Механические свойства.

Плотность. Плотностью называется отношение массы тела к его объему, измеряется в кг/м куб.

Плотность стекол зависит от химического состава, Значительно повышают плотность оксиды тяжелых металлов. В состав самых тяжелых стекол (так называемых флинтов) входит много свинца, в состав легких стекол – окислы элементов с малым атомным весом – лития, бериллия, бора.

Плотность технических стекол в зависимости от их химического состава колеблется в пределах от 2200 до 6300 кг/м куб. Плотность стекол, применяемых для производства сортовой посуды и декоративных изделий из стекла: цветных и бесцветных натрий-кальций-силикатных 2490-2520 кг/м куб, свинцовых хрусталей 2400-3200 кг/м куб, бариевых хрусталей 2700-2900 кг/м куб.

Плотность стекол в некоторой степени зависит от температуры: с повышением температуры плотность стекол уменьшается и соответственно увеличивается удельный объем. Плотность отожженных стекол больше, чем закаленных, т.к. закаленное стекло имеет более рыхлую структуру из-за того, что при закалке в стекле замораживается высокотемпературная структура. При отжиге же стекла структура уплотняется. Плотность хорошо и плохо отожженных стекол различается на 20-30 кг/м куб.

Степень постоянства плотности и, следовательно, химического состава стекла в различных точках образца или изделия характеризует однородность стекла. Однородность определяют методом разделения порошка стекла по плотности и оценивают температурным интервалом между началом и концом всплывания частиц стеклянного порошка в жидкости при центрифугировании: чем меньше этот интервал, тем выше однородность стекла. Для сортовых и художественных стекол однородность характеризуется интервалом до 3 градусов C.

Прочность. Прочностью называется свойство материалов, не разрушаясь, воспринимать те или иные воздействия: нагрузки, температурные, магнитные, электрические поля, неравномерное протекание физико-химических процессов и т.д.

Прочность характеризуется пределом прочности. В зависимости от разрушающих усилий различают прочность на удар, разрыв, сжатие, изгиб и вдавливание. Стекло обладает сравнительно высокой прочностью на сжатие и относительно низкой на удар. Прочность стекла зависит от состояния его поверхности (наличие на поверхности стекла каких либо повреждений – трещин, царапин – снижает прочность стекла в 4-5 раз), в меньшей степени от химического состава, степени отжига, однородности, размера, состояния окружающей среды и температуры. Температурная зависимость прочности стекла имеет сложный характер, минимальная прочность стекла – в интервале 150-200 градусов С. Увеличение прочности при белее высоких температурах связано с уменьшением поверхностного поглощения влаги и опасных перенапряжений у микротрещин.

Хрупкость. Хрупкостью называют материалы, которые при небольшом превышении их прочности внезапно разрушаются. Хрупкость стекол определяется их прочностью на удар. Хрупкость материала при ударных нагрузках называется ударной вязкостью.

Хрупкость стекла зависит от состояния поверхности, толщины образца, однородности, конфигурации изделия. Разрушение стекла обычно начинается с поверхности вследствие образования и роста микротрещин. Чем меньше в стекле посторонних включений, чем оно более однородно, тем выше его хрупкость. Хрупкость стекла зависит от состава в незначительной степени.

Твердость. Под твердостью понимают способность материала оказывать сопротивление проникновению в него более твердого материала. Твердость стекла зависит от его химического состава. Наиболее твердые – кварцевые стекла, а также некоторые боросиликатные стекла, наиболее мягкие – многосвинцовые силикатные стекла. Повышенная твердость стекла затрудняет его механическую обработку. Преодолевают этот недостаток введением в состав стекла щелочных оксидов и оксидов свинца. Твердость стекла оценивают его микротвердостью, которая определяется на приборе путем вдавливания в стекло под нагрузкой алмазной пирамиды: размер отпечатка пирамиды в стекле тем меньше, чем выше его твердость.

Химическая устойчивость. Химической устойчивостью называют способность материала противостоять разрушающему действию воды, газов, растворов солей и иных химических реагентов. Это одно из важнейших свойств стекла, так как на стекло, находящееся в эксплуатации, постоянно воздействует какой-нибудь реагент.

Стекло по сравнению с другими материалами обладает высокой химической устойчивостью. Слабое взаимодействие со стеклом химических реагентов, кроме плавиковой кислоты, объясняется наличием на его поверхности защитной кремнеземной пленки. Химическая устойчивость стекла и механизм его разрушения подробно изучены. Природу химической устойчивости силикатных стекол и механизм их разрушения можно представить следующим образом. При воздействии воды или влаги воздуха на стекло силикаты поверхности гидролизуются. Щелочные силикаты при этом распадаются на едкую щелочь и гель кремниевой кислоты. Щелочь, как правило, вымывается из стекла дополнительно воздействующей влагой, а гель кремниевой кислоты остается на поверхности стекла в виде более или менее равномерного слоя. Этот то слой и замедляет разрушение стекла, так как по мере утолщения защитной пленки геля уменьшается скорость разрушения силикатного стекла. Стекла, не содержащие кремнезема – фосфатные или боратные – разрушаются иначе. Устойчивость таких стекол во много раз уступает устойчивости силикатных стекол и определяется она скоростью их растворения в том или ином реагенте. В данном случае, как правило, защитной пленки, замедляющей дальнейший процесс разрушения, не образуется.

Плавиковая кислота реагирует с поверхностной кремнеземовой пленкой, вследствие чего происходит обнажение поверхности стекла и процесс его растворения под действием плавиковой кислоты продолжается. На этой способности стекла растворяться в плавиковой кислоте основана химическая обработка стекла.

Химическую устойчивость стекла определяют по разности веса образца до и после опыта. Для этого приготавливают порошок из испытуемого стекла или массивный образец стекла. Перед опытом точно взвешивают испытуемый образец. После этого его подвергают обработке кипячением в избранной агрессивной среде. Затем образец тщательно высушивают и взвешивают на аналитических весах. Потеря стекла в весе и характеризует его химическую устойчивость. Химическую устойчивость определяют и титрированием кислотой (HCl) раствора, в котором было обработано испытуемое стекло. В данном случае химическую устойчивость определяют количеством кислоты, затраченной на титрирование: чем больше кислоты затрачено на титрирование, тем меньше химическая устойчивость стекла.

При подборе химического состава стекол руководствуются прежде всего тем, в каких условиях они будут использоваться, т.е. какие реагенты на них будут действовать. Химическая устойчивость силикатных стекол в основном зависит от их химического состава и определяется содержанием в них кремнезема, который всегда и значительно увеличивает химическую устойчивость стекла; щелочные же окислы, как правило, понижают ее. В отношении других компонентов можно сказать, что они ведут себя по отношению к различным реагентам по-разному. Калиево-натриевые стекла более стойки, чем чисто натриевые или чисто калиевые.

Изделия из стекла при эксплуатации в основном подвергаются воздействию воды, поэтому определяют водостойкость стекол методом выщелачивания поверхности зерен стекла под воздействием воды.

Оптические свойства. Оптические свойства стекол связаны с особенностями взаимодействия световых лучей со стеклом. Благодаря декоративной обработке стекла создаются разнообразные оптические эффекты, при которых изделие приобретает ему одному свойственный вид.

Преломление – это изменение направления распространения света при его переходе из одной среды в другую, отличающуюся от первой значением скорости распространения.

При прохождении луча света из среды А в среду В с иной плотностью (рис. 6) он меняет свое направление на границе этих сред, так как скорость распространения света в средах А и В обратна их плотности.

Для примера проанализируем путь луча света (рис. 7) при прохождении его в воздухе и через плоскопараллельную стеклянную пластину.

Падающий луч образует углы с нормалью к поверхности раздела сред в точке падения. Если луч идет из воздуха в стекло, то i (угол падения) больше r (угол преломления), потому что в воздухе скорость распространения световых волн больше, чем в стекле, так как воздух является средой оптически менее плотной, чем стекло, Преломление света характеризуется относительным показателем преломления – отношением скорости света в среде, из которой падает свет на границу раздела, к скорости света во второй среде. Показатель преломления пропорционален плотности прозрачной среды, т.е. чем больше плотность, тем выше значение показателя преломления. Так как плотность стекол выше, чем удельный вес входящих в него окислов, то наибольшим показателем будут обладать стекла, содержащие окислы тяжелых элементов, соответственно наименьшим – содержащие окислы легких элементов.Относительный показатель преломления не имеет размерности и для прозрачных сред «воздух-стекло» всегда больше единцы. К примеру, относительные показатели преломления по отношению к воздуху у воды 1,33, хрустального стекла 1,6, алмаза – 2,47.Дисперсия. Дисперсией называется зависимость показателя преломления от частоты света (длины волны).Для нормальной дисперсии характерно возрастание показателя преломления с увеличением частоты или с уменьшением длины волны. Вследствие преломления лучей с разной длиной волны пучок белого света, проходя через стеклянную призму, разлагается на цветные лучи и образует на экране, установленном за призмой, радужную полосу – призматический (дисперсионный) спектр (рис. 8).

В спектре цвета расположены в определенной последовательности, начиная с фиолетового и заканчивая красным (рис. 9).

Причиной разложения света (дисперсии) является зависимость показателя преломления от частоты света (длины волны): чем выше частота света (короче длина волны), тем выше показатель преломления. В призматическом спектре наименьшей частотой и наибольшей длиной волны обладают красные лучи, а наибольшей частотой и наименьшей длиной волны обладают фиолетовые лучи, следовательно красные лучи преломляются меньше, чем фиолетовые. Дисперсия зависит от состава стекла и возрастает при увеличении содержания в стекле тяжелых окислов, например, PbO. Показатель преломления и дисперсия напрямую зависят от состава стекла, а показатель преломления и от плотности: чем выше плотность, тем выше показатель преломления. Оксиды CaO, BaO, PbO и некоторые другие и щелочные повышают показатель преломления, добавка SiO – снижает. BaO и CaO сильнее влияют на показатель преломления, чем на дисперсию. Для производства высокохудожественных изделий сортовой посуды, подвергающихся шлифованию, используют в основном стекла, содержащие до 30% PbO, так как он наибелее значительно увеличивает показатель преломления и дисперсию.Отражение света. Отражение света – это явление, наблюдаемое при падении света на поверхность раздела двух оптически разнородных сред и состоящее в образовании отраженной волны, распространяющейся от поверхности раздела в ту же среду, из которой приходит падающая волна. Отражение характеризуется коэффициентом отражения, который равен отношению отраженного светового потока к падающему. От поверхности стекла отражается около 4% света.Коэффициент отражения возрастает с увеличением показателя преломления, поэтому стекла, имеющие высокий показатель преломления (содержащие окислы тяжелых элементов), имеют повышенный коэффициент отражения. Эффект отражения усиливается при наличии многочисленных полированных поверхностей. Этой закономерностью широко пользуются при изготовлении хрустальных изделий с алмазной гранью.Если неровности поверхности раздела малы по сравнению с длиной волны падающего света, то происходит зеркальное отражение, а если неровности больше длины волны – диффузное отражение, при котором свет рассеивается поверхностью по всевозможным направлениям. Отражение называется селективным, если коэффициент отражения неодинаков для света с различной длиной волны. Селективным отражением объясняется окраска непрозрачных материалов.