100 великих географических открытий

Маркин Вячеслав Алексеевич

Баландин Рудольф Константинович

Постижение планеты

 

 

Предсказание Антарктиды Ломоносовым

В 1757 году была опубликована монография М. В. Ломоносова. Там доказывалось, что Южный материк должен существовать. «В близости Магелланского пролива, – писал великий ученый, – против мыса Добрыя Надежны около 53 градусов полуденной ширины великие льды ходят; почему сомневаться не должно, что в большем отдалении острова и матерая земля многими и несходящими снегами покрыты».

На первый взгляд в этом кратком высказывании нет ничего особенного. Автор ссылается на литературные данные о плавающих «великих льдах», то есть айсбергах. Но почему из-за этого факта столь уверенно («сомневаться не должно»!) предполагает существование «матерой земли»? Разве это доказательство?! Да, доказательство, если суметь разгадать то, о чем свидетельствуют айсберги. Дело в том, что Ломоносову принадлежит первая научная классификация морских льдов.

Откуда берутся айсберги? По классификации Ломоносова – из ледников, которые образуются в результате скопления на суше снега и льда. Толщина айсбергов, так же как ледников, достигает сотен метров. Это указывает на их близкие родственные связи. Огромные массы льда могут накапливаться лишь на достаточно обширных территориях. Следовательно, скопление айсбергов свидетельствует о существовании в данном регионе больших участков суши, где находятся крупные ледники.

На южных окраинах Африки или Америки подобных ледников нет. Приплыть из Северного полушария в Южное айсберги не могли – растаяли бы в тропической зоне. Значит, рождающие айсберги ледники Южного (Антарктического) Заполярья находятся на материке или крупных островах («покрытых многими и несходящими льдами») близ Южного полюса. Примерно таким был ход рассуждений Ломоносова, результатом которых стала краткая формулировка в книге.

Теоретическое открытие Антарктиды было замечательным достижением не просто отдельной гениальной личности, но прежде всего – использования научного метода в географии. Ученые научились понимать «язык Земли». Предсказание Антарктиды знаменовало новый этап в развитии географии, да и вообще наук о Земле. Оно венчает эпоху великих географических открытий. Теперь уже все океаны и континенты были открыты, так же как наиболее крупные озера и моря, реки и горные хребты.

И все-таки уже тогда, в XVIII веке, проявились не только достоинства, но и недостатки научного метода. Михаил Васильевич разделял мнение ученых, предполагавших отсутствие сплошных ледяных полей в центральных частях Северного Ледовитого океана. Это ошибочное мнение тоже имело научное обоснование. Ведь замерзают прежде всего пресные речные и озерные воды, а не соленые морские. Кроме того, толща морской воды сохраняет тепло, а потому ее температура выше нуля. Отсюда напрашивается вполне разумный вывод: крупные ледяные поля с айсбергами должны скапливаться близ берегов, а дальше в открытом море начинается свободная вода.

Исследовательские суда среди айсбергов Антарктиды

Вполне логичные рассуждения и личный опыт плавания в «студеном море» привели Ломоносова к идее разработки маршрута от Белого моря через Шпицберген, центральную часть Северного Ледовитого океана и Берингов пролив в Тихий океан. Этот проект одобрило правительство, для реализации замысла создали специальную «Экспедицию о возобновлении китовых и других звериных и рыбных промыслов». Истинная ее задача была засекречена. Начальником назначили капитана Василия Яковлевича Чичагова с заданием: «Учинить поиск морского проходу Северным океаном в Камчатку». Но единственно, что удалось Чичагову – провести три судна западнее Шпицбергена на север до рекордной отметки – 80°30′ северной широты. Сплошные льды заставили их вернуться.

Идея Ломоносова о пересечении на парусниках Северного Ледовитого океана оказалась ошибочной, несмотря на вполне убедительное научное обоснование. Однако не следует делать из этого поспешный вывод о том, что великий ученый слепо доверял научному методу. По его убеждению, теорию следует не только выводить из опыта, но и непременно проверять практикой, после чего – изменять и дополнять научные выводы, если это потребуется.

Прогноз Ломоносова о существовании Антарктиды был верным, ибо ученый разгадал происхождение ледяных плавучих гор. Они поведали ему о своей родине – антарктическом («противосеверном») континенте.

По справедливости истории, первыми обнаружили Антарктическое побережье именно русские мореплаватели. В начале 1821 года экспедиция на кораблях «Восток» и «Мирный» под командованием Ф. Ф. Беллинсгаузена и М. Н. Лазарева совершила плавание вокруг Антарктиды, открыв на ее окраине Берег Александра I. Это было крупнейшее географическое открытие XIX в.

 

Неведомая южная земля

(загадки Антарктиды)

Чем основательней узнаем мы особенности Антарктиды, тем больше открывается новых проблем и возможностей для будущих открытий. Начнем с того, что нет точных данных о размерах Антарктиды. Общую площадь материка оценивают в широчайших пределах от 12,238 до 16,355 млн кв. км. Все зависит от того, как проводить подсчеты: с шельфовыми ледниками или без них. Если учитывать рельеф каменной тверди Антарктиды, без ледников (это же все-таки замерзшая вода!), то в таком случае от нынешнего материка останется немногим более половины, да еще группа островов.

Более существен другой вопрос: почему средняя высота Антарктиды в 2,8 раза превышает среднюю высоту всей остальной суши? Этот материк самый высокий на планете.

Поиски ответа на эти вопросы приводят нас к одному из крупнейших открытий в землеведении: создании теории изостазии. С позиции теории изостазии аномальная высота Антарктиды объясняется тем, что материк почти сплошь покрыт мощным слоем льда. Лед в 2,5–3 раза легче горных пород верхней части земной коры. И хотя под тяжестью ледяного покрова континент «просел» примерно на 0,5 км, все равно он высоко поднимается над уровнем Мирового океана. Так, если баржу загрузить до ватерлинии увесистыми свинцовыми плашками, они не поднимутся выше борта. А если насыпать такую же массу угля, он образует высокий холмик. Вот и Антарктида (так же как Гренландия), пригруженная сверху «легким» льдом, высоко вознеслась над поверхностью океана (если иметь в виду среднюю высоту рельефа).

С Антарктикой связано также крупное открытие в океанологии. Как выяснилось, ледяной континент находится в центре гигантского океанического водоворота, который по своей мощи в несколько раз превосходит Гольфстрим и Куросио, вместе взятые. Его называют Южным океаном (ученые еще окончательно не выяснили, следует ли наносить это название на все географические карты). Вода здесь движется по часовой стрелке, толща ее достигает 4–5 км. Не совсем ясно, какие силы поддерживают действие этого глобального механизма и как он сказывается на жизни планеты.

А главной сенсацией, приподнесенной Антарктидой, явилась гигантская «озоновая дыра», открытая над ней. Через невидимую «дыру» в атмосфере на земную поверхность проникает губительное для живых организмов ультрафиолетовое излучение Солнца.

До сих пор продолжаются дискуссии о причинах появления «озоновых дыр». Большинство ученых считает, что повинны» в этом преимущественно хлорсодержащие соединения, разрушающие молекулы озона. Однако озонный слой может также деградировать от полетов ракет и сверхзвуковых самолетов, различных техногенных газов, а также от того, что на Земле уничтожаются леса – основной поставщик атмосферного кислорода.

Наконец, есть еще одно открытие (не последнее!), связанное с Антарктидой. Если растают все ее льды, то поверхность Мирового океана поднимется на 50–60 метров. А как показали расчеты климатологов, на Земле происходит глобальное потепление (также связанное с деятельностью человека). Конечно, о таянии всех антарктических льдов речь не идет, но и в том случае, если уровень Мирового океана поднимется хотя бы на 1–2 метра, грядут серьезные экологические катастрофы на обширных прибрежных территориях.

Не исключено, что в ближайшие десятилетия перед человечеством встанет проблема сохранения антарктических льдов!

Есть все основания полагать, что открытий в Антарктиде можно еще ожидать немало. Например, ученые полагают, что в своих недрах она скрывает богатейшие месторождения полезных ископаемых. Об этом нетрудно догадаться уже потому, что сходные по геологическому строению регионы находятся в Южной Африке и Австралии, где разрабатываются залежи драгоценных камней и металлов.

Плавание Д. Кука и его предшественников в Южном океане

Хотелось бы надеяться, что люди по-прежнему оставят за Антарктидой статус «континента мира и научного сотрудничества». В противном случае распри вокруг природных ресурсов Антарктиды чреваты серьезными международными конфликтами. Так бывает, как мы знаем, в тех случаях, когда люди обуреваемы прежде всего жаждой материальных, а не интеллектуальных богатств.

Впрочем, надо подчеркнуть: остается на планете целый континент, природа которого используется человеком исключительно в целях получения духовных ценностей, а проще говоря – важной научной информации. По-прежнему существует «Неведомая Южная Земля» (хотя и под иным именем), которая одаривает нас новыми научными открытиями.

 

Открытие человека в человеке

(подвиг Миклухо-Маклая)

Американские антропологи Нотт и Глиддон опубликовали в 1854 году монографию «Типы человечества», где утверждалось полное отсутствие родства между белыми и приближенными к человекообразным обезьянам неграми. Французский аристократ Гобино издал свой «Трактат о неравенстве человеческих рас», утверждая существование высшего расового типа – арийского, призванного господствовать над всеми другими.

«Не есть ли такое воззрение, – писал великий русский ученый Карл Бэр, – столь мало соответствующее принципам естествознания, измышление части англо-американцев, необходимое для успокоения их собственной совести? Они оттеснили первобытных обитателей Америки с бесчеловечной жестокостью, с эгоистической целью ввозили и порабощали африканское племя. По отношению к этим людям, говорили они, не может быть никаких обязательств, потому что они принадлежат к другому, худшему виду человечества. Я ссылаюсь на опыт всех стран и всех времен: как скоро одна народность считает себя правою и несправедливо поступает относительно другой, она в то же время старается изобразить эту последнюю дурною и неспособною…»

Каждая культура, каждое племя или народ, каждая человеческая личность имеет право на самостоятельность. Взаимодействуя, общаясь, они должны исходить из обоюдного уважения, не стремясь силой насаждать свои порядки, свой образ жизни и не навязывая свои мысли.

Эти принципы были близки и понятны Николаю Николаевичу Миклухо-Маклаю, который воспитывался в интеллигентной российской семье во время расцвета русской культуры, прежде всего литературы, пронизанной идеями свободы, гуманизма, добра и поисков правды. Изучив биологию и медицину в Германии, совершив несколько научных экспедиций (он был ассистентом известного биолога и эколога Э. Геккеля), он вернулся в Россию и затем решил отправиться на Новую Гвинею. К. М. Бэр рекомендовал ему наблюдать людей «без предвзятого мнения относительно количества и распространения человеческих племен и рас».

Почему он выбрал Новую Гвинею? Остров этот был известен европейцам давно. Еще в XVI веке португальские и испанские мореплаватели проходили у его берегов – северного и северо-восточного. Но до середины XIX в. Новая Гвинея оставалась в стороне от экономических интересов европейских индустриальных держав. Возможно, повлияло то, что на ней не было найдено месторождений драгоценных металлов. Не исключено также, что причиной тому – слухи о тамошних дикарях-людоедах. К тому же буйная тропическая растительность препятствовала освоению этих территорий. Более или менее основательное изучение Новой Гвинеи началось в 1871–1872 годах: итальянские ученые Луиджи Альбертис и Одоардо Беккари исследовали северо-западную часть острова.

Миклухо-Маклаю приходилось торопиться, чтобы застать хотя бы некоторые племена папуасов в их естественном состоянии. Поэтому он избрал практически неизученный юго-восточный берег Новой Гвинеи, высадился там в сентябре 1871 года и более года жил среди «дикарей», общаясь с ними, завоевав их уважение и доверие.

«Меня приятно поразили, – писал он, – хорошие и вежливые отношения, которые существуют между туземцами, их дружелюбное отношение с женами и детьми. Во все мое пребывание на «Берегу Маклая» мне не случалось видеть ни одной грубой ссоры или драки между туземцами; я также не слышал ни об одной краже или убийстве между жителями одной и той же деревни. В этой общине не было начальников, не было ни богатых, ни бедных, почему не было ни зависти, ни воровства, ни насилия. Легкость добывания средств к существованию не заставляла их много трудиться, почему выражения злобы, ожесточения, досады не имели места».

Хижина Миклухо-Маклая

Оказалось, что представители совершенно разных культур могут жить вместе в дружбе и согласии на основе универсального морального принципа: не делай другому того, чего не желаешь, чтобы делали тебе. Миклухо-Маклай поставил уникальный эксперимент – с немалым риском для жизни, доказав на опыте не только единство человеческих рас, но и глубокое родство людей, относящихся к разным культурам. Это стало замечательным географическим открытием. Для того чтобы достойно и долго существовать на планете, нам необходимо прежде всего научиться жить в согласии между собой, а всем вместе – с окружающей природной средой.

Л. Н. Толстой писал Миклухо-Маклаю: «Мне хочется сказать вам следующее: если ваши коллекции очень важны, важнее всего, что собрано до сих пор во всем мире, то и в этом случае все коллекции ваши и все наблюдения научные ничто в сравнении с тем наблюдением о свойствах человека, которые вы сделали, поселившись среди диких и войдя в общение с ними и воздействуя на них одним разумом… Ваш опыт общения с дикими составит эпоху в той науке, которой я служу, – в науке о том, как жить людям друг с другом».

Кстати, в те же годы в России пользовалась огромной популярностью книга Н. Я. Данилевского «Россия и Европа», в которой помимо всего прочего утверждался принцип разнообразия культур, их сосуществования и взаимного дополнения. В то же время в Западной Европе, а потом и в нашей стране получила широкую популярность идея единообразия «общечеловеческой» культуры, можно сказать, единого индустриального общества. К сожалению, именно последняя идея восторжествовала в конце XX века. А в конце XIX века осуществлялась глобальная экспансия западноевропейской «индустриальной культуры», перемалывающей в своих экономических жерновах другие народы и племена. В частности, на Новой Гвинее уже при Миклухо-Маклае появились колонизаторы, порой уничтожавшие поселки аборигенов.

В XX веке две кровопролитнейшие мировые войны и крах СССР из-за поражения в идеологической борьбе (после третьей всемирной, но уже «холодной» войны) показали, что техническая цивилизация обрела глобальные масштабы и подчиняет своей железной поступи самые разные страны и народы. Одновременно и столь же закономерно углубляется глобальный экологический кризис, ведущий к деградации биосферы и тех, кто в ней обитает, прежде всего людей. Единая массовая техногенная культура оборачивается торжеством примитивного стандартного «техногенного человека», создаваемого по образу и подобию машины, о чем проницательно писал русский философ Н. А. Бердяев.

Теперь – уже в XXI веке – приходится заботиться о том, чтобы сохранить многообразие культур и человеческое – в человеке.

 

Сферы хрустальные и каменные

(геосферы)

Сложно судить о том, что следует считать великим теоретическим открытием в географии. Однако вряд ли можно спорить о значении таких достижений, как определение размеров и наиболее точной формы нашей планеты, познание ее общей структуры и взаимодействия отдельных частей между собой. Сюда относится учение о геосферах.

Идея существования сфер небесных и земных относится к временам доисторическим и сохранилась в мифах некоторых народов, живущих в разных концах света: в Сибири и Австралии, в экваториальной Африке и Центральной Америке. Значит, люди с давних пор задумывались не только о непосредственном своем окружении, но и о всем Мироздании.

«Четыре стихии» алхимиков и строение геосфер

Возможно, мысль о многослойных небесах появилась в результате наблюдений за видимым движением звездного небосвода, Солнца, Луны, а также облаков, расположенных на разных высотах. О слоях каменных можно было догадаться, разглядывая обрывы рек или оврагов. Нельзя сбрасывать со счета и проницательность, воображение, интуицию людей. Часто поэтический взгляд на природу бывает плодотворней, чем упрощенный и формальный узконаучный подход. Для крупных научных обобщений необходим, помимо обширных знаний, творческий порыв и яркое воображение. Не случайно ученого, который первым разработал концепцию земных сфер, называли геопоэтом.

«Эпитет "геопоэт", – писал академик В. А. Обручев, – является почетным. В общении с природой – величайшим поэтом – Зюсс черпал вдохновение, облекая свои научные труды в художественную форму…»

Австрийский геоморфолог и геолог Эдуард Зюсс первым сумел мысленно охватить взглядом всю Землю, с ее океанами, материками, атмосферой и подземным таинственным миром. В 1875 году Э. Зюсс предложил выделять: атмосферу (воздушную оболочку), гидросферу (природные воды), литосферу (от греческого «литос» – камень) – твердую земную кору, ниже которой, по его мнению, расположена магмасфера, где горные породы находятся в расплавленном или пластичном состоянии.

В XX веке благодаря геофизическому зондированию земных недр выяснилось, что сплошной магматической сферы нет, хотя на глубинах порядка 100–200 км каменные массы находятся преимущественно в пластичном, ослабленном состоянии. Эта оболочка получила сначала название тектосферы (от греческого «тектос» – оплавленный), а затем укоренился другой термин – астеносфера (от греческого «астенос» – слабый, непрочный).

В начале XX века английский океанолог Джон Мёррей обобщил: «Глядя на нашу землю… мы можем видеть духовным оком, что она состоит из концентрических сфер, или слоев вещества в газообразном, жидком и твердом или "сверхтвердом" состоянии. Им дали название геосфер, а именно: атмосферы, гидросферы, литосферы, биосферы, тектосферы и огромной центросферы… Взаимодействием этих геосфер с энергией, получаемой из внутренних и внешних источников, можно объяснить все существующие на поверхности нашей планеты явления».

Однако разделение планеты на оболочки – это лишь первое приближение к реальности. Например, магнитосфера или ионосфера, находящаяся на границе воздушной сферы и космического пространства, образует так называемые радиационные пояса, сжатые со стороны Солнца (под напором солнечных излучений) и вытянутые в противоположном направлении. Асимметрично расположена гидросфера: воды Мирового океана сосредоточены преимущественно в том полушарии, где находится Тихий океан.

Земная кора тоже распределена неравномерно. По составу она разделяется на океаническую, более тяжелую и менее мощную, и континентальную. На это одним из первых указал Мёррей. Тем самым удалось выяснить принципиальное отличие прибрежных, или внутренних, морей от океанов, которое заключается в строении и составе земной коры, подстилающей толщу воды.

Дно морей сложено земной корой континентального типа с разнообразными осадочными породами, достигающими большой мощности (десятки километров) и метаморфическими, измененными в глубоких недрах (преимущественно гранитного состава). Дно океанов сложено своеобразной корой океанического типа с тонким однообразным осадочным слоем и плотными массивами горных пород преимущественно базальтового состава.

Среди геосфер Зюсс, а затем Мёррей выделили совершенно особенную, являющуюся средой обитания для живых организмов и местом взаимодействия воздушной, водной и каменной оболочек. Они назвали ее биосферой. Само по себе указание на существование такой сферы еще нельзя считать великим географическим открытием. Но последующая разработка этой идеи имела колоссальное значение для наук о Земле, в первую очередь для географии и экологии.

 

Вторжение в стратосферу

Мы обитатели дна воздушного океана. Атмосфера обволакивает землю сплошным и достаточно весомым покровом, но для нас он является привычной средой обитания. То, что люди не только почувствовали, но и поняли существование воздуха и его движений, было великим открытием, но вне индивидуальных усилий исследователей.

Наблюдать движения воздуха в нижних слоях атмосферы можно, следя за облаками. А когда мореплаватели освоили практически все акватории в разные сезоны, то были собраны ценные сведения о преобладающих ветрах на обширном пространстве – почти на всей планете.

Однако оставалось совершенно неясно, что же происходит выше самых высоких горных вершин и облаков? Подъемы на обычных воздушных шарах тут помочь не могли. Об этом некоторые теоретики догадывались, но решающие эксперименты воздухоплаватели проводили на себе, рискуя жизнью.

Рекордный подъем в тропосферу осуществили на аэростате английские ученые Глешер и Коксвель в сентябре 1862 года. Утром облачность была небольшая, и они начали подъем. Однако сравнительно быстро облака сгустились, и аэронавты находились в темноте и сырости, среди сплошного слоя облаков. По мере подъема температура опустилась до нуля и продолжала снижаться. Высота была около 8 км. Стало трудно дышать. Сначала он утратил зрение, а вскоре и сознание…

По словам Коксвеля, он больше всего страдал от холода. Ледяная пленка покрыла веревки шара. Руки окоченели. Увидев, что Глешер в обмороке, попытался ему помочь, но не смог сдвинуться с места. Понял, что подъем продолжать нельзя. Из последних сил добрался до веревки, регулирующей клапан, чтобы открыть его. Руки отказались ему служить. Чувствуя, что силы его покидают, вцепился в веревку зубами. Клапан, наконец, открылся. Начался спуск.

Систематические исследования границы между тропосферой и стратосферой на воздушных шарах и шарами-зондами начали с 1893 года французы Эрмит и Безансон. Выяснилось, что температура воздуха понижается лишь до определенной высоты, а затем начинает постепенно повышаться. Впервые было отмечено увеличение в стратосфере концентрации озона.

На шаре с открытой гондолой в 1901 году немецкие ученые Берсон и Зюринг достигли высоты 10 800 м, используя для дыхания специальные приборы.

В самом конце XIX века француз Тейссерен-де-Бор и немец Ассман успешно зондировали высокие слои атмосферы с помощью небольших шаров, наполненных водородом. К ним привязывали самопишущие приборы, отмечающие изменение температуры и давления. Шары поднимались до 30–35 км над уровнем моря. В разряженной среде их оболочка раздувалась и в конце концов лопалась. Приборы опускались на землю на парашюте или специальном дополнительном шаре. При таком способе изучения атмосферы приходилось разыскивать спустившийся «с небес» контейнер с приборами, записями.

Когда появились усовершенствованные радиопередатчики, их стали использовать для замеров параметров стратосферы в момент полета. Это уже были радиозонды.

В конце концов выяснилось, что на значительных высотах абсолютно преобладают горизонтальные перемещения очень разреженного воздуха. Там почти нет водяного пара, создающего у земной поверхности мощные вертикальные потоки благодаря затратам энергии на испарение и отдаче – при конденсации. Эту область воздушной оболочки назвали стратосферой (от греческого «стратум» – слой), нижнюю придонную, до высот 8–12 км – тропосферой (от греческого «тропос» – поворот, т. к. здесь существуют круговороты воздуха). Пришлось конструировать специальные воздушные шары, получившие название стратостатов. Они обладали большой подъемной силой, и в связи с этим имели огромные размеры (более 15 тыс. куб. м).

Из-за разреженности атмосферы на больших высотах и низких температур подъем в открытой гондоле можно осуществлять только с использованием скафандров и обогревающих устройств.

Швейцарский профессор Огюст Пиккар решил использовать в качестве балласта свинцовую дробь, занимающую значительно меньший объем, чем обычный песок или вода (разрешенные законом виды балласта). Пиккар сделал вычисления и доказал, что свинцовая песчинка безопасна, ибо весит менее 10 миллиграмм.

Ранним утром 27 мая 1931 года Огюст Пиккар и его ассистент геофизик Кипфер вошли в гондолу и закрыли крышки люком. Через 28 минут после старта Кипфер заметил, что приборы показывают высоту 15500 м. Стратосфера!

«Вокруг нас только небо, – писал впоследствии Пиккар. – Красота его для нас невиданная, захватывающая. Оно темное, темно-синее или фиолетовое, почти черное».

Огюст Пикар в гондоле стратостата

Во время подъема баллон стал из грушевидного сферическим. Теперь он пребывал в стратосфере в устойчивом равновесии. Пиккар сбросил 50 кг груза, чтобы подняться еще на несколько сот метров. Он намеревался выполнить измерения на высоте, где атмосферное давление составляет только одну десятую часть нормального (16000 м над уровнем моря). Но когда он дернул за веревку, чтобы открыть маневровый клапан, то понял, что она перестала действовать! (Впоследствии было установлено, что веревка переплелась с дополнительным стартовым канатом, прикрепленным незадолго до отлета.) Чтобы спуститься на землю, не оставалось ничего другого, как ждать вечера: после захода солнца, когда баллон охладится, его объем и, следовательно, подъемная сила уменьшатся. Но злоключения стратонавтов еще не закончились. Во-первых, запаса кислорода едва хватало, чтобы дождаться захода солнца, во-вторых, стратостат дрейфовал, несомый воздушным течением неизвестно куда. Не исключено, что вечером он приводнится где-нибудь посредине Адриатического моря.

При спуске шар удлинится, клапанная веревка, сильно натянувшись, автоматически откроет клапан и оставит его в таком положении. Спуск сразу же ускорится, и удар при приземлении может оказаться очень сильным. Пиккар и Кипфер решили не сбрасывать больше балласт. Оставшийся груз следовало сохранить на случай слишком быстрого приземления, чтобы несколько притормозить его. Потянулись томительные часы ожидания; разнообразие вносили только новые, непредвиденные и опасные происшествия. Пронизывающий холод сменился немилосердным пеклом. Пиккар предполагал регулировать температуру внутри гондолы путем поворота ее вокруг оси. Для этого одну сторону гондолы окрасили в черный цвет, другую оставили блестящей. Лучи солнца должны были поглощаться или отражаться – в зависимости от того, какой стороной обращена к нему гондола. Но мотор, предназначенный для выполнения этого маневра, вышел из строя. И эта простая система терморегулирования не функционировала. Внутренние стенки гондолы покрылись тонким слоем инея, который выпал в снег, когда температура резко подскочила до 40° выше нуля.

К четырнадцати часам стратостат медленно пошел на снижение. На высоте около 4500 метров Пиккар и Кипфер открыли люки. Ночью гондола коснулась снежного поля на высоте 2800 метров. Это было далеко не идеальное место для посадки. Сброшена часть балласта. Стратостат подскочил, перелетел через ледник и приблизился к ровной площадке. Пиккар, не колеблясь, дернул за фал разрывного полотнища, чтобы вскрыть оболочку. Шар освободился от газа, гондола покатилась вниз и остановилась у медленно оседавшей оболочки. Пиккар и Кипфер легли спать прямо на леднике (как выяснилось на следующий день, это был ледник Гургль в австрийском Тироле). Чтобы спастись от холода, они завернулись в оболочку воздушного шара.

На заре, связавшись веревкой и на каждом шагу пробуя снег бамбуковой палкой, имеющейся в снаряжении стратостата, они стали осторожно спускаться в долину. В поддень они были замечены группой лыжников, которые проводили их в деревню – маленькое тирольское селение Гургль. Скоро мир с облегчением узнал о благополучном приземлении исследователей. Это был триумф! Человек впервые вторгся в пределы стратосферы.

Через год Пиккар превысил свое достижение. В августе 1932 г. с инженером Козинсом поднялся на 700 м выше. Шар был выкрашен в белый цвет для отражения солнечных лучей. Результат снова был неожиданным: в гондоле температура упала до -15°. Зато удалось провести ряд научных экспериментов. Пиккар зафиксировал резкое увеличение интенсивности космических лучей. Ученый высказал предположение, что в будущем станет возможным использовать космическую энергию стратосферы.

 

Трагический рекорд

(советские аэронавты)

Ничтожная плотность воздуха на больших высотах могла существенно облегчить полет в стратосфере ракет и реактивных самолетов. Да и артиллерийские снаряды могут в разреженной атмосфере преодолевать значительные расстояния. Подобные проблемы стали особенно актуальны после Первой мировой войны, когда началось обновление военной техники.

30 сентября 1933 года в воздух с московского аэродрома поднялся стратостат «СССР» с объемом оболочки 24 340 куб. м (диаметр около 36 м). Вес трехслойной оболочки с принадлежностями превышал 1 т. Гондола имела форму шара диаметром в 2,3 м с плетеным ивовым амортизатором внизу. Внутри гондолы – сидения для экипажа, электрическое освещение, приборы. В полет отправились командир корабля летчик Прокофьев, инженер Годунов, радист Бирнбаум. Стратостат, не вращаясь, быстро устремился вверх. С ним постоянно поддерживалась радиосвязь. Из шести наблюдательных пунктов геодезисты фиксировали положение стратостата. За полчаса прошли тропосферу и достигли высота 17 км. Отцепляя мешки с балластом, продолжали подъем. В кабине, разогретой на солнце, температура поднималась до +31 °C, тогда как за бортом стояла стужа (-65°). В 12 часов 45 минут была достигнута рекордная высота: 19 км. Еще более 2 часов пробыв на достигнутом рубеже, делая измерения, пошли на снижение. Спуск продолжался около 3 часов. Приземлились за Коломной на берегу Москвы-реки.

Исследования показали, что в низах стратосферы температура повышается оттого, что ультрафиолетовое излучение Солнца задерживается трехвалентным кислородом – озоном. Вдобавок было экспериментально доказано, что ионизация воздуха на больших высотах возрастает в сотни раз. Следовательно, озоновый слой защищает живые организмы от губительных ультрафиолетовых лучей.

Советский стратостат «Осоавиахим-1» с тремя аэронавтами – П. Ф. Федосенко, И. Д. Усыскиным, А. Б. Васенко – стартовал 30 января 1934 года из Москвы. Подъем шел быстро. В 11 часов 42 минуты была достигнута высота 20 600 м и началось снижение. Через 17 минут стратонавты сообщили, что радиосвязь будет временно прекращена для включения патронов, поглощающих углекислый газ. Больше никаких сигналов на землю не поступало. До поздней ночи судьба экипажа оставалась неизвестной. Вдруг поступила телеграмма со станции Кадошкино Казанской железной дороги о том, что найдена гондола с тремя погибшими исследователями стратосферы.

Комиссия, изучившая обстоятельства катастрофы (в частности, по сохранившемуся бортовому журналу), выяснила, что с высоты 12 км стратостат начал быстро падать. От резких неравномерных нагрузок разорвалась часть строп. Падение продолжалось, гондола оторвалась и в 16 часов 23 минуты врезалась в землю. Было установлено, что предельная высота подъема составила 22 км.

Этим полетом завершилась, по сути дела, целая эпоха в аэрологии, когда осуществлялись «пассивные» подъемы людей и приборов в стратосферу на воздушных шарах. Наступала пора ракетных двигателей. Еще до Второй мировой войны предлагались проекты зондирования стратосферы с помощью ракет, оснащенных приборами.

Оболочка стратостата «СССР» перед полетом 30 сентября 1933 г. Осмотр гондолы производится при помощи небольшого воздушного шара (вверху)

Осуществлению таких проектов содействовала военная техника, достигшая необычайных успехов на фоне разрушительнейшей из всех войн в истории человечества. Реактивные самолеты и ракеты стали «бороздить» стратосферу, проникая еще выше, в ионосферу, расположенную выше 80 км над земной поверхностью. Здесь поток жестких космических лучей сдирает с одиноких атомов их электронные оболочки. Атомы превращаются в ионы. Эту область называют еще термосферой. Скажем, на высоте 200 км температура превышает 600° – согласно расчетам, ибо привычными нам приборами ее невозможно измерить.

А что находится выше ионосферы? Советские и американские спутники обнаружили два радиационных пояса, большим и малым кольцами окружающие Землю на высотах 25–35 и 40–60 тыс. км. Однако их динамика и воздействие на область жизни изучены еще мало.

 

Морозный слой – криосфера

Об открытии этой оболочки Земли упоминают очень и очень немногие специалисты. А состоялось оно давным-давно. Еще в XVIII веке ученый, который первым открыл существование единого морозного слоя Земли. Вот что писал он в книге, изданной в 1763 году:

«Кому расстояние вечной зимы, то есть холодного слоя атмосферы от нижней земной или от морской поверхности известно, тот не будет сомневаться о причине столь холодного растворения воздуха в Тибете, в рассуждении других мест на одной широте с ним положение имеющих. Не обинуясь, скажет, что Тибет… стоит в приближении морозного слоя атмосферы, в котором снег и град родится; и из коего, невзирая на летние жары, не токмо в наших краях, но и под самым жарким поясом сверху упадают, доподлинно уверяя, что лютая зима беспрестанно господствует недалече над нашими головами. Отстояние ее показывают завсегда льдом и снегом покрытые высоких гор вершины».

Это слова М. В. Ломоносова из книги «О слоях земных». Он первым, задолго опередив ученых всех стран, особо выделил «морозный слой атмосферы», где «лютая зима беспрестанно господствует». Более того, он присоединил к этому слою полярные морские льды и область подземной мерзлоты:

«Искусные Астрономы и Географы измерили, что под Екватором морозный слой атмосферы отстоит близко четырех верст от равновесия морской поверхности. Около полярных поясов, то есть на 66½ градусе, лежит уже на земле. Сие соединение переменяется, отдаляясь от оного пояса летом к северу, зимою к полудни; так что тут зима, где морозный слой атмосферы до земли досягает».

В другом месте, говоря о ледниках и плавающих льдах, а также о заснеженных горных вершинах, он восклицает: «Знатная обширность поверхности земной занята льдами и снегами». Действительно, морозный слой обволакивает всю планету, охватывает обширное пространство в приполярных областях в океанах и на континентах, а граница его колеблется от зимы к лету.

В работах А. Добровольского (1924) впервые твердая фаза была охвачена как закономерная часть строения земной коры, как криосфера. Именно криосфера наряду с Мировым океаном является главным фактором климатообразования. Временами она заявляет о себе на огромных территориях и акваториях. Тогда возникают ледниковые эпохи.

В середине XIX века П. А. Кропоткин (автор термина «вечная мерзлота») привел наиболее полные и убедительные доказательства ледниковой теории. Суть ее в том, что многочисленные и разнообразные факты свидетельствуют о существовании в недавнем геологическом прошлом эпохи, когда великие ледники покрывали обширные пространства Северной Евразии и Северной Америки. При этом значительно менялись природные зоны и климатические пояса планеты.

«Теснейшая связь ледниковых периодов с областями охлаждения, – писал В. И. Вернадский, – совершенно ясна… Ледниковый период – это период, отвечающий расширению области охлаждения… Есть пульсации криосферы на нашей планете. Пульсациями криосферы будут ледниковые периоды».

Прокладка пути в полярных льдах

Казалось бы, незначительное событие – увеличение морозного слоя атмосферы (или приближение его к земной поверхности) – вызвало колоссальные последствия для всей области жизни. Огромные массы льда накапливались в приполярной зоне, растекаясь под собственной тяжестью на сотни километров к югу. От их морозного дыхания менялся климат, смещались ландшафтные зоны. Значительная часть солнечных лучей отражалась ледяным покровом, уходя в космическое пространство. От этого снижалась общая температура у земной поверхности.

Под неимоверной тяжестью «ледяной пяты» земная кора прогибалась на многие десятки метров. Вода, замороженная в ледниках, изымалась из Мирового океана, уровень которого от этого опускался на десятки метров. Осушались обширные прибрежные пространства – шельфы. Перераспределение масс воды и льда на земном шаре сказывалось на скорости его вращения, что могло активизировать вулканизм, землетрясения, движения блоков земной коры…

Это неполный перечень событий, вызванных пульсацией криосферы. И вряд ли случайно именно в такую эпоху наиболее активно шла биологическая эволюция наших предков. Человек – дитя ледниковой эпохи, времени наиболее резких колебаний криосферы. В настоящее время, когда техническая цивилизация уничтожает лесные массивы, создает техногенные пустыни и выбрасывает в атмосферу огромные количества двуокиси углерода, со всей определенностью проявляются аномалии погоды и общее потепление на планете.

А цельного учения о криосфере так и не создано. Выходит, великое открытие гениального ученого-мыслителя М. В. Ломоносова до сих пор еще не оценено по достоинству.

 

Динамика Мирового океана

Морские течения нередко называют реками в океанах – образно, но не совсем верно. Несоизмеримы масштабы: один лишь Гольфстрим переносит в десятки раз больше воды, чем все реки мира, вместе взятые. По составу текучая океанская вода практически не отличается от той, которая движется медленнее и образует как бы ложе для течения. Характер океанских потоков отличается своеобразием и образует глобальные круговороты с отдельными ответвлениями…

Одно из первых упоминаний о морских течениях и водоворотах мы находим в древнегреческом предании о Сцилле и Харибде (оно воспето Гомером в связи с плаванием Одиссея). Считается, что речь идет о Мессинском проливе, разделяющем южную оконечность Апеннинского полуострова и острова Сицилию (созвучие со Сциллой очевидное). По-видимому, здесь наиболее часто суда древних греков попадали в водовороты и сильные течения, выбрасывавшие их на скалы.

В конце Средневековья, в эпоху Великих географических открытий, мореплаватели Португалии, Испании, Голландии, Британии собирали сведения о морских течениях, но не желали делиться своими знаниями с конкурентами. Поэтому подобные данные оставались разрозненными и неопределенными.

Так, флотилия Колумба пересекала Атлантический океан, смещаясь к югу, в струе Северного экваториального течения. У них сложилось убеждение, что воды океана движутся «на запад вместе с небом».

Система течений Гольфстрима

Несколько позже, в 1513 году, флотилия Понсе де Леона прошла Багамские острова и встретила большую землю, которую они поначалу приняли за Бимини. Во всяком случае так отмечено было на карте, составленной старшим кормчим Антоном Аламиносом. Назвав вновь открытую землю Флоридой (Цветущей), Понсе де Леон так и не узнал, что это полуостров. На обратном пути его вновь ожидала досадная неудача, ставшая залогом географического открытия: двигаясь на юг, они попали в сильное теплое течение, отбрасывающее корабли в открытый океан. У южной окраины Флориды оно стало таким сильным, что сорвало с якоря одно их судно. Аламинос первым отметил этот мощный поток, направленный на юге Флориды с запада на восток, а затем вдоль берега уходящий на север (он позже получил название Гольфстрима, точнее – его западной ветви). Воды течения имели синий цвет, в отличие от зеленовато-голубой океанской воды. Аламинос использовал Гольфстрим, чтобы пересечь Мексиканский залив и пройти 1200 км за четыре дня. Он же предложил использовать это течение для наиболее быстрого возвращения в Европу (идея была совершенно верной).

Благодаря течениям впервые северным путем от берегов Аляски до Исландии мимо Северной Америки удалось проплыть в 1905 году… бутылке! За шесть дет она прошла около 2500 миль, главным образом дрейфуя со льдами. История бутылочной почты, использующей морские течения, началась, по-видимому, в 1560 году, когда какой-то неграмотный английский лодочник обнаружил на берегу запечатанную бутылку. Местный судья прочел содержащееся в ней сообщение, оказавшееся секретным: о том, что датчане захватили остров Новая Земля, принадлежавший России. С тех пор английская королева Елизавета учредила специальную должность «открывателя бутылок», в адрес которого надлежало отправлять запечатанными все бутылки, найденные в море или на берегу. Нарушившего указ ожидала смертная казнь.

В XVII веке появились первые карты, на которых были отмечены фрагменты течений, отражающие немногие фактические сведения и значительную долю фантазии составителей. Только в 1770 году была создана достаточно точная карта Гольфстрима. Ее автором был ученый и главный почтмейстер британских колоний Б. Франклин. Он выяснил, что американские китобои и торговые моряки проходили от Англии до Нового Света на две недели быстрее, чем британские почтовые пакетботы. Почему? Франклин, расспросив моряков, выяснил: американские капитаны по пути в Англию используют мощное океанское течение, а возвращаются, держа курс в стороне от него.

В XIX веке немецкий географ А. фон Гумбольд, английские моряки-исследователи Дж. Ренкелл и М. Мори приступили к сбору и систематизации сведений о течениях Мирового океана. Первую обобщенную карту составил М. Мори. С середины XIX века, согласно международному соглашению, была организована единая система наблюдений за движениями атмосферных и водных потоков в Мировом океане. Наиболее основательную научную экспедицию с этими целями организовало Британское морское ведомство на корабле «Челленджер» (1872–1876). Отчет составил 50 объемистых томов. Один из ученых, проводивший эти работы Дж. Мёррей, в начале XX века составил океанографическую сводку, в которой отметил все основные горизонтальные и вертикальные, холодные и теплые течения Мирового океана.

Во второй половине XX века наиболее остро встал вопрос о загрязнении вод Мирового океана. И вновь в этой связи важное значение приобрели знания о морских течениях. Не исключено, что в ближайшем будущем с помощью этих течений будет осуществлена транспортировка айсбергов из арктических и антарктических акваторий к берегам тех стран, которые испытывают острый дефицит в пресной воде.

Столь же важна и мало изучена проблема образования вихревых атмосферных потоков (тропических циклонов, тайфунов). Вполне возможно, что они связаны с динамикой океанических потоков. Морские течения не имеют постоянных русел. Они не только «блуждают», смещаясь от года к году на сотни километров, но и разветвляются. Отдельные струи образуют огромные завихрения, которые могут вовсе отделяться от основного потока.

Кроме того, были открыты мощные движения вод Мирового океана, находящиеся на глубинах в десятки и сотни метров, а направленные противоположно поверхностным течениям. Они получили название противотечений. Обычно с ними связано интересное явление, получившее название апвеллинг (от англ. «ап» – вверх, «велл» – хлынуть) – подъем холодных вод с глубины.

Апвеллинг в небольших масштабах можно наблюдать в любом море, когда нагретые приповерхностные слои сгоняются устойчивым ветром, дующим с суши, а на их место поднимаются более холодные слои. Когда в этот процесс вовлекаются холодные течения и апвеллинг продолжается достаточно долго, это вызывает приток с глубины к поверхности кислорода (холодная вода насыщена больше, чем теплая) и питательных солей. Здесь активизируется жизнь и скапливается много промысловых рыб, а также тюленей и птиц, которые гнездятся на островах, прибрежных скалах. Но как только апвеллинг ослабевает или холодное течение отклоняется в сторону открытого моря, начинается массовый мор рыбы и меняются погодные условия на прибрежных территориях. Так, холодное Перуанское течение, омывающее берега западной окраины Южной Америки, порой уступает место ответвлению теплого Экваториального течения (эта ветвь называется Эль-Ниньо).

Обычно оно не проникает южнее 1–3° ю. ш. Но в некоторые годы его теплые потоки внедряются далеко на юг, примерно на 10–13°. Тогда температура воздуха у берегов Эквадора и Перу повышается в среднем на 3–5°. Теплый воздух с моря, насыщенный влагой, вызывает в предгорьях Анд сильные тропические ливни, наносящие урон сельскому хозяйству.

До сих пор океанские течения таят, в себе немало загадок. Важное значение имеет познание взаимодействия общей циркуляции атмосферы и Мирового океана в связи с общим изменением климата на планете. Не менее важны более конкретные исследования динамики воздуха и воды в отдельных регионах. Нет еще полной ясности даже в том, какие силы, помимо ротационных (связанных с вращением Земли) и солнечной энергии вызывают глобальную динамику гидросферы.

Открытие океанских и воздушных течений Земли продолжается.

 

Материки – айсберги или амебы?

Среди глобальных географических закономерностей одна с давних пор привлекает внимание исследователей. При взгляде на глобус видно, что западный и восточный берега Атлантического океана в общих чертах сходны между собой. В частности, восточное побережье Южной Америки почти в точности соответствует западному побережью Африки, как будто они некогда составляли единое целое и со временем «разъехались» в разные стороны. Эту закономерность еще в 1668 году отметил в своей книге французский просвещенный монах Плассе. Он решил, что раскол некогда единого континента надвое и образование на месте разрыва Атлантического океана произошли в результате всемирного потопа и сопутствующих ему катастроф.

В начале XX века вышли одно за другим три издания монографии немецкого геофизика Альфреда Вегенера «Происхождение материков и океанов» (третье издание 1922 года было переведено на русский язык). Это уже было обоснованием оригинальной научной теории, объясняющей целый ряд географических закономерностей. Вслед за итальянским ученым Ф. Сакко он пришел к заключению, что все материки некогда составляли единое целое, позже расколовшись на несколько частей (чем и объясняется их клиновидная форма). В отличие от своих предшественников, Вегенер привлек для обоснования своей теории обширный геологический и географический материал. Его идеи дополнил преимущественно с позиций палеографии замечательный русский естествоиспытатель Б. Л. Личков, друг В. И. Вернадского, в работе «Движение материков и климаты прошлого Земли» (1935).

Действительно, по данным палеонтологии и палеогеографии, Южная Америка, Африка, Индийский полуостров, Австралия и Антарктида более ста миллионов лет назад составляли единый континент. От него были, судя по всему, отделены Северная Америка и почти вся Евразия. Последствия такого разделения сказались, в частности, на растительном и животном мире этих регионов.

Обобщенный рельеф Земли. Стрелки показывают перемещение веществ в круговоротах литосферы

Следующая волна популярности идеи перемещения гигантских частей земной коры и объяснения некоторых глобальных географических закономерностей пришлась на вторую половину XX века. В результате исследований рельефа и строения дна Мирового океана выяснилось, что оно представляет собой подобие двухслойной плиты, которая покоится на более пластичном, тектонически ослабленном слое астеносферы. Ее рассекают на части зоны так называемых рифтов – разломов земной коры, по которым нередко проходят вулканические извержения и где находятся сейсмически активные полосы.

В результате некоторые геофизики постарались по-новому объяснить характер и причины горизонтального перемещения плит земной коры, которые то расходятся, то сталкиваются между собой, подобно ледяным полям в полярных морях. Так возникла гипотеза, получившая название глобальной тектоники плит. У нее имеются свои достоинства, но есть и немало существенных, а то и принципиальных недостатков. Так глобальная плитотектоника не учитывает принципиальное отличие в химическом строении, структуре и динамике земной коры континентального и океанического типов (на этом основывал свою теорию Вегенер!), а также устойчивое существование впадины Тихого океана, окруженной полосой вулканов и сейсмических зон…

Короче говоря, в геологическом и географическом отношении глобальная плитотектоника значительно уступает теории Вегенера, согласно которой перемещаются только континенты. Но важен сам факт открытия удивительной закономерности в жизни нашей планеты: изменчивости соотношений океанов и континентов, подвижности лика Земли.

За последнюю четверть века выяснились некоторые дополнительные интереснейшие сведения. Оказалось, что в глубоководных впадинах, где согласно глобальной плитотектонике одна плита должна наползать на другую, находятся зоны растяжения. Здесь земная кора не сжимается, а растягивается, словно подминаясь под континент.

Рекордная по глубине Кольская сверхглубокая скважина, превысившая рубеж 12 км, показала, что на континенте отсутствует «плитчатое» строение земной коры, которое предполагается в плитотектонике. На глубине не происходит никаких принципиальных изменений с горными породами, они словно перемешиваются, а не сохраняют слоистую структуру.

Знаменательная географическая закономерность: крупные горные массивы и возвышенности располагаются параллельно линиям глубоководных желобов. Здесь же, на горах, возвышенностях и островных дугах находятся действующие вулканы. Создается впечатление, что по окраинам материков (но не по всем, а главным образом вокруг Тихого океана) – там, где находятся глубоководные впадины, каменные массы погружаются в недра, где проходят подземную переплавку и изливаются в виде вулканической лавы (там, где – уже главным образом на суше – имеются действующие вулканы). А в понижения с материка постоянно сносится могучими силами эрозии огромное количество осадков.

Получается своеобразный круговорот каменных масс (литосферы), благодаря которому вновь и вновь обновляется континентальная земная кора. Вот почему она принципиально отличается от «плитчатой» океанической!

Существуют и другие доказательства существования круговоротов литосферы. Их теория еще только разрабатывается, хотя сама по себе идея высказывалась давно. Согласно этой концепции, материки способны самостоятельно перемещаться по слою астеносферы, подобно чудовищным амебам. Тем, кому такая идея покажется фантастической, могу рекомендовать познакомиться с моими книгами «Подвижная земная твердь», 1976, и «Каменная летопись Земли», 1983.

 

Биосфера

В первой половине XX века география как наука землеописания столкнулась с неожиданной принципиальной трудностью: она стала терять объект своих исследований. Выяснилось, что к традиционной физической географии пришла пора добавлять химическую, изучающую распространение и динамику химических элементов и соединений в ландшафтах и в целом на планете. Возникла новая область знаний – геохимия, одними из основателей и разработчиками которой были замечательные отечественные ученые В. И. Вернадский и А. И. Ферсман.

Поиски географами своего объекта привели к ситуации казусной, если не сказать нелепой. Было предложено таковым объектом считать… географическую оболочку! Столь странное понятие, ничего по сути не проясняя, давало лишь иллюзию объяснения, тавтологию: география изучает географическую оболочку, а географическая оболочка – это объект, изучаемый в географии.

Сейчас, в начале XXI века, образованному человеку ясно, что речь идет о биосфере – среде жизни.

Понимание огромного значения живых организмов в жизни всех приповерхностных оболочек Земли – воздушной, водной и каменной – пришло лишь в XIX веке благодаря трудам замечательных географов: немцев Александра Гумбольдта, Фридриха Ратцеля и Карла Риттера, француза Элизе Реклю, русского Василия Васильевича Докучаева. Об изменении природной среды ландшафтом, человеком обстоятельно писал американец Георг Марш.

Первый не очень определенный общий обзор биосферы дал в конце XIX века австрийский геоморфолог и геолог Эдуард Зюсс. Однако из его текста трудно определить, имел ли он в виду только совокупность живых организмов и почв («пленку жизни») или всю среду обитания, включая тропосферу, гидросферу и верхнюю часть земной коры.

Геохимические круговороты в биосфере (ФС – фотосинтез)

Английский океанолог Джон Мёррей в начале XX века предложил такое определение: «Биосфера. Где только существует вода или, вернее, вода, воздух и земля соприкасаются и смешиваются, обыкновенно можно найти жизнь в той или иной из ее многих форм. Можно даже всю планету рассматривать как одетую покровом живого вещества. Давши нашему воображению немного больше свободы, мы можем сказать, что в пределах биосферы у человека родилась сфера разума и понимания, и он пытается истолковать и объяснить космос; мы можем дать этому наименование психосферы».

Создать основы учения о биосфере удалось Владимиру Ивановичу Вернадскому в небольшом, но очень емком, насыщенном идеями и фактами труде «Биосфера» (1926). Он писал об «особой охваченной жизнью оболочке», которая закономерно развивается на границе планеты с космической средой. Ученый старался раскрыть именно гармоничное сочетание природных процессов, определяющее существование и развитие области жизни, где взаимодействуют три геосферы и живое вещество. Познание таких закономерностей, изучение строения и динамики биосферы – это и есть наиболее общая глобальная задача географии как единой науки.

Во второй половине XX века учение о биосфере постепенно стало занимать место в центре естествознания, и прежде всего наук о Земле – геологических и географических. Изучение биосферы явилось в значительной степени и открытием объекта современной географии. Потому что в геологии охват геосфер значительно более широкий в пространстве (литосфера) и времени (миллиарды лет геологической истории). Ее объект, можно сказать, биогеосфера, включающая глубокие недра планеты.

Биосфера все еще остается для нас Терра Инкогнита – Землей Неведомой. Одну из проблем сформировал сам Вернадский: «Как мог образоваться этот своеобразный механизм земной коры, каким является охваченное жизнью вещество биосферы, непрерывно действующей в течение сотен миллионов лет геологического времени, мы не знаем. Это является загадкой, так же как загадкой в общей схеме наших знаний является и сама жизнь».

Но это лишь одна из проблем, причем не самая принципиальная. Вернадский много раз писал о геологической вечности жизни. Целый ряд ученых и философов считали жизнь таким же обязательным качеством Мироздания, как пространство, время, энергия, материя, движение (и разум?). До сих пор остается в силе принцип: живое – от живого. Несмотря на все ухищрения биохимиков и немалые затраты сил и средств, так и не удалось искусственно синтезировать даже примитивный организм из «неживой материи». Проблема происхождения жизни, возможно, просто некорректно поставлена; вернее бы говорить о сущности и эволюции жизни.

Возникает другой вопрос: можно ли считать биосферу живым организмом, а не просто совокупностью взаимодействующих геосфер? Вернадский сначала писал о механизме биосферы. Но с годами предпочел другое определение: организованность биосферы, ясно давая понять, что речь идет об организме, а не механизме.

Область жизни имеет все признаки живого организма: она активно преобразует солнечную энергию, перерабатывает минеральные массы земной коры, синтезирует сложные химические соединения из простых, осуществляет обмен веществ. Правда, как витающее в космосе тело биосфера не способна размножаться, скажем, дроблением. Но она рассеивает в окружающее пространство пыльцу и споры растений. А одно из творений биосферы – человек – посылает из ее недр космические аппараты к другим небесный телам.

Есть все основания говорить о космической функции биосферы как аккумулятора солнечной энергии и о развивающейся сверхсложной системе, способной создавать себе подобные. Это – космический организм.

И тогда возникает еще один вопрос, до сих пор в науке даже не поставленный: можно ли считать биосферу не только живым, но и разумным организмом? Такой неожиданный путь исследований открывает учение Вернадского о биосфере. Быть может, только на этом пути удастся нам осмыслить связь места и роли человека с земной природой и научиться жить в гармонии с ней.

 

Горизонты космогеографии

Крупные географические достижения нередко были связаны с техническим прогрессом. Небольшой навигационный прибор – компас – позволил совершать протяженные маршруты в открытом море. Надежные суда позволили завершить освоение Мирового океана, подводные аппараты – проникнуть в его глубины. Воздухоплавание открыло новые страницы в истории освоения и познания атмосферы…

В октябре 1957 года Советский Союз запустил на околоземную орбиту первый искусственный спутник Земли. С той поры русское олово «спутник» стало международным. Его впервые в смысле околоземного искусственного тела использовал Ф. М. Достоевский в романе «Братья Карамазовы»: черт рассуждал о запущенном в околоземное пространство топоре. Однако, к счастью, спутники не превратились в оружие убийства.

12 апреля 1961 года в первое космическое путешествие отправился гражданин СССР Юрий Гагарин. «Поехали!» – лихо сказал он, возносясь в космическое пространство. Ему довелось первому из людей увидеть нашу планету из космоса. Правда, полет его продолжался всего 108 минут и в географическом отношении ничего нового не принес. Однако был проторен путь к дальнейшим небывалым доселе исследованиям Земли, а затем и других планет Солнечной системы.

Вид Земли со стороны Луны

21 июля 1969 года американские астронавты Нейл Армстронг и Эдвин Олдрин стали первыми землянами, посетившими другую планету – Луну. Затем последовали другие межпланетные перелеты, на Землю доставляли все больше лунных горных пород (оказавшихся не слишком отличающимися от земных). Автоматические космические станции стали вычерчивать вокруг Земли свои траектории, а некоторые отправлялись в дальние маршруты к Меркурию, Марсу, Венере и к другим планетам, а также к их спутникам. Возникли странные названия наук: география и геология Луны, геоморфология Марса, геохимия Венеры… Можно сказать, стали оформляться космогеография и космогеология.

В настоящее время космогеография развивается в двух магистральных направлениях.

Первое: исследования Земли из космоса. При этом добывается много новой информации о нашей планете; уточняются топографические и геологические карты, осуществляется экологический мониторинг (наблюдения за крупными экологическими катастрофами, аномалиями, загрязнением и разрушением природной среды). Важную роль играют метеорологические спутники, позволяющие, в частности, прослеживать пути циклонов, тайфунов.

В ряде случаев из космоса, действительно, удается разглядеть такие природные объекты, которые наземной поверхности порой остаются незамеченными. Это относится к так называемым кольцевым структурам. Об этом писал ученик Вернадского К. П. Флоренский, один из пионеров космогеографии и космогеологии: «Среди важных процессов, которые ранее не привлекали серьезного внимания геологов, следует назвать процессы ударного кратерообразования, типичного для Луны, Меркурия, Марса и его спутников. Несомненно, что и для Земли в догеологический этап ее развития роль этих процессов была значительной». Правда, сравнительно быстро выяснилось, что кольцевых структур на Земле очень много и они различны как по размерам (до тысяч километров в диаметре), так и по происхождению. Но в любом случае перед учеными открылись новые проблемы и объекты исследований.

Второе: исследования космических тел с Земли.

Один из первых опытов применения знаний о Земле для изучения других планет относится к XVIII веку. В трактате М. В. Ломоносова «О слоях земных» сопоставляются черты рельефа нашей планеты и ее спутника. (Кстати, Ломоносов первым доказал существование атмосферы на Венере.) Позже было отмечено сходство вулканов Земли и Луны.

Рекордсмен Солнечной системы по размерам вулканических сооружений – Марс. Здесь находится группа уникальных вулканов. Кальдера одного из них – Арсии – образует правильную окружность диаметром 125 км. Высота горы Олимп (тоже вулкана) в несколько раз превосходит соответствующие земные образования: более 24 км (по некоторым данным – 27 км). Почему высочайшие вершины на Марсе примерно в три раза превышают высочайшие земные горы? Ведь сам по себе Марс по размерам значительно уступает Земле. Судя по всему, именно в этом и заключается причина. Масса Марса втрое меньше земной. Следовательно, и сила притяжения, гравитации, на Марсе также втрое меньше. Это позволяет горам достигать рекордных высот.

Ну а почему так происходит? Почему гравитация мешает земным горам расти? К сожалению, ученые пока еще не удосужились решить эту загадку.

Космография помогает нам лучше понять жизнь родной Земли. Поэтому с полным основанием можно считать создание этой отрасли знания одним из великих географических открытий.