Впервые в жизни я (Лорус) увидел живых мечехвостов во Флориде, около дока в Пасс-а-Грилль, когда исследовал небольшие углубления в песке, залитые водой после отлива. Поймав одного из них, я отнес его на более высокое место, подальше от воды. Мне было тогда 10 лет. Когда мой интерес к этому существу начал пропадать, отец потребовал, чтобы я отнес его обратно к воде. Тогда и произошло открытие: он сам уже отправился к морю. Независимо от того, как он был положен и какие преграды из песка вырастали на его пути, он безошибочно находил дорогу, толкая свое бронированное тело по направлению к волнам. Как же он узнал, куда идти?

Не у одних только мечехвостов сильно развито чувство направления. Множество других животных полагаются на подобные чувства. Однако еще каких-нибудь десяток лет назад самым распространенным объяснением этого явления было то, которое предложили Чарльз Дарвин, Альфред Рассел Уоллес и некоторые другие. По мнению этих выдающихся ученых, животное возвращается обратно по тому же пути, по которому его доставили в незнакомое место. Такой способ казался настолько простым и логичным, что мало кто продолжал размышлять над этой проблемой. На самом же деле животные выбирают самую короткую дорогу, как будто они могут производить триангуляцию и знают направление к родным местам.

Утверждения о том, что существует более сложное чувство направления, не производили на ученых никакого впечатления до тех пор, пока они исходили главным образом от любителей домашних животных. Все эти истории казались неправдоподобными, преувеличенными и неполными. Если бы не объяснение, которое предлагал Дарвин, то как еще собака или кошка могла бы найти дорогу к дому, оказавшись в восьмидесяти, а то и в трехстах с лишним километрах от него в незнакомой местности? Ведь у животных нет ни дорожных карт, ни компаса. Конечно, никто не знал, какой путь проделывала собака или кошка, убежав откуда-то издалека и добравшись до конечного пункта пути. Ни один любящий хозяин не рискнул бы потерять своего питомца ради эксперимента и вряд ли пожелал бы оплачивать какому-нибудь равнодушному сыскному агентству слежение за животным, пока оно не вернется домой, на что могло уйти несколько недель.

Все животные, за исключением прирученных человеком, как правило, остаются неопознанными. Очень редко человек может различить их как отдельных особей. Если бы не металлическое нумерованное кольцо на ножке гаички или яркий узор, нанесенный цветной краской на брюшко пчелы, как бы еще человек мог убедиться в том, что именно это животное он видит во второй или третий раз? Однако нужно было окольцевать и снова поймать миллионы перелетных птиц, прежде чем удалось найти ясный ответ на вопрос: следуют ли мигрирующие птицы за старыми, более опытными членами стаи или же они полагаются на свое внутреннее чувство направления?

Покойный профессор Вильям Роуэн из Альбертанского университета в Эдмонтоне выпустил несколько молодых ворон, которых он выращивал дома, после того как все другие вороны давно уже улетели и на землю лег зимний снег. Несколько таких окольцованных молодых ворон удалось поймать на всем протяжении их пути в Оклахому, куда с наступлением холодов отправлялись альбертанские вороны всех возрастов. Они руководствовались чувством направления, которое приобрели еще в скорлупе яйца. Им не могли помочь ни родители, ни привычные ориентиры на местности, не было у них и опыта прошлых перелетов.

При перелетах инстинктивное ощущение правильного направления сильнее потребности подражания. Это обнаружили европейские ученые, занимавшиеся кольцеванием птиц, когда они заменили яйца аистов из Западной Германии на яйца их восточногерманских сородичей. Вылупившиеся птенцы были окольцованы, и за ними велось наблюдение, пока не начались осенние перелеты. Когда приемные родители из Западной Германии отправились к долине Нила через южную Францию, Гибралтар и северное побережье Африки, их приемыши, вылупившиеся из яиц, снесенных в Восточной Германии, полетели другим путем. Они направились на юго-восток и в конце концов присоединились к стае аистов, летевших из Восточной Германии к долине Нила вдоль восточного побережья Средиземного моря, через Грецию и Малую Азию. Каждая птица во время перелета отделялась от стаи и продолжала самостоятельное путешествие.

Точно так же ни запоминанием поворотов и наземных ориентиров, ни руководством родителей нельзя объяснить способности меченых бабочек-данаид перелетать из восточной Канады в далекий Сан Луис Потози (Мексика), проделав путь длиной около трех тысяч километров. Однако весной, после зимовки в теплых краях Америки, многие из этих насекомых возвращаются в родные края, чтобы отложить на листьях канадского ватника свои яйца, из которых вырастет новое поколение бабочек.

Эти привычки настолько удивительны, что они заставляют нас усомниться даже в основных догматах науки. Правильно ли мы утверждаем, что органы чувств являются единственными каналами связи между внешним миром и нервной системой животного? По общепринятому мнению, это положение принимается всеми на веру. Опровергают ли его навигационные и хоминговые[24]Хоминг — инстинкт дома. —  Прим. ред.
инстинкты животных или человек просто не воспринимает сигналы из окружающего мира, которые стимулируют деятельность животных? Нам недостаточно признавать, что обладать чувством направления необходимо птицам, рыбам, морским черепахам, китам, летучим мышам и насекомым во время их путешествий или немигрирующим животным, которые всегда находят дорогу домой из незнакомых мест. После того как мы узнали, насколько хорошо эти животные умеют ориентироваться, для нас стало особенно важно разгадать, как же они узнают, куда повернуть?

При изучении этого неизвестного чувства прежде всего необходимо убедиться в том, что животные действительно выбирают определенное направление и следуют ему до самого конца путешествия. Чтобы получить полное представление о маршруте животных, нужно было бы на всем пути следования достаточно часто ловить окольцованных птиц, однако сделать это удается очень редко.

Для того чтобы справиться с этой трудностью, некоторые биологи научились пилотировать небольшие самолеты и последовали за птицами, выпущенными в незнакомой местности. Самолеты кружили над ними на достаточно большой высоте, так что, по-видимому, не оказывали никакого влияния на их поведение. Выяснилось, что голуби и бакланы придерживаются верного направления слишком часто, чтобы это можно было объяснить простой случайностью. Совсем недавно конструкторы миниатюрных электронных приборов для спутников получили задание разработать очень легкие радиопередатчики, которые можно было бы закреплять на теле птицы или морской черепахи. С помощью радиосигналов, поступающих от этих электронных колокольчиков, можно определить час за часом точное местонахождение животных во время хоминга или миграции. Ученые все еще надеются расшифровать записи маршрутов таких полетов и понять этот способ ориентации.

Некоторые люди, по-видимому, тоже обладают каким-то смутным чувством направления. Находясь в чужом городе, они могут нисколько не растеряться, если, войдя в одну дверь универмага, выйдут из него через другую дверь и окажутся на незнакомой улице. Такие люди могут ночью вести машину по извилистым улицам или без колебаний сворачивать в нужном месте с большой кольцевой дороги, не пользуясь при этом указательными знаками, даже если раньше им никогда не приходилось пользоваться этим путем. Однако, если их спросить, как они это делают, они вам не ответят. Другие же обычно не доверяют столь смутному чувству, особенно когда наука не объясняет его сколько-нибудь приемлемым образом.

С магнитным компасом мы чувствуем себя увереннее. Мы начинаем понемногу забывать, что прошло всего семь столетий с тех пор, как европейцы впервые узнали от китайцев о свойствах магнитного железняка и о том, как использовать его для намагничивания компасной стрелки. Даже в английском написании слова «магнитный железняк» («load stone» или «lodestone») уже не ощущается указаний на то, что кусок магнитной руды когда-то был путеводным камнем (leadstone[25]От английского глагола «to lead» — вести, направлять. —  Прим. перев.
), указывающим мореплавателям направление по отношению к магнитным силовым линиям Земли. Но существуют ли у животных «компасы» или какие-либо другие средства для восприятия «магнитных» направлений? У сотен голубей закрепляли под крыльями сильные магниты, надеясь, что при этом будет выведено из строя магнитное чувство, которым могут обладать птицы. Но несмотря на дополнительный груз, птицы, пролетев много километров, в рекордно короткое время находили дорогу к родным гнездам. Результаты подобных опытов были опубликованы совсем недавно, в октябрьском номере солидного научного журнала «Nature» за 1960 год. В статье указывалось, что у мертвых майских западных хрущей не обнаружили никакого органа, проявляющего свойства постоянного магнита, что могло бы объяснить выдвинутую в 1957 году гипотезу, согласно которой эти жуки ориентируются в соответствии с магнитным полем Земли. Но как насекомые могли без компаса получать магнитные сигналы для своего чувства направления?

Примерно в это же время были получены данные, свидетельствующие о том, что миноги и рыбы испускают импульсы постоянного электрического тока, к которому чувствительна их кожа. Возможно, эти данные помогут ответить на вопросы, связанные с магнитной чувствительностью водных животных. Быть может, придонная улитка Nassarius полагается на подобное чувство; во всяком случае, доктор Франк А. Браун из Северо-западного университета, проведя в различное время солнечного и лунного дня опыты по изучению следов улитки и статистически обработав результаты этих опытов, высказал предположение, что она ориентируется в соответствии со «стрелками внутреннего магнитного компаса», которые по очереди становятся стрелками горизонтальных «часов» солнечного и лунного дня. Природа этих «стрелок внутреннего компаса» остается совершенно неизвестной. Подобное явление может оказаться широко распространенным в живой природе; это подтверждается полученными почти в то же время данными, что корни травы Lepidium растут параллельно геомагнитным силовым линиям.

Если бы животное могло знать, в каком направлении оно летит, и рассчитывать затраченное им время и скорость движения, оно, по всей вероятности, воспользовалось бы чем-то вроде метода навигационного счисления, который применяют мореплаватели. Покойный Вернер Рюппель обнаружил, что молодые серые вороны, обитающие в Европе, пользуются подобным методом. Ему удалось поймать и окольцевать в районе Росситен на Балтийском побережье Восточной Пруссии 900 ворон, которые совершали свою обычную весеннюю миграцию. 400 птиц он отпустил сразу, а остальных быстро отвез во Фленсберг, находящийся в южной части Ютландского полуострова, в 750 километрах к западу от Росситена. Он отпустил их в таком месте, в которое никогда не прилетали вороны этого вида. По мере того как ловили окольцованных им птиц, Рюппель наносил на карту места, где их поймали. Все вороны, выпущенные в Росситене, отправились к восточному побережью Балтийского моря, где они всегда проводили период размножения. Все птицы, кроме одной, отпущенные во Фленсберге, были пойманы в северо-восточной Дании и Швеции на протяжении всей территории, которая напоминала по форме и размерам их родное прибалтийское побережье, но была удалена от него на 750 километров к западу. Серые вороны продолжали миграцию в обычном направлении, пролетая примерно такое расстояние, какое им требовалось при обычном перелете, и на этом заканчивали свое путешествие. Лишь несколько взрослых ворон, которых окольцевали по ошибке, не совершали каждый год перелеты по курсу, параллельному маршруту своих собратьев. Видимо, они поняли, что этот путь не приводит их к знакомым местам, где они размножались, и постепенно вернулись к этим местам и к привычным районам зимовки.

Даже пользуясь методом навигационного счисления, путешествующие животные или люди должны знать направление, в котором они двигаются. Доктор Дж. В. Т. Мэтъюс из Кембриджского университета утверждает, что голуби и другие птицы получают сигналы от Солнца и что на протяжении всего дня они могут компенсировать изменение угла относительно положения Солнца, когда оно находится низко над горизонтом при восходе, высоко над землей — в полдень и низко на западе — во время заката. Согласно его наблюдениям, голубю достаточно всего лишь нескольких минут, чтобы определить дугу, по которой Солнце проходит по небосклону, и предсказать положение Солнца в самой высокой точке этой дуги (направление прямо на юг). Для этого требуется очень сложная работа глаз и мозга птицы, так как вращение Земли каждую минуту смещает положение Солнца на небе всего лишь на половину его видимого диаметра. Однако доктор Мэтьюс считает, что птицы обладают чем-то бóльшим, нежели просто способностью точно рассчитывать дугообразную траекторию движения Солнца. По его мнению, у птиц имеется какой-то эквивалент секстанта и хронометра, поставленного по «домашнему времени». С помощью этих «приборов» они могут определить свое местонахождение в любой точке земного шара, учитывая угловую высоту полуденного Солнца и час (по «домашнему времени»), когда оно достигает наибольшей высоты. Высота Солнца дает широту, а «домашнее время» в полдень — относительную долготу местности.

Тем, кто сомневается в существовании подобных инстинктов у птиц, придется решить трудную задачу — предложить другое, более простое объяснение способности, которую продемонстрировали окольцованные альбатросы с острова Мэн, выпущенные в Америке; поодиночке они пролетели за двенадцать с половиной дней около пяти тысяч километров над пустынным океаном, не сохраняющим никаких следов, и вернулись к родным гнездам на острове, возле западного побережья Англии. Для такого перелета необходима среднесуточная скорость не менее 16 километров в час, а то и больше; ведь птицы время от времени должны были останавливаться, чтобы поесть и отдохнуть. Каждой птице нужно было чувствовать местонахождение своего острова по отношению к Америке, хотя в обычных условиях мэнские альбатросы никогда не отваживались улетать так далеко от дома.

Солнце — настолько заметный небесный ориентир, что ни у кого не возникает сомнения в способности птиц видеть его. Признать, что птицы действительно используют для ориентации положение Солнца и его дугообразную траекторию, нам мешает лишь невероятная сложность такого способа ориентации. Только достаточно сложные навигационные приборы позволяют летчику регулировать свой полет, управляемый автоматически по Солнцу, по мере того как он будет идти обычным путем с востока на запад. Чтобы подобным образом ориентироваться по Луне, как это якобы делают перелетные птицы после захода солнца, потребовалось бы соответствие с лунными часами, где сутки продолжаются 24,8 часа и отсчитываются от одного восхода луны до другого.

Птицы действительно совершают перелеты лунными ночами. Они летят и в звездные ночи, когда нет луны, но редко отправляются в путь в облачную или туманную погоду. Может ли быть, чтобы птицы инстинктивно ориентировались по большим созвездиям? Доктор Зауэр из Фрейбурга (Германия) вырастил несколько мигрирующих по ночам славок в таком помещении, где они даже мельком не могли видеть небо. В этих условиях он продержал их до тех пор, пока для них не настало время отлета в районы зимовок. Затем в закрытом садке он отвез молодых птиц в Бременский планетарий и открыл этот садок только после того, как на искусственном небосводе загорелись звезды. Славки сразу же повернулись в том направлении, в котором в это время уже летели их родители. Когда клетку с птицами снова закрыли покрывалом, механик передвинул искусственный небосвод таким образом, что созвездия, которые должны были быть на юге, оказались на западе. Покрывало отдернули, и птицы изменили прежнее положение, повернувшись на 90°, и снова сориентировались на южные звезды. Не изменили они своего направления и тогда, когда искусственное небо планетария начало медленно вращаться и картина звездного неба поворачивалась точно так же, как при действительном вращении Земли. Действительное направление ничего не значило для славок; они ориентировались по звездам.

Даже электрическая лампочка, медленно передвигающаяся по дуге, которую описывает на небосклоне солнце, может служить для птиц в клетке достаточно хорошим ориентиром. При этом птицы занимают такое положение, чтобы голова у них смотрела в ту сторону, куда они полетели бы, будь они на свободе. По-видимому, даже рыбы, несмотря на искаженную толщей воды картину мира, используют положение Солнца и звезд как основу для точной навигации. Лосось, находящийся за тысячу километров от берегов Тихого океана, в течение нескольких лет помнит угловую высоту солнца в устье его родной реки, бегущей вдоль американского побережья, а затем соотносит этот угол с показаниями внутренних часов, которые идут точно по местному времени его родной реки, — все это производит на нас гораздо более сильное впечатление, чем способность лосося вспомнить специфический запах воды притока, где он появился на свет. Из тайных глубин нашей памяти к нам может прийти запах или вкус определенных веществ, который мы ощущали лишь в раннем детстве. Мы даже можем вспомнить те обстоятельства, при которых впервые встретились с этим запахом. Почему же мы так неохотно признаем, что чувствительностью, которая никогда не была столь значимой для человека, обладает рыба? Или птица? Или саламандра?

Обычно мы пытаемся упростить природу. Мы считаем какое-то одно объяснение вполне достаточным, признаем его как своего рода универсальную истину. Если голубь, альбатрос или лосось используют Солнце для ориентации, то мы ищем точно такую же систему у всех других живых организмов, совершающих миграции или умеющих находить дорогу домой. Однако и земные ориентиры очень важны для многих животных, как и для нас самих. Вероятно, улитка «морское ухо» пользуется некими подводными эквивалентами земных ориентиров, когда она, отправляясь на ночную охоту, покидает тихое дневное укрытие и возвращается к родному дому только перед рассветом. В настоящее время мы не располагаем достаточной информацией по поводу навигационных средств, важных для различных видов животных. Но почти наверняка они включают в себя чуть ли не каждый сенсорный стимул, на который реагирует живой организм.

Несколько лет назад профессор В. С. Твитти из Станфордского университета, изучая зародышей саламандр, пришел к выводу, что он не знает, живут ли саламандры более одного-двух лет, и что ему неизвестно, считают ли они своим домом ту реку, у берегов которой проводят брачный период и откладывают яйца. Чтобы получить ответы на эти вопросы, он взял из одного водоема 262 саламандры, особым образом пометил их и тут же выпустил обратно. После этого он год за годом вылавливал и осматривал каждую саламандру, которую удавалось обнаружить в этой реке. И каждый раз, как ему попадалась меченая саламандра, он нумеровал ее, снова метил и выпускал там же, где находил. Каждый год возвращалась в реку лишь часть ее меченых обитателей; так, например, на седьмой год вернулись 32 %. Но многие из них не появлялись в этой реке раньше — на пятый и шестой год, и не возвратились на следующий, восьмой год. Саламандры живут удивительно долго, поэтому их должно было выжить гораздо больше чем 32 %.

Между периодами размножения каждая из этих саламандр выходила на сушу. Они расселялись в прибрежной гористой местности и прятались под землей во время летних сухих месяцев. Однако почти всегда меченая саламандра возвращалась к воде, оставаясь верной своей родной реке.

Профессор Твитти решил перенести несколько меченных особым образом саламандр в другое место и посмотреть, сумеют ли они найти дорогу к «дому». Из тысячи меченых саламандр, которых он перенес в другую реку почти за пять километров от их речки, восемнадцать особей сумели на третий год добраться домой. Они перебрались через горный хребет высотой более тысячи футов над уровнем воды в реке, чтобы достигнуть родного бассейна. Как же они нашли дорогу домой?

Зрительные ориентиры, по-видимому, исключаются. Саламандры, у которых удалили глаза, добираются до своих родных водоемов по суше, покрывая расстояние иногда в полтора километра. Осязание тоже не является необходимым. В горизонтальном загоне, имеющем форму звезды, где пол покрыт пластиком, они медленно ползут в правильном направлении. Если пол покатый, то и это не оказывает на них заметного влияния. Очевидно, саламандры не обращают внимания на путь, по которому движутся домой. Возможно, каналом, по которому поступают навигационные сведения, является запах. Однако как могла саламандра почуять характерный запах родного водоема, находясь почти в пяти километрах от него и к тому же по другую сторону горы? Как заявил профессор Твитти станфордскому священнику, «если окажется, что дело не в запахе, то поистине вся проблема относится скорее к сфере теологии», чем к работе факультета зоологии. Твитти «с радостью припишет это явление основным теологическим положениям».

Должно быть, такая же идея пришла в голову итальянскому энтомологу Ф. Санчи в десятых годах нашего столетия, когда он попытался объяснить способность североафриканских муравьев возвращаться к своему муравейнику. Он посадил муравья за высокий забор; таким образом, насекомое не могло видеть какие бы то ни было земные ориентиры. Светонепроницаемый диск отбрасывал на муравья тень, скрывая от него местоположение солнца. И все-таки насекомое, поспешно возвращаясь домой, поворачивало в нужную сторону. Санчи сделал вывод, что муравей мог видеть звезды и ориентироваться по ним даже днем, когда глазам человека небо представляется равномерно голубым.

Гораздо более удивительным было объяснение, предложенное в 1949 году великолепным экспериментатором, мюнхенским профессором Карлом фон Фришем. Он пытался выяснить, как домашние пчелы передают друг другу информацию внутри улья. Каким образом рабочая пчела, обнаружив сладкую воду и возвратившись в улей, могла точно сообщить другим пчелам, как далеко надо лететь и в каком направлении? Через красное окошечко, сделанное в боковой стенке улья, фон Фриш наблюдал за особым образом помеченными пчелами, которые возвращались домой. Они исполняли на вертикальных сотах своеобразный короткий танец, а другие рабочие пчелы, окружив их плотным кольцом, наблюдали за ними. Пчела, прилетевшая от кормушки, расположенной в девяти метрах от улья, во время танца неизменно совершала определенные круговые движения; в одном и том же месте круга она поворачивала в обратную сторону. Пчела, которая прилетела от кормушки, отстоящей от улья на 1000 метров, исполняла свой танец, выписывая «восьмерку» — одна петля налево, другая направо — и виляя кончиком брюшка, когда двигалась по прямой между этими двумя петлями. По различным рисункам танца фон Фриш понял, как рабочая пчела передает сигналы «близко» и «далеко». Танец «восьмерка» означал сигнал «далеко», и он исполнялся быстрее, когда пища находилась в ста метрах от улья, и медленнее, если сладкую воду относили за три километра. Если пища была в ста метрах, пчелы каждую четверть минуты вытанцовывали пять законченных фигур, а если в трех километрах — всего лишь одну-единственную «восьмерку».

Фон Фриш заметил также, что когда сладкая вода расположена далеко от улья, то направление прямой линии, по которой пчела, виляя своим «хвостом», пробегает между двумя кругами, изменяется в зависимости от времени дня и ориентации улья по отношению к пище. Если пчелы рано утром виляли «хвостом», поднимаясь по сотам, значит пища находилась в восточном направлении, в полдень — в южном, а ближе к заходу Солнца — в западном. Побывав в полдень у источника сладкой воды, удаленного на 200 метров, пчела по возвращении виляет «хвостом» на сотах, опускаясь вниз, если кормушка в восточной стороне, и направо, если кормушка в западной. Во всех случаях угол между прямой линией, проходящей через середину «восьмерки», и вертикалью на поверхности сотов соответствовал тому углу, по которому рабочая пчела должна лететь из улья, используя Солнце в качестве небесного ориентира. Точка, где пчела во время «кругового танца» поворачивала в обратную сторону, означала угол на улье между пищей и Солнцем[26]Согласно представлениям самого фон Фриша и ряда других исследователей, круговой танец пчел не содержит информации о направлении. (См., например, К. Фриш , Пчелы, их зрение, обоняние, вкус и язык, ИЛ, М., 1955, стр. 60; его же , Из жизни пчел, М., 1965; И. Халифман , Пчелы, М, 1963, стр. 197.) —  Прим. перев.
. Именно в этом заключается способ передачи направляющей информации пчел. Фон Фриш описал его как «язык» пчел.

Фон Фриш, так же как и Санчи со своими североафриканскими муравьями, был озадачен, обнаружив, что мюнхенские пчелы могут давать и получать указания о направлении, даже когда Солнце закрыто тяжелыми тучами, но остается открытым значительный кусок голубого неба. У фон Фриша было одно преимущество перед Санчи: за годы, прошедшие после экспериментов Санчи, были изобретены поляроидные солнечные очки, и фон Фриш прекрасно видел, что голубое небо, которое кажется равномерно окрашенным, значительно различается по углу поляризации. Об этом свидетельствует рассеянный свет, попадающий в глаз наблюдателя. Хотя глаз человека, не вооруженный поляроидным биноклем или призмой Николя, этого не замечает, сложные глаза насекомых, по-видимому, улавливают поляризованный свет. Проведя исключительно простые опыты с использованием поляроидного покрытия, фон Фриш доказал, что пчелы на самом деле получали сигналы от поляризованного света неба, руководствуясь ими как компасом. Наряду с внутренними часами, которые как бы отмечают движение Солнца в течение дня, насекомые используют свой «небесный компас» для навигации и для того, чтобы в темном улье сообщить о том, куда лететь за взятком.

Недавно были проведены опыты с пчелами, доставленными на скором самолете из Парижа в Нью-Йорк; обнаружилось, что пчелам достаточно очень небольшого опыта, полученного при новом расположении Солнца, чтобы они переставили свои «внутренние часы» и начали разыскивать пищу по времени Нового Света. И нью-йоркские пчелы в Париже быстро произвели подобную перестройку. Но когда пчел перевезли из северного полушария в южное, они, по-видимому, уже не могли ориентироваться. Ведь солнечный компас в южном полушарии оказывается перевернутым, и Солнце в полдень находится на севере! Пчеловоды считают, что способность этих насекомых компенсировать заметное перемещение Солнца с востока на запад передается по наследству, причем одна мутация закрепилась в процессе эволюции у животных северного полушария, а противоположная ей — у обитающих к югу от экватора.

Если сложный глаз особенно хорошо приспособлен для определения плоскостей поляризации света на дневном небе, тогда, видимо, небесный компас играет очень значительную роль в жизни огромного большинства животных. Более трех четвертей обитателей животного царства имеют сложные глаза. К ним относятся наземные и пресноводные насекомые, мечехвосты, которые медленно двигаются в поисках пищи по морским песчаным отмелям и заползают дальше на сушу, а также ракообразные с множеством удивительных привычек. Больше никто не сомневается, что мигрирующие в юго-западном направлении к Мексиканскому заливу бабочки-данаиды и отдельные популяции[27]Популяция — группа животных одного вида, занимающих определенную территорию. —  Прим. перев.
бабочек, отправляющихся на зимовку из Британской Колумбии прямо на юг, в Калифорнию, с успехом пользуются именно этим методом навигации. Мутация, передававшая насекомому по наследству неправильное чувство направления, скорее всего привела к гибели животных с таким чувством, поэтому теперь в каждой популяции преобладают особи с нормальным «компасным» чувством. Мутанты бабочек-данаид из северо-восточной области Америки, которые во время миграции летят на юг, а не на юго-запад вдоль покатого побережья Атлантического океана, возможно, являются предками тех немигрирующих данаид, которые встречаются сейчас в Вест-Индии. Мутанты из северо-западной области Америки, направлявшиеся на юго-запад, а не прямо на юг, могли достигнуть Новой Зеландии и обосновать «там, внизу», новую колонию, как это случилось в конце девятнадцатого века.

За годы, прошедшие после опытов Санчи с муравьями, которые привели его в такое недоумение, и после неудачных попыток мальчика сбить с толку мечехвостов, направлявшихся к воде в районе Пасс-а-Грилль, ко всем этим предположениям стали относиться достаточно серьезно. Почти такое же чувство направления, как у мечехвоста, было обнаружено у другого животного, обитающего на песчаном побережье. Если вытащить из воды рачка бокоплавы Talitrus, живущего вдоль Адриатического побережья Апеннинского полуострова, он автоматически повернется к востоку и быстро побежит к соленой воде. Живущий на берегу Неаполитанского залива или на побережье со стороны островов Корсики и Сардинии, рачок бокоплавы направится на запад к Тирренскому морю. Если такого неаполитанского рачка перевезти на побережье Адриатического моря, он опять-таки побежит на запад от моря в сторону гор, хотя через них ему никогда не перебраться. В непривычном месте врожденное чувство направления становится для рачков роковым. Но до тех пор пока каждая популяция остается в обычной для нее местности обитания, ее небесный компас оказывается весьма ценным.

Итальянские ученые Ф. Папи и А. Парди, обнаружившие у себя на родине такие расхождения в поведении рачков бокоплавы восточного и западного побережий Апеннинского полуострова, пришли к заключению, что эти ракообразные ведут активный образ жизни на побережье лишь ночью. Поразительно, что рачки могут правильно ориентироваться при лунном свете. Они ждут появления Луны и тогда отправляются путешествовать в поисках пищи. Но могут ли эти животные улавливать направление, если загородить их от Луны светонепроницаемым экраном? Есть ли у них какой-либо эквивалентный «прибор» для ориентации по звездам, о котором говорил Санчи? Должны ли они каждую ночь ждать восхода Луны, чтобы вновь завести свои часы?

Никого не удовлетворяло объяснение, что муравьи днем видят на небе звезды. В такой же мере непонятным кажется и предположение, что бокоплавы способны улавливать поляризованный свет на ночном небе или что они могут видеть созвездия. Они почти так же слепы, как и летучие мыши. Ни те, ни другие не реагируют на картину искусственного звездного неба. Однако мы знаем, что в северных широтах существует несколько видов насекомоядных летучих мышей, пролетающих сотни и тысячи километров даже над открытыми просторами океана, лишенного каких-либо земных ориентиров, которые могут отразить в виде эхо их ультразвуковые сигналы. Как же тогда летучая мышь ночью правильно ориентируется над океаном? Быть может, она полагается на чувствительные сигналы, которых мы не воспринимаем, — на что-то такое, о чем мы и не подозреваем?

О небесном компасе, как и об эхо-локации, стало известно лишь в самые последние годы. У нас есть все основания ожидать дальнейших волнующих открытий. Почти наверняка вслед за этим будут выявлены и еще какие-то особые чувства, подсказывающие животным — а возможно и человеку, — куда повернуть.