Рис. 24. Чарльз Дарвин
Предыдущие главы позволили нам получить общее представление о трех основных аспектах живых существ. Во-первых, мы узнали, как они устроены как единства, каким образом их тождество определяется их аутопоэзной организацией. Во-вторых, мы установили, как аутопоэзные системы могут последовательно репродуцироваться и тем самым порождать историческую последовательность поколений. И наконец, мы проследили, как многоклеточные организмы, наподобие нас самих, рождаются из взаимодействия клеток, происходящих от единственной клетки, и выяснили, что любой метаклеточный организм как один из элементов жизненных циклов, всегда проходящих через стадию многоклеточности, неизменно представляет собой вариацию на одну и ту же тему.
Все это приводит к онтогенезам живых существ, способных репродуцироваться, и филогениям различных репродуктивных линий, сплетающихся в огромную разветвленную историческую сеть. Это отчетливо проявляется в окружающем нас органическом мире растений, животных, грибов и водорослей, равно как и в тех различиях, которые мы наблюдаем между нами как человеческими существами и другими организмами. И эта грандиозная сеть исторических трансформаций живых существ лежит в основе их существования как существ исторических. В этой главе мы обсудим некоторые вопросы, возникающие из предыдущих глав, чтобы понять органическую эволюцию в общем и целом, так как без адекватного понимания исторических механизмов структурного преобразования невозможно понять феномен познания. Ключ к пониманию того как возникла эволюция, следует искать в свойствах живого, уже отмеченных нами в предыдущих главах, а именно: в нерасторжимой связи между различиями и сходствами на каждой репродуктивной стадии, в стабильности организации и в структурной изменчивости Поскольку существует сходство, существует и возможность образования исторического ряда, или непрерывной наследственной линии. Поскольку имеются структурные различия, существует возможность исторических вариаций в наследственных линиях. Но, если говорить более определенно, почему одни наследственные линии возникают или процветают, а другие нет? Почему рыба кажется нам столь естественным обитателем водной стихии, а лошадь столь же естественно приспособленной к обитанию на суше? Чтобы ответить на эти вопросы, нам необходимо более тщательно проанализировать, каким образом происходят взаимодействия между живыми существами и окружающей средой.
Структурная детерминация и сопряжение
Онтогенез — это история структурных изменений конкретного живого существа В зтой истории каждое живое существо начинает с некоторой исходной структуры. Эта структура обусловливает направление его взаимодействий и ограничивает структурные изменения, которые могут быть вызваны в нем этими взаимодействиями. В то же время начальная структура рождается в конкретном месте — в среде, образующей то окружение, в котором эта структура возникает и с которым она взаимодействует Среда, по-видимому, обладает своей собственной структурной динамикой и операционально отлична от живого существа. Данное обстоятельство имеет решающее значение. В качестве наблюдателей мы отделили живую систему как единство от фона и охарактеризовали ее как определенную организацию. Тем самым мы разграничили две структуры, которые надлежит считать операционально независимыми: живое существо и окружающую его среду Между ними с необходимостью существует структурная конгруэнтность (иначе живое существо как единство просто исчезнет). Во взаимодействиях между живым существом и окружающей средой в рамках этой структурной конгруэнтности возмущения окружающей среды не определяют происходящего с живым существом — изменения, происходящие в живом существе, определяет его структура. Это взаимодействие не инструктивно, поскольку оно не диктует, какими должны быть производимые им эффекты. Поэтому мы предпочитаем говорить, что взаимодействие «запускает» тот или иной эффект. Тем самым мы хотим подчеркнуть, что изменения, проистекающие от взаимодействия живого существа и окружающей его среды, хотя вызываются возмущающим агентом, тем не менее определяются структурой самой возмущенной системы. То же самое справедливо и относительно окружающей среды: живое существо является источником возмущений, но не директив.
До сих пор читатель мог думать, что все сказанное звучит слишком сложно и присуще только живым существам. В действительности же, как и в случае репродукции, отмеченное нами явление присуще не только живым существам. Оно имеет место при всех взаимодеиствиях, и если мы не видим его во всей полноте, то в дальнейшем это может стать источником недоразумений. Поэтому стоит остановиться на этом, чтобы выяснить, что происходит всякий раз, когда мы отделяем единство от окружающей среды, с которой оно взаимодействует
Ключ к пониманию происходящего в действительности прост, как ученые мы можем иметь дело только со структурно определенными единствами. Иначе говоря, мы можем рассматривать только системы, все изменения которых определяются их структурой, какой бы она ни была, а структурные изменения обусловлены их собственной динамикой или «запускаются» их взаимодействиями. Действительно, в повседневной жизни мы ведем себя так, словно все объекты, с которыми нам приходится встречаться, — структурно определенные единства. Автомашина, магнитофон, швейная машина, компьютер — все это системы, с которыми мы обращаемся так, словно они определены своей структурой. В противном случае как можно было бы объяснить, почему, обнаружив неисправность, мы пытаемся изменить структуру этих устройств, а не делаем что-нибудь еще? Если мы отжимаем педаль сцепления и автомашина не трогается с места, то нам никогда не придет в голову, что с нашей ногой, отжимающей педаль, что-то не в порядке. Мы предполагаем, что проблема кроется в связи между педалью газа и системой впрыскивания, т. е в структуре автомашины. Таким образом, поломки в созданных человеком машинах сообщают нам об их эффективном функционировании больше, чем все наши описания этих машин, когда они функционируют нормально. В отсутствие поломок мы резюмируем наше описание, когда говорим, что «проинструктировали?’ компьютер, чтобы он выдал нам текущую информацию о состоянии нашего банковского счета.
Такое повседневное отношение (в науке оно приобретает лишь более систематический и явный характер благодаря неукоснительному применению критерия обоснованности научных утверждений) адекватно не только для искусственных систем, но и для живых существ и социальных систем В противном случае мы никогда не обращались бы к врачу, почувствовав недомогание, и не заменяли бы менеджера компании в тех случаях, когда его деятельность не оправдывает наших надежд. Мы можем предпочесть оставить без объяснений многие явления из нашего человеческого опыта, но если мы хотим объяснить их научно то нам необходимо рассматривать явления, подлежащие объяснению, как структурно определенные.
Все сказанное станет более ясным, если мы выделим четыре области (класса), определяемых структурой единства. a. Область изменений состояния, все структурные изменения которые может претерпеть единство без изменения своей организации, тес сохранением признаков класса. b. Область деструктивных изменении', все структурные изменения, которые может претерпеть единство с утерей организации и, следовательно, с утерей признаков класса. c. Область возмущений: все взаимодействия, которые запускают изменения состояния d. Область деструктивных взаимодействий: все возмущения, которые приводят к деструктивному изменению.
Мы все вполне разумно полагаем, что пуля, попавшая в человека с расстояния прямого выстрела, вызовет в нем разрушительные изменения, определяемые его структурой. Однако, как все мы прекрасно знаем, в структуре вампира та же самая пуля вызовет лишь незначительное возмущение: чтобы вампир претерпел деструктивные изменения, ему в сердце необходимо вогнать осиновый кол. Еще один пример: легковая автомашина, врезавшись в дерево, претерпит деструктивное взаимодействие, тогда как для танка такой эпизод стал бы всего лишь незначительным возмущением (рис. 25).
Заметим, что в структурно определенной динамической системе, поскольку ее структура находится в непрерывном изменении, структурные области также изменяются хотя в каждый момент они определяются своей текущей структурой. Это непрерывное изменение структурных областей и есть то, что присуще онтогенезу каждого динамического единства, будь то магнитофон или леопард.
До тех пор, пока единство не вступает в деструктивное взаимодействие с окружающей средой, мы как
Рис. 25. У трубы, как и у любого другого единства, есть четыре структурные области: (а) область изменения состояния, (в) область деструктивных изменений, (c) область возмущений и (d) область деструктивных взаимодействий наблюдатели с необходимостью должны видеть совместимость или соответствие между структурой окружающей среды и структурой этого единства. До тех пор, пока такая совместимость существует, окружающая среда и единство действуют как источники взаимных возмущений, инициирующих изменения состояния. Мы назвали этот непрерывный процесс «структурным сопряжением». Например, в истории структурного сопряжения между рядами поколений автомашин и городов и те и другие претерпевают драматические изменения, которые в каждом случае являются выражением собственной структурной динамики одной стороны при селективных взаимодействиях с другой стороной.
Все сказанное выше верно для любой системы; следовательно, оно справедливо и для живых существ. Живые существа не уникальны ни своей детерминированностью, ни структурным сопряжением. Их отличительная особенность заключается в том, что структурная детерминация и сопряжение происходят у них на основе неизменного сохранения определяющего их аутопоэза как первого, так и второго порядка, равно как и в том, что все у них подчинено такому сохранению. Например, даже аутопоэз клеток, образующих метаклеточную систему. подчинен ее аутопоэзу как аутопоэзной системе второго порядка. Поэтому любое структурное изменение, происходящее в живом существе, с необходимостью ограничено сохранением аутопоэза этого существа. Те взаимодействия, которые вызывают в живом существе структурные изменения совместимые с сохранением его аутопоэза, принадлежат к возмущениям, тогда как те, которые инициируют изменения, не совместимые с таким сохранением, принадлежат к деструктивным взаимодействиям. Непрерывное структурное изменение живых существ с сохранением их аутопоэза происходит в каждый момент времени, постоянно, многими способами одновременно. В нем — биение самой жизни.
В связи с этим интересно отметить одно обстоятельство: когда мы как наблюдатели говорим о том, что происходит с организмом в каком-то конкретном взаимодействии, то оказываемся в весьма необычной ситуации. С одной стороны, мы имеем доступ к структуре окружающей среды, а с другой — к структуре организма и можем рассматривать многочисленные варианты изменения окружающей среды и организма, которые могли бы произойти при их столкновении, если бы взаимодействия при этом отличались от тех, которые имеют место в действительности. Таким образом, мы получаем возможность представить себе, каким был бы мир, если бы Клеопатра была не красавицей, а уродом, или если говорить более серьезно, каким был бы мальчик, просящий милостыню, если бы с раннего детства он нормально питался. С этой точки зрения происходящие в аутопоэзном единстве структурные изменения представляются «отобранными» окружающей средой путем непрерывной цепи взаимодействий. Следовательно, окружающую среду можно рассматривать как постоянно действующего «селекционера», от бирающего структурные изменения, которые организм претерпевает в процессе онтогенеза.
Онтогенез и отбор
Совершенно то же самое можно сказать и об окружающей среде. Так, взаимодействующие с ней организмы действуют как «селекционеры «ее структурных изменений. Например, то, что на протяжении первого миллиона лет после появления живых существ клетки из всех возможных газов способствовали распространению кислорода привело к существенным изменениям в атмосфере Земли, которым мы в большой степени обязаны нынешним существованием на нашей планете кислорода. В свою очередь, присутствие кислорода в атмосфере могло способствовать отбору тех структурных вариантов живых существ, у которых в процессе филогении закрепились функциональные формы, способные к кислородному дыханию. Структурное сопряжение всегда взаимно; преобразования претерпевают и организм, и окружающая среда.
Структурное сопряжение между организмом и окружающей средой — это сопряжение между операционально независимыми системами. Если мы сосредоточим внимание на проблеме сохранения организмов как динамических систем в окружающей среде, то у нас создастся впечатление, будто основную роль в этом сохранении играет совместимость организмов с окружающей средой, которую мы называем адаптацией. Но всякий раз, когда мы наблюдаем деструктивное взаимодействие между живым существом и окружающей средой и живое существо как аутопоэзная система гибнет, мы видим, что гибнущая живая система утрачивает способность к адаптации. Следовательно, адаптация единства к окружающей среде есть необходимое следствие его структурного сопряжения с окружающей средой, и это не удивительно. Иначе говоря, всякий онтогенез как индивидуальная история структурного изменения представляет собой струк турный дрейф, происходящий с сохранением организации и адаптации.
Повторим еще раз: сохранение аутопоэза и сохранение адаптации — необходимые условия существования живых существ; онтогенетическое структурное изменение живого существа в окружающей среде всегда происходит как структурный дрейф, конгруэнтный структурному дрейфу окружающей среды. Наблюдателю такой дрейф представляется «отобранным» окружающей средой на протяжении всей истории существования организма.
Филогения и эволюция
Теперь мы уже располагаем всеми элементами, необходимыми для понимания сложной истории трансформаций живых существ с момента их появления. И теперь мы можем ответить на вопросы, поставленные в начале этой главы Внимательный читатель уже понял,
Рис. 26. Основные пути органической эволюции, от первых прокариот до современных форм во всем их разнообразии — одноклеточных, растений, животных и грибов, возникших в результате разделения и пересечения в процессе симбиоза бесчисленного множества поколений первичных живых существ что прежде чем с головой уходить в рассмотрение интересующего нас феномена, мы исследуем под концептуальным микроскопом все, что происходит в истории индивидуальных взаимодействий. Ведь если мы будем знать, как протекает интересующее нас явление в каждом конкретном случае, и примем во внимание, что на каждой репродуктивной стадии существуют вариации то сможем сжать миллионы лет и увидеть результаты большого (очень большого!) числа повторений одного и того же феномена индивидуального онтогенеза с последующим репродуктивным изменением. На рис. 26 представлена во всем великолепии общая картина истории живых существ от начала до нашего времени.
В целом схема напоминает дерево и поэтому называется филогенетическим древом жизни Филогения есть не что иное, как последовательность органичес ких форм в том порядке, в котором эти формы порождались репродуктивными отношениями. Изменения, происходящие в процессе филогении, составляют филогенетическое, или эволюционное, изменение.
Например, на рис. 27 изображен дрейф конкретной группы многоклеточных — вымерших морских позвоночных, известных под названием <трилобиты». Вариации на каждой репродуктивной стадии в одноклеточной фазе этих животных привели к огромному разнообразию типов внутри группы (что можно проследить в каждый момент истории трилобитов). Каждый из вариантов (каждая из вариаций главной темы) сопряжен с окружающей средой. На протяжении долгого времени существования трилобитов на Земле произошли сильнейшие геологические преобразования; достаточно вспомнить об одном из них, происшедшем около 200 миллионов лет назад в конце так называемого триасового периода. Палеонтологическая летопись свидетельствует о том, что именно тогда оборвалось
Рис. 27 Распространение и вымирание линий в группе трилобитов — животных, существовавших от 300 до 500 миллионов лет назад большинство наследственных линий трилобитов. Иначе говоря, структурные вариации в наследственных линиях трилобитов не оказались взаимодополняющими (комплементарными) по отношению к современным им структурным вариациям окружающей среды. Следовательно, организмы, которые образовали эти наследственные линии, не сохранили адаптации, не произвели потомства, и наследственные линии оборвались. Те же линии в которых этого не произошло, просуществовали на много миллионов лет дольше но в конце концов повторные резкие изменения в окружающей среде привели к полному исчезновению всех наследственных линий трилобитов, поскольку их члены утратили адаптацию.
Изучение ископаемых остатков и палеонтология позволяют нам реконструировать истории аналогичные истории трилобитов, для любой из известных ныне разновидностей животных и растений. В структурной истории живых существ нет ни одного случая, когда бы не выяснилось, что каждая наследственная линия представляет собой частный пример вариации на основную тему — при непрерывной последовательности репродуктивных изменений с сохранением аутопоэза и адаптации.
Заметим, что в данном случае, как и во всех других случаях, отчетливо видно, что существует множество структурных вариаций, способных производить индивидуумов, которые могут выжить в данной окружающей среде. Как было показано ранее, все такие вариации в равной степени адаптивны. Они способны обеспечить продолжение наследственных линий, к которым принадлежат, в конкретной окружающей среде, независимо от того изменяется ли она или не изменяется, по крайней мере на протяжении нескольких тысяч лет. Но этот же пример показывает, что различные наследственные линии, создаваемые разнообразными структурными вариациями, отличаются имеющимися у них возможностями непрерывного поддержания своего вклада в групповое разнообразие в изменяющейся окружающей среде Мы видим это, оглядываясь назад: существуют исчезающие наследственные линии; это означает, что присущие им структурные конфигурации не позволяют сохранить организацию и адаптацию, необходимые для продолжения их существования В процессе органичес кой эволюции все возможно, если выполняется обязательное условие онтогенеза — наличествует репродукция. Репродукция есть необходимость; в противном случае неизбежно происходит вымирание. В дальнейшем мы увидим, сколь важную роль играют эти условия в когнитивной истории живых существ.
Естественный дрейф
Посмотрим на чудесное древо органической эволюции, опираясь на следующую аналогию. Представьте себе холм с остроконечной вершиной. Вообразите, будто вы находитесь на вершине и скатываете оттуда капли воды, одну за другой, всегда в одном и том же направлении, хотя (из-за механики ваших действий) они начинают свое движение по-разному. Представим себе, что каждая скатывающаяся капля оставляет след — своеобразную запись своего спуска по склону.
Ясно, что при многократном повторении эксперимента мы будем получать слегка различные результаты. Одни капли будут скатываться прямо вниз, другие будут встречать на своем пути преграды и по-разному огибать их — из-за небольших различий в массе или начальном импульсе. Ветер может слегка меняться и вынуждать капли отклоняться от первоначального направления или двигаться по извилистой линии, кроме того, следы от предыдущих капель, оставшиеся на поверхности, сделают ее неоднородной, и так до бесконечности.
Представим себе, что мы провели серию таких экспериментов, проследив путь каждой капли, и прочертили на склоне холма все траектории так, будто все капли пущены разом. Мы получим картину, напоминающую ту, которая изображена на рис. 28.
На ней адекватно представлены траектории многочисленных естественных дрейфов капель воды по склону холма — результат различных отдельных вариантов взаимодействия с неровностями почвы, ветром и т. д. Аналогия с живыми существами очевидна. Вершина и выбранное начальное направление эквивалентны обыкновенному анцестральному организму, порождающему потомков с легкими структурными изменениями. Многократное повторение эквивалентно многим наследственным линиям, берущим начало от этих потомков. Разумеется, холм олицетворяет среду, окружающую живые существа. На протяжении истории она изменяется отчасти независимо оттого, каким образом развиваются живые существа, а отчасти зависимо от них, что в нашей модели соответствует уменьшению высоты. В то же время непрерывное скатывание водяных капель по склону холма при неизменном сохранении убыли потенциальной энергии мы связываем с сохранением адаптации. В нашей аналогии мы опустили репродуктивные стадии, поскольку в наши намерения входило представить развертывание наследственных линий, а не их формирование.
Приведенная аналогия показывает, что естественный дрейф происходит только по тем направлениям, которые возможны в каждый момент, часто без больших вариаций во внешнем виде организмов (фенотипе) и с многочисленными разветвлениями в зависимости от того, какого рода отношения между организмом и окружающей средой сохраняются. Организмы и окружающая среда изменяются независимо: организмы — на каждой репродуктивной стадии, окружающая среда — в соответствии с различными динамическими процессами. На пересечении изменчивостей организма и окружающей среды появляются фенотипическая стабилизация и увеличение разнообразия — в результате все того же процесса сохранения адаптации, а также ауто-поэз, причем результат зависит от того, когда происходит пересечение: стабилизация возникает, когда окружающая среда изменяется медленно, увеличение разнообразия и распространение — когда изменение окружающей среды происходит резко. Таким образом, постоянство и изменчивость наследственных линий зависят от взаимодействия исторических условий, при которых живут организмы, и свойств, присущих им как индивидуумам. По этой причине при естественном дрейфе живых существ возникнет немало удивительных форм, многие из которых вымрут, но целого ряда теоретически всевозможных форм мы вообще никогда не увидим.
Если мы посмотрим на траектории естественного дрейфа сверху, перед нами предстанет иная картина. Первичная форма окажется в центре, а от нее во все стороны будут отходить наследственные линии, наподобие ветвей, расходящихся от ствола и простирающихся до тех пор, покуда принадлежащие этим ветвям организмы продолжают дифференцироваться от первоначальной формы (рис. 29).
При таком подходе отчетливо видно, что большинство наследственных линий живых существ, которых мы наблюдаем в настоящее время, в самом главном сходны с первыми аутопоэзными единствами, такими, как бактерии или сине-зеленые водоросли Все эти наследственные линии имеют эквивалентные истории, берущие начало в центральной точке. Некоторые траектории удаляются от центра, образуя разнообразие многоклеточных существ. Часть из них удаляются еще сильнее, чтобы дать высших позвоночных: птиц и млекопитающих. Как и в аналогии с каплями стекающей воды, при достаточном числе случаев и при наличии достаточно большого времени могут возникнуть многочисленные наследственные линии, простирающиеся весьма далеко. Некоторые из этих линий обрываются, поскольку настает момент, как зто было отмечено в случае трилобитов, когда порождаемое репродуктивное разнообразие становится несоизмеримым с изменением окружающей среды, и способность сохранять адаптацию исчезает, так как организмы уже не способны к репродукции в данной окружающей среде.
В системе биологических наследственных линий имеется немало траекторий, просуществовавших миллионы лет с весьма немногочисленными вариациями относительно основной формы, множество траекторий, породивших новые формы, и, наконец, многочисленные траектории, которые оборвались, не оставив после себя ни одной ветви, дожившей до настоящего времени. Но во всех этих случаях наследственные линии, покуда они существуют формируются под действием филогенетических дрейфов, в которых сохраняются организация и адаптация организмов. Кроме того, эволюционный путь различных наследственных линий определяется не вариациями в окружающей среде, которые может видеть наблюдатель, а направлением на сохранение структурной сопряженности организмов в их собственной окружающей среде (нише), которую они определяют и вариации которой могут быть не замечены наблюдателем. Кто может наблюдать мельчайшие изменения силы ветра, почвы или электростатических зарядов, которые могут вызывать изменения траекторий капель воды, изображенных на рис. 29? Физик в отчаянии опускает руки и толкует лишь о случайных флуктуациях. Тем не менее он знает, что в основе любой наблюдаемой ситуации лежат детерминированные процессы. Иначе говоря, физику известно, что для описания того, что происходит с каплями воды, ему необходим детерминистский, практически недостижимый протокол, который все же можно проигнорировать, заменив вероятностным описанием. Такое описание предсказывает класс явлений, которые могут произойти, но необязательно происходят в данном конкретном случае.
Пытаясь понять феномен эволюции, биолог оказывается в аналогичной ситуации. Но интересующие биолога явления управляются законами, весьма отличными от тех, которые управляют физическими явлениями, в чем мы могли убедиться, когда рассматривали сохранение тождества и адаптации. Например биолог легко может описать важнейшие линии эволюции в истории живых существ, линии, базирующиеся на структурном сопряжении живых существ с изменяющейся окружающей средой (таковы, например, изменения окружающей среды, о которых мы упоминали, когда речь шла о трилобитах). Но и биолог в отчаянии опускает руки, когда пытается объяснить детально трансформации какой-нибудь группы животных. Для этого биологу пришлось бы реконструировать не только все вариации окружающей среды, но и то, каким именно способом данная группа компенсировала флуктуации в соответствии с уровнем ее собственной структурной пластичности. Короче говоря, мы вынуждены описывать каждый конкретный случай как результирующую
Рис. 29. Естественный Дрейф живых существ. Степень сложности организмов возрастает по мере удаления от общего предка.
Как было сказано, любое живое существо до тех пор, пока не погибнет, адаптируется к окружающей среде, и поэтому его состояние адаптации есть инвариант, т. е сохраняется неизменным. Утверждалось также, что в этом смысле все живые существа, покуда они живы, остаются одними и теми же Однако нам часто приходится слышать, что все существа более или менее адаптировались или оказались адаптированными в результате своей эволюции.
Подобно многим описаниям биологической эволюции, которые мы почерпнули из школьных учебников, описание адаптации как переменной {в свете того, что было сказано выше) неадекватно. В лучшем случае наблюдатель может ввести некий масштаб для сравнения или референтного соотнесения, что сделает возможным сравнение и позволит говорить об эффективности реализации той или иной функции Например, можно было бы измерить эффективность потребления кислорода у различных групп водных животных и показать, что некоторые организмы потребляют меньше кислорода при условиях, требующих одинаковых усилий Можно ли сказать, что организмы, потребляющие меньше кислорода, отличаются большей эффективностью и лучше приспособились9 Заведомо нет, поскольку, покуда они живы, все организмы удовлетворяют требованиям непрерывного онтогенеза. Что же касается сравнения их эффективности, то такие описания не связаны напрямую с тем, что происходит в отдельных историях сохранения адаптации случайных вариаций, так как мы можем только a posteriori сказать, каким образом происходила трансформация группы. Точно так же мы наблюдали бы за дрейфующей лодкой, движения которой зависят от изменений силы и направления ветра и волн, уловить которые мы не можем.
Рис. 30. Различные способы плавания
Эволюция: естественный дрейф
Чтобы понять нашу книгу, важно иметь в виду, что сказанное нами относительно органической эволюции достаточно для понимания основных особенностей явления исторической трансформации живых существ. Прослеживать же детали механизмов, лежащих в основе такой трансформации, нет необходимости.
Например, мы лишь бегло коснулись того, какое научное объяснение современная популяционная генетика дает некоторым аспектам явления, названного Дарвином «изменение через наследование»'. Аналогичным образом, мы не останавливались на том вкладе, который внесло изучение ископаемых в детальное знание эволюционных превращений многих видов.
На самом деле, мы не располагаем единой картиной того, как происходит эволюция живых организмов во всех ее аспектах. Существует ряд научных школ, которые всерьез ставят под сомнения понимание эволюции посредством естественного отбора; такая точка зрения была распространена в биологии на протяжении более чем шестидесяти лет. Но какие бы новые идеи относительно эволюционных механизмов ни появлялись, они не могут игнорировать существование самого феномена эволюции. В то же время эти идеи позволяют нам избавиться от широко распространенной точки зрения на эволюцию как на процесс последовательной, все более совершенной адаптации живых организмов к окружающей среде путем оптимизации ее использования. Мы предлагаем иное понимание: эволюция происходит в процессе структурно* го дрейфа при непрекращающемся филогенетическом отборе. В таком процессе нет прогресса или оптимизации в использовании окружающей среды, но только сохранение адаптации и аутопоэза. Это процесс, в котором организм и окружающая среда остаются в постоянном структурном сопряжении
Таким образом, мы можем сказать, что одна из наиболее интересных особенностей эволюции заключается в том, каким образом внутренняя согласованность, или когерентность, группы живых существ компенсирует конкретное возмущение. Например если происходит существенное изменение температуры на Земле, то продолжить свою филогению смогут только те организмы, которые способны выжить в новых диапазонах температур. Но компенсировать температурные изменения можно многими способами: отрастив густой мех, изменив скорость обмена веществ, совершая массовые миграции и т. д. В каждом случае мы видим, что адаптация к холоду требует перестройки всего организма: например, более густой мех с необходимостью приводит к коррелятивным изменениям не только волосяного покрова и мышц, но и способов распознавания живошыми одной группы друг друга, а также механизмов регуляции мышечного тонуса при движении. Иначе говоря, поскольку любая аутопоззная система представляет собой единство многочисленных взаимозависимостей, при изменении одного параметра системы весь организм одновременно претерпевает коррелятивные изменения по многим параметрам. Вместе с тем ясно, что такие коррелятивные изменения хотя и кажутся нам связанными с изменениями в окружающей среде, в действительности возникают не из-за них, а берут начало в структурном дрейфе, который происходит при «столкновениях» между операционально независимыми организмом и окружающей средой. Поскольку нам известны не все факторы, обусловливающие такие «столкновения», структурный дрейф представляется нам случайным процессом. В том, что это не так, мы убедимся при изучении того, как когерентное целое, образующее организм, претерпевает структурные изменения.
Итак, подведем итоги. Эволюция представляет собой естественный дрейф, продукт сохранения аутопоэза и адаптации. Как и в случае с каплями воды, для возникновения разнообразия форм и дополнительности, или комплементарное™, между организмом и окружающей средой не нужна внешняя направляющая сила. Она также не требуется ни для объяснения направленности наследственных изменений, ни для понимания того, как произошла оптимизация какого-нибудь конкретного свойства живых существ. Эволюция чем-то напоминает скульптора с неутолимой страстью к странствиям: бродя по свету, он подбирает то веревочку, то обрезок жести или обрубок дерева, а потом сооружает из своих находок некую конструкцию, объединяя их так, как позволяют структура находок и обстоятельства, лишь по одной единственной причине, которая заключается в том, что их можно объединить. И в результате таких странствий на свет появляются великолепнейшие формы; они состоят из гармонично взаимосвязанных частей, которые являются продуктом не тщательно продуманного плана, а естественного дрейфа. Именно так, по велению единственного закона — сохранения тождества и способности к репродукции — появились на свет все мы. Именно это и связывает нас в самом главном со всеми существами: с пятилепестковой розой, с креветкой в водах бухты или со служащим в Нью-Йорк Сити.