Древо познания

Матурана Умберто Р

Варела Франсиско X.

4. Жизнь метаклеточных

 

 

Под онтогенезом мы понимаем историю структурных изменений, происходящих в некотором единстве без потери этим единством своей организации. Такие структурные изменения, вызываемые либо взаимодействиями единства с окружающей средой, в которой оно существует, либо его внутренней динамикой, происходят непрерывно. Что касается постоянных взаимодействий с окружающей средой, то клеточное единство ежемоментно классифицирует и «рассматривает» их в соответствии со своей структурой. В свою очередь, структура единства непрерывно изменяется вследствие его внутренней динамики. В итоге онтогенетическое преобразование единства прекращается только с его распадом. Для того, чтобы кратко представить эту ситуацию, говоря об аутопоэз-ных единствах, мы будем использовать следующую диаграмму:

Что произойдет, если мы рассмотрим онтогенез не одного, а двух (или более) соседних единств в среде взаимодействия? Это можно изобразить следующей диаграммой:

Разумеется, описанную ситуацию можно рассматривать с точки зрения любого из единств, и она будет симметричной. Это означает, что для клетки, расположенной слева, клетка справа представляет собой лишь еще один источник взаимодействий, неотличимый от тех, которые мы как наблюдатели классифицируем как приходящие от «инертной» окружающей среды. Наоборот, для клетки, расположенной справа, клетка слева представляет собой лишь еще один источник взаимодействий, испытываемых клеткой справа в соответствии с ее собственной структурой.

Это означает, что два (или более) аутопоэзных единства могут претерпевать взаимосвязанные онтогенезы, если взаимодействия между ними носят рекуррентный или более стабильный характер. Это следует ясно себе представлять. Каждый онтогенез происходит в какой-то окружающей среде; как наблюдатели мы можем описать и онтогенез, и окружающую среду как обладающие определенными структурными характеристиками, например, диффузией, секрецией, температурой. При описании аутопоэзного единства как имеющего конкретную структуру нам станет ясно, что взаимодействия (покуда они рекуррентны) между единством и окружающей средой состоят из взаимных возмущений. В такого рода взаимодействиях структура окружающей среды только запускает структурные изменения в аутопоэзных единствах (но не определяет их и не управляет ими), и наоборот, структурные изменения в аутопоэзных единствах вызывают структурные изменения в окружающей среде. В результате мы получаем историю взаимных конгруэнтных структурных изменений, продолжающихся до тех пор, покуда аутопоэзное единство и вмещающая его окружающая среда не распадутся: возникает структурное сопряжение.

Рис. 20. Жизненный цикл миксомицета (слизевика) Physarum, включающий формирование плазмодия в результате слияния клеток

Среди всех возможных взаимодействий между системами существуют такие, которые имеют явно выраженный рекуррентный, или повторяющийся, характер. Например, если мы взглянем на клеточную мембрану, то заметим, что через клетку осуществляется постоянный транспорт некоторых ионов (например, ионов натрия или кальция), причем клетка реагирует на присутствие этих ионов, включая их в свою метаболическую сеть. Активный транспорт ионов происходит регулярно, и мы как наблюдатели можем сказать, что структурное сопряжение клеток с внутренней или окружающей средой позволяет им рекуррентно взаимодействовать с теми ионами,

Рис. 21. Жизненный цикл миксомицета (слизевика) Dictyostelium с плодовым телом, образующимся путем объединения клеток, которые возникают в результате репродукции исходной споровой клетки (масштаб не соблюден) которые там содержатся. Именно клеточное структурное сопряжение позволяет клеткам взаимодействовать только с некоторыми ионами, так как если во внутреннюю среду клетки проникнут другие ионы (например, ионы цезия или лития), то структурные изменения, которые они вызовут в клетке, прервут ее аутопоэз.

Почему же в клетках каждого типа аутопоэз происходит только при вполне определенном виде регулярного и рекуррентного взаимодействия и не происходит при других взаимодействиях? Ответ на этот вопрос может быть дан только со ссылкой на филогению, или историю соответствующей линии клеток, иначе говоря, тип структурной связи каждой клетки в данный момент есть существующее на данный момент состояние истории структурных преобразований в рамках той филогении, которой принадлежит данная клетка. Иными словами, момент в естественном дрейфе наследственной линии, о котором идет речь возникает вследствие сохранения структурного сопряжения предшествующих клеток в той же наследственной линии. Так, в приведенном выше примере в данном состоянии клеточного естественного дрейфа мембраны функционируют осуществляя транспорт ионов натрия и кальция, но не каких-либо других ионов.

Структурное сопряжение со средой как условие существования охватывает все возможные клеточные взаимодействия. Следовательно, оно включает в себя и взаимодействия с другими клетками. Клетки многоклеточных систем нормально функционируют, только привлекая ближайшее клеточное окружение в качестве среды для реализации своего аутопоэза. Такие системы возникают в результате естественного дрейфа наследственных рядов, в которых удавалось сохранять ближайшее клеточное окружение.

Превосходным источником примеров, особенно убедительно подтверждающих сказанное, может служить группа одноклеточных организмов, известных под названием миксомицетов. Например, когда спора миксомицета Physarum начинает развиваться, возникает клетка (рис. 20, вверху). Если окружающая среда влажная, то у клетки вырастает жгутик, и она обретает подвижность. Если же окружающая среда сухая, то у клетки развиваются ложноножки, и она становится похожей на амебу. Затем эти две разновидности клеток делятся и порождают множество других клеток; удерживаемые структурным сопряжением, эти клетки сливаются и образуют плазмодий, который, в свою очередь, формирует макроскопическое плодоносящее тело, вырабатывающее споры (см. рис. 21).

У таких филогенетически древних эукариот тесная клеточная агрегация достигает своей кульминации в новом единстве, когда в результате слияния клеток образуется плодоносящее тело. Оно представляет собой метаклеточное единство, существование которого исторически составляется клетками, порождающими его в завершение жизненного цикла того органического единства, которому принадлежит данное многоклеточное единство (и которое определяется указанным жизненным циклом). При этом необходимо четко понимать, что формирование метаклеточных единств, способных давать начало ряду поколений путем репродуцирования через отдельные клетки, порождает феноменологию, отличную от феноменологии образующих их клеток. Такое метаклеточное единство, или единство второго порядка, будет иметь структурное сопряжение и онтогенез, адекватные ее структуре как составного единства. В частности, метаклеточные системы, аналогичные описанной выше, обладают макроскопическим онтогенезом, а не микроскопическим, присущим образующим их клеткам.

Более сложную ситуацию можно рассмотреть на примере другого миксомицета. Dictyostelium (рис. 21)[6]Bonner J.T. Proceedings of the National Academy of Science USA. 45 (1959): 379.
. В этой группе, если окружающая среда обладает некоторыми специфическими свойствами, амебоподобные особи собираются в плодоносящее тело, как в предыдущем примере. Хотя отдельные клетки при этом не сливаются, но и в этой группе мы обнаруживаем, что единства ьторого порядка демонстрируют отчетливо выраженное разнообразие клеточных типов. Например, клетки на верхнем конце плодоносящего тела порождают споры, в то время как клетки у основания, не обладая такой способностью, заполняются вакуолями и перегородками, которые служат механической опорой для всей метаклеточной системы. На этом примере мы видим, что в динамизме такой тесной клеточной агрегации в ее жизненном цикле структурные изменения, претерпеваемые каждой клеткой в истории ее взаимодействий с другими клетками, взаимно дополнительны при ограничениях, налагаемых участием клеток в образуемом ими метакле-точном единстве. Именно поэтому онтогенетические структурные изменения каждой клетки с необходимостью отличаются в зависимости от того, каким образом те или иные клетки участвуют через свои взаимодействия и отношения с соседними клетками в образовании единства второго порядка.

Мы подчеркиваем, что тесная агрегация клеток, происходящих от одной клетки, агрегация, которая превращается в метаклеточное единство, есть условие, которое согласуется с непрерывным аутопоэзом зтих клеток. Однако такие клеточные скопления не являют ся биологически необходимыми, поскольку многие организмы на протяжении долгой истории своего существования оставались одноклеточными. В тех же наследственных рядах где клеточная агрегация произошла, она привела к глубоким последствиям для соответствующих историй структурных преобразований. Рассмотрим эту ситуацию более подробно.

Ясно, что онтогенез метаклеточной системы должен определяться областью взаимодействий, задаваемых ею как единым целым, а не отдельными взаимодействиями образующих ее клеток. Иначе говоря, жизнь многоклеточной особи как единства протекает через функционирование ее компонент, но не определяется их свойствами. Но каждая из многоклеточных особей возникает в результате деления и обособления наследственных линий клеток, которое начинается в момент оплодотворения одной клетки, или зиготы, порожденной некоторыми органами или частями многоклеточного организма. Если новые особи не рождаются, то наследственная линия обрывается. А для того, чтобы новые особи рождались, их возникновение должно начинаться с одной клетки. Все происходит по следующей простой схеме: логика строения каждого многоклеточного организма требует, чтобы он был составной частью цикла, в котором с необходимостью существует одноклеточная стадия.

Именно на стадии одноклеточной репродуктивной фазы многоклеточного организма происходят изменения, передающиеся в поколениях. Поэтому не существует принципиальных отличий между путями становления наследственных линий у одно- и многоклеточных организмов. Иначе говоря, жизненный цикл многоклеточного организма представляет собой единство, в котором онтогенез заключается в переходе от одноклеточного к многоклеточному состоянию, но репродукция и репродуктивные изменения происходят на одноклеточной стадии.

Все известные многоклеточные организмы представляют собой искусные вариации на одну и ту же тему: клеточная организация и построение филогении. Каждая многоклеточная особь представляет собой тщательно подготовленный этап в онтогенезе наследственного ряда, тогда как его изменения продолжают происходить на клеточном уровне. В этом отношении многоклеточность не вносит ничего принципиально нового. Новизна состоит в том, что многоклеточность делает возможным возникновение множества различных классов особей, поскольку становятся возможными многочисленные наследственные линии, использующие разнообразные способы сохранения онтогенетической структурной связи в окружающей среде. Неисчерпаемое разнообразие живых существ на Земле, включая нас с Вами, обусловлено появлением многоклеточного варианта в рамках клеточных наследственных рядов.

Вместе с тем следует заметить, что половое размножение многоклеточных организмов не изменяет основную характеристику репродукции, с которой мы познакомились в предыдущей главе. Действительно, половое размножение требует, чтобы одна из клеток многоклеточного организма стала дополнительно обладать независимой операциональной динамикой (как сперматозоид) и слилась с другой клеткой другого организма того же класса, образуя зиготу, т. е. одноклеточную фазу этого же организма. Существуют также многоклеточные организмы, которые размножаются не только половым путем, но и простым делением, или исключительно делением. В зтом случае единством, изменяющимся в чреде поколений, является не клетка, а весь организм.

Последствия полового размножения наглядно проявляются в возникающей в результате него богатой структурной рекомбинации. Половое размножение, с одной стороны, делает возможным скрещивание репродуктивных линий, а с другой — резко увеличивает число структурных изменений, возникающих в каждом репродуктивном акте. Таким способом генетика и наследственность обогащаются эффектами, возникающими в результате комбинаций структурных альтернатив, присущих различным группам живых существ. Эффект возрастания изменчивости, который (как будет показано в следующей главе) делает возможным филогенетический дрейф, объясняет, почему половое размножение столь широко распространено среди живых существ: оно способствует разветвлению наследственных линий.

 

Темп преобразований

Превосходный способ анализа метаклеточных систем и их жизненных циклов заключается в сравнении продолжительности периодов, за которые они совершают свои жизненные циклы, в зависимости от их размеров2. Например, на рис. 22а изображен жизненный цикл миксомицета (на рассмотрении которого мы останавливались выше). По одной оси отложено время, за которое завершается каждая стадия, а по другой — размеры, которых организм достигает к соответствующему времени. Так, на формирование плодоносящего тела длиной примерно в 1 см уходит около одного дня. Спора размером в несколько десятков миллионных долей метра формируется примерно за 1 минуту.

Bonner J. Т. Size and Cycle. — Princeton, N.Y: Princeton University Press, 1965).

Рис. 22. Примеры зависимости между размером, достигаемым на различных стадиях жизненного цикла четырех организмов, и временем, необходимым для достижения этих стадий

Аналогичная зависимость, на этот раз для лягушки, построена на рис. 22 Ь. Зигота, из которой затем вырастает взрослая особь, образуется примерно за минуту, в то время как взрослой особи требуется почти год, чтобы вырасти до размеров в несколько сантиметров. То же самое относится и к самому большому дереву в мире — секвойе; за время формирования, составляющее тысячу лет, она вырастает более чем на 90 метров (рис. 22 с). Это же можно сказать и относительно самого крупного в мире животного — синего кита, вырастающего за 10 лет до 40 и более метров в длину (рис. 22 d).

Независимо от размеров и внешнего вида этапы во всех перечисленных выше случаях всегда одни и те же: из начальной клетки в процессе клеточного деления и дифференциации формируется индивидуум

Рис. 23. Время репродукции одноклеточных и многоклеточных организмов второго порядка посредством сопряжения между клетками, образующимися в результате клеточных делений. Возникающая особь претерпевает онтогенез различной длительности и достигает следующей репродуктивной стадии при образовании новой зиготы. Таким образом, репродуктивный цикл является основной единицей, которая одновременно и сохраняется, и трансформируется со временем. Один из способов уяснить себе это заключается в том, чтобы построить график зависимости между временем репродукции и размерами (рис. 23). Бактерия — одноклеточное существо — размножается необычайно быстро. Следовательно, и скорость ее трансформации также высока. Одна из непременных особенностей образования единств второго порядка путем клеточной агрегации связана с тем, что для клеточного роста и дифференциации необходимо время, поэтому частота смены поколений у многоклеточных гораздо ниже.

Из построенного графика отчетливо видно, что между многоклеточными, как и между клетками, существует очень сильное сходство. Несмотря на их поразительное и заметное разнообразие, у всех сохраняется репродукция на одноклеточной стадии — их главная отличительная черта как биологических систем. Этот общий элемент организации живых существ не мешает их богатейшему разнообразию, поскольку последнее осуществляется в рамках их структурной изменчивости. Однако такое положение дел позволяет нам понять, что вся эта изменчивость есть изменчивость относительно основного типа, которая сводится к разным способам порождения мира разнообразными единствами, обладающими одной и той же организацией. Иными словами, каждая онтогенетическая вариация приводит к различным способам существования в мире, поскольку именно структура единства определяет его взаимодействие с окружающей средой и миром, в котором оно живет.

 

Организация метаклеточных

Мы говорим о метаклеточных, когда имеем в виду любое единство, в структуре которого различимы тесно связанные скопления клеток. Метаклеточность присутствует во всех главных царствах органического мира: у монер (прокариотов), протоктистов, животных. растений и грибов. Метаклеточность как структурная возможность существовала в истории живых существ с древнейших времен[7]Marguhs L, Schwartz К Five Kingdoms — San Francisco: Freeman, 1982.
.

Общее для всех метаклеточных во всех пяти царствах заключается в том, что в качестве компонентов своей+ структуры они содержат клетки. Именно поэтому мы говорим что метаклеточные являются ауто-поэзными системами второго порядка. Но уместно спросить: какова организация метаклеточных? Так как клетки-компоненты могут быть связаны между собой многими различными способами, ясно, что метаклеточные допускают различные типы организации, например, организмы, колонии и сообщества. Но являются ли некоторые метаклеточные аутопоззными единствами? Иначе говоря, являются ли аутопоэзные системы второго порядка также и аутопоззными системами первого порядка? Является ли плодоносящее тело миксомицета неким аутопоэзным единством? А кит?

Все зти вопросы принадлежат к числу трудных. Мы знаем в мельчайших подробностях, что происходит с клеткой как молекулярным аутопоэзным единством, но как описать в организме компоненты и отношения, делающие организм молекулярной аутопоэзной системой’ В случае метаклеточных мы все еще пребываем в неведении относительно молекулярных процессов, благодаря которым метаклеточные формируются как аутопоэзные единства, сравнимые с клетками.

Для целей нашей книги мы оставим открытым вопрос о том, являются или не являются метаклеточные системы аутопоззными системами первого порядка. Мы можем лишь утверждать, что в своей организации они обладают операциональной замкнутостью: их отличительные черты определяются сетью динамических процессов, действие которых не выходит за рамки этой сети Относительно детальной формы такой организации мы больше не будем ничего говорить, однако это никак не ограничивает те цели, которые мы поставили перед собой в этой книге. Как уже было сказано, какой бы ни была организация метаклеточных, они состоят из аутопоэзных систем первого порядка и, размножаясь посредством клеток, образуют ряды поколений. Этих двух условий достаточно, чтобы мы могли утверждать следующее: все, что происходит в метаклеточных как в автономных единствах, происходит также и с сохранением аутопозза их клеточных компонентов, равно как и с сохранением их собственной организации. Следовательно, все, что мы намерены сказать, применимо к аутопоэзным системам и первого 1 второго порядка так что, если нет особо? необходимости мы не будем проводить между ними различия