломки? Это не похоже на правду.

В октябре 1934 года, через четыре недели после выпада Иды Ноддак, секстет Ферми продолжает свои опыты облучения, чтобы выстроить шкалу активируемости ядер. Делая замеры при облучении серебряного цилиндра, стоящего на деревянной столешнице, они странным образом отмечают более высокую радиоактивность, чем у того же цилиндра на мраморной плите. Неужто разные материалы могут как-то влиять на поток нейтронов? В то время как все сотрудники грешат на неисправность приборов, Ферми зацикливается на этом странном феномене и последовательно изменяет порядок эксперимента. Утром двадцать второго октября он только собрался вставить между источником нейтронов и серебряным цилиндром тщательно отшлифованный по его указаниям клин из свинца, как вдруг ни с того ни с сего передумал в пользу парафина — как выяснилось впоследствии, это было ничем не объяснимое наитие, одно из его знаменитых решений con intuito fonnidabile, как сам он охотно называет это: по чудовищной интуиции.

На сей раз эта «чудовищная интуиция» приводит к открытию, имеющему богатые последствия, Лаура Ферми описывает это так: «Они взяли большой блок парафина, сделали в нем выемку, вставили туда источник нейтронов, облучили серебряный цилиндр и поднесли его к счетчику Гейгера, чтобы измерить его активность. Счетчик бешено затикал. По всему физическому корпусу разносились вопли: "Фантастика! Невероятно! Черная магия!"». Парафиновый фильтр увеличил эффект облучения в сотни раз. Видимо, парафин каким-то образом ускоряет нейтроны — гласит первая гипотеза. Пообедав и вздремнув, Ферми выкладывает прямо противоположное объяснение. Парафин имеет высокое содержание водорода. А поскольку атомы водорода представляют собой чистые протоны, то нейтроны, пролетая через парафин, сталкиваются со множеством протонов, прежде чем достигнут серебряного цилиндра. Поскольку нейтрон имеет почти ту же массу, что и протон, он при столкновении теряет энергию и затормаживается. Но именно такой — замедленный — нейтрон теперь столкнется с ядром серебра и взорвет его с большей вероятностью, чем более быстрый нейтрон. Замечательная жена Ферми объясняет это явление на примере мяча для гольфа, который лежит в трех метрах от лунки. В лунку вкатится только медленный мяч. А с размаху ускоренный — пролетит над ней. Также и деревянная столешница в лаборатории, по-видимому, тормозит нейтроны эффективнее, чем мраморная плита.

Итак, если атомы водорода в парафине замедляют нейтроны и тем самым усиливают искусственно вызванную радиоактивность серебра, то эксперимент с водой просто напрашивается. В тот же вечер эта лежащая на поверхности идея претворяется в жизнь. Все имеющиеся в лаборатории сосуды кажутся впавшей в эйфорию группе недостаточно большими, чтобы вместить затребованное Ферми «изрядное количество воды». И тут кто-то вспоминает про искусственный пруд, который хозяин Корбино обустроил в саду Физического института среди клумб и миндальных деревьев. Недолго думая, секстет ненадолго погружает в пруд источник нейтронов и серебряный цилиндр. Первая гипотеза Ферми, похоже, подтверждается, ибо и в воде активность серебра сильно возрастает. Медленные нейтроны — явно ключ к большему выходу искусственно произведенного радиоактивного вещества. Это новое знание позволит в будущем заменить дорогие радиоактивные вещества в медицине и в промышленном производстве на искусственные. Эмигрировавший в 1933 году в Англию немецко-еврейский физик Ганс Бете нахваливал Италию за ее изобилие мрамора и высказал подозрение, что медленные нейтроны могли быть открыты лишь на родине Ферми. В Америке, мол, все опыты проводились бы «на деревянных столах, и никто бы ни до чего такого не додумался».

Однако после этих новаторских открытий в Риме анализ распада урана топчется на месте. Дело весьма сложное, а поскольку никакого продвижения нет, группа Ферми расформировывается. Никто на тот момент не думает об опытах по высвобождению атомной энергии. Кроме, разумеется, Лео Силарда. Своим потенциальным спонсорам он обещает «производство энергии... в таком масштабе и, предположительно, со столь малыми затратами, что можно рассчитывать на своего рода промышленную революцию. Смею сомневаться, продержится ли после этого добыча угля и нефтяная индустрия дольше пары лет». К этому времени Силард своими грандиозными планами довел-таки до кондиции и Хаима Вейцмана. Действительно ли он убедил его своей идеей ядерной цепной реакции, неизвестно. Но Вейцман, по крайней мере, пообещал раздобыть десять тысяч долларов, необходимые Силарду для его опытов. Он с нетерпением ждет в Лондоне денег. Силард хочет облучить все элементы нейтронами, как Ферми, и посмотреть, из какого вещества он сможет выбить дополнительные нейтроны, чтобы вызвать ядерную цепную реакцию.

А пока что он обстреливает нейтронами бериллий, который кажется ему главным кандидатом для запуска цепной реакции. Пожалуй, лишь благодаря своей живой манере вести непринужденную беседу и упоминанию между делом знаменитых имен из круга друзей, он получает разрешение использовать в Лондоне лабораторию, пустующую во время летних каникул. Столкнувшись при этом лицом к лицу с неконтролируемым хаосом из рядов распада и промежуточных продуктов, он — в манере человека, который сделал себя сам, поскольку голь на выдумки хитра, — недолго думая, изобретает сообща с лабораторным ассистентом Томасом Челмерсом простой, элегантный и дешевый метод разделения радиоактивных и нерадиоактивных изотопов одного и того же элемента. Описание этого способа приносит ему летом 1934 года признание сообщества и маркирует его рождение в качестве физика-ядерщика. Однако его царственное шествие к более-менее приемлемой цепной реакции в ядрах бериллия так и не состоялось.

Жгучий интерес к экспериментам Ферми проявляет Лиза Мейтнер у себя в Берлине. Слишком уж хорошо она помнит одного сотрудника Ферми, обаятельного Франко Разетти, который два года назад стажировался в ее институте. Они чуть было не вошли вдвоем в исторические справочники в качестве открывателей нейтрона. К этому вело как предсказанное Мейтнер еще в 1921 году существование электрически нейтрального ядерного кирпичика, так и исследование непонятного излучения бериллия стажером Разетти под ее руководством. Однако Джеймс Чедвик своей публикацией на четыре недели опередил немецко-итальянскую группу. За несколько дней до двадцать третьего октября 1934 года со всеми его волнениями в Риме вокруг куска парафина и вокруг искусственного пруда, реконструируя схему эксперимента Лео Силарда, Мейтнер — параллельно и независимо от Ферми — приходит к предположению, что энергия, а тем самым и скорость нейтронов может оказывать решающее влияние при производстве искусственной радиоактивности. Теперь ей хотелось бы повторить опыты Ферми. Она тоже считает в принципе возможным существование трансурановых элементов, но знает также, что ей, как физику, в дальнейших исследованиях урана необходим рядом выдающийся химик, который проводил бы радиохимические анализы. Ей не приходится долго раздумывать. Один из лучших в мире кандидатов для выполнения этой задачи работает в том же здании Химического института кайзера Вильгельма в Далеме, что и она сама — только этажом выше ее лаборатории. Его зовут Отто Ган.

Двенадцать лет оба они шли в профессии каждый своим путем, что никак не мешало их дружбе. Ган как никто другой подходит для того, чтобы правильно рассчитать запутанные многочисленные радиоактивности и времена распада облученного урана. Пару недель он еще жеманится, но в августе 1934 года Мейтнер и Ган возобновляют их проверенную временем работу в одной команде.

За год до этого Лизе Мейтнер пришлось оставить свою профессуру в Берлинском университете — она тоже стала жертвой «Арийского параграфа», ибо в категориях новых властей Лиза Мейтнер двадцатипятипроцентная еврейка. В негосударственном Институте кайзера Вильгельма ее должность пока не подвергается опасности. Она защищена и своим австрийским паспортом. Ган находится под особым наблюдением членов партии даже в собственном доме, поскольку он откровенно не хочет примыкать к национал-социализму. В конце 1934 года к рабочей группе присоединяется тридцатидвухлетний химик д-р Фриц Штрассман. Он тоже стойко уклоняется от вступления в национал-социалистическую профессиональную организацию, так что трио, работающее сообща, вызывает у режима подозрение.

С самого начала им удается отделить друг от друга короткоживущие продукты облученного урана лучше, чем это смог сделать до них Ферми. Правда, одни вещества при этом постоянно порождают другие с поразительными семейными отношениями. Материнские и дочерние субстанции распознаются и через несколько поколений продуктов распада. Господствующие основные принципы физики и химии позволяют классифицировать продукты реакции как трансурановые элементы. Берлинцы логично подтверждают рассуждения Ферми об искусственных элементах, которые тяжелее урана. Медленные нейтроны производят не такие ряды распада урана, как энергичные снаряды. Значение этих странных результатов по-прежнему остается загадкой.

Лиза Мейтнер — движущая сила берлинского трио. Даже когда Ган и Штрассман радуются доселе неизвестным веществам и подходящим для них порядковым числам, Лизу Мейтнер не покидает тревога. И когда Ган в очередной раз клятвенно заверяет ее в корректности и достоверности своей работы, она порой отвечает ему: «Уймись, Гансик, ступай к себе наверх. В физике ты ничего не смыслишь», на что он обижается — это running gag между старыми друзьями с почти тридцатилетним стажем, и они его с удовольствием разыгрывают перед посетителями и знакомыми. Мейтнер побуждает господ химиков подробнее исследовать и те фильтраты, которые остаются при разделении радиоактивных элементов. Среди этих фильтратов присутствует и пресловутый «двадцатитрехминутник», о котором Мейтнер хотелось бы знать побольше. Однако Гану и Штрассману эта работа кажется слишком сложной, а главное — бессмысленной. С их точки зрения, они подают своей «начальнице» химически безупречно идентифицированные трансурановые элементы на серебряном подносе. Зачем же еще рыться в отходах?

Мейтнер знает, что как химики Ган и Штрассман, должно быть, правы, но как физик она не может удовлетвориться своим недостаточным пониманием ядерной реакции. Летом 1936 года Штрассману однажды показалось, что среди короткоживущих радиоактивных веществ урана промелькнул барий, элемент с порядковым номером 56 — для Мейтнер это вещь невозможная. Она отговаривает Штрассмана от дальнейших поисков в этом направлении: по ее словам, это может быть только «эффект загрязнения». Ган, Мейтнер и Штрассман публикуют статью, в которой подтверждают несомненное открытие четырех трансурановых элементов. Но для Лизы Мейтнер физические процессы при облучении урана нейтронами — неожиданно сложные, еще непонятные — имеют такое же большое значение, как и сами трансурановые элементы. К этому времени уже никто больше не вспоминает ни в Беркли, ни в Кембридже, ни в Париже, ни в Цюрихе идею Ноддак о расщеплении ядра на фрагменты приблизительно одинаковой величины.

В то время как трио в Далеме с их современнейшей аппаратурой работает на мировом уровне, Лео Силард в Лондоне постоянно носит свое мобильное оборудование с собой в двух кожаных дорожных сумках. Неподалеку от своего отеля он снял две комнаты, которые превращаются в атомно-физическую лабораторию, как только он переступает порог и распаковывает содержимое своих сумок. В сменное белье завернуты: счетчик Гейгера, блок парафина, усилитель, металлическая фольга в коробках из-под сигарет и записная книжка. Его источник нейтронов — это проверенная смесь из радона и бериллия. Добытые здесь и опубликованные им сведения о поглощении нейтронов в облученных атомных ядрах производят впечатление даже на Нильса Бора и Эрнеста Резерфорда, который еще недавно выгнал его из своего института. В сентябре 1935 года Лео Силард предлагает британскому Адмиралтейству два своих патента на ядерные цепные реакции при критической массе. Он отказывается от лицензий и гонораров. Для него важно только одно: чтобы его идеи сохранялись как военная тайна. Он хочет уберечь их от попадания в руки немцев.

Двенадцатого декабря 1935 года супруги Жолио-Кюри получают Нобелевскую премию по химии. Они доказали, что химические элементы могут — путем облучения — превращаться в искусственные радиоактивные элементы. В заключение своей речи Фредерик Жолио говорит об удивительном прогрессе естественных наук и предостерегает от разрушительного аспекта высвобождения атомной энергии. «Ученые, которые по собственному произволу расщепляют элементы и пересоставляют их заново, вызовут и трансмутации взрывного типа, а именно настоящие химические цепные реакции». Тем самым у него получается — намеренно или нет — ссылка на Альфреда Нобеля, изобретателя динамита. Жолио говорит не о трансформациях, а о трансмутациях, которые могут привести к уничтожению мира — совершенно в смысле алхимической традиции, которой не чужды и Резерфорд и Содди.