Атомная катастрофа на Урале

Медведев Рой

Медведев Жорес Александрович

Фактор Чернобыля в мировой энергетике

 

 

* * *

Полностью разрушенную первой атомной бомбой Хиросиму начали возрождать через несколько лет после взрыва. Через 10 лет это был уже город почти прежней величины, несмотря на то что около 130 тысяч человек погибли там от радиационных поражений и взрывной волны. Взрыв одного из четырех реакторов Чернобыльской АЭС в ночь на 26 апреля 1986 г. не разрушил ни одного жилого дома и даже не остановил сразу работу самой АЭС. Остальные реакторы продолжали работать и давать электроэнергию еще несколько часов. Но через десять лет после этой аварии опустошенные эвакуацией города и деревни прилегающих к Чернобылю районов Украины и Беларуси по-прежнему остаются пустыми. Жить на этой территории, превышающей 1 000 км2 и сильно загрязненной радионуклидами, нельзя еще и через 300–400 лет. Там будут работать лишь экологи и генетики, изучая влияние разных уровней хронической радиации на растения и животных. Экономическая цена чернобыльской аварии за десять лет составила, по подсчетам экспертов, около 200 млрд долларов. Но это были лишь расходы и потери первого десятилетия. Чернобыльская авария будет собирать свою дань, оплачиваемую не только деньгами, но и жизнями людей, еще несколько столетий.

По традиции каждую годовщину чернобыльской аварии отмечают научными конференциями в Киеве, Минске, Москве и в нескольких научных центрах Западной Европы. Медики сообщают динамику различных заболеваний на территориях с сильно повышенным уровнем радиоактивности. Экологи следят за частотой мутаций и морфологических и функциональных изменений разных видов флоры и фауны. Геохимики изучают распространение радионуклидов в почвенных и подпочвенных горизонтах и смыв их в реки, озера и моря. В результате всех этих исследований картина того ущерба, который принесла людям чернобыльская авария, становится все более и более полной. Но это лишь одна сторона так называемых последствий Чернобыля. Любые катастрофы на суше, на море и в воздухе, случающиеся с определенной частотой во всех странах мира, имеют, как мы знаем, две стороны – трагическую и поучительную. Трагические последствия аварий мы ощущаем сразу, но извлекаем уроки лишь через много лет, после реализации комплекса мер, которые делают повторение подобных же аварий менее вероятным. Именно так, через уроки аварий и трагедий, движется вперед наша техногенная цивилизация. Десятилетняя годовщина чернобыльской аварии провоцирует на то, чтобы взглянуть на ее последствия также с другой, более объективной стороны.

Появление экспериментальных атомных электростанций относится к середине 50-х годов. В Великобритании и СССР для энергетических целей пытались приспособить уран-графитовые реакторы, которые изначально предназначались лишь для производства оружейного плутония. Графит обеспечивал замедление нейтронов и поддержание цепной реакции. В США прототипом для реакторов АЭС послужили реакторы, созданные для двигателей атомных подводных лодок. В этих более компактных реакторах замедлителем нейтронов, поддерживающим цепную реакцию распада урана-235, служила вода. В уран-графитовых реакторах цепная реакция регулировалась особыми стержнями – поглотителями нейтронов. Эти же стержни служили и дли аварийной остановки реактора. Такие же стержни регулировали и работу реакторов американского типа. Но у них цепная реакция мгновенно останавливалась и просто при потере воды – это была так называемая пассивная защита, делавшая их более безопасными. «Максимальной» аварией для таких реакторов могли быть потеря охлаждения и медленное расплавление активной зоны под влиянием накопленных в ней горячих радиоактивных продуктов распада урана. «Максимальной» аварией уран-графитового реактора мог быть взрыв, то есть мгновенное расплавление топлива, вызванное продолжающейся цепной реакцией распада самого урана в том случае, если по тем или иным причинам потеря охлаждения совпадала с невозможностью быстро ввести в активную зону контрольные стержни защиты. Такая авария считалась весьма маловероятной, но именно она и произошла в Чернобыле.

 

Прямой и косвенный эффект чернобыльской аварии

Прямой эффект чернобыльской аварии был крайне тяжелым, десятки людей погибли от острой лучевой болезни. Сотни тысяч жителей были переоблучены, и их здоровью был нанесен существенный ущерб. Около 130 тысяч жителей Украины и Беларуси были эвакуированы с сильно загрязненных территорий вскоре после аварии и около 100 тысяч в последующие четыре года. Большие территории трех республик были выключены из сельскохозяйственного использования. Дорогостоящие меры защиты населения от радиации принимались во всех странах Европы.

Косвенный эффект Чернобыля распространился еще шире – по всему миру, и в тот период, в конце 1986 г. и в 1987 г., он также воспринимался как нечто трагическое. Замораживалось строительство множества атомных электростанций и откладывались проекты атомной электрификации разных стран. Были почти повсеместно остановлены проекты атомных станций теплоснабжения, которые намечалось строить вблизи крупных городов. Остановились программы строительства реакторов на быстрых нейтронах, в которых топливом является плутоний. Всемирный план перехода от органических энергоносителей, ресурсы которых ограниченны, к атомной энергетике был на какой-то период отложен для серьезной ревизии. Но, как стало очевидно уже через несколько лет, именно этот косвенный эффект Чернобыля оказалось возможным классифицировать как положительный. До 1986 г. мир входил в век атомной энергии слишком стремительно, но явно преждевременно и под влиянием случайных причин. Остановка на этом пути, даже вызванная чернобыльской трагедией, в историческом плане оказалась оправданной.

В 60-е годы, когда и в США, и в Европе, и в СССР появились первые АЭС, атомное электричество было еще дорогим и программы его развития считались экспериментальными. Нефтяной кризис, вызванный арабо-израильской войной 1973 г., резко изменил ситуацию. Стремительный рост цен на нефть вызвал энергетическую панику в Европе, США и в Японии. В течение предыдущего десятилетия повсеместно происходило переоборудование электростанций с угля на дешевую нефть. В 50-е годы 80 % электричества, например, а Японии получалось за счет сжигания угля, 14 % обеспечивали гидроэлектростанции и только 6 % генерировалось сжиганием нефти и нефтепродуктов. К 1969 г. за счет нефти обеспечивалось уже 70 % всей энергии, потребляемой в Японии. Такие же сдвиги происходили и в других странах, так как нефть, стоившая всего 2 доллара за баррель, в течение 15 лет, с 1958 по 1973 г., была более дешевым индустриальным топливом, чем уголь. Внезапно, в течение всего лишь трех лет – с 1973 по 1976 г. – цена на нефть повысилась почти в 10 раз и продолжала расти. В этих условиях атомная энергия воспринималась как спасение. В очень короткий срок, с 1974 по 1986 г., в разных странах было построено около 250 новых энергетических реакторов разного типа. К 1986 г. Франция получала 70 % всей электроэнергии от АЭС, Бельгия – 67, Швеция – 50, США – 25 %.

Советский Союз включился в атомную энергетическую гонку с некоторым опозданием и по другой причине. Рост мировых цен на нефть делал для СССР более выгодным увеличивать экспорт нефти, переводя генерацию электричества для собственных нужд на атомное топливо. В 1973 г. в СССР было 13 энергетических реакторов, причем на главных АЭС того периода – Курской, Смоленской, Ленинградской и Чернобыльской – ставились реакторы первого поколения с графитовыми замедлителями нейтронов, известные как РБМК-1000. В начале 70-х годов СССР не обладал техническими возможностями для строительства водо-водяных реакторов (ВВЭР) мощностью 1 000 МВт. ВВЭР мощностью 440 МВт строились в отдаленных местах (в Армении, на Кольском полуострове), а также шли на экспорт в Восточную Европу. В конце 70-х годов, когда мировые цены на нефть достигли максимального уровня в 40 долларов за баррель, была, тогда еще при Брежневе, принята программа быстрого строительства атомных реакторов. К 1986 г. были введены в действие 49 энергетических реакторов разного типа, включая РБМК-1500, и более 20 реакторов находились на разных стадиях строительства. Почти половина программы базировалась на постройке реакторов так называемого чернобыльского типа, причем уже были проекты увеличить мощность отдельных блоков с 1 000 до 2 500 МВт. По планам предполагалось построить в 1985–1990 гг. 40 крупных энергетических реакторов и еще почти 100 к 2000 г. По производству атомного электричества СССР планировал перегнать США, где работало 109 энергетических реакторов, почти в два раза. Это было реально, но преждевременно и неразумно.

Сходную программу быстрого перехода на атомную энергетику имела в 1986 г. и Япония, желавшая утроить в перспективе производство атомного электричества. Между 1986 и 2010 г. Япония планировала построить 58 новых энергетических реакторов и еще 64 в последующие 20 лет. Все эти планы были заморожены после чернобыльской аварии, и это, как выяснилось, очень быстро принесло в перспективе большие экономические выгоды.

 

Возврат к прежнему топливу

Строительство АЭС обходится значительно дороже, чем строительство электростанций на органическом топливе. Экономические преимущества АЭС возникают лишь при длительной эксплуатации за счет компактности уранового топлива, что резко снижает транспортные расходы. АЭС не загрязняют атмосферу углекислотой и другими окислами и не создают «кислотных дождей». Но всякая тяжелая авария на АЭС сопровождается введением множества новых требований по безопасности к проектировщикам, строителям и эксплуатационникам, что увеличивает сроки строительства и стоимость АЭС. Чернобыльская авария привела к необходимости существенных модификаций всех уже построенных в СССР реакторов РБМК-1000 и 1500, а также обусловила новые требования и к реакторам ВВЭР-440 и 1000, прежде всего к их контрольно-измерительной аппаратуре и системам автоматики и защиты. Серьезно пересматривались и системы безопасности реакторов в других странах. Новые требования по безопасности увеличивали стоимость атомного электричества. В то же время цены на нефть и другие виды органического топлива неожиданно начали падать именно в 1986 г. К лету 1986 г. баррель нефти стоил уже только 10 долларов, что с учетом инфляции означало возвращение на уровень 60-х годов. Атомное электричество было относительно наиболее дешевым в 1980–1985 гг. Но с 1986 г. самым дешевым снова стало электричество, получаемое при сжигании нефти или мазута. Еще через два года наиболее простыми и дешевыми оказались электростанции, использовавшие природный газ. Такие газотурбинные электростанции меньше, чем нефтяные, загрязняли атмосферу. Дешевые нефть и газ опровергали и те расчеты советских плановиков, которые лежали в основе наращивания экспорта углеводородных энергоносителей с одновременной заменой тепловых электростанций на АЭС. Если бы к 1990 г. в СССР были действительно построены и введены в действие 40 новых реакторов и начато строительство еще 30–40 блоков, то это принесло бы лишь убытки. Возобладавшая после Чернобыля тенденция строить электростанции, использующие природный газ, оказалась экономически вполне оправданной. В настоящее время в России почти 60 % всего электричества генерируется электростанциями, работающими на природном газе.

 

Экономические ниши для атомных электростанций

АЭС к настоящему времени, безусловно, утратили возможность стать в недалекой перспективе главным источником электроснабжения в большинстве стран мира. Но атомная энергетика, существенно улучшившая показатели безопасности, продолжает сохранять свое значение для многих стран и регионов. Это относится, например, к Японии, Корее и Тайваню, которые не имеют собственных ресурсов нефти, газа и даже угля и для которых дешевое углеводородное топливо становится дорогим из-за расходов на транспортировку протяженностью 10–15 тысяч километров. При этом каждая новая авария нефтяных танкеров и супертанкеров резко увеличивает стоимость страхования транспортных операций. Поэтому на Дальнем Востоке осуществляются, хотя и медленнее, программы строительства АЭС и накопления уранового и плутониевого топлива. Советский Дальний Восток нуждается в АЭС по тем же причинам. В России, на Украине, в Восточной и Западной Европе и в США в последние 10 лет не было начато строительство ни одной новой АЭС. Однако не быстро, но завершалось строительство реакторов, которые в 1986 г. были уже близки к этому. Естественно, что в проекты таких станций вносились многочисленные модификации. В СССР в 1989–1990 гг. из-за усилившейся антиядерной пропаганды остановилось и такое строительство, хотя это означало замораживание уже затраченных огромных инвестиций. После дезинтеграции СССР Россия возобновила работы по вводу в действие реакторов, строительство которых было почти завершено к 1986 г. В 1993 г. был введен в действие четвертый реактор ВВЭР-1000 на Балаковской АЭС. Возобновились работы по завершению строительства третьего реактора ВВЭР-1000 на Калининской АЭС и пятого реактора РБМК-1000 на Курской АЭС. Такой же реактор будет, очевидно, завершен и на Смоленской АЭС.

Армения, лишенная всех источников органического топлива, решила реактивировать Армянскую АЭС, закрытую после землетрясения в 1988 г. Серьезное переоборудование этой АЭС, состоящей из двух блоков ВВЭР-440, финансировалось армянской диаспорой. Введение одного из этих реакторов в эксплуатацию в декабре 1995 г. отмечалось почти как национальный праздник. Ослабились антиядерные настроения и в независимой Украине. Нефть и газ являются сейчас дешевым топливом, но оплачивать их нужно твердой валютой, которой Украина не имеет. Но зато на Украине есть месторождения урана и большое количество высокообогащенного оружейного урана из демонтируемых атомных бомб и боеголовок. Поэтому украинское правительство намерено достраивать ранее начатые реакторы на нескольких АЭС (Запорожской, Хмельницкой и Николаевской), если западные страны предоставят для этого необходимые кредиты. Украина всячески противится требованию западных стран о закрытии двух чернобыльских реакторов РБМК-1000, которые все еще работают, хотя их безопасность была признана неудовлетворительной международными агентствами. В настоящее время на Украине почти 40 % электричества генерируют АЭС. В таком же положении находятся Болгария, Венгрия и Словакия, продолжающие эксплуатацию старых советских реакторов ВВЭР-440 и ВВЭР-1000, так как у этих стран нет средств на финансирование их модернизации. Но наиболее зависимой от атомной электроэнергии оказалась Литва. 87 % всех ее энергетических потребностей обеспечивается двумя реакторами РБМК-1500, которые также пополняют бюджет республики экспортом электроэнергии.

 

Атомные перспективы России

Атомная энергия, обеспечивающая в настоящее время около 12 % производства электроэнергии в России (9 АЭС, имеющие 29 энергоблоков), по-видимому, увеличит свою долю в энергетическом балансе лишь за счет завершения тех проектов, строительство которых было начато до 1986 г. В ближайшие 20 лет будет также происходить замена старых реакторов, отработавших свой ресурс, новыми. Новое поколение реакторов в России – это водо-водяные реакторы ВВЭР-640 с повышенным уровнем безопасности, но с уменьшенной мощностью. Кроме этого, предполагается утилизация реакторов подводных лодок и военных судов (мощность от 3 до 50 МВт) в качестве плавучих АЭС для прибрежных районов Арктики и Дальнего Востока. За счет таких мини-АЭС предполагается, в частности, электрификация Курильских островов. Атомные подводные лодки планируется использовать и для подледной перевозки грузов в Арктике. Для этого их ракетные и торпедные отсеки переоборудуются в грузовые. Осенью 1995 г. Военно-морской флот РФ провел успешную экспериментальную доставку грузов из Мурманска к полуострову Ямал. Подводная лодка-ракетоносец без ракет находилась под водой и подо льдами около месяца. Существует несколько других интересных конверсионных проектов, реализация которых пока идет медленно из-за отсутствия финансирования. Российские реакторы и уран идут также на экспорт, в частности в Иран и Китайскую Народную Республику.

Развитие атомной энергетики в России считается экономически оправданным по той простой причине, что эта отрасль топливно-энергетического комплекса (ТЭК) не нуждается в добыче топлива. В России существуют запасы обогащенного урана, которых достаточно для перегрузок реакторов до 2030 г. К ним добавляются большие объемы оружейных урана и плутония, которые также можно сжигать в особых реакторах. Главной трудностью атомной промышленности является отсутствие финансирования. По потреблению электроэнергии и населением, и промышленностью Россия (как и СССР) давно находится на уровне таких западных стран, как ФРГ, Франция, Великобритания. Однако государство щедро субсидировало производство электроэнергии (так же, как и газа, угля и нефти). Топливно-энергетический комплекс является сейчас главным препятствием для полного перехода страны к рыночной экономике. До начала реформ население платило за киловатт-час электричества 4 коп., промышленность – 3 коп., сельское хозяйство – 1,8 коп. При таких ценах электростанции не получали никаких прибылей и все строительные и модернизационные проекты обеспечивались из государственного бюджета. Попытки повысить цены привели к неплатежам. Хотя и сейчас, в начале 1996 г., электроэнергия продается потребителям по ценам в 4–5 раз ниже мировых (около 150 руб. за киловатт-час), потребители задолжали за электроэнергию 39 триллионов рублей, а энергетические линии снабжения задолжали электростанциям 31 триллион рублей. При этом главными неплательщиками оказались бюджетные предприятия, школы, институты, университеты и военные объекты. В России сейчас потребляется в год почти триллион киловатт-часов электроэнергии, что равно потреблению электроэнергии в Германии, Франции и Австрии вместе взятых. Между тем доходы населения в России не менее чем в 5–6 раз (в среднем) ниже, чем в Западной Европе. Такова же ситуация с централизованным теплоснабжением и газоснабжением населения и промышленности. Россия – северная страна с суровым климатом и огромными расстояниями. Государственные субсидии на электроэнергию и тепло не сможет отменить ни одно даже самое реформаторское правительство. Именно на этом рубеже обеспечения дешевого тепла, газа и света для населения командно-административная экономика социализма будет вести свое главное сражение с законами рынка и прибыли. Но в истории и СССР, и всего мира значение Чернобыля далеко выходит за пределы лишь энергетики. Перестройка и гласность реально появились в СССР лишь после Чернобыля. До этого главным лозунгом было «ускорение». Можно также не сомневаться и в том, что без Чернобыля, принесшего несчастье прежде всего народам Украины и Беларуси, эти славянские республики не имели бы тех эмоциональных факторов и всплесков национализма, которые толкнули их на столь поспешное объявление независимости и на распад СССР.

Март, 1996