Лысенко был прав!

Миронин Сигизмунд Сигизмундович

ГЛАВА 8. ЕСТЬ ЛИ ПРЯМАЯ СВЯЗЬ: ГЕН-ПРИЗНАК?

 

 

В данной главе я более подробно проанализирую, есть ли, с точки зрения молекулярной биологии, прямая связь между каким-либо геном и внешним признаком, то есть проверю реальность связки ген-признак.

 

8.1. ГЕН СВЯЗАН С ПРИЗНАКОМ ЧЕРЕЗ ВЕСЬ ГЕНОМ

Одной из главных догм формальной генетики является признание, по умолчанию, существования прямой связки между последовательностью нуклеотидов, кодируемых одним геном, и одним внешним признаком.

В середине ХХ-го века Морган сформулировал гипотезу о том, что гены (заметьте ― определяющие совершенно независимые друг от друга признаки ― С. М.) расположены в хромосомах как "бусы на нити" (94). То есть, число таких бусин для наследования всего многообразия признаков человека должно было зашкаливать все возможные численные пределы.

Формальные генетики после Г. Менделя и Моргана считали, что функция гена ― определение морфологического признака. Формальная генетика предполагала, что каждый признак имеет свой ген, записанный в хромосомах. Тогда, правда, долгое время не знали, что гены представляют собой цепочки нуклеотидов в ДНК.

Поскольку признаки широко варьировали, а число признаков у человека могло быть доведено до миллиона, то получалось, что в хромосомах записана информация об аллелях нескольких миллионов генов. Данный парадокс взывал возражения даже у неспециалистов. Лысенко во всеуслышание об этом говорил, что король-то голый. Даже самоучка, но выдающийся практик Терентий Мальцев понял неверность идеи.

Вот что пишет по этому поводу Мальцев: "Я часто задаю себе вопрос, что было бы с генетикой и генетиками, если бы их не тревожили такие люди, как Т. Д. Лысенко. Нашли бы генетики выход из того тупика, в который их завела гипотеза независимости генов. Генетика … утверждает, что на каждый признак, или группу признаков, есть "ген" и группа "генов". Я и спрашиваю, сколько же может быть у организма, тем более у многоклеточного признаков?

Я думаю, вряд ли можно для их подсчета набрать достаточно цифр, могущих выразить число, переваривающееся в человеческой голове. И вот, когда задумываешься над такими вопросами, то поневоле удивляешься фантазии генетиков, которые ведь должны принимать такое количество ген в хромосомах, которого не выдерживает никакая фантазия (107)".

Последующее развитие науки со всей очевидностью показало, что такой связки нет и быть не может. Современные генетики понимают несостоятельность классической генетики. Так, пытаясь решить парадокс Мальцева и найти выход из тупика, в который завела классическую генетику идея ген-признак, Дубинин (29) указывает: "…гены ― это не зачатки признаков. …Принцип действия кода гласит ― каждый признак определяется всеми генами, каждый ген в конечном итоге определяет все признаки организма". Ученые уже давно осознали, что Лысенко был прав. Первыми поняли этот факт на Западе, но никто не хочет сказать, что король был голый, что формальная генетика оказалась не верной, а Лысенко прав.

Имеется несколько доказательств того, что ген и признак практически никак напрямую не связаны. Сейчас установлено, что у человека всего-навсего чуть более 30000 генов, а число разного рода признаков зашкаливает за миллион. У человека всего-навсего 30000 генов, а число разного рода признаков зашкаливает за миллиард. Даже если иногда один ген может давать 40000 белков (но это редчайшее исключение, так как альтернативный сплайсинг такого рода чрезвычайно редок), то все равно белков не хватит для описания всего многообразия признаков человека.

Выше я специально подробно остановился на всей цепочке по пути от последовательности нуклеотидов до признака. Главной ошибкой формальной генетики является постулат о том, что за каждый признак отвечает соответствующий ген или группа генов. За другой признак ― другой ген или группа генов, но без участия тех, которые кодируют первый признак. Я обозначил эту проблему как проблему признак-ген. Гена прямого носа, морщинистости, длинного хвоста, не существует ген мочки уха.

Никто не знает, каким образом появляются Менделеевы и Чайковские. Как не существует гена долголетия, так нет гена особого таланта или гениальности. Даже если воспроизвести клонированием Федора Шаляпина, неизвестно, получится ли еще один певец мирового значения.

Первый экспериментальный подход к выяснению механизма действия генов был разработан американским генетиком Р. Гольдшмидтом (1878–1958), основателем феногенетики, научного направления, которое исследует реализацию действия гена до видимого фенотипического признака. Было установлено, что формирование признака происходит как цепь последовательных реакций; в развитии признака как активности гена лежат физикохимические процессы, но результат не может быть однозначно предопределен (182). Как проговариваются Ратнер и Васильева (92), на момент 1999 г. ни один из полигенов не был идентифицирован и не клонирован, то есть, не определена последовательность его нуклеотидов. А Келлер открыто пишет — "нет простой связи между генами и белками" (182. С. 64).

Развитие современной молекулярной биологии открыло невероятную пропасть между генетической информацией и ее биологическим значением. Эту щель не могут закрыть до сих пор.

Казалось бы, есть моногенные заболевания человека ― это заболевания, где патология только одного белка (что встречается достаточно редко ― см. раздел 11.3) вызывает заболевание с четкими фенотипическими признаками. Но во-первых, во времена Моргана такие заболевания не были известны, кроме, может быть, гемофилии (138). А во-вторых, это просто не так. Наследственные болезни не всегда имеют генетические локусы, связанные с ними, то есть, другими словами, мутации множества генов могут вести к одному и тому же болезненному фенотипу. Гены, мутации в которых ответственны за развитие генетических заболеваний до сих пор не идентифицированы для многих заболеваний, генетическая природа которых уже доказана. Мутации в белках, которые в клетке взаимодействуют друг с другом, часто ведут к одному и тому же заболеванию или фенотипу. Взаимодействующие белки часто ведут к сходному фенотипу, когда один или другой подвергаются мутациям (204). Например, в настоящее время обнаружено более 1500 мутаций в молекуле СФТР (белок, мутации в котором вызывают муковисцидоз, см. Приложение Х), которые вызывают муковисцидоз. Это говорит, что для СФТР почти каждая аминокислота является критической. Но проявления болезни совершенно разные (172).

Иронией является тот факт, что список так называемых моногенных заболеваний постоянно растет: болезнь Хунтингтона, муковисцидоз, таласемия, фенилкетоннурия и другие. По правде сказать, такие четкие параллели, как один ген ― одно заболевание остаются очень редкими (182. С. 68).

 

8.2. НЕСООТВЕСТВИЕ ГЕНОВ И ПРИЗНАКОВ

Терентий Мальцев совершенно правильно подметил, что признаков столько, что для того, чтобы все они кодировались своими собственными генами, требуется наследственное вещество невероятной длины. Однако в проблеме имеется несколько аспектов.

1. В природе много признаков и мало генов.

2. Количество генов у большинства живых организмов примерно одинаково. Количество же признаков разнится на много порядков.

3. Все гены практически одинаковы у всех эукариотов.

4. Признак есть результат работы многих генов.

5. Белок не сможет принять зрелую форму без участия функции других белков.

6. Мутации одного гена, но в разных, местах дают разные генотипы

7. При мутации разных генов может быть один фенотип. Пример — болезнь Альцгеймера.

8. Как правило, несколько генов кодирует один признак.

9. Белки выполняют свои функции только через взаимодействие с другими белками.

10. При мутации белков, которые взаимодействуют друг с другом, как правило, возникает одна болезнь.

11. Больше всего из-за их практической значимости известно о моногенных заболеваниях, но практически все их них могут быть вызваны мутациями не только в одном гене.

Разберем эти положения несколько подробнее. Действительно, число генов у живых организмов довольно невелико и варьирует в довольно небольших пределах. У человека 31185 генов (243). Википедия даёт цифру 20000-25000.

Генетически человек и его ближайший предок шимпанзе практически не отличаются друг от друга. Последовательности их ДНК сходны более чем на 98 процентов. Практически все гены человека имеются и у шимпанзе. Гены шимпанзе отличаются от аналогов из человеческого генома всего на несколько нуклеотидов. Только в августе 2009 года найдены три гена которые присутствуют только в ДНК людей, но отсутствуют у шимпанзе. Да и то, функция этих генов покя не ясна.

Интересно, что у мыши, человека, рыбы фугу (рыба шар) количество генов практически одинаково ― 30000 ― 40000. У дрожжей 6000 генов. У некоторых бактерий насчитывается 12000 генов (185). Геном дрозофилы содержит 10000 генов, кодирующих белки и РНК. При этом 95 % ДНК плодовых мушек составляет некодирующие участки (92). Бактериальные геномы содержат примерно от 500 генов у микоплазм до почти 5000 генов у кишечной палочки. Анализ генома кишечной палочки выявил 4909 генов, из которых 4288 кодируют белки, но функции 38 процентов из них пока неизвестны. На долю блока контроля метаболизма приходится свыше 1047 известных генов (около 25 процентов). Интересно, что эти 1047 генов контролируют 804 известных фермента и 988 известных метаболических реакций. В клетке Е. соИ содержится около 3000 различных белков, а в организме человека насчитывается свыше 50000 разнообразных белков. Сплайсинг может чуть сгладить разницу между числом признаков и количеством генных продуктов, но никогда не сможет объяснить все разнообразие признаков, число которых гораздо больше 40000.

Далее. Гены в самых разных организмах практически одинаковы (200). Сейчас установлено, что хотя все организмы разные, они имеют практически один и тот же набор генов. У всех организмов, имеющих ядро, набор генов, по сути, одинаков. Возьмите 5 белков гистонов. Они практически одинаковы. Они не имеют интронов и наиболее консервативны. Или возьмите ферменты пластинчатого комплекса Гольджи. Гены все одинаковы, а признаки разные. Вот это-то и не может объяснить современная генетика.

В геноме имеются также 4 вида рибосомальных РНК (рРНК), несколько десятков транспортных РНК (тРНК) и так называемых малых ядерных РНК. В генах, кодирующих РНК, отсутствуют интроны.

Есть так называемые ДНК-связанные белки ― это белки, непосредственно взаимодействующие с ДНК. Они обычно обладают свойствами так называемых транскрипционных факторов или репрессоров. В разных ДНК-связывающих белках встречаются сходные трехмерные элементы. И все эти древние гены практически одинаковы у самых разных живых организмов. Особенности в их строении есть, но они никак не могут объяснить то огромное количество фенотипических отличий, которые имеются например, между пшеницей и человеком. Шимпанзе на 98,5 % сходно по нуклеотидному составу ДНК с человеком (182. С. 100).

Каждый признак кодируется несколькими генами. Множество генов задействовано в любой дорожке, реализующей информацию, заложенную в гене, в дорожке ген ― белок ― функция ― признак участвует также и окружающая среда. Как я показал выше, сложность и неопределенность в работе генетического аппарата не кончается на уровне генов и белков. Она продолжается на уровне признаков животного. Попробуйте ответить, какой ген ответственен за передачу носа с горбинкой или за кривые ноги и вы поймете, что генетики этого просто не знают. Или какой ген отвечает за родинку на носу? Гена прямого носа, морщинистости хвоста, ген мочки уха не существует. Прослеживается только связь гена мутированного и нормального гена внешних признаков.

Современная молекулярная биология ясно показывает, что большая фракция генов в популяциях полиморфна, они существуют в любой популяции в нескольких относительно общих формах (188).

Каждый признак кодируется информацией, записанной во многих генах.

Гены белков, участвующих в одном и том же метаболическом процессе, часто образуют скопления (кластеры). Но те же гены в другом виде живых организмов могут подобные кластеры не образовывать (185). У эукариот многие гены дублированы, т. е. образуют мультигенные семейства, или имеют более сложную фрагментарную структуру. Так, у человека семейство глобинов содержит свыше десятка генов и псевдогенов, локализованных несколькими тесными тандемными группами (а-подобные, р-подобные, миоглобины). Многократно повторены гены рРНК, тРНК, гистонов, интерферонов, гормона роста, актинов, тубулинов и т. д. В мультигенных семействах (особенно тандемных) идут сложные внутренние процессы дупликации, дивергенции, конверсии, неравного кроссинговера и т. д., которые создают или нивелируют разнообразие генов (91/86). Гены эукариот содержат экзоны (иногда их называют цистронами ― кодирующие участки) и интроны (некодирующие участки). Число интронов в гене варьирует от 2 до нескольких десятков. Долгое время считалось, что интроны есть попросту шум. А недавно рухнула ещё одна догма, теперь уже молекулярной биологии ― было установлено, что транскрипция — процесс считывания информации с ДНК ― может идти в обоих направлениях с одной и той же точки старта (промотора).

Изменения белков, которые они претерпевают после синтеза первичной цепи аминокислот, зависят от других генов. Если, например, убрать ген фермента трансферазы, присоединяющего остатки сахаров, и затем убрать сахар, который он присоединяет, или добавить сахар в избытке, то будут ошибки и фенотип резко изменится. Формирование внешних признаков определяется сложнейшим взаимодействием сотен, а то и тысяч разных белков. Пример ― группы крови (см. Приложение IX).

Признак определяется множеством генов и никто не знает механизм их взаимодействия при этом. Это только у бактерий и вирусов ген-признак или мутации, как у вирусов. Повреждение одного и того же гена может дать в одном случае рост опухоли, а в другом ее подавление. Это зависит от уровня синтеза других белков. Кстати, вирус использует геном хозяина. То есть тоже зависит от сочетаемости генов внутри генома хозяина. Как только мы начинаем поиск всех этих закономерностей, мы будем оперировать чисто биологическими терминами. Точно также, при описании работы рибосомы, это машина для синтеза белка, мы немедленно сталкиваемся с химией, со всеми этими силами Ван Дер Ваальса и т. д.

Кроме того, очень часто невозможно вообще понять, почему возникают фенотипические изменения. Возьмем, например, синдром Дауна то есть, трисомию по 13 паре хромосом. Имеется четкий набор признаков, хотя никаких мутаций нет и все белки функционируют нормально. Ни одна мутация в единичном гене и ни один единичный ген не способен объяснить этот синдром.

Возможно, играет свою роль то, что соотношение между генами изменяется (например, 50 % на 50 % меняется на 33 % к 67 %).

Одна и та же мутация может давать очень непохожие друг на друга формы заболевания. Например, мутации онкогена, белка п58, могут вести к апоптозу (самоубийству клеток) в раковых клетках или к безудержному размножению в зависимости от свойств других онкогенов в данной клетке (см. Приложение VII). С другой стороны, мутации в одном и том же прионном белке ведут к совершенно разным заболеваниям (143). Наконец, одно и то же или сходное заболевание может быть вызвано мутациями в совершенно разных генах. Обычно это гены белков, которые в клетках взаимодействуют друг с другом.

Разные мутации одного и того же гена в разных комбинациях генов могут дать совершенно разные фенотипы и заболевания. Разные мутации в белке-прионе дают разные фенотипы (143), ведут к совершенно разным заболеваниям (персональное сообщение Роберто Киезы. R. Chiesa, 143). А, например, мутации в белке СФТР может давать поражение легких, а может давать поражения кишечника (см. Приложение ХХ). Описано 1500 мутаций в молекуле СФТР (белок, мутации в котором вызывают муковисцидоз, см. Приложение Х), которые вызывают муковисцидоз. Но проявления болезни совершенно разные (172). И это при одном и том же составе генов.

Один и тот же фенотип может быть вызван разными мутациями в совершенно разных генах. Льюис (цит. по 182) показал, что мутации, вызывающие одинаковый фенотип, могут быть либо в одном и том же либо в разных генах. Нередко один из тот же признак может быть вызван мутацией в сотне разных генов. Болезь Альцгеймера, которая случилась у президента США Рейгана, может быть вызвана мутацией, по крайней мере, в 20 генах.

Опухоль меланома вызывается более 30 тысячами различными мутациями, ошибками генетического кода, а рак легкового вызывается 23 тысячами мутаций.

Признаки зависят не от гена, а от повреждающей мутации в единственном гене. Нет признака, определяемого одним геном. Может быть мутация одного, а чаще, цепи генов, ведущая к появлению нового признака, но этот признак появляется только в данном геноме. Но к чему приведет мутация, зависит от генома.

Вот характерный пример, показывающий, что тысячи генов вовлечены в формирование даже одного признака. Когда в дрозофиле стимулировали активность гена, который носит название безглазый (eyeless), то глаза у нее выросли на крыльях, ножках, антеннах и других тканях. То же самое произошло, когда в геном дрозофилы пересадили гомологичный ген "безглазости" от мышей, но глаза образовались при этом не мышиные, а мушиные. Развитие глаза в геноме дрозофилы контролируется 2500 генами (182. С. 96). Ген "безглазости" оказался регуляторным геном.

С другой стороны, введения недостающих генов в сетчатку оказалось вполне достаточно для восстановления нормального зрения у взрослых обезьян, которые страдали цветовой слепотой с рождения (23). В эксперименте на двух самцах обыкновенных беличьих обезьян, у которых цветовая слепота широко распространена и обусловлена отсутствием генов, кодирующих светочувствительные рецепторы, удалось восстановить восприятие цвета у взрослых подопытных обезьян при помощи генной терапии. В сетчатку обезьян, неспособных воспринимать красный цвет, ввели человеческий ген, кодирующий отсутствовавший у животных цветочувствительный пигмент. Спустя 20 недель у обезьян восстановилась способность видеть красный цвет. Восприятие красного цвета сохранялось у животных в течение более чем двух лет после экспериментальной процедуры.

Одни и те же белки у разных видов могут играть разную функциональную роль. Окситоцин и вазопрессин практически одинаковы у разных животных. Они действуют очень похоже, но по-разному. У всех изученных животных эти пептиды регулируют общественное и половое поведение, хотя конкретные механизмы их действия могут различаться у разных видов. Окситоцин у позвоночных регулирует половое поведение самок, а также их привязанность к детям и брачному партнеру. Вазопрессин влияет больше на самцов, в том числе на их агрессивность, территориальное поведение и отношения с самками. У моногамных полевок самки на всю жизнь привязываются к своему избраннику под действием окситоцина. У самцов того же вида супружеская верность регулируется вазопрессином и дофамином. Введение вазопрессина самцу моногамной полевки быстро превращает его в любящего мужа и заботливого отца. Однако на самцов близкого вида, для которого не характерно образование прочных семейных пар, вазопрессин такого действия не оказывает. Очевидно, нейропептиды не создают тот или иной тип поведения из ничего, а только регулируют уже имеющиеся поведенческие стереотипы (150).

Итак, хотя догма в формальной генетике утверждает, что ген реализуется в признаке, на самом деле это не так. Практически нет прямой связи признака и гена (кроме, может быть, бактерий, которые секретирует фермент). Нет никакого гена "безмитохондриальности", что мы видим у микроспоридий. Есть ген, который вызывает у гороха морщинистость горошин, но он не вызывает морщинистости у риса, на самом деле, никаких единичных генов, кодирующих наследуемые напрямую сложные фенотипические признаки на уровне целостного организма и доступных для генетического изучения во времена Моргана тоже нет и не было. Нет признаков, определяемым одним геном. Может быть мутация одного, а чаще нескольких генов, ведущая к появлению признака рецессивного (см. Приложение VI). Закон о неделимых частичках наследования тоже оказался неверен. Они делимы ― белки могут иметь разные изоформы…

Но только лишь в нескольких случаях природе удалось добиться получения прямой связи между строением гена и получающимся признаком (Мендель, Де Фриз…). Любая наследственная информация реализуется через целый геном. Потеря признака часто есть вредоносная мутация гена, но не наоборот. Сам по себе ген без других генов ничего не значит. Пересадка так называемого гена морщинистости гороха в геном риса не приводит к появлению морщинистости у рисовых зерен.

 

8.3. МЕНДЕЛЕВСКИЙ ГОРОХ

Чтобы ещё раз проверить, есть ли независимое распределение бус-шариков в генетической матрице Менделя, давайте обратимся к схеме опытов Менделя и посмотрим, а что же все-таки он исследовал и что нашел, как им были организованы эксперименты, что он сравнивал, какие гены были использованы в его экспериментах и что они кодируют?

Чтобы судить о предмете, надо читать оригинальные статьи и я это сделал ― прочитал знаменитую статью Менделя. Правда, на английском языке, так как немецкого я не знаю. Однако я не уверен, что кто-либо из моих критиков читал оригинальную статью Менделя.

Итак, Мендель работал с садовым горохом. Цель своей серии опытов он сформулировал следующим образом: «Задачей опыта было наблюдать эти изменения для каждой пары различающихся признаков и установить закон, по которому они переходят в следующих друг за другом поколениях. Поэтому опыт распадается на ряд отдельных экспериментов по числу наблюдаемых у опытных растений константно-различающихся признаков» (99).

Далее в своей статье Мендель сформулировал требования к экспериментальной системе для выявления закономерностей расщепления признаков.

1. Отличия фенотипов должны быть постоянными и легко дифференцируемыми.

2. Гибриды должны быть защищены от опыления чужой пыльцой.

3. Гибриды и их потомство не должны страдать от побочных генетических нарушений, связанных со скрещиванием.

Для опытов на садовом горохе из всех признаков Мендель выбрал только альтернативные легко различаемые черты фенотипа — то есть такие, которые имели у имеющихся сортов два четко различающихся варианта (семена либо гладкие, либо морщинистые ― промежуточных вариантов нет).

1. Форма горошин. Круглые и морщинистые горошины.

2. Цвет внутренности горошин. Желтый и зеленый цвет семядоли, или содержимого горошины.

3. Цвет цветков. Пурпурные или белые цветки.

4. Форма стручков. Гладкие стручки или стручки, имеющие бороздки между горошинами.

5. Цвет стручков. Зеленые или желтые стручки.

6. Расположение цветков. Аксиальное (на конце всех крупных веток) или терминальное (только на верхушке растения) расположение цветков.

7. Длина стебля. Длинный или короткий стебель (ствол).

Такое сознательное сужение задачи исследования позволило четко установить общие закономерности наследования.

Сразу отмечу, что признаки, названные первыми, оказались доминантными. Гладкая форма горошин доминировала над морщинистой. Желтый цвет внутреннего содержимого горошины доминировал над зеленым. Фиолетово-красный цвет кожуры горошин доминировал над белым. Зеленый цвет стручков доминировал над желтым. Позиция цветков на конце веток доминировала над терминальной, то есть их появлением только на самых высоких ветках растения. Длинный ствол доминировал над коротким.

Мендель подробно описывает, как он сажал горох, как его опылял, как оценивал результаты. Каждую горошину он рассматривал под лупой, сравнивая их форму и делая записи. Видимо, уже тогда выявить морщинистость горошин во многих случаях было очень трудно. Хотя величина горошин достаточна для того, чтобы сразу увидеть, есть ли на кожуре морщины или нет (134, 215).

От семеноводческих фирм им было получено 34 сорта гороха, из которых он отобрал 22 «чистых» (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Мендель два года выдерживал сорта гороха на основе самоопыления. Эксперимент облегчался удачным выбором объекта: горох в норме самоопылитель, но легко проводить его искусственное опыление. Когда Мендель убедился в том, что сорта стабильны, он начал свои опыты. У одного растения удалялись тычинки (пыльники) и пестики опылялись пыльцой, взятой от другого сорта.

После всего этого Мендель спланировал и провел масштабный эксперимент. Он проводил скрещивание чистых сортов между собой, а полученные гибриды скрещивал между собой. Он изучил наследование отобранных семи признаков, проанализировав в общей сложности около 20.000 гибридов второго поколения. В результаты экспериментов он внес данные об анализе 7324 горошины.

Если скрещиваемые особи гомозиготны по рецессивному и доминантному генам, то первое поколение будет 3 к 1. Если скрестить особи гомозитотные по доминантному и рецессивному признакам, то в первом поколении все растения имеют доминантный признак, но являются гетерозиготными, то есть содержат в геноме доминантный и рецессивный ген. Во втором поколении происходит расщепление признаков в соотношении 3 к 1. То есть три особи имеют доминантный признак, а одна особь рецессивный (11). Расщепление в соотношении 3 к 1 происходило только при полном доминировании.

Например, при скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с желтыми и зелеными семенами, у всех потомков семена были желтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким.

Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой (рецессивный).

Итак, при скрещивании организмов, различающихся по одной паре контрастных признаков, за которые отвечают аллели одного гена, первое поколение гибридов единообразно по фенотипу и генотипу. По фенотипу все гибриды первого поколения характеризуются доминантным признаком, по генотипу всё первое поколение гибридов гетерозиготное. Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака — на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

Если скрещиваемые сорта гетерозиготные, расщепление во втором поколении будет 1 к 2 к 1. То есть 1 часть особей гомозиготных по доминантному признаку, 1 часть особей, гомозигитных по рецессивному признаку и 2 части гетерозиготных особей, но в преобладанием доминантного признака.

При скрещивании растений, обладающих двумя парами контрастных признаков, каждый из них наследовался независимо от другого. В первом поколении будет 3 к 1. При расщеплениии таких 2 независимых признаков соотношение получалось 9:3:3:1. Все эти распределения обнаруживались независимо от того, кто был отцом (пыльца) или матерью (тычинки).

Мендель получил некоторые доказательства их применимости к некоторым другим растениям (трем видам фасоли, двум видам левкоя, кукурузе и ночной красавице). Мендель будто бы подтвердил некоторые свои результаты также на фасоли. Зеленый цвет стручков, их набухший вид и большая длина доминировали. Количество успешных экспериментов было очень мало ― в пределах 10–30. Однако точные результаты соотношений Менделем не приводятся из-за их малости.

Скрещивание организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание. Закон расщепления: при моногибридном скрещивании во втором поколении гибридов наблюдается расщепление по фенотипу в соотношении 3:1 около 3/4 гибридов второго поколения имеют доминантный признак, около 1/4 — рецессивный.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несет доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определенном числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

В результате Мендель пришел к следующим выводам: «Потомки гибридов, соединяющих в себе несколько существенно различных признаков, представляют собой членов комбинационного ряда, в котором соединены ряды развития каждой пары различающихся признаков. Этим одновременно доказывается, что поведение в гибридном соединении каждой пары различающихся признаков независимо от других различий у обоих исходных растений», и поэтому «константные признаки, которые встречаются у различных форм родственной растительной группы, могут вступить во все соединения, которые возможны по правилам комбинаций».

Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений. Проявление у гибридов признака только одного из родителей Мендель назвал доминированием. Мендель первый ввел буквенные обозначения: заглавной буквой он отметил доминантный признак, а строчной — рецессивный. Мендель вывел закон о парности детерминант, элементов (сейчас генов). Элементы члены каждой пары распределяются в гаметы одинаково ― поровну. Мендель предположил, что гамета (половая клетка) несет только один элемент из каждой пары элементов. После слияния гамет элементы остаются независимыми по действию друг от друга, образуя новую пару.

Из своих простых математических распределений Мендель вывел существование генетических детерминантов (элементов), которые потом были названы генами. Точное математическое соотношение наследуемых признаков и привело к возникновению концепции генов. Однако следует подчеркнуть, что в той своей статье четкие законы расщепления признаков (обратите внимание, не генов, а признаков) не были сформулированы самим Менделем. Сам Мендель не только не формулировал свои выводы в качестве «законов», но и не присваивал им никаких номеров. Эти законы были сформулированы авторами, переоткрывшими Менделя (35).

Результаты данной работы были доложены Менделем на 2 научных конференциях в 1865 г. Мендель опубликовал в конце 1866 года свою работу в журнале Society for Research in Nature (трудах Брюннского общества), которые рассылались 125 научным библиотекам, а кроме того, Мендель сделал и разослал 40 оттисков своей статьи. Статья Менделя называется "Experiments on Plant Hybridization". Однако ее сочли достойной упоминания менее 10 авторов и только один из них оценил ее по достоинству. Это был русский ботаник И. Ф. Шмальгаузен (51).

 

8.4. ЕСТЬ ЛИ ГЕН МОРЩИНИСТОСТИ ГОРОХА?

А теперь я перехожу к главному вопросу ― существу критики меня моим оппонентом, вопросу, ради которого собственно я и написал данную книгу. Он касается научных вопросов, где я особенно щепетилен. Мой оппонент пишет (22): "А вот про морщинистость кожуры гороха ― пожалуйста, никакой тайны тут нет: Белок называется starch-branching enzyme, крахмал-разветвляющий фермент. Он необходим для формирования крупных сферических богатых амилопектином гранул крахмала, которые активно собирают воду и обеспечивают, таким образом, гладкую поверхность горошины. В горошинах, где фермент неактивен, гранулы крахмала нерегулярны по форме, содержат в основном амилозу, такие гранулы теряют воду быстро и неравномерно, обеспечивая морщинистость."

Итак, берем вышеупомянутую статью Бхаттачария с соавторами (134). Открываем раздел "Обсуждение полученных данных" и читаем на стр. 118, строка 16 сверху. "Морщинистый фенотип ВЕРОЯТНО (я выделил слова, которые показывают, что все эти рассуждения являются ПРЕДПОЛОЖЕНИЯМИ ― С. М.) вызван нуклеотидной вставкой размером 800 бт. Вставка, СКОРЕЕ ВСЕГО, вызывает потерю последних 61 аминокислот белка (SBEI)СБЕИ. На той же странице авторы пишут, что никто точно не знает, какой сорт гороха использовал Мендель. На стр. 119 авторы пишут, что полученные данные иллюстрируют (не доказывают!!! ― С. М.)) значение процесса синтеза крахмала в определении состава горошин. СКОРЕЕ ВСЕГО (текст выделил я ― С. М.), эффект мутации в локусе r (участок данного белка ― С. М.) вызывает снижение синтеза крахмала из-за того, что уменьшается активность фермента, вызывающего разветвление полимеризации сахаридной цепочки крахмала".

МОЙ КОММЕНТАРИЙ. Итак, все эти рассуждения есть не более, чем гипотезы. Никто толком всю метаболическую цепочку не исследовал. 29 работ ссылаются на данную статью и ни в одной потом не уделено внимание всей метаболической цепочке. Это так и осталось никем не доказанным ПРЕДПОЛОЖЕНИЕМ. (более подробный анализ этой и других статей, посвященных верификации генов, определяющих признаки горошин, которые использовал Мендель см. Приложение VIII). Кроме того для иллюстрации того, что нет прямой связки ген-признак я привел информацию о наследовании групп крови (Приложение IX) и муковисцидоза (Приложение X). В частности там можно найти доказательство того, что полимерная цепь, состоящая из моносахараров, определяющая группы крови и важная для наследования групп крови, образуется в аппарате Гольджи с участием множества белков (см. Приложение IX).

 

8.5. ПРОВЕРКА ЗАКОНОВ МЕНДЕЛЯ

В либеральной публицистике постоянно муссируется рассказ о том, как советский математик академик Колмогоров вправил мозги неучу Лысенко и доказал, что результаты проверки распределения признаков у гороха, проведенные некоей аспиранткой Лысенко Ермолаевой, будто бы подтверждают законы Менделя. Поэтому давайте вернёмся к этой истории с проверкой законов Менделя ученицей Лысенко.

Я внимательно прочитал статьи Ермолаевой (32), Колмогорова (47) и Кольмана (48) и вот, что я выяснил. Вера Лысенко в то, что законы Менделя ложны, что этого не может быть, потому что не может быть никогда, была настолько велика, что он поручил своей сотруднице, говорят, аспирантке, проверить законы Менделя на том же материале ― горохе. Это вообще невиданное дело ― повторение классических опытов, опубликованных и рецензированных черными рецензентами. Но Лысенко не чтил законы формальной науки и решил все же проверить. Ермолаева добросовестно повторила классические опыты Менделя. Обратите внимание на название статьи Ермолаевой (32). Следовательно, в то время, кроме гороха, таких соотношений никто так и не получил.

Ермолаева взяла для опытов сорта селекции Грибовской овощной селекционной станции: г-47 ― "Конек-Горбунок", г-128-"Английский сабельный", г-702-"Маяк", г-6- "Албанский", г-178-"Фольгер" и г-179-a "Сахарный зеленозерный". Скрещивание проводилось по "менделирующим" признакам: 1) окраска цветка и пазухи листа или отсутствие такой окраски (белый и красный цветок); 2) желтая и зеленая окраска семядоли; 3) рельеф поверхности горошин.

Были получены следующие результаты. Из 15 скрещиваний, потомства от 9 скрещиваний (9 пар родителей) "укладываются" в 3: 1 и от 6 пар не укладывается. Исходя из вышеприведенных цифровых данных, можно сделать вывод, что "расщепление" в F2 гибридов может быть и в отношении 3:1 и в отношении 1:1; 2:1; 5:1; и т. д. Гибридный материал может и совсем не давать "расщепления". В нашем опыте было получено несколько семей, совершенно не давших "расщепления" по исследуемому признаку (см., например, в таблице 4 семьи 27, 49, 76, 97, 98, 99 и в таблице 6 семьи 105 и 148).

Оказалось, что распределение 3 к 1 сильно варьирует от опыта к опыту от семейства к семейству. Однако опыты Ермолаевой не были такими точными, как у Менделя. Она не делала как Мендель инбридинг, то есть длительное самоопыление сортов гороха. Но материал был гораздо больше. Самое интересное, что как пишет Ермолаева (32), "в работе "Опыты над растительными гибридами" Г. Мендель приводит результаты "расщепления" гибридных потомств первых десяти гибридных растений (Г. Мендель. Опыты над растительными гибридами. Сельзгиз, 1935, с. 36.), т. е. дает результаты "расщепления" по отдельным семьям. В этом "расщеплении" сходства с отношением 3:1 очень мало. В нашей работе приводятся соотношения признаков не по 10 семьям, а по двум с лишним сотням семей, полученных от 30 скрещиваний (см. табл. 4, 5 и 6 в конце статьи)." Следовательно, для более чем двухсот семей, отклонение укладывается в ожидаемое, хотя на глаз эти отклонения велики, а Мендель на гораздо меньшем числе семей почти всегда получал распределение 3 к 1.

Но у формальных генетиков нашелся защитник, выдающийся советский математик Колмогоров, который использовал более точные статистические формулы и доказал, что предсказанные Менделем распределения выполняются удовлетворительно. Колмогоров (47) доказал, что большей близости частот m/n по отдельным семействам к их среднему значению 3/4, чем получилось у Н. И. Ермолаевой, при данной численности семейств и нельзя было бы ожидать по менделевской теории. Если бы в какой-либо достаточно обширной серии семейств уклонения m/n от 3/4 были бы систематически меньше, чем требует теория, то это в такой же мере опровергало бы применимость к этой серии семейств, сформулированных выше допущений, как и систематическое превышение теоретически предсказываемых размеров этих уклонений. Отмечу, что в свое время Лысенко был раскритикован за неудачное применение статистики (118).

Колмогоров считал, что эксперименты Ермолаевой не позволяют отбросить нулевую гипотезу не отличаются статистически от распределений Менделя, но он не доказал, что распределения являются одинаковыми. Но это не доказывает, что другая линия распределения не описывает полученное в эксперименте распределение лучше, чем распределение Менделя.

Как я выяснил из учебников статистики, для оценки распределений она звучит так ― нулевая гипотеза предполагает, что модель или распределение описывает выборку НЕ лучше чем горизонтальная линия проведенная, через среднее значение выборки. Гипотеза номер 1 предполагает, что модель описывает выборку лучше горизонтальной линии (среднего значения). По статистике можно отвергнуть нулевую гипотезу о различии распределений, но нельзя доказать, что данное распределение именно такое, какое мы предложили для сравнения, так как может быть масса других распределений и линий регрессии. Распределение Менделя слишком узкое, чтобы его можно было анализировать статистически.

Приведу ответ на статью Колмогорова, в которой Кольман (48) пишет: "Теория вероятностей и статистический метод исследования являются лишь вспомогательными орудиями в конкретной науке (например, в политической экономии, в физике, в биологии). В зависимости от того, какая конкретная теория контролирует ее применение, статистика будет давать результаты, правильно или неправильно отражающие материальную действительность… Вариационная статистика может и должна применяться в ней, но только под непременным контролем биологических теорий, отнюдь не подменяя собою последние."

"…мы говорили о произволе в установлении классификации признаков, между тем как от выбора классификации (какие стебли считать еще короткими и какие уже длинными, или какие считать еще неокрашенными и какие окрашенными и т. п.) чувствительным образом зависят получаемые результаты.

Как можно удивляться тому и восхищаться тем, что после того как мы сами до крайности упростили свои биологические представления об основах наследственности, сведя их к комбинаторике линейно расположенных генов, к урновой схеме с неизменными и не влияющими друг на друга шариками, к этим представлениям оказываются применимыми тощие геометрические аксиомы, ― это поистине уму непостижимо! Но пусть эта "простота " равносильна биологической бессодержательности, лишь бы получались самые, что ни на есть универсальные, законы!

…для современных менделистов-могранистов как раз характерно то, что они правильно подмеченную Менделем отдельную черточку действительности ― правило смешения признаков, выведенное на основе перекрестного опыления гороха и объясненное Менделем с помощью теории вероятностей, ― превратили в универсальный закон, в общую теорию наследственности.

К. А. Тимирязев писал об этом "законе" так: "По мнению менделистов, он чуть не имеет для биологии такое же значение, как закон всемирного тяготения для астрономии или закон Дальтона для химии. А несомненное преимущество Менделя перед его перед его фанатическими поклонниками заключалось в его трезвом, уравновешенном отношении к полученным результатам, в которых он и не думал видеть какого-нибудь универсального закона…"

"Таким образом, резюмируя, необходимо еще раз подчеркнуть, что поскольку менделевские законы являются законами биологическими, никакое статистико-математическое доказательство (или опровержение) дать им невозможно. Доказать или опровергнуть закон Менделя как биологическую универсальную закономерность можно только на почве самой биологии, не отбрасывая громадный накопленный цитологический, гистологический, биохимический материал, материал по механике развития и т. д., а, критически перерабатывая его, не боясь затронуть самые основы генетики, если этого требуют упрямые факты.

Извлеченный из определенной группы случаев (очень редких — С. М.) наследования менделевский закон расщепления признаков является лишь статистическим правилом, а не универсальным биологическим законом, причем правилом, получение которого существенным образом может зависеть от выбранной нами классификации рассматриваемых признаков. Наконец, нельзя забывать, что статистика в применении к биологии должна занимать лишь подчиненное место".

Как отмечает Кольман, "из того обстоятельства, что статистические материалы в работе Н. И. Ермолаевой или в какой-либо другой согласуются с менделевским "законом" 3:1, вытекает лишь, как это нами уже отмечалось … в связи с работой Т. К. Енина …, что эти материалы совместимы с менделевской вероятностной схемой, но отнюдь не то, что они являются доказательством или подтверждением менделевской биологической концепции. Как уже указывалось, именно так рассматривает этот вопрос и акад.

С. Н. Бернштейн, который пишет…, что результаты скрещивания гороха показывают совместимость с гипотезой Менделя. В то время как несовместимость данного материала с той или другой теорией опровергает эту теорию, его совместимость с ней не означает доказательства или подтверждения этой теории, ибо тот же материал может оказаться совместимым еще и с другими теориями."

В нашей заметке в "Яровизации" на "прекрасное, может быть, даже чересчур прекрасное совпадение эмпирически найденных частот с частотами, вычисленными на основе сделанного допущения" в связи с работой Т. К. Енина. Не менее удивительно и то, что акад.

А. Н. Колмогоров не остановил своего внимания на другом важном нашем аргументе в разборе несостоятельности работы Т. К. Енина, когда мы говорили о произволе в установлении классификации признаков, между тем как от выбора классификации (какие стебли считать еще короткими и какие уже длинными, или какие считать еще неокрашенными и какие окрашенными и т. п.) чувствительным образом зависят получаемые результаты.

А. Н. Колмогоров ошибается, изображая дело так, будто сторонники менделевско-моргановской генетики не настаивают на всеобщем, всеобъемлющем характере менделевских законов. Наоборот, для современных менделистов-могранистов как раз характерно то, что они правильно подмеченную Менделем отдельную черточку действительности ― правило смешения признаков, выведенное на основе перекрестного опыления гороха и объясненное Менделем с помощью теории вероятностей, ― превратили в универсальный закон, в общую теорию наследственности.

Здесь характерно то, что статистическое правило (и притом частное), которое может лишь количественно описать внешние результаты процессов, желают превратить в биологический закон (и притом универсальный), якобы управляющий внутренними причинами этих процессов, а значит, и объясняющий их. К. А. Тимирязев писал об этом "законе" так (10, это ссылка в статье ― С. М.): "По мнению менделистов, он чуть не имеет для биологии такое же значение, как закон всемирного тяготения для астрономии или закон Дальтона для химии. А несомненное преимущество Менделя перед его перед его фанатическими поклонниками заключалось в его трезвом, уравновешенном отношении к полученным результатам, в которых он и не думал видеть какого-нибудь универсального закона…"

Таким образом, резюмируя, необходимо еще раз подчеркнуть, что поскольку менделевские законы являются законами биологическими, никакое статистико-математическое доказательство (или опровержение) дать им невозможно. Доказать или опровергнуть закон Менделя как биологическую универсальную закономерность можно только на почве самой биологии, не отбрасывая громадный накопленный цитологический, гистологический, биохимический материал, материал по механике развития и т. д., а, критически перерабатывая его, не боясь затронуть самые основы генетики, если этого требуют упрямые факты.

Извлеченный из определенной группы случаев наследования менделевский закон расщепления признаков является лишь статистическим правилом, а не универсальным биологическим законом, причем правилом, получение которого существенным образом может зависеть от выбранной нами классификации рассматриваемых признаков" (конец цитаты).

Итак, Кольман абсолютно правильно пишет, что математические законы без биологического содержания не имеют смысла. По сути же, законы Менделя похожи на модель всемирного эфира, отвергнутого квантовой механикой и теорией относительности. Гипотеза о генах есть типичная оказавшаяся неверной научная модель, как теплород или флогистон. Она была полезна, но она не была стопроцентной, и критиковать Лысенко, который придерживался другой гипотезы, было неправильно, а, тем более, начинать административные атаки. По-сути, морганисты подменили понятие «признак» на понятие «ген». То есть, идет расщепление признаков, а не генов, блоков генов, а не единичных последовательностей нуклеотидов. Вот как шла подмена обанкротившейся гипотезы на новую: "Сначала гены были гипотезой, потом их существование подтверждено экспериментально, потом их классифицировали ― опытным путём — как по качественно-статическому параметру (какие бывают гены, за что именно могут отвечать), так и по динамическому (как они взаимодействуют), причём, введя целую терминологию — доминантные/рецессивные аллельные гены, кроссинговер, цистрон и т. п., и только потом их смогли выделить и определить на химикобиологическом уровне" (160).

Лысенко же, как говорится, "кожей чувствовал", что законы Менделя не стопроцентны. Наверное, это было виднее с точки зрения его научной парадигмы и на базе его практического опыта. Тем не менее, несмотря на ошибки обеих сторон, Лысенко назвали шарлатаном и обвинили во всех смертных грехах, а морганистов подняли на щит. Это, по меньшей мере, несправедливо.

 

8.6. ЧТО БЫЛО ИЗВЕСТНО ДО МЕНДЕЛЯ

Но если признать, что законы Менделя не универсальны, то оказывается, что Мендель не был переоткрывателем. Более того, многие «открытые» им факты были давно и хорошо известны, на что сам Мендель указывает в своей работе.

Ещё в середине XIX века, работая на семействе тыквенных и используя метод скрещивания, ещё до Менделя французские ботаники О. Саржэ и Ш. Ноден обнаружили, что все гибриды первого поколения похожи друг на друга. Скрещивая растения разных сортов с различающимися признаками, они наблюдали, что в первом гибридном поколении часто у всех потомков проявляются признаки (обратите внимание речь идет о ПРИЗНАКАХ ― С. М.) только одного из родителей. Это наблюдение впоследствии стали называть правилом единообразия гибридов первого поколения. При этом иногда часть признаков гибриды получают от одного сорта, а часть ― от другого. Явление, когда все гибридные особи первого поколения похожи друг на друга (единообразие гибридов) и по данному признаку все они идентичны одному из родителей (его признак доминирует) было названо доминированием. Эти признаки, которые как бы "побеждают" признаки другого родителя, они назвали доминантными (от лат. доминантис ― господствующий). Часть доминантных признаков гибридные потомки получали от отца, а часть ― от матери.

О. Саржэ и Ш. Ноден также показали, что рецессивные (не проявляющиеся у гибридов первого поколения) признаки не исчезают; при скрещивании гибридов между собой во втором поколении часть гибридов имеет рецессивные признаки («возврат к родительским формам»). Было также показано, что среди гибридов второго поколения с доминантным признаком встречаются разные — дающие и не дающие расщепление при самоопылении. Данное наблюдение впоследствии было подтверждено также другими учеными. Однако никто из этих исследователей не смог дать своим наблюдениям теоретическое обоснование (160).

В 1861 году Парижская Академия наук объявила специальный конкурс на тему: "Изучать растительные гибриды с точки зрения их плодовитости, постоянства или непостоянства их признаков". В задачу конкурса входило "проделать ряд точных исследований" и, в числе прочих, ответить на вопрос: "Сохраняют ли гибриды, размножающиеся самооплодотворением в течение ряда поколений, признаки неизменными… или же, наоборот, они всегда возвращаются к формам их предков". Конкурсы Парижской Академии наук вызвали интерес не только в научном мире. Как раз годом раньше, в 1860 году, Луи Пастер победил Пуше в знаменитом споре о самозарождении. Влияние победы Пастера на мировоззрение современников было огромным.

Победитель конкурса 1861 года Шарль Нодэн (1815–1899) представил мемуар в 200 страниц под названием "Новые исследования над гибридностью у растений". На вопросы, заданные конкурсной комиссией, в работе Ш. Нодэна содержались довольно определенные ответы, а именно:

1) в первом поколении гибридов наблюдается сходство всех потомков и их единообразие;

2) начиная со второго и последующих поколений, происходит "разложение гибридных форм" на исходные родительские типы;

3) возврат к родительским формам и появление новых комбинаций связано с разъединением сущностей (наследственных задатков). Каждый, кто знаком с основами генетики, сразу узнает, что выводы Нодэна в принципе соответствуют закономерностям наследования признаков, установленным в работе Менделя. Исследование Нодэна, удостоенное премии, сразу же стало хорошо известно. С Нодэном переписывался и его цитировал Дарвин (160).

Почему же основателем генетики считают Менделя, а не Нодэна? Ведь работа Ш. Нодэна более солидна, чем работа Менделя, в ней сообщаются данные по многим видам растений, а у Менделя в основном взят один вид ― горох. Более того, Шарль Нодэн установил много интересных и важных фактов и ряд закономерностей раньше Менделя.

Я даю такой ответ ― это связано с тем, что Мендель открыл в формальной генетике некий закон типа "флогистона", мирового эфира" или "теплорода". Этот закон оказался, по сути, неверным, но очень удобным для понимания и был после переоткрытия с восторгом воспринят уже готовым к тому времени сообществом биологов в качестве универсального закона расщепления признаков. Большая объективность и следование научной правде у Нодэна приводило в тому, что ученые оказывались как бы в ловушке, в которую они попали сейчас. Никаких математических закономерностей расщепления внешних признаков не должно было быть в принципе из-за того, что любой путь от последовательности нуклеотидов до признака опосредуется таким большим количеством вероятностных событий, что математическая закономерность исчезает и остается ряд неравенств, а ещё точнее неких вербальных закономерностей, сопровождаемых таким количеством оговорок, что математике там оказывалось делать нечего, а биологи хотели математики и они ее получили в виде чрезвычайно редких "законов Менделя". Разнообразие взятых в опыты форм как бы размазывало законы передачи информации от записанной в наследственном коде до их проявления в фенотипе, уменьшало их обязательность, что и есть на самом деле в природе. Создавалось впечатление, писал Нодэн, что "законы, управляющие гибридностью у растений, варьируют от вида к виду, и нельзя делать заключение от одного гибрида по отношению к другому". На этом настаивал и физиолог растений Тимирязев

Смысл фактов оставались неясными или размытыми. Ученые же хотели простоты. Поэтому все, что не соответствовало этому " закону" объявлялось ложным. Единственное, что действительно открыл Мендель ― это его неявное утверждение, что каждый признак контролируется парой задатков или генов (как стали их потом называть), которые никуда не исчезают, а лишь рассоединяются при образовании половых клеток и затем свободно комбинируются у гибридов и их потомков. Потом парность задатков ― парность хромосом ― двойная спираль ДНК ― все объявили логическим следствием идей Менделя.

Потом 35 лет никто не мог получить подтверждение того же на другом объекте. Это говорит о том, что это 3 к 1 очень редкое сочетание и расщепление. Открытие не было востребованным, так как оно было не верным. Менделя. Но когда три ботаника переоткрыли законы, то есть, уже 4 человека на десятке объектов их подтвердили, то люди стали думать, что они ошибались, делая эксперименты и ничего не получая. Как если бы его описал выдающийся ряд ученых.

Самое интересное, что тогдашние ученые интуитивно чувствовали, что Мендель не прав. По крайней мере, они видели, что закон Менделя не может быть всеобщим. Об этом говорит такой факт. Труды общества естествоиспытателей в Брно, где работал Мендель, были разосланы в 120 научных библиотек мира, и он дополнительно разослал 40 оттисков, его статья имела лишь один отклик. Мендель получил ответ от известного мюнхенского ботаника, профессора Карла Нэгели, который сам занимался гибридизацией, выдвинул умозрительную теорию наследственности и ввел термин модификация. Нэгели благосклонно оценил большой объем работ Менделя, но резонно посоветовал ему проверить опыты на других видах, ибо, возможно, что "результаты наследования получатся существенно иные". В ответном письме Мендель признался: "Полученный результат нелегко согласовать с нынешним состоянием науки, и в этих условиях опубликование одного изолированного эксперимента вдвойне рискованно как для экспериментатора, так и для вопроса им защищаемого. Для меня не явилось неожиданностью, что Ваше высокородие будет говорить о моих опытах с недоверчивостью: в подобных случаях я бы поступил так же".

 

8.7. РЕЗУЛЬТАТЫ, КОТОРЫЕ ПРОТИВОРЕЧИЛИ ВЫВОДАМ МЕНДЕЛЯ

Не удивительно, что современники не поняли Менделя и не оценили его труд. Слишком уж простой, бесхитростной представилась им схема, в которую без труда и скрипа укладывались сложные явления, составляющие в представлении человечества основание незыблемой пирамиды эволюции. Ну не находили они других подобных расщеплений признаков и все тут. К тому же, в концепции Менделя были и уязвимые места. Так, по крайней мере, представлялось это его оппонентам. И самому исследователю тоже, поскольку он не мог развеять их сомнений. Одной из «виновниц» его неудач была ястребинка (98).

Ботаник К. фон Негели, профессор Мюнхенского университета, прочитав работу Менделя, предложил автору проверить обнаруженные им законы на ястребинке. Это маленькое растение было излюбленным объектом Негели. И Мендель согласился. Он потратил много сил на новые опыты. Попытки Менделя приложить найденные закономерности к скрещиванию многочисленных разновидностей и видов ястребинки не оправдали надежд и потерпели полное фиаско. Насколько счастлив был выбор первого объекта (гороха), настолько же неудачен второй.

Ястребинка — чрезвычайно неудобное для искусственного скрещивания растение, так как оно очень мелкое. Приходилось напрягать зрение, а оно все больше и больше ухудшалось. Потомство, полученное от скрещивания ястребинки, не подчинялось закону, как он считал, правильному для всех. Лишь спустя годы после того, как биологи установили факт иного, не полового размножения ястребинки (98).

Только много позднее, уже в XX веке, стало понятно, что своеобразные распределения наследования признаков у ястребинки являются исключением, лишь подтверждающим правило. Во времена Менделя никто не мог подозревать, что предпринятые им скрещивания разновидностей ястребинки фактически не происходили, так как это растение размножается без опыления и оплодотворения, девственным путем, посредством так называемой «апогамии».

В 1889 г. Бовери (цит. по 42) показал, что у морских ежей при оплодотворении яйцеклеток, лишенных ядра, полноценными сперматозоидами образуются вполне жизнеспособные зиготы, которые повторяли признаки отца, а не матери. Это опыт аналог клонирования Долли. При этом огромная цитоплазма яйцеклетки получала ядро отца, но не цитоплазму.

Директор Биостанции в Вудс-Холе Уитмен многие годы посвятил изучению гибридов между разными видами горлиц и голубей. Но получаемые расщепления никак не укладывались в менделевские рамки. Получалась, мягко выражаясь, мешанина. Странные признаки не давали красивое соотношение 3:1.

Корренс (1908) и Бауэр (1909) (цит. по 42) описали странные результаты расщеплений, которые проявлялись после скрещивания. Уже потом они были объяснены на основе гипотезы внеядерного наследования. Но во времена Лысенко о таком феномене никто не знал. Никто не знал не только, что ДНК есть в митохондриях и пластидах, но никто точно не знал, что именно в ДНК записан наследственный код.

Несоответствие законам Менделя обнаружил Корренс уже в 1909 г. У пестролистной ночной красавицы, если мать пестролистная, а отец зеленый, то все потомство в первом поколении пестролистное. Напротив, если отец пестролистный, а мать зеленая, то в первом поколении все потомство зеленое. У Менделя признаки первого поколения были всегда одинаковы независимо от того, кто был матерью, а кто отцом. Если первое потомство опылять зеленой формой, то снова все потомство пестролистное. Если потомство снова опылить зеленым отцом, все равно будет пестролистное. И наоборот, если после получения первого зеленого поколения его опылить снова пестролистным отцом, то будет зеленые листья и то же будет, если повторить опыление со вторым и третьим поколением. Данные эксперименты удалось объяснить только после открытия ДНК в пластидах и независимости их распределения при делении клетки от ядра (цит. по 42).

В конце 30-х годов С. М. Гершенсон установил мутагенный эффект ДНК и вирусов (43).

В конце 1940-х годов Б. Эфрусси открыл внеядерное наследование у дрожжей, видимо, связанное с митохондриями. Но в те времена в доэлектроонномикроскопическую эру митохондрии считались обычными органеллами клетки и точно не было известно об их ДНК и их симбиотическом происхождении (42).

В 1965 г. Б. Коксом были найдены цитоплазматические наследственные детерминанты в дрожжах. Оказалось, что они белковой природы. Они наследуются независимо от ядра (42).

Итак, в 1948 г. имелось огромное количество фактов, которые противоречили так называемым законам Менделя. И только работы самого Менделя указывали, на расщепление 3 к 1.

8.8. ПОЧЕМУ ЗАПАДНЫЕ ГЕНЕТИКИ НЕ ПОДДЕРЖАЛИ ЛЫСЕНКО В 1951 Г.?

Ещё при жизни Сталина, в то время, когда Лысенко был в зените славы, на Западе тихо и незаметно была опубликована работа, которая выбивала клин из основания формальной генетики. Речь идет о статье Мак-Клинток.

Мак-Клинток открыла совсем не обратный перенос информации на ДНК. Нобелевская премия по физиологии и медицине присуждёна Мак-Клинток 10 октября 1983 года с формулировкой «За открытие мобильных генетических элементов. В начале 1948 года она сделала интересное открытие — оказалось, что некоторые участки хромосом, которые назывались диссоциатором и активатором, способны менять своё положение на хромосоме. После перемещения участков происходило изменение окраски зёрен кукурузы относительно образцов из поколений от контрольного скрещивания. В 1948-50 гг. Мак-Клинток считала, что мобильные элементы влияют на гены, селективно ингибируя и регулируя их активность. Она предположила, что генная регуляция может объяснить, почему в сложных многоклеточных организмах образуются различные клетки и ткани, несмотря на то, что все клетки обладают идентичным геномом.

Открытие Мак-Клинток поставило под сомнение представление о геноме как о статичном наборе правил, передающихся из поколения в поколение. Летом 1951 года Мак-Клинток доложила об исследовании изменчивости генов на ежегодном симпозиуме в Колд Спринг Харбор. Её работа была встречена «каменным молчанием». И это было в годы, когда с той же идеей выступал Лысенко. Просто в США победили формальные генетики. В 1970-х годах Ac and Ds были клонированы, и было показано, что они относятся к транспозонам 2 типа. Ac синтезирует фермент транспозазу, необходимый для перемещения контролирующих элементов. Ds имеет мутацию в гене транспозазы, которая не позволяет ему перемещаться без стороннего источника транспозазы. Таким образом, Ds не может перемещаться в отсутствие Ac. Последующие исследования показали, что транспозоны обычно не перемещаются до тех пор, пока клетка не попадёт под воздействие радиации или не претерпит цикл «breakage-fusion-bridge», таким образом, активация контролирующих элементов служит причиной генетической изменчивости.

Из результатов Мак-Клинток следовало, что мутации могут возникать с большой частотой, упорядоченно и что активность генов находится под контролем регуляторных элементов. Согласно же классической теории Моргана, гены должны иметь жесткую "прописку", и существование целого класса мобильных элементов, открытых в работе Мак-Клинток, нарушало все каноны формальной генетики. Из работы МакКлинток следовало, что мутации могут возникать с большой частотой, упорядоченно и что активность генов находится под контролем регуляторных элементов. Согласно классической теории Моргана, гены должны иметь жесткую "прописку", и существование целого класса мобильных элементов нарушало все каноны.

В отличие от Лысенко в случае Мак-Клинток внешне все выглядело пристойно. В 1965 году она получила Кимберовскую премию, которую присуждает американская академия за выдающийся вклад в область генетики и эволюции (среди награжденных Т. Морган, Ф. Добжанский, Н. В. Тимофеев-Ресовский и др.). Однако идеи Мак-Клинток оставались на периферии науки. Любопытна аргументация, к которой прибегали иногда генетики. Так, известный английский генетик Г. Понтекорво, упоминая в своем учебнике об исследованиях Мак-Клинток, пишет, что они очень интересны, но, возможно, касаются только кукурузы и только некоторых необычных линий кукурузы, как ему в личном разговоре сказал специалист по кукурузе генетик Мангельсдорф. Оттеснение на периферию ― род интеллектуального иммунитета, естественной защиты научного сообщества от непривычного и нового.

Когда Мак-Клинток опубликовала в 1951 году итоги своих 6-летних работ по подвижным генам, она уже была признанным авторитетом в цитологии и генетике. Ее работа 1931 года по цитологическому доказательству перекреста хромосом была признана классической и цитируется и ныне во всех учебниках. По оценкам цитологов, из 17 крупных открытий в цитогенетике кукурузы, приходившихся на период 1929-35 гг., 10 ― были сделаны Мак-Клинток.

В 1939 году Б. Мак-Клинток была избрана вице-президентом Американского генетического общества. Весной 1944 года она стала членом Американской Академии наук ― самой престижной научной организации США. Это был третий случай в истории американской академии, когда избиралась женщина.

И все же, несмотря на то, что авторитет Мак-Клинток, в отличие от Менделя, был общепризнан, сделанное ею уже в ранге американского академика открытие оставалось непонятым, или в лучшем случае на периферии науки еще 25 лет!

Можно указать на серию причин такого непонимания.

1. Сложность понимания цитогенетики, требующей долгой тренировки, пространственного воображения (как чтение рентгеновских снимков требует специальной подготовки врача-рентгенолога).

2. Выводы Б. Мак-Клинток противоречили ряду основных положений хромосомной теории наследственности, таких, как стабильность положения гена на хромосоме, случайность мутаций, их низкая частота.

3. После открытия двойной спирали ДНК и концепции "главной молекулы" произошел резкий сдвиг интересов в сторону молекулярной генетики, и факторы, молекулярная природа которых оставалась неизвестной, не вызывали особого интереса.

4. Особенность исследовательского подхода Мак-Клинток, ее устремленность к целому, "чувство организма", как определяла сама Мак-Клинток свой подход, и как названа научнобиографическая книга о ней, написанная историком науки Эвелин Келлер.

Лысенко не был одиноким. Его сторонники обнаруживались и на Западе. Например, точка зрения Уведдингтона (Waddington) была сходна с такой Лысенко. Он, как и Лысенко, критиковал механистический подход к наследственности. Он был постоянным критиком того, что он называл генетической теорией генов. Как видим, уже тогда многие видели неадекватность формальной генетики и то же самое говорил Лысенко. Но там генетики не предприняли административных шагов по выкорчевыванию его взглядов, как это было сделано генетиками в послевоенном СССР против Лысенко.

Уведдингтон в 30-50-х годах пытался связать эмбриологию и генетику. В 1954 г. Он писал, что различные клетки тела, содержащие те же самые гены, дифференцируются в совершенно различные ткани (182. С. 77). Но влияние Уведдингтона среди западных генетиков, особенно американских, было небольшим. Тем не менее, его сейчас признали на Западе. Очередь за российскими генетиками признать Лысенко.

Оказывается, законы Менделя могут выполняться и для надгенетического наследования. Одним из признаков, отличающих сорта растений друг от друга является задержка цветения. Было обнаружено, что данный признак вызывается некоей мутацией, которая была названа неким фактором ФВА (FWA). Данная мутация считалась доминирующей мутацией(186). При использовании скрещивания по Менделю данная мутация вела себя как один из наиболее типичных представителей закона Менделя. Во втором поколении всегда было расщепление 3 к 1. Было показано, что мутации подвергся единственный ген, кодирующий некий белок, регулирующий транскрипцию (186). Однако при определении последовательности нуклеотидов мутантного гена обнаружить не удалось. Мутация была связана с метилированием ДНК во всех тканях, что вело к ошибкам в синтезе белков и задержкам в цветении (222).

 

8.9. ЧТО ЖЕ ОТРИЦАЛ ЛЫСЕНКО?

Лысенко же отрицал не генетику, а формальную генетику и законы Менделя, расщепление по Менделю 3 к 1 и и был прав. Как я показал выше, они являются очень и очень частным случаем. Мендель оказался не прав. Как видим, Лысенко чувствовал, что на самом деле в моделях морганистов смешены понятия ген и признак и что почти нет признаков, которые бы соответствовали одному гену.

Последователи Менделя попытались судить о расщеплении 3 к одному как закону для большинства признаков. Законы Менделя в большинстве случаев не выполняются, так как наследование одного даже самого простого внешнего признака определяется сложнейшим взаимодействием не просто нескольких генов, а всего генотипа. Генетика прокариотов вообще не знает расщепления признаков. Лысенко был прав, когда подвергал сомнению закон расщепление признаков не, не генов. Он не верил в менделевскую гипотезу формальной генетики, но, подчеркну снова, не отрицал саму генетику.

Сам Трофим Денисович Лысенко так никогда и не поверил, что признаки расщепляются согласно законам Менделя. Он писал в отчете о своей научной работе за 1974 год: «Никакого шифра или кода, записей информации и т. п. в ДНК также нет. … О какой матрице для копирования наследственного вещества можно говорить, зная детально наши экспериментальные данные по получению озимых из яровых?» (107). Обратите внимание, что даже в 1974 году он продолжал верить в результаты своих экспериментов, что начисто исключает версию о сознательном подлоге в его результатах. Ученые могут верить в бога и их никто не осуждает. Лысенко мог не верить в законы Менделя и его тоже никто не должен осуждать. Самое интересное, что в 1930 и 1940-х годах Лысенко поддерживали некоторые западные генетики, такие как Дж. Нидман, Дж. Бернал и Дж. Халдане (цит. по 213, 214). А ещё в 1938 году немецко-американский генетик Гольдшмидт проповедовал теорию "зародышевой плазмы," в которой индивидуальным генам нет места (158).

Как пишут в Интернете (84), задолго до появления в 60-х годах самого слова 'морфогенез', Т. Д. Лысенко получил основополагающие результаты теории морфогенеза, т. е. процесса формирования формы, роста клеток. Он включил в само определение генетики понятия роста и развития (т. е. промежуточных звеньев между начальным геном и конечным признаком). Лысенко настаивал на рассмотрении этих процессов в контексте понятия 'наследственность'.

Как я показал выше, нет никакого соответствия ген-признак. Наследование признаков определяется не отдельными генами, а взаимодействием целостного набора генов. Всем организмом. Как это понимал акад. Лысенко. Один и тот же признак может быть изменен мутациями в самых разных генах, но, как правило, обслуживающих одну клеточную и тканевую функцию. Фенотип признака всегда обеспечивается не одним геном, а комбинацией генов, вовлеченных с его посттрансляционную модификацию в том числе. Признак есть свойство человеческого ума классифицировать объекты внешнего мира. До человека признаки также наследовались, хотя и не были классифицированы человеком. Связь ген ― признак возникает только при нарушении функции белка, кодируемого данным геном.

Современные молекулярная и клеточная биология установили следующие факты.

1. Нет ни одного признака, который бы кодировался только одним геном.

2. В геноме человека нет генов, на основе информации которых можно было бы получать зрелую мРНК без помощи других генов и белков.

3. Информация, находящаяся в гене (условное понятие) реализуется с использованием всей программы развития. В геноме человека нет ни одного белка, который бы принял окончательное, функционально-способное состояние без помощи других генов и белков, без тщательно регулируемой упаковки и посттрансляционной химической модификации.

4. В геноме человека нет белков, которые будучи зрелыми, могли бы выполнять специфические функции без помощи других белков, а то и генома в целом. Нет ни одного белка, который бы в функциональном состоянии зависел бы только от информации, заключенной в его гене.

5. Нет ни одной биохимической реакции, которая обеспечивается информацией, находящейся только в одном гене. Белки выполняют свои функции практически исключительно через взаимодействие с другими белками.

6. В геноме человека нет ни одного белка, который бы либо не был бы дублирован сам по себе, либо функция которого не была бы дублирована другими белками, действующими функционально параллельно.

Геном работает нормально только в очень узком диапазоне условий. Чтобы связь проявлялась, требуется множество буферных систем, корректирующих ошибки собственных белков и влияние внешней среды. Поэтому прямая связь ген-признак очень редка. Поэтому нет и не может быть прямой связки ген-признак.

Итак, Лысенко отвергал всеобъемлющее значение генетического кода и был прав, когда критиковал идею ген-признак. Почему Лысенко был прав? Потому, что такая простая передача ген-признак слишком проста для такой сложнейшей системы, как клетка и особенно организм. Даже Терентий Мальцев догадался, что такая схема не правомочна для формальной генетики. Такие прямые зависимости, не зависящие от окружающей среды, не могут быть верными и всеобъемлющими ― как правило, они чрезвычайно редки.

Наследование имеет вероятностный характер (см. статистику Менделя и Ермолаевой) на всех этапах считывания и переработки генетической информации. И очень редко считывание достигает точности 99,9 %, как при открытии Менделем своих законов. Да и то такой результат достигается только в очень узком диапазоне условий окружающей среды.

Итак, гипотеза о прямых связках ген-признак есть типичная оказавшаяся неверной научная модель, как теплород или флогистон. Она была полезна, но она не была стопроцентной, и критиковать Лысенко, который придерживался другой гипотезы, было неправильно, а, тем более, начинать административные атаки. По-сути, морганисты подменили понятие «признак» на понятие «ген». То есть, при наследовании идет расщепление признаков, а не генов, блоков генов, а не единичных последовательностей нуклеотидов…