Лысенко был прав!

Миронин Сигизмунд Сигизмундович

ПРИЛОЖЕНИЕ VII. МУТАЦИИ И ПРОБЛЕМА РАКА

 

 

У многоклеточных организмов неконтролируемое деление всегда проблема — возникает рак. Рак представляет собой клон (то есть, группу клеток, потомков одной клетки) мутированной дифференцированной созревшей соматической клетки или же клон мутированной стволовой эмбриональной клетки. В обоих случаях клетки, составляющие клон, выходят из-под популяционного (группового) контроля. Рак — это отказ делящихся клеток слушаться приказов, исходящих из ткани. В результате потери контроля над делением клетки начинают бесконтрольно размножатся и затем мигрируют по сосудам в другие ткани, давая метастазы.

С одной стороны, без деления нельзя — у многоклеточных организмов постоянно возникают повреждения из-за взаимодействия с внешней средой. Это требует немедленной активации деления клеток, для того, чтобы закрыть рану. Но после того как инициировано деление, необходимо в нужный момент его прекратить, и если клеток наделано больше, чем требуется, то заставить лишние клетки умереть. Поэтому в клетках имеется специальная система для самоубийства — клетки при этом подвергаются апоптозу. С другой стороны, если система доведения до самоубийства сломается, то возникает рак. В геноме заложена программа самоуничтожения клетки, которая стала делиться подозрительно часто и независимо от стимулирования гормонами. Апоптоз нужен и для предотвращения рака.

 

VII.1. ПОЧЕМУ ИММУННАЯ СИСТЕМА НЕ АТАКУЕТ БЕЛКИ ХОЗЯИНА

Существует иммунная система, убивающая клетки, синтезирующие чужеродные белки, например вирусные. Для обеспечения этого в каждой клетке есть белковая машина, которая берет на пробу внутриклеточный белок, режет его и выставляет на поверхность, где специальные клетки среди лейкоцитов, так называемые натуральные убийцы (киллеры) проверяют эти обрезки на предмет тлетворного влияния чужого генома. Точно также, если есть видимая для иммунной системы мутация белка, которые был выставлен в детстве и клон лимфоцитов, дающий против него антитела был уничтожен, в детстве, и контролирующие лимфоциты это распознают, то данная клетка убивается иммунной системой. Но если эти белки не выставляются для контроля, то начинается рак. Мутации ведут к раку, если не идет постоянная экспрессия на поверхности фрагментов собственных белков, которые не доступны контролю иммунной системе. Другими словами, растут те клетки, где нет мутаций, видимых иммунной системе.

Как организм уничтожает все клоны лимфоцитов, которые могут вырабатывать антитела против белков хозяина или его мелких кусочков? Как клетки тимуса узнают аутоиммунные клоны лимфоцитов? Чтобы было понятнее, почему иммунная система человека не атакует собственные белки, замечу, что уничтожение аутоагрессивных клонов иммунокомпетентных клеток, то есть таких клональных популяций клеток, которые распознают как чужеродные антигены естественные антигены самого организма и нападают на здоровые клетки организма, является одной из важных функций тимуса. Это происходит в детстве, потом он атрофируется.

Удаление тимуса стимулирует аутоиммунные заболевания. Чтобы предотвратить дифференциацию Т-клеток, тимус должен быть удален с течение 24 часов после рождения (129).

В норме тимус производит негативную селекцию аутоагрессивных лимфоцитов против тканей, доступных для макрофагов и лимфоцитов, которые патрулируют эти ткани. Другими словами, те лимфоциты, которые реагируют на белки собственного организма, в тимусе убиваются. Однако некоторые органы и ткани отделены от крови тканевыми (гисто-гематических) барьерами, через которые ни белки, ни клетки крови не проникают. Этот отбор происходит в норме внутри тимуса на ранних стадиях созревания Т-клеток, но, помимо того, тимус также фильтрует протекающие через него кровь и лимфу и уничтожает аутоагрессивные лимфоциты. И поэтому тимус не производит негативной селекции (уничтожения) аутоагрессивных лимфоцитов против тканей, которые не доступны из-за барьеров контролю со стороны иммунной системы. Но это не мешает нормальному функционированию органа до тех пор, пока цел гемато-тканевой барьер, отделяющий данный орган от крови.

Иммунная система способна отличать свои и чужие антигены (короткие фрагменты белков или углеводородных цепей — полисахаридов). В раннем периоде своего развития иммунная система учится не отвечать на свои антигены. Клоны лимфоцитов, которые в результате взаимодействия с собственными белками, а точнее антигенами активируются, уничтожаются в тимусе. Там поэтому много клеток в состоянии апоптоза. У взрослых в результате атрофии тимуса эта способность теряется.

Если двухяйцевые, то есть генетически совершенно разные близнецы коров обменивались кровью во время внутриутробного периода (когда их плаценты срастались) то у них белки, углеводы и целые ткани и органы, взятые у другого близнеца, рассматриваются иммунной системой как свои. Если обмена крови не было (плаценты не срастались) то реакция отторжения и образование антител были в полнм объеме.

Если новорожденным мышам ввести клетки, взятые из селезенки от мышей другой линии, то эти клетки выживают в течение большого периода жизни животного, то есть убийство лимфоцитов, реагирующих на собственные белки, а другие антигены у млекопитающих продолжается и в самом раннем периоде после рождения.

Если белки какого-либо органа были изолированы от иммунной системы эмбриона в раннем периоде после завершения эмбриогенеза, а потом изоляция была снята, то белки данного органа становятся чужими. Например, у головастика лягушки удаляли гипофиз и пересаживали его другому головастику. После созревания иммунной системы у обоих животных гипофиз пересаживался обратно первоначальному владельцу. Он отторгался. Но если таким образом поступали только с половиной гипофиза, то отторжения не было.

В норме все же существует аутореактивные клетки, поскольку существенная часть лимфоцитов активированных собственными антигенами, избегает разрушения, происходящего в тимусе. Однако оставшиеся клоны лимфоцитов продуцируют антитела, которые плохо приклеиваются к своему антигену (129).

 

VII.2. КАНЦЕРОГЕНЫ

Считается, что химические вещества (канцерогены), курение, алкоголизм, действие токсических продуктов на производстве, хронические заболевания, вирусы, простейшие, грибы, ухудшение общей и региональной экологической обстановки, радиация, наследственные факторы и т. п. способствуют развитию злокачественных опухолей (рака). Всего в мире описано более 1000 канцерогенных веществ экзогенной (внешней) и эндогенной (внутренней) природы. Таким образом, в 60–90 % случаев рак вызывается факторами внешней среды. Теорий, трактующих природу рака, никак не меньше десятка, но, по большому счету, они до сих пор остаются в разряде гипотез. Наука больше столетия бьется над загадкой рака. Одна теория сменяла другую, некоторые гипотезы становились затем аксиомами, другие бесследно исчезали в научных архивах. Немногочисленные ученые, посягавшие на создание единой теории рака, чаще всего встречали резкую критику или, напротив, замалчивание.

В этом плане особенно опасны мутации генов, кодирующих белки, задействованные в процессе хранения наследственной информации, ее считывания и переработки, и регуляции использования. Мутанты генов, регулирующих клеточный рост и деление, а также апоптоз, могут стать онкогенами, которые вызывают опухолевую трансформацию клетки. К онкогенезу имеют отношение 120–150 генов человека и некоторые вирусные гены, встраиваемые в человеческий геном. Обычно опухоль является результатом множественных генетических дефектов.

Идентифицировано много вирусов, вызывающих рак и карциномы, (опухоли). Вирусы, вызывающие опухоли, используются для превращения клеток в культуре в бессмертные клеточные линии, которые быстро растут и делятся.

 

VII.3. ОНКОГЕНЫ

Онкогенами называют гены, вызывающие развитие опухолей. Вирусные онкогены сначала были обнаружены у онкогенных вирусов. Клеточные онкогены, так называемые протоонкогены, являются почти точными копиями (гомологами) вирусных онкогенов. Кодируемые такими генами белки принимают участие в регуляции процессов роста и дифференцировки, в особенности клеточной пролиферации. В свою очередь, контроль за функционированием этих генов осуществляется генами-онкосупрессорами (антионкогенами). Протоонкогены приобретают свойства онкогенов за счет мутации, делении, суперэкспрессии, т. е. они могут вызывать развитие опухоли, если одновременно нарушена регуляция со стороны генов-супрессоров.

Пролиферация и дифференциация (созревание) — конкурирующие клеточные функции. Из полиплоидных клеток рак обычно не развивается, так как буферность генома, а, следовательно, и резистентность к мутациям в них резко увеличена.

Б. Продукты онкогенов: биохимические функции Общим признаком всех онкогенов является кодирование белков, принимающих участие в передаче сигнала из внешней среды на геном для либо начала синтеза определенного белка, либо для начала деления клетки.

1. Лиганды, кодируемые протоонкогенами, обнаруживаются как внеклеточные продукты. Они гомологичны ростовым факторам.

2. Кодируемые протоонкогенами мембранные рецепторы подобны рецепторам первого типа, которые имеют один трансмембранный домен, обладающий тирозинкиназной активностью и способный связывать гормоны и ростовые факторы.

3. В нормальных клетках ГТФ-связывающие белки присутствуют как в плазматической мембране, так и в цитоплазме. Мембранные G-белки передают сигнал от рецепторов третьего типа, имеющих семь трансмембранных тяжей, на эффекторные системы плазматической мембраны. Внутриклеточные G-белки принимают участие в регуляции синтеза и транспорта белков. G-белки медленно гидролизуют ГТФ до ГДФ и переходят в неактивное состояние. Белки, кодируемые протоонкогеном рас (ras) и рядом других онкогенов, родственны ГТФ-связывающим белкам.

4. Ядерные рецепторы гормонов передают сигнал от липофильных сигнальных веществ путем регуляции транскрипции определенных генов. Некоторые протоонкогены принадлежат к этому семейству лиганд-активируемых факторов транскрипции.

5. Ядерные онкосупрессоры блокируют вступление дифференцированных клеток в митотический цикл. Кодирующие их гены также могут быть отнесены к антионкогенам.

6. ДНК-связывающие белки хроматина обладают разнообразными функциями. Некоторые онкогены обнаруживают сходство с факторами транскрипции.

7. Протеинкиназы играют центральную роль в механизме внутриклеточной передачи сигнала. Эти ферменты катализируют фосфорилирование белков, изменяя их биологическую активность, которая возвращается к норме лишь после действия протеин-фосфатаз. К семейству протеинкиназ принадлежат многие белки, кодируемые протоонкогенами.

Мутагены вызывают нарушения регуляции роста и деления клеток и поэтому являются канцерогенными. В онкологии мутации одного онкогена недостаточно для опухолевой трансформации, нужны множественные мутации или хромосомные абберации, но вот набор генов делает клетку более чувствительной или резистентной к мутациям даже в одном гене.

Одним из наиболее характерных признаков опухолевой клетки является тотальное деметилирование ее ДНК. Этот эпигенетический по сути своей процесс способен, по-видимому, оказывать крупномасштабное дестабилизирующее геном воздействие.

Л. Хейфлик в 1960-е годы установил, что клетки, взятые из организма животных, не могут делиться бесконечно, и экспериментально определил, каков критический предел для различных типов клеток. Вынужденная остановка деления из-за укорочения концов хромосом предотвращает накопление критического числа мутаций, которые могут привести к перерождению клеток в раковые. Один из подходов к лечению рака как раз и заключается в инактивации теломеразы (124).

 

VII.4. ГИБРИДИЗАЦИОННАЯ ГИПОТЕЗА РАКА

Суть рака в том, что раковые клетки выходят из-под контроля размножения. Вопрос, как это происходит? В соматических клетках или в стволовых клетках, расположенных в тканях, идет постоянное мутирование. Обычно буферность клетки настолько велика, что практически любая мутация, включая большую часть мутаций незаменимых белков, но за исключением их мутаций, ведущих к отрицательному доминантному эффекту, нивелируется. Раковые клетки образуются из стволовых клеток, имеющихся почти в каждом органе и ткани, или из дифференцированных (созревших) или малодифференцированных соматических клеток. В первом и втором случае стволовые и дифференцированные клетки подчиняются в норме организму или командам, исходящим из окружающей ткани.

Когда клетка обнаруживает повреждение своей ДНК, она включает механизмы, ведущие к ее самоубийству, апоптозу. Например, радиационные повреждения ДНК в большинстве случаев ведут не к опухолевой трансформации, а к банальному апоптозу. Большинство клеток у человека синтезирует ДНК в середине дня, а подвергаются делению в начале ночи. После опухолевой трансформации данная закономерность нарушается. Если из клеток мышей удалить белок Пер2 (Per2), ответственный за временную синхронизацию клеточного деления, то у таких мышей гораздо чаще образуется рак (142).

Мне хочется предложить гибридизационную гипотезу рака. Как развивается рак согласно данной гипотезе? Путем накопления гибридизационных мутаций. Если меняется рамка считывания, то функция белка, как правило, исчезает. Пример — СФТР (см. Приложение X). При этом увеличивается нагрузка на аллельный ген. Гомогенные мутации (мутация, ведущие к изменению состава аминокислот) сами по себе не влияют на фенотип из-за избыточной буферности генома. При этом, если мутация распознается иммунной системой, то иммунная система удаляет данную мутированную клетку. Если же мутация не распознается, то вообще ничего не происходит.

Если возникает изогенная мутация, то повреждается 1 белок. Изогенные мутации не регистрируются иммунной системой. Они не дают эффекта на уровне синтеза белка. Мутации такого рода опасны, когда вызывают внутримолекулярную гибридизацию и межмолекулярную гибридизацию. Если возникают предпосылки для внутримолекулярной гибридизации, или два и более белка, если возникают условия для межмолекулярной гибридизации. мРНК двух белков содержат участки, которые могут связывать новый участок в результате мутации. Накопление гибридизационных повреждений может провоцировать новые и новые и, в конце концов, наступает момент, когда клетка перестает реагировать на апоптотические сигналы. Гибридизационные мутации в области онкогенов и апоптоза особенно опасны. Остальные не так уж и мешают, так как клетка совершает самоубийство. Накопление нескольких таких мутаций, не регистрируемых иммунной системой организма и не дающих эффекта на уровне функции белка, ведет к гибридизационной блокаде синтеза нескольких белков и т. д. Гибридизация белков, ответственных за регуляцию деления клетки и апоптоз, наиболее описаны. Накопление гибридизационных мутаций в этих белках ведет к ускользанию клетки из-под контроля их способности к самоубийству со стороны соседей.

Теперь предположим, что произошла изогенная мутация в каком-то совершенно случайном гене или его интроне, но данная мутация, которая никак не отразится на функции белка, может создать ситуацию, когда в предшественнике мРНК данного гена появляется участок комплементарные к одному из участков незрелой мРНК гена, кодирующего белок, который стимулирует фрагментацию единой сети митохондрий. Функция данного белка будет нарушена, так как мРНК будет в меньшем количестве поступать в цитоплазму и склеивание между фрагментами незрелой мРНК будет мешать процессу трансляции.

Если мутация стойкая, то выбивается один белок, при внутримолекулярной гибридизации или два белка при межмолекулярной гибридизации. Если место склейки слабое или непродолжительное, то эффект необратимый. И наоборот, если есть петли или место склейки прерывистое через петли и слабое, мало Г-Ц. Накопление подобных мутаций ведет к медленному блокированию тканевого (то есть со стороны соседних клеток) контроля за апоптозом данной мутированной клетки. Затем могут наступать хромосомные абберации, так как не функционирую белки. Рак возникает, когда гибридизационные мутации затрагивают регуляцию клеточного цикла и апоптоз.

В конце концов достигается критический уровень для буферности генома и мутации начинают проявляться фенотипочески. Гибридизационная гипотеза помогает понять многие странности опухолевого роста или в простонародии, рака. Поэтому всегда в раковых клетках обнаруживается сразу несколько мутаций.

Поэтому часто рак возникает при повреждении клеток или сверхнагрузке на них, когда буферность генома снижается.

Итак, когда происходят мутации, ведущие к серьезным повреждениям функции белка, то клетка подвергается самоубийству. Когда возникают мутации, не ведущие к изменению функции белка, но ведущие к изменению его аминокислотного состава, то клетка удаляется за счет иммунного контроля, но когда возникают мутации, не ведущей к изменению аминокислотного состава белка, и не ведущие к серьезным изменениям функции белка из-за того, что уровень гибридизации не очень велик, то эффект может накапливаться. Например, из-за гибридизации не хватает синтеза совершенно нормального белка, но все нормально, затем мутационный ком начинает нарастать. И, в конце концов, когда накапливается несколько таких гибридизационных мутаций, ведущих к разбалансировке самоубийства, клетка ускользает из-под апоптоционного контроля и начинает безудержно размножаться.

Возникновение рака становится ещё более понятным, если вспомнить, что у соматических клеток, которые обычно очень хорошо защищены, имеются ахиллесовы пяты. Соматические клетки имеют пункты проверки для того, чтобы исключать ошибки. Молекулярная гибридизация может сначала касаться белка, отвечающего за слияние митохондрий, ДРП1 (DRP-1 or DLP-1). Сверхэкспрессия данного белка вызывает резкое фрагментирование (разделение на части) митохондрий (77). Удаление данного белка ведет к ингибированию (подавлению) фрагментирования митохондрий (221). Например, если будет ингибирование белка МТП18 (MTP18), то фрагментация митохондрий будет нарушена. Если будет блокирован синтез белка ДРП-1 (DRP-1), то клетки не будут делиться (228).

Если митохондрии сливаются, то клетка проходит пункт проверки, а вот пункта проверки их разделения нет. Обычно митохондрии быстро делятся. Если митохондрии не фрагментированы, то увеличивается вероятность ошибок при разделении хромосом и увеличивается вероятность неправильного кроссинговера. Клетки не начинают синтез ДНК, пока не проверят функциональные способности митохондрий (201). Кроме митохондрий ахиллесовой пятой клетки является также разделение пластинчатого аппарата Гольджи. Клетки не начинают деление, пока не убедятся, что пластинчатый аппарат Гольджи может фрагментироваться. Если убрать белок БАРС, то фрагментация АГ нарушается и возможны неправильное расхождение хромосом или неправильный кроссинговер хромосом (200).

В клетке имеется несколько ахиллесовых пят, которые обычно и ведут к возникновению рака, в такой сложнейшей и контролируемой на самых разных уровнях системе, какой является организм млекопитающих и в частности человека. Одна из таких слабых точек недавно открыта в лаборатории Национального института здоровья США. Для того чтобы блокировать возможность делиться для клеток, у которых повреждены митохондрии, природа создала механизм по проверке функциональных возможностей митохондрий. Перед тем, как начать синтезировать новую двойную спираль ДНК (чтобы потом эти две двойные спирали отошли в дочернюю и материнскую клетки), отдельные митохондрии сливаются с единую сеть. Если они сделать это не способны, то клетка не может войти в фазу синтеза ДНК и поэтому не делится. Если же митохондрии проходят данный контрольный тест, то затем они должны снова разделиться на мелкие фрагменты.

В норме митохондрии постоянно сливаются и разделяются. Есть специальные белки, которые способствуют слиянию и есть белки, которые стимулируют разделение митохондрий на более мелкие фрагменты. Перед самым началом синтеза второй двойной нити ДНК митохондрии сливаются, так как белок, отвечающий за их слияние, синтезируется в большем количестве. Затем белок деградирует, а синтез его блокируется и митохондрии снова начинают фрагментироваться. Если удалить белок, ответственный за деление митохондрий, или сделать постоянным высокий уровень синтез белка, ответственного за слияние митохондрий, то митохондрии перед делением клетки оказываются неразделенными, они имеют большую длину, что значительно затрудняет клетке правильное выстраивание хромосом.

Если по каким-либо причинам не произойдет разделения митохондрий, то при расхождении хромосом во время митоза, крупные митохондрии будут мешать выстраиванию пар хромосом. При такой диспозиции хромосом при кроссинговере возникает значительно большее количество ошибок. Из-за того, что в клетке останутся длинные митохондрии, частота ошибок в кроссинговере резко возрастает и далее со всеми остановками до тех пор, пока клетка не выйдет из-под контроля регуляторной системы контроля, предотвращающей нелимитированное деление. Далее хромосомные аберрации ведут к все большему и большему накоплению мутаций, пока мутации не затрагивают те гены, которые кодируют белки, ответственные за регуляцию апоптоза и клеточного деления.

В результате случаются ситуации, когда разделение или кроссинговер хромосом нарушается. В результате возникают хромосомные повреждения (абберации) (141). Далее данная клетка выходит из подчинения организму и начинает неограниченно делиться. Это и есть рак.

Поэтому вполне возможна такая гипотеза возникновения рака. 1. Возникает невидимая мутация в интроне или в экзонах генов, ответственных за разделение между дочерними клетками крупных органелл. Клетка борется с гибридизацией с помощью белкового комплекса под названием РИСК и белка Дайсер. Однако если такие гибридизационные нарушения накапливаются, то возникает случайный кроссинговер и далее скорость накопления мутаций резко возрастает. Особенно опасно, когда молекулярная гибридизация повреждает молекулы, ответственные за апоптоз (самоубийство клетки). Апоптоз не удаляет клетки, которые неправильно делятся, возникают предпосылки для неправильного кроссинговера или других хромосомных аберраций, далее аберрации вызывают резкое ускорение мутаций белков, ответственных за подержание контроля за делением, и клетки выскальзывают из-под такого контроля.

Итак, скорее всего, раковые клетки возникают вследствие накопления гибридизационных мутаций в белках, являющихся ахиллесовой пятой для клеток.