Жизнь в одном из коллежей небольшого городка Мо текла уныло и однообразно. Ученики, дети небогатых чиновников и ремесленников, занимались старательно, но большими способностями никто из них не выделялся. Господин Шарль Джеймс, преподававший математику, много лет лелеял мечту «открыть» способного или даже талантливого ученика. Но годы шли, а среди учащихся не было ни одного, кто бы проявлял настоящий интерес к науке.

Но вот в 1864 г. в коллеже появился двенадцатилетний худощавый мальчик. Его черные, как угли, глаза пытливо смотрели на окружающих. Живой ум и незаурядное воображение сразу привлекли к нему внимание учителей. На мальчике была старая, но чистая и аккуратно заштопанная одежда.

На учителя Шарля Джеймса маленький Анри произвел очень благоприятное впечатление, и он заинтересовался им. Отец мальчика, служащий Восточной железнодорожной компании, переехал из Парижа в Мо в надежде поправить свои финансовые дела. Мать поддерживала бюджет семьи шитьем. Анри, хотя и помогал матери по дому, всегда приходил в класс с отлично приготовленными уроками. Вопросы, которые он задавал, наводили на мысль об исключительных способностях мальчика.

Звонок известил об окончании занятий, и ученики гурьбой выбежали из класса. На своем месте остался один Анри. Учитель Джеймс вопросительно посмотрел на него.

— Хочешь спросить что-нибудь, Анри?

— Вчера попробовал решить эти задачи, но не смог, — открыв тетрадь, робко произнес мальчик.

Учитель заглянул в тетрадь.

— Эти задачи тебе еще не по силам. Здесь нужно применить правила, которые вы не изучали в классе. — Господин Джеймс взял карандаш и начал решать задачу. — Если подставить эту формулу в данное выражение, легко найти ответ.

Анри улыбнулся.

— Теперь все ясно!

— Хочешь научиться решать интересные и сложные задачи?

— Конечно, хочу!

— Приходи сегодня после обеда ко мне домой.

Анри стал регулярно навещать учителя Джеймса. Сначала они занимались только математикой, но постепенно перешли и к другим предметам. Мальчик был необычайно любознательным, но особый интерес он проявил к физике и химии. Старый Шарль Джеймс с большим вниманием относился к интересам и склонностям Анри, подыскивал ему книги по химии, кое-что объяснял, хотя его самого химия не привлекала. В глубине души Джеймс огорчался, что его любимый ученик предпочитает заниматься химией, а не математикой.

— Послушай, Анри, нельзя заниматься только одним предметом. Надо уделять время и другим. Преподаватель латыни не доволен тобой.

— Для чего мне латинский язык? Разве знание латыни поможет мне зарабатывать деньги?

Джеймс растерялся от такого ответа и ничего не смог возразить.

— Мне тяжело смотреть, как выбиваются из сил родители, чтобы учить и кормить меня. Это просто невыносимо. Я хочу как можно скорее стать самостоятельным. — Анри замолчал и смущенно опустил глаза. — Я хочу работать в аптеке помощником. Я проштудировал немало книг по химии — как-нибудь справлюсь.

— Но ведь химия — это не фармация. Да и не в этом дело. Меня тревожит другое — неужели мы бросишь школу?

— Да, придется.

— Но тебе нужно учиться дальше, Анри. У тебя такие способности!..

Все же Анри пришлось оставить коллеж, проучившись немногим более пяти лет и не закончив начального образования.

В 1870 году юноша приехал в Париж. Анри в аптеку приняли, но сначала он вызывал всеобщее удивление, потому что помощниками обычно поступали мальчики, а ему исполнилось уже 18 лет. Не слишком ли поздно начинать учиться аптекарскому мастерству в таком возрасте?

Однако вскоре отношение коллег к Анри изменилось. Новый помощник обладал глубокими знаниями, порученную работу выполнял тщательно и быстро. А после одного случая авторитет Анри возрос необычайно.

В тот день в аптеке царила привычная тишина, нарушаемая лишь равномерными ударами пестика по ступке — кто-то растирал лекарство. Старый аптекарь искал рецепт в толстой потрепанной книге. Вдруг в дверях появился человек, он тяжело дышал, по лицу стекали капельки пота, в глазах — ужас.

— Спасите, — прошептал он и, обессиленный, рухнул на пол. Все работавшие в аптеке бросили свои дела и окружили

больного.

— Что с вами?

— Я отравился мышьяком, проглотил его по ошибке вместо лекарства. Яд уже начал действовать.

Аптекарь снял очки, лицо его побледнело.

— Боюсь, что поздно. В таких случаях медицина бессильна.

— А может быть, еще не поздно, — вмешался Анри и направился к шкафу со склянками. — Попробуем тартарус еметикус. Возьмем это, еще вот это… — Одну за другой он брал с полки склянки и торопливо отмерял лекарства.

Анри приготовил противоядие и дал выпить не перестававшему стонать и корчиться от боли человеку. Потом несчастного положили на телегу и увезли домой. Вскоре боль постепенно начала стихать, и пострадавший выжил. Молва об этом случае разнеслась по всему Парижу.

Через несколько дней в аптеку вошел светловолосый юноша среднего роста. Это был Жюль Плик, товарищ Анри по школе.

— Жюль! — воскликнул Анри. — Какая приятная встреча! — Друзья долго жали друг другу руки.

— Как только я услышал эту историю, сразу подумал, что спасти его мог только ты. И решил непременно найти тебя. Ну, рассказывай, как это тебе удалось?

— Брось, чепуха. Лучше скажи, где ты пропадал? Мы столько времени не виделись.

— Я должен был сдавать экзамен Дехерену, читал, много работал в лаборатории.

Анри тяжело вздохнул.

— Может быть, я сделал ошибку, бросив школу.

— А почему бы тебе не продолжать учебу? Найдем нескольких учеников, будешь подрабатывать частными уроками и учиться сам.

— Это идея, Жюль. Есть ли какая-нибудь возможность попасть в лабораторию Музея истории естественных наук?

— К Дехерену нет, но в лабораторию Фреми, вероятно, сможешь поступить в начале следующего года.

— Видимо, я так и сделаю. Получу образование и найду работу на каком-нибудь предприятии, а со временем, если повезет, то и сам построю маленькую фабрику. Тогда — конец нищете.

Анри Муассан жил очень скромно. Скудных средств, которые ему удавалось заработать, едва хватало на самое необходимое. Работа в аптеке занимала целый день, так что подрабатывать не было никаких возможностей.

Осенью 1872 года профессор Эдмон Фреми принял нового студента. Экзамен, который он деликатно и незаметно провел во время разговора, показал, что Анри подготовлен превосходно. Радости Анри не было границ — наконец-то он будет работать в настоящей химической лаборатории, постигнет те таинственные законы превращения одних веществ в другие, без которых немыслима сама жизнь.

В лаборатории Анри впервые начал систематически изучать свойства элементов, научился получать их соединения, проводить элементарный анализ. В свободное время он давал частные уроки, чтобы прокормить себя и платить за работу в лаборатории.

— Вот он, фторид калия. — Арман, худощавый высокий блондин, работавший с Анри за одним столом, протягивал ему склянку с бесцветными кристаллами. Муассан стал внимательно их разглядывать, словно надеясь увидеть этот неуловимый элемент — фтор.

— И все проведенные опыты оказались безуспешными? — спросил Анри.

— К сожалению, да. Еще 60 лет назад Ампер и Дэви установили, что соляная и плавиковая кислоты — два различных соединения. В последнем содержится фтор, но исключительная реакционная способность этого элемента не позволяет выделить его в свободном состоянии. Профессор Фреми доказал, что ничтожные количества фтора выделяются при электролизе расплава фторида калия или кальция. Но при высокой температуре, необходимой для расплавления этих солей, фтор мгновенно вступает в реакцию со всеми веществами, с которыми он соприкасается.

— И даже со стеклом?

— В том-то и дело, что стекло — самый неподходящий материал, плавиковая кислота легко разъедает его. Даже работа с платиновыми сосудами оказалась невозможной.

— Неужели профессор Фреми отказался от дальнейших исследований?

— Он перепробовал все, но не нашел ни одного вещества, инертного к фтору.

С этого разговора появился интерес к фтору и у Муассана. Он начал тщательно изучать свойства веществ, содержащих фтор.

Проработав два года в лаборатории Фреми, Муассан понял, что здесь ему учиться больше нечему, поэтому в 1874 году он решил перейти в лабораторию Дехерена. Здесь же работал его друг Жюль Плик, который занимался физиологией растений. К этой работе Дехерен подключил и Муассана.

— В растениях протекают процессы, подобные дыханию животных организмов, — объяснял профессор Дехерен. — Эти процессы происходят даже в темноте. Растение поглощает кислород, а выделяет углекислый газ.

— Но мы ведь знаем, что растения поглощают углекислый газ, а выделяют кислород, — не удержался Муассан.

— Правильно. Этот процесс протекает на свету, а в темноте происходят обратные превращения. Давайте начнем с эксперимента. — Профессор подошел к столу и открыл большую металлическую коробку. — Проведем простой опыт: в эту камеру поставим несколько растений и будем периодически анализировать состав атмосферы. Камера закрывается герметично, поэтому по изменению состава газа будем судить о физиологических процессах в растениях.

Эта работа временно отвлекла мысли Муассана от проблемы фтора. Профессор Дехерен отметил его исключительные экспериментаторские способности и обширные познания. Рабочее место Анри всегда было чисто, приборы и химикаты расставлены в педантичном порядке. Он собирал установки и готовил их к опыту с поразительной быстротой и тщательностью. Профессор Дехерен следил за работой нового студента, и в последнее время ему все чаще и чаще приходила мысль сделать Муассана своим ассистентом. Смущало одно — у этого способного студента были странные мечты — устроиться на работу на какое-нибудь предприятие, получать 3600 франков в год, то есть 10 франков в день. Это, конечно, не плохо, но профессор знал, что Анри Муассан заслуживает гораздо большего. Нужно как-то повлиять на него, незаметно внушить, чем ему следует заниматься на самом деле. Профессор Дехерен был опытным педагогом, и результаты его наставлений не заставили себя долго ждать. Муассан на время оставил занятия химией и стал готовиться к экзаменам по латинскому и греческому языкам, по физике и другим дисциплинам, которые изучал в коллеже.

В конце 1874 года Муассан получил диплом о среднем образовании, а три года спустя ему была присвоена ученая степень бакалавра естественных наук.

Одновременно Анри продолжал заниматься физиологией растений. Первую научную работу «Об абсорбции кислорода и выделении двуокиси углерода листьями, находящимися в темноте» он опубликовал совместно с профессором Дехереном в 1874 году. Работа была интересной, но не удовлетворяла Муассана. Он продолжал исследования только потому, что они были предметом его докторской диссертации.

— Только бы защитить диссертацию! — постоянно твердил Муассан.

— Ну и что же ты предпримешь потом? — спросил его однажды Жюль Плик.

— Пойду работать в промышленность. Может быть, устроюсь на какой-нибудь металлургический завод.

— Но почему ты не хочешь остаться у Дехерена? Он с радостью возьмет тебя ассистентом.

— Я не собираюсь и дальше заниматься физиологией растений. Больше всего меня привлекает неорганическая химия — минералы, соли, газы…

— Но ведь сейчас никто этим не занимается. Наш век — век органической химии. Все известные ученые — органики. Бертло, Кекуле, Гофман, Бутлеров… Неорганическая химия — неблагодарная область, в ней уже все известно.

— Найдется и для меня что-нибудь. Но я и не думаю об исследовательской работе. Почти все ученые живут в бедности; я терпят лишения. Деньги можно заработать только на промышленных предприятиях.

Однако события разворачивались по-иному.

В 1879 году Муассан успешно сдал экзамены по фармации и сразу же получил назначение заведующим лабораторией Высшей фармацевтической школы. В то же время он был приглашен ассистентом на кафедру физики Агрономического института. С мечтами о работе в промышленности пришлось распрощаться. Две эти должности обеспечили ему постоянный доход, времени для занятий научными исследованиями оставалось достаточно. Кто однажды ощутил радость познания нового, тот вряд ли сможет не вернуться к этому вновь. Муассан уже пережил первые радости открытий в лаборатории Дехерена, теперь же в его распоряжении была своя лаборатория. И хотя условия для работы были далеко не идеальные, Муассан сразу решил приступить к исследованиям. Оставалось только выбрать подходящую тему.

Как-то, просматривая научный журнал, Муассан обратил внимание на небольшую статью Густава Мангуса. Автор описывал свойства пирофорного железа, которое получалось в мелкодисперсном порошкообразном состоянии из окиси железа при восстановлении ее водородом и вновь сгорало до окиси при контакте с воздухом.

Что представляет собой пирофорное железо? Как объяснить эту необычную реакционную способность? Муассан приготовил растворы щавелевой кислоты и железного купороса и смешал их. Выпал светло-желтый осадок щавелевокислого железа. После того как осадок был отфильтрован и высушен, получился желтый порошок. Муассан поместил его в стеклянную трубку и начал нагревать. Постепенно порошок темнел. Можно было наблюдать, как под действием высокой температуры полученное вещество разлагалось, а выделяющиеся газы увлекали вверх маленькие кристаллики. Через некоторое время в трубке остался лишь черный мелкодисперсный порошок. Муассан приподнял трубку над столом и слегка встряхнул. Порошок тонкой струйкой посыпался на стол — мелкие частички самопроизвольно загорались в воздухе и падали огненным дождем.

Анализы показали, что разложение вещества в трубке приводит к образованию тонкого порошка чистого железа, а перо-шок после сгорания в воздухе представляет не что иное, как окись железа. Вскоре результаты этой работы были опубликованы, но через некоторое время Штромейер высказал предположение, что пирофорное железо — это окись железа. Это ставило под сомнение результаты, полученные Муассаном. И он начал проводить опыты снова, несколько видоизменив условия. Теперь Муассан нагревал порошок ступенчато, до определенных температур. Постепенно причина расхождения в мнениях выяснялась. По сути дела, выводы обоих ученых были правильны. В процессе нагревания оксалат железа распадался постепенно: сначала образовывалась окись железа, которая в дальнейшем восстанавливалась до закиси-окиси железа, далее. до закиси железа, и, наконец, получалось чистое железо. Все эти стадии можно хорошо проследить при нагревании в атмосфере водорода. Муассан решил обсудить результаты опытов с Сент-Клер Девиллем.

— Исследование очень интересное. Передам вашу рукопись Дебре. Он первый, кто подробно изучал закись железа. Для него эта работа будет представлять особый интерес, да он и лучше сумеет ее оценить, — сказал Девилль.

— Может быть, профессора Дебре заинтересуют подробности? Таблицы с результатами анализов я приложу к рукописи.

Профессор Дебре был восхищен работой Муассана и через некоторое время встретился с Анри. По его совету Муассан значительно расширил исследования, за которые впоследствии Парижский университет присудил ему ученую степень доктора физики.

Летом, когда студенты разъезжались на каникулы. Муассан отправлялся в Мо, где по-прежнему жили его родители, где оставались его знакомые, друзья. Анри часто посещал дом старого аптекаря Мишеля Люгана. Каждый раз, когда приезжал Анри, в доме Люгана устраивался праздник. Прадед Люгана, Шарль Люган, был другом знаменитого профессора Луи Николя Воклена и страстно любил науку. Он тоже держал аптеку и проводил научные исследования. Аптекарское дело передавалось из поколения в поколение, и теперь при аптеке Мишеля Люгана была небольшая лаборатория. Занятый ежедневно работой, он редко заходил туда, но гордился ею безмерно. Мишель Люган не переставал восхищаться своим молодым другом, разговоры с ним вновь будили мечты о научных открытиях.

— У тебя такое положение и столько ученых степеней, что ты, видно, скоро станешь профессором, Анри!

— Это вопрос будущего. Сейчас я доволен тем, что не приходится постоянно думать о деньгах.

— Это правда, что ты работаешь в лаборатории Фармацевтической школы?

— Да, но, к сожалению, она почти всегда занята, а работать одному вечерами по правилам не положено. Через некоторое время, может быть, появится какая-то возможность… — Видно было, что Муассан не хочет посвящать в это Люгана, но, поймав на себе его вопросительный взгляд, продолжал: — Мой друг Ландрен уходит из лаборатории Синдикальной палаты. Вероятно, я буду заведовать этой лабораторией. Там проводятся анализы продуктов, поступающих с разных предприятий.

— Это очень сложная работа — нужно знать множество методов анализа, да еще способы получения веществ, — вмешалась мадемуазель Леони Люган, дочь господина Люгана. Она разделяла увлечение всей семьи наукой и даже помогала в аптеке и лаборатории.

— Эта работа не так сложна, как однообразна, но, находясь на этой должности, я смогу самостоятельно проводить исследования. Видите ли, мадемуазель Леони, иногда человек вынужден идти на жертвы ради достижения главной цели.

Леони давно нравился этот темноволосый, с горящими глазами, необычайно живой молодой человек. Она испытывала к нему неизъяснимое уважение, потому что он был ученым, таким ученым, перед которым преклонялись окружающие. Он еще не так знаменит, этот Анри, но он молод. Пройдут годы, и он добьется больших успехов — в этом Леони была абсолютно уверена. Как бы ей хотелось быть всегда рядом с ним, заботиться о нем, помогать в работе… Леони вздрогнула, очнувшись от раздумий.

— У нас ведь тоже есть лаборатория, — шутливым тоном, но гордо произнес господин Люган, — можешь работать там, Анри.

— Я не задержусь долго в Мо. Мне нужно ехать искать оборудование, очень дорогое и редкое.

— Если будут затруднения, дорогой Анри, дай мне знать. Я денег для науки не пожалею.

Через несколько дней Муассан уехал в Париж. К началу учебного года нужно было подготовить лабораторию. Анри много трудился, все свободное время отдавал исследовательской работе. Но теперь все чаще и чаще образ Леони занимал его воображение, он говорил о ней со своим другом Ландреном и постоянно рвался душой в Мо, чтобы повидаться с девушкой. Осенью и еще несколько раз зимой ездил Муассан в гости к семье Люган. Господин Люган устроил пышную свадьбу. «Женится не кто-нибудь, а профессор!» — не уставал повторять отец Леони. И хотя все знали, что Муассан только проводит лабораторные занятия, господин Люган был убежден, что отдает дочь профессору. Он твердо верил в блестящее будущее своего зятя и старался помочь молодому ученому.

— Теперь у тебя не будет никаких забот, — говорил Мишель Люган Лнри. — Заботы по хозяйству возьмет на себя Леони, о деньгах думать не придется. Для научных целей я буду высылать столько, сколько тебе понадобится. А ты работай и думай о пользе дела, которому служишь. Каждое научное открытие не только расширяет наши познания, но и может быть использовано на благо человека.

Начиналась новая жизнь, полная новых замыслов и планов.

Муассан решил заняться изучением вещества, которое в течение многих лет занимало его воображение. Прошло уже десять лет с тех пор, как в лаборатории Фреми он узнал об удивительно активном элементе — фторе. Десять лет он лелеял в душе мысль, что, может быть, именно ему суждено будет получить и изучить таинственный фтор. Теперь, наконец, пришло время испытать свои силы.

Несколько недель он просматривал научную литературу и изучил почти все работы о фторе и его соединениях. Известными методами невозможно было выделить свободный фтор, электролиз тоже оказался неприменим. Только метод Дэви еще не опробован. Занятый своими исследованиями, Муассан запустил текущие дела в лаборатории Синдикальной палаты. Клиенты были недовольны, и заказы резко сократились. Но Анри мало беспокоило это, он даже был рад, так как высвобождалось больше времени для научной работы. Иногда к нему в лабораторию приходил Ландрен, помогал, обсуждал с Анри полученные результаты.

— Идея Дэви очень проста, но он не мог ее осуществить потому, что в те времена еще не был известен метод получения фторида фосфора, — говорил Муассан.

— Как ты намереваешься получить фтор? — интересовался Ландрен.

— Я разработал несколько способов, самый простой из них следующий: нагреваю в реторте смесь фторида свинца и фосфида меди. В результате получается фторид фосфора. Дэви считал, что если этот газ нагреть с кислородом, фосфор обравует окисел, а фтор выделится в свободном состоянии.

— Значит, все дело в том, чтобы найти соответствующие условия!

Муассан показал платиновую трубку с черной массой внутри.

— Буду пропускать фторид фосфора через нагретую губчатую платину. Платина легко соединяется с фосфором. Если все рассуждения верны, должен выделиться свободный фтор.

— Ты будешь проводить опыт сейчас? Разреши мне помочь тебе?

Муассан присоединил открытый конец платиновой трубки к реторте и стал нагревать ее в том месте, где находилась губчатая платина. Оба исследователя с волнением следили за ходом реакции, но газ не выделялся. Из нагретой докрасна платиновой трубки выходил только непрореагировавший фторид фосфора. Через полчаса трубка сильно изогнулась и лопнула. Часть губчатой платины рассыпалась по столу.

— Конец, — тяжело вздохнул Муассан, — опять ничего не вышло. Из платины получился фосфид платины, а вместо фтора образовался пентафторид фосфора.

— Надо повторить опыт, проверить еще раз. Может быть, свободный фтор выделялся в ходе реакции?

— Да, но, к сожалению, я не предвидел, что он может прореагировать с неразложившимся фторидом и образовать новое соединение с фосфором. — Муассан досадливо хмурился. — Жалко платиновую трубку, столько денег потрачено впустую…

Муассан провел еще целую серию опытов. Он строил предположения, отбрасывал их, затем вновь возвращался к ним. В результате долгих поисков он пришел к выводу, что высокая температура, при которой проводились эксперименты, была причиной всех его неудач. Фтор исключительно активен, а с повышением температуры его активность еще больше возрастает. Даже если он и выделялся в ходе реакции в свободном состоянии, то сразу же соединялся с любым веществом. Очевидно, следовало проводить реакцию при комнатной температуре или, что еще лучше, с охлаждением. Электролиз представлялся единственной возможностью. А что, если подвергнуть электролизу какой-нибудь жидкий фторид, например фторид мышьяка? Эта идея казалась перспективной. Муассан достал необходимые реактивы и приступил к получению фторида мышьяка, вещества очень ядовитого. И тут новая трудность — оказалось, что фторид мышьяка не проводит электрический ток. При следующем опыте Муассан добавил к фториду мышьяка немного фторида калия. Полученная смесь хорошо проводила электрический ток, но возникли новые препятствия — через несколько минут после начала реакции катод покрывался слоем выделяющегося мышьяка, и ток прекращался.

От усталости Муассан с трудом держался на ногах. Он выключил батарею и буквально рухнул в кресло. Сильно болело сердце, дышать было трудно, лицо пожелтело, под глазами появились черные круги. «Это действие мышьяка, — думал Муассан, — боюсь, что этот вариант придется отбросить».

Леони была сильно обеспокоена состоянием здоровья мужа. Он непомерно перегружал себя работой и к тому же постоянно подвергался опасности отравления.

— Так больше нельзя, — сердилась она. — Я позову врача, и он сразу же уложит тебя на месяц в постель.

— Ты ведь знаешь, что я не могу сейчас позволить себе этого.

— Можешь! Нельзя же каждый день отравлять себя. Мне ты запретил подходить к лаборатории, а сам ничего не хочешь слушать.

— Я запретил тебе из-за ребенка, дорогая. Он должен родиться здоровым.

Муассан продолжал свои опыты. Теперь он работал с фтористым водородом. Этот удушливый газ при охлаждении легко» превращался в бесцветную жидкость. Безводный фтористый водород не проводил электрический ток, поэтому Муассану пришлось добавить к нему фторид калия. Полученную смесь он поместил в U-образную платиновую трубку и пропустил ток. Вскоре на катоде появились пузырьки водорода. На аноде газ не выделялся. Около часа протекал электролиз, все это время выделялся водород, но фтора не было и следов.

«Может быть, Ландрен прав, и фтор вообще не существует в свободном состоянии?» — удрученно размышлял Анри, разбирая установку. Он снял пробку, закрывающую анодный отсек, вынул электрод и не поверил своим глазам. Пробка была покрыта слоем белого порошкообразного вещества. «Да ведь, она разъедена! Фтор все-таки выделился и прореагировал со стеклом!» Это открытие окрылило Муассана. Значит, надо заменить стеклянные детали таким материалом, который не реагирует с фтором. Может быть, опять попробовать флюорит? Еще Дэви писал, что получение фтора надо проводить в сосудах из флюорита.

Обработка минерала шла очень медленно: Порой Анри совсем падал Духом, но другого выхода не было, и он продолжая работать. Прошло несколько дней, пока бесформенные куски породы приобрели нужную форму. Прибор бил: готов. Муассан погрузил U-образную платиновую трубку со смесью жидкого фтористого водорода и фторида калия в охлаждающую смесь и, когда температура понизилась до — 50°С, начал пропускать ток. Через мгновение из анодного пространства стали вытекать первые струйки фтора.

Наконец-то непокорный фтор получен!

От волнения и радости Муассан просто потерял голову, ему захотелось выбежать па улицу и кричать: «Фтор! Фтор!» Это произошло 26 июня 1886 года.

В лаборатории, где Муассан проводил свои опыты с фтором, начал появляться резкий удушливый запах, напоминающий запах хлора. Нужно было немедленно собрать газ и изучить его свойства. Это требовало огромных усилий и экспериментаторского мастерства. Действительно, фтор проявлял уникальную активность. С водой он реагировал мгновенно, выделяя озон. Вытеснял хлор из хлорида калия, воспламенял кремний.

Этих первых наблюдений было вполне достаточно, чтобы послать сообщение в Академию наук.

Через два дня профессор Анри Жюль Дебре прочел сообщение Анри Муассана о первом успешном получении свободного фтора. Новость была сенсационной, но Дебре усомнился в аккуратности опыта. Ведь исследователь так молод, и, увлекшись, он мог ошибочно принять за фтор какой-нибудь другой газ. В таких случаях по старой традиции назначалась комиссия, в присутствии которой экспериментатор должен был повторить опыт.

Муассан готовился очень тщательно. Чтобы исключить какие-либо неожиданности, он дважды перегнал фтористый водород, тщательно подготовил установку, проверил реактивы. Точно в назначенный час появились члены комиссии. Их было трое — Марселей Бертло, Анри Дебре и Эдмон Фреми. Муассан приступил к работе. Он собрал установку, налил охлаждающую смесь и подключил батарею. Минута, две, три… Установку словно заколдовали — никаких признаков реакции. Анри проверил все еще раз, но фтор не выделялся. Он разобрал установку, взял новые порции исходных веществ и попытался повторить эксперимент. Эта попытка тоже не привела к успеху. «Конец!» — подумал Муассан и беспомощно опустил руки. Ему хотелось провалиться сквозь землю, лишь бы не видеть строгих, недоумевающих взглядов знаменитых ученых — членов комиссии.

— Не волнуйтесь, — прервал замешательство Марселен Бертло. — Всякое случается. Может быть, нечистые реактивы. Иногда на первый взгляд незаметная мелочь неожиданно изменяет весь ход реакции.

— Мы уверены, что произошла какая-то ошибка, — поддержал его профессор Фреми, — и надеемся, что вы ее скоро найдете.

Пожелав успехов в работе, ученые удалились, а Муассан еще долго неподвижно стоял возле своей установки.

«Это фтор мстит мне за то, что я заставил его подчиниться, что все-таки выделил его», — удрученно думал Муассан, невольно наделяя элемент сверхъестественной силой.

Двое суток Анри не смыкал глаз — неудача с показательным опытом не давала ему покоя. Он снова тщательно приготовил все исходные вещества, досконально проверил аппаратуру. Причина стала ясной на третий день. Как и следовало ожидать, она оказалась до смешного простой: количества фторида калия в жидком фтористом водороде было недостаточно для того, чтобы расплав проводил ток. С того дня установка заработала стабильно. На аноде выделялся газообразный фтор» с постоянной скоростью 5 литров в час. Началось кропотливое изучение свойств нового газа.

Успех Муассана был бесспорен. Академия наук присудила ему высшую премию Ла Каз, 10 тысяч франков. В конце того же года Академический совет Высшей фармацевтической школы избрал Анри Муассана профессором токсикологии. В этой должности он был утвержден 30 декабря 1886 года.

Это радостное событие совпало с празднованием Нового года. Дом Муассана на улице Воклен сиял огнями, из Мо приехали родители, гости.

— Дети мои, — сказал Мишель Люган, — я от всего сердца поздравляю вас всех. Мы проводили еще один незабываемый год, который принес столько успехов нашему дорогому Анри. Получение фтора, награда Ла Каз и, наконец, профессура. Я хочу преподнести ему скромный подарок.

Господин Люган вышел в соседнюю комнату и вернулся с небольшой картиной.

— Неужели пейзаж Коро? — не поверил своим глазам Анри.

— Подлинный Коро! — с гордостью подтвердил Люган.

— Но это же целое состояние! — воскликнул Муассан, обнимая тестя. — Настоящее сокровище! — Оа разглядывал картину с восторгом.

— Пусть это будет не последняя картина в вашем доме!

Анри Муассан был страстным любителем живописи. В гостиной, в спальнях, в рабочем кабинете висело немало картин и гравюр известных художников, но пейзаж Коро! Об этом он мечтал давно, и вот сейчас мечта сбылась.

С наступлением нового, 1887 года у Муассана появились новые обязанности — профессора: теперь он должен был готовиться к лекциям по токсикологии. Это не составляло для него особого труда, но отнимало драгоценное время. Одаренный большими способностями, эрудированный во многих областях химии, фармации и фармакологии, Анри легко справлялся с новыми задачами. Но направления своих научных поисков он не менял, по-прежнему исследования велись в области неорганической химии.

Украшенное изящными рельефными орнаментами здание Высшей фармацевтической школы, расположенное на авеню Де Л'Обсерватуар, было похоже скорее на музей, нежели на учебное заведение. Стены огромного светлого вестибюля были покрыты великолепными росписями, в коридорах и кабинетах висели прекрасные портреты ученых. И вместе с тем условия работы в лабораториях оставляли желать много лучшего: тесные, плохо освещенные помещения, постоянно переполненные лаборантами. В распоряжении Муассана были две лаборатории: одна на втором этаже, где работал он сам и его ассистенты, и другая — на первом, для студентов и лаборантов. Муассан следил за тем, чтобы в лабораториях поддерживался идеальный порядок. Каждую субботу ассистенты и лаборанты проводили генеральную уборку: до блеска натирали паркетные полы, мыли посуду, чистили приборы и установки. Аккуратность и тщательность — таково было правило работы у Муассана.

Сотрудники обеих лабораторий занимались изучением свойств фтора. В течение нескольких лет были синтезированы я изучены десятки соединений фтора с различными металлами (платиной, барием, стронцием, магнием) и неметаллами (серой, иодом, фосфором и др.). Эти исследования требовали огромных расходов, так как получение фтора проводилось в платиновых сосудах. Но вскоре было установлено, что электролиз успешно протекает не только в платиновом, но и в медном сосуде; кроме того, совершенно сухой фтор не разъедает стекло, его можно хранить даже в склянках.

Первым помощником Муаасана в лаборатории на втором этаже был его ассистент Поль Лебо. Он руководил работами в лаборатории на первом этаже и был связующим звеном между профессором и лаборантами. Муассан редко беседовал со своими сотрудниками, но всегда был в курсе их дел. Число сотрудников постоянно увеличивалось, так как область исследований непрерывно расширялась.

— Проблема получения фтора решена полностью. Получать и изучать его соединения — это вопрос времени. — Муассан закрыл лабораторный журнал и повернулся к Лебо. — Я уже давно думаю о том, что нам пора переключаться на получение бора.

— Но бор давным-давно получен.

— Да, но только ни один из известных методов не дает совершенно чистого элемента. Дэви получил его в небольшом количестве электролизом расплавленного окисла. Гей-Люссак и Тенар предложили метод получения бора из окиси бора и калия. Девилль и Вёлер усовершенствовали этот метод, но никому из них не удалось выделить бор в чистом виде.

— А что вы предлагаете?

— Еще не знаю. Но прежде всего нужно проверить старые методы, изучить продукты реакции, а тогда станет ясно.

Первые же опыты показали, что в полученных веществах содержится всего 70% бора. Остальное составляли примеси? соединений бора (окись, нитрид), непрореагировавшее железо, щелочные металлы. Муассан решил в качестве восстановителя использовать порошкообразный магний, а нагревание проводить в токе водорода. При этих условиях чистота бора достигала 99%.

Необходимость получения высоких температур заставила ученого серьезно задуматься над этой проблемой.

— Печи, сконструированные Девиллем, дают высокую температуру, но это не предел.

— А какие реакции вы предполагаете проводить при таких высоких температурах? — поинтересовался Лебо.

— Если мы сможем повысить температуру, работы у нас будет много. Прежде всего попробуем получить восстановлением магний, кальций, щелочные металлы.

— Сложная проблема. В печи Девилля вдувается кисло — род, и при высокой температуре эти металлы просто сгорят.

— У меня другая идея. Я хочу попытаться использовать, пламя электрической дуги. Если два графитовых электрода подключить к мощному источнику тока, можно получить электрическую дугу, температура которой может превышать 2000°С.

Из какого же материала должна быть печь? При такой температуре все плавится.

— Почти все. Думаю, что окись кальция выдержит. Первая печь состояла просто из двух кусков окиси кальция, в которых выдолбили по маленькой ямке. Куски плотно скрепили, а в образовавшуюся полость поместили небольшой графитовый тигель. Над тигелем находились два графитовых электрода. Температура электрической дуги действительно превысила 2000°С.

— Окись кальция должна восстановиться углеродом до металла. — Муассан старательно растирал смесь негашеной извести и углерода. — Будем нагревать в тигле: так легче удалить полученный продукт.

Анри поместил смесь в тигель, плотно закрыл крышкой и включил ток. В лаборатории слышалось негромкое потрескивание, сквозь щели в печи пробивался ослепительный свет.

Когда нагревание закончилось и печь охладили, в тигле обнаружили лишь серую, твердую, как камень, массу.

— Никакого кальция нет!

— Кальция нет, но нет и окисла. Может быть, образовался карбид? — Муассан раздробил серую массу, взял небольшой кусочек и осторожно положил его в стакан с водой. Казалось, кусочек массы раскален — вода кипела вокруг него. Начали выделяться большие пузыри газа, и по комнате разнесся неприятный запах.

Следующий этап работы Муассана и Лебо был посвящен изучению свойств полученного карбида кальция. Одновременно они провели аналогичные реакции с окислами калия и натрия и получили их карбиды. У Муассана появилась мысль выделить в чистом виде такие тугоплавкие металлы, как молибден, вольфрам и ряд других. Но для этого требовалась значительно более мощная печь. Муассан постоянно совершенствовал конструкцию своей печи, увеличивал ее размеры, повышал температуру. Не найдя больших кусков окиси кальция, он решил изготовить печь из известняка. «Минерал, находящийся вблизи дуги, под действием высокой температуры превратится в окись, и цель будет достигнута», — рассуждал Муассан. Новая печь имела мощность в сто раз большую, чем первая. В ней Маусан смог не только восстановить окислы тугоплавких металлов, но и выплавить сами металлы. Впервые было осуществлено электротермическое получение молибдена и вольфрама.

Электродуговые печи произвели настоящий переворот в технике. Ими заинтересовались прежде всего промышленники. Открылись возможности для проведения в производственных масштабах многих процессов, главным образом металлургических, которые до сих пор считались неосуществимыми. В лабораторию Высшей фармацевтической школы приезжали стажеры из разных стран мира для изучения техники работы с печами Муассана. Здесь работали практиканты из Европы, Америки, Австралии.

12 декабря 1892 года Шарль Фридель сделал в Академии наук сообщение о результатах исследования метеорита, найденного в Аризоне. В кусках железа он обнаружил микроскопические вкрапления алмаза. Муассан, избранный год назад действительным членом Академии, слушал доклад с большим вниманием и интересом. Он решил сам провести анализ и убедиться в правильности выводов Фриделя. Муассан достал кусочек метеорита и приступил к исследованию. Он установил, что в железном теле метеорита действительно есть следы алмаза, которым всегда сопутствует графит. И сразу же возникла мысль: «Нельзя ли получать алмазы синтетическим путем?»

Эта идея захватила его, как много лет назад идея выделения фтора. Он досконально изучил всю имевшуюся по этому вопросу литературу и увлек своим новым замыслом сотрудников.

— Сжигая алмаз, Лавуазье доказал, что он состоит из чистого углерода. Позже появилось множество теорий образования этого драгоценного камня. Либих и Вёлер предполагали, например, что образование алмазов происходит при низкой температуре, но проведенные Дебре исследования метеоритов показали, что алмазы получаются при очень высокой температуре и высоком давлении.

— Наши исследования подтверждают теорию Дебре, — заметил Лебо. — В алмазных породах Бразилии и Южной Африки всегда содержится графит, а он образуется при высокой температуре.

— Больше всего нас должны интересовать метеориты, — продолжал Муассан. — Они состоят из железа. А железо растворяет большие количества углерода. Расплавить железо и растворить в нем углерод — задача простая. Но как все это провести под высоким давлением? Нет материала, который бы выдержал высокое давление при температуре 1200°С, необходимой для кристаллизации углерода.

Теперь другой темы для разговоров в лабораториях профессора Муассана не было, все сотрудники были охвачены «алмазной лихорадкой». Но первые опыты разочаровали энтузиастов. Самой продолжительной и скучной была последняя стадия: охлажденный кусок железа приходилось долго кипятить в соляной кислоте до полного растворения. На дне сосуда оставался черный осадок, в котором содержался только графит.

— Необходимо увеличить давление, — настаивал Лебо.

— Попробуем. У меня есть одна мысль, но я не уверен, правильна ли она. — Муассан взял карандаш и склонился над «толом. — Смотрите, Лебо. При охлаждении расплавленное железо увеличивает свой объем, так же как вода при образовании льда. Вы задумывались, почему трескается бутылка, если в пей замерзнет вода? Да потому, что создается высокое давление.

Лебо оживился, он понял идею Муассана.

— Если поместить расплавленное железо в большой стальной сосуд и плотно закрыть его, то создадутся условия для» возникновения очень высокого давления и…

— Нет, — прервал его Муассан, — еще проще. Расплавленное железо нужно быстро, но равномерно охладить. При этом образуется железная корка, которая плотно, как в тисках, зажмет остальную жидкость.

Предположения Муассана подтвердились. Первый опыт дал хорошие результаты: на дне колбы после растворения железа скопилась черная масса. В ней можно было обнаружить микроскопические кристаллики алмазов. Конечно, это были алмазы низкого качества, но все-таки алмазы. В природе такие разновидности алмазов встречаются, их называют «карбонадо» и применяют только для технических целей. Исследователи работали, не жалея ни времени, ни средств, в надежде получить большие и прозрачные алмазы. «Надо увеличить общую массу. Чем медленнее охлаждается железо, тем благоприятнее будут условия кристаллизации», — решил Муассан.

6 февраля 1892 г. Муассан сделал сообщение в Академии наук о результатах первых опытов. Его сообщение вызвало сенсацию. На следующей же день газеты напечатали имя Муассана, набранное огромными буквами, на первых страницах всех газет. Делались предсказания, подсчитывались доходы. Алмазная лихорадка потрясла мир. Миллионеры беспокоились — промышленное производство алмазов могло принести им банкротство. Те, у кого алмазов не было, стали жить надеждами, что скоро сами начнут получать драгоценные камни. Все это было далеко от истинного положения дел.

А работа в лабораториях продолжалась. Совершенствовали аппаратуру, искали новые методы, увеличивали количества исходных материалов, но результаты не радовали. Получались очень маленькие темные алмазы. Самый большой, почти бесцветный кристаллик был в диаметре меньше миллиметра. Тем не менее его берегли как большую драгоценность и называли «регентит», подобно самому большому алмазу, хранящемуся в Лувре.

Постепенно Муассан вернулся к работе над проблемами, которыми занимался раньше: соединениям фтора, карбидам, тугоплавким металлам. В результате многолетней исследовательской деятельности сотрудников лаборатории накопился огромный фактический материал, который Анри Муассан обобщил в книгах «Фтор и его соединения» и «Электрические печи».

Известность Анри Муассана как выдающегося специалиста в области неорганической химии росла с каждым годом. Его лекции привлекали все больше и больше студентов. В конце 1900 года его пригласили в Парижский университет на должность профессора неорганической химии, условия для работы в лаборатории Парижского университета были превосходными.

Иногда в лабораторию к Анри приходили Леони и Луи. Сын уже начинал работать вместе с отцом. Муассан развивал в нем интерес к химии еще с раннего детства, рассказывал мальчику «химические сказки» о чудесных свойствах элементов и их соединений, о трудном, но счастливом пути постижения тайн природы. Теперь, когда Луи подрос, Муассан давал ему самостоятельные задания, которые юноша выполнял с большим интересом. Леони обычно сидела у окна в лаборатории и наблюдала за обоими.

Исследования Муассана получили высокую оценку многих зарубежных научных центров. В 1904 году он был избран почетным членом Петербургской Академии наук, но самую большую награду он получил в 1906 году — Нобелевскую премию по химии. Прошло двадцать лет со дня открытия фтора, двадцать лет, посвященных изучению свойств самого агрессивного элемента и его соединений. И вот, Муассан завоевал всемирное признание.

Студенты и друзья Муассана решили торжественно отпраздновать двадцатилетие со дня получения фтора. Торжество состоялось в декабре 1906 г. Зал не вмещал и половины всех желающих присутствовать на празднестве. Гремел студенческий гимн, произносились речи, поздравления. Студенты преподнесли ученому медаль, изготовленную по их эскизам. В ответной речи Муассан сказал: «Нам нельзя останавливаться на достигнутом. Добившись одной цели, мы должны без промедления двигаться к другой, иначе не будет прогресса. Перед человеком всегда должна стоять высокая цель, к которой он будет стремиться! Только тогда он почувствует себя настоящим человеком, только тогда он будет идти вперед!»