2.1. ЧТО ТАКОЕ НАСЛЕДСТВЕННОСТЬ И КАК ОНА ПЕРЕДАЕТСЯ?

Начнем наше расследование с научных вопросов. Ведь сессия ВАСХНИЛ была научная. Если углубляться в эти научные дебри, то не хватит и многотомного руководства — споры о словах могут быть вечными. Конечно споры в науке нужны, но не в популярных статьях. Дело в том, что прочтение текстов Моргана, Вейсмана, де Фриза и других переоткрывателей Менделя не позволяет точно оценить, что же они доказали и что именно считали в то время. Точно так же, когда критикуют Лысенко, то почему-то забывают о том гигантском прогрессе, который отмечен в области молекулярной биологии. А нам надо разобраться в том, что было известно тогда в пред— и ранние послевоенные годы.

Далее я стал смотреть, а действительно ли в то время морганисты были более правы, чем мичуринцы. Чтобы понять кто прав, мне пришлось разобраться в этом вопросе, прочитать Википедию, сначала, потом учебники клеточной биологии и генетики, и наконец, некоторые оригинальные научные статьи. При рассмотрении этого вопроса мне пришлось бы продираться через дебри профессиональных жаргонизмов. Поэтому для того, чтобы было понятно дальнейшее изложение, мне требуется провести ликбез и несколько слов сказать о том, как ученые представляют сейчас процесс передачи наследственности от родителей к детям. Подробнее можно посмотреть в русскоязычной открытой энциклопедии, Википедии.

Я снова перечитал учебники генетики, статьи, которые цитировали Лысенко, статьи, которые цитировал Лью. Затем пошел глубже и стал изучать физиологию растений. Я с удивлением обнаружил, что многое я не знал. Например, то, что все живые растительные клетки в составе растения образуют синцитий. Что получилось, судите сами, как говорит ведущий в одной популярной телевизионной передаче.

Сначала я приведу выжимки из современных учебников молекулярной и клеточной биологии, чтобы понять современное состояние вопроса. Это необходимо для того, чтобы решить вопрос, кто прав: морганисты или мичуринцы. Затем я систематизирую взгляды морганистов и мичуринцев и, наконец, я проведу сопоставление их взглядов с современными воззрениями.

Долгое время центральная догма биологии имела вид ДНК→РНК→белок. Информация от белка в подавляющем большинстве случаев не приводит к изменению генетического кода. Пока единственный реальный пример такого наследования встречается у прионов в дрожжах, да и то там белки не изменяют код ДНК, а лишь служат переключателями функционального состояния белковой системы.

Характерно, что к настоящему времени в рамках самой менделевской генетики произошёл отказ от прежних догм, которые критиковали сторонники мичуринской генетики. Так, от догмы о вечном и неделимом гене, единице наследственности, теперь мало что осталось. Вот что пишут в научных книжках. В 1957 американский генетик С. Бензер на фаге Т4 доказал сложное строение гена и его дробимость; он предложил для единицы функции, определяющей структуру одной полипептидной цепи, название цистрон, для единицы мутации — мутон и для единицы рекомбинации — рекон. В пределах одной функциональной единицы (цистрона) находится большое число мутонов и реконов (статья «Ген» в БСЭ). Не правда ли очень понятно?

Кому не понятно, перевожу на русский. Но это будет не просто. Сначала отмечу, что все организмы состоят из клеток, как бы кирпичиков живого. Каждая клетка содержит включения, органеллы, нужные для выполнения клеточных функций, и ядро. В ядре расположен генетический материал.

Он в большинстве организмов представлен несколькими гигантскими молекулами-гетерополимерами дезоксирибонуклеиновая кислоты (ДНК). То есть единички этого полимера разные. Эти единички называются нуклеотидами и представляют из себя органические молекулы в виде циклов, в которых кольцо состоит из 5 или 6 атомов углерода. Каждый нуклеотид состоит из геретоцикла, называемого азотистым основанием, так как там атомы углерода перемежаются с атомами азота; сахара (дезоксирибозы, моносахарида, содержащего пять атомов углерода и альдегидную группу в линейной структуре) и фосфатной группы. Например, аденин — это восьмерка, составленная из пятичлена и шестичлена, в которых перемежаются атомы углерода и азота. Рибоза это моносахарид в виде кольца, составленного из 4 атомов углерода и одного кислорода.

Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы. Последовательность этих единичек нуклеотидов и кодирует наследственность. Для того, чтобы увеличить стойкость полимерной молекулы ДНК к лучевым и химическим воздействиям она удвоена и состоит из двух полимеров, которые закручены в спираль вокруг друг друга. При этом нуклеотиды расположенные в спирали друг напротив друга присоединяются друг к другу и они комплементарны, аденин соединяется только с тимином и может стоять только напротив тимина, гуанин — только с цитозином.

Дублирование информации позволяет реализовать два процесса. 1. Если одна спираль будет повреждена, то на основе другой, как на матрице можно будет восстановить первую. 2. На основе одной из спиралей синтезируется комплементарная молекула РНК, которая имеет только одну цепь и затем перемещается из ядра в цитоплазму клетки, где на ее основе синтезируется уже другой гетерополимер, полипептид или белок. Именно белки и осуществляют большинство функций клеток, служа катализаторами и строительным материалом. Кроме них в клетках есть ионы, сахара, липиды и кое-что другое. Нам пока это не важно.

Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счет копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции и принимают участие в биосинтезе белков (процессе трансляции).

В 1960-е годы было установлено, что наследственная информация записана в молекулах ДНК особым кодом, который был расшифрован в 1960-е годы. Информация, записанная в ДНК, сначала должна быть "переписана" на молекулу РНК (этот процесс называется транскрипцией).

Затем специальные сложные молекулярные комплексы — рибосомы — "считывают" информацию с молекулы РНК, синтезируя молекулу белка в точном соответствии с записанной в РНК "инструкцией" (этот процесс называется трансляцией). Белки выполняют огромное множество функций, и, в конечном счете, именно они определяют строение организма (фенотип). Таким образом, информация движется в одном направлении — от ДНК к РНК, от РНК — к белкам. Никаких механизмов переноса информации в обратную сторону — от белков к РНК или от РНК к ДНК — поначалу обнаружено не было, что и укрепило веру в невозможность такого переноса.

Со временем были обнаружены вирусы, у которых хранилищем наследственной информации служат молекулы РНК (а не ДНК, как у всех прочих организмов), и у них есть специальные ферменты, которые умеют осуществлять обратную транскрипцию, то есть переписывать информацию из РНК в ДНК. Созданная таким путем ДНК встраивается в хромосомы клетки-хозяина и размножается вместе с ними. Поэтому с подобными РНК-вирусами очень трудно бороться (вирус ВИЧ относится к их числу). Но вот обратной трансляции — переписывания информации из белков в РНК -не обнаружено и по сей день. По-видимому, такого явления в природе и вправду не существует.

Согласно Центральной догме, перед каждым клеточным делением все молекулы ДНК в клетке удваиваются: специальные белки-ферменты синтезируют точные копии имеющихся ДНК, которые потом распределяются между дочерними клетками. Однако при копировании иногда возникают ошибки — мутации. Если мутация возникает при образовании половой клетки, она, естественно, передается по наследству. Обычно считается, что такие мутации происходят совершенно случайно. Так возникает изменчивость, служащая материалом для естественного отбора. Но мутации могут происходить при делении любых клеток тела, а не только при образовании яйцеклеток и сперматозоидов. Такие мутации называются соматическими (от "сома" — тело) и приводят к возникновению участков измененных тканей. Соматические мутации могут быть вызваны различными воздействиями внешней среды. Классическая генетика отрицает возможность наследования соматических мутаций. Считается, что изменения клеток тела (в том числе и мутации) не могут отразиться на генах половых клеток.

Но это только часть правды. Оказалось, что у одноклеточных организмов широко распространен так называемый горизонтальный обмен генетическим материалом. Бактерии выделяют в окружающую среду фрагменты своей ДНК, могут поглощать такие фрагменты, выделенные другими бактериями (в том числе и относящимися к совершенно другим видам!), и "встраивать" эти кусочки чужого генома в свой собственный. Одним из первых обнаружил генетические взаимодействия бактерий между собой в процессе их роста выдающийся советский микробиолог профессор С. Г. Смирнов из Ивановского мединститута. Тогда он не нашел понимания и его ученики подвергались атакам во время защит их диссертаций.

Один из способов горизонтального обмена генами, от которого не защищены даже многоклеточные, — это вирусный перенос. Известно, что ДНК вируса может встраиваться в геном клетки-хозяина, а потом снова отделяться от него и формировать новые вирусные частицы, которые могут заражать другие клетки. При этом вместе с собственной ДНК вирус может случайно "захватить" кусочек ДНК хозяина и таким образом перенести его в другую клетку, в том числе — и в клетку другого организма. Иногда, когда заражение происходит уже после оплодотворения, во время внутриутробного развития, вирусная инфекция передается потомству и часто возникает ситуация, когда зародыш несет вирусную ДНК не только в соматических, но и в половых клетках, и таким образом белок, кодируемый кусочком ДНК хозяина, передается по наследству.

Недавно обнаружен и вне(эпи)генетический способ наследования приобретенных изменений. Оказалось, что в процессе жизнедеятельности к молекулам ДНК в клетках (в том числе и в половых) специальные ферменты "пришивают" метильные группы (-CH3). Причем к одним генам метильных групп "пришивается" больше, к другим — меньше. Распределение метильных групп по генам (так называемый рисунок метилирования) зависит от того, насколько активно тот или иной ген используется. Получается совсем как с упражнением и неупражнением органов, которое Ламарк считал причиной наследственных изменений. Поскольку "рисунок метилирования" передается по наследству и поскольку он, в свою очередь, влияет на активность генов у потомства, легко заметить, что здесь может работать совершенно ламарковский механизм наследования: "натренированные" предками гены будут и у потомства работать активнее, чем "ослабевшие" от долгого неиспользования.

Другой вариант "эпигенетического" наследования приобретенных признаков основан на взаимной активации и инактивации генов.

Допустим, ген А производит белок, одна из функций которого состоит в блокировании работы гена Б, а ген Б, в свою очередь, кодирует другой белок, способный "выключать" ген А. Такая система может находиться в одном из двух состояний: либо ген А работает, и тогда ген Б выключен, либо наоборот. Допустим, что переход системы из одного состояния в другое может происходить только в результате какого-то особенного внешнего воздействия. То состояние, в котором находится эта двухгенная система в клетках матери, будет через яйцеклетку передаваться ее потомству (поскольку сперматозоид содержит пренебрежимо малое количество белков). Если же в течение жизни матери система переключится в другое состояние, то этот признак передастся потомству, родившемуся после "переключения". Опять получается "наследование по Ламарку".

Что же касается мутаций, то и тут классические неодарвинистские представления оказались не совсем верными. Мутации, по-видимому, не являются полностью случайными. Хорошо известно, что разные участки генома мутируют с разной скоростью, причем у каждого участка эта скорость довольно постоянна. По-видимому, это означает, что одним генам организм "разрешает" мутировать чаще, чем другим. А недавно появилось хорошо обоснованное предположение, что в клетках существуют специальные механизмы для целенаправленного увеличения скорости мутаций определенных участков генома.

Гигантская двойная спираль ДНК, может быть замкнута или линейна и скручена особым образом, формируя хромосомы. На концах линейных хромосом находятся специализированные структуры ДНК, называемые теломерами. Число хромосом различно у разных организмов. При делении клетки хромосомы деспирализуются и на базе каждой полимерной молекулы ДНК синтезируется ее копия. Тем самым в клетке перед делением число хромосом удваивается. Они при делении расходятся в две клетки и из каждой пары хромосом одна идет в одну дочернюю клетку, а другая в другую дочернюю клетку.

Тем самым последовательность нуклеотидов оказывается стабильной и информация не меняется при делении. Поэтому каждая дочерняя клетка может синтезировать тот же самый набор белков, что и материнская. Геном называется участок ДНК, кодирующий один белок. Он начинается с так называемого старт кодона, которые указывает молекуле белка, ответственной за образование молекулы информационной РНК в ядре, что именно здесь начинается информация, кодирующая данный белок. Похожий сигнал есть и в конце гена. Другими словами, промотор сигнал (или инициирующий сигнал) и стоп сигнал определяют, когда надо начинать транскрипцию и когда закончить. Запомните! переписывание информации с ДНК на ДНК — это репликация. Переписывание информации с ДНК на РНК — это транскрипция. Переписывание информации с РНК на белок — это трансляция.

Приведенная выше упрощенная схема вроде бы доказывает, что генетическая информация неделима и стабильна. Она изменяется только на основе мутаций, которые могут быть на уровне ДНК, когда заменяются нуклеотиды в цепочке ДНК или на уровне хромосомы, когда большой кусок молекулы ДНК теряется или с ним происходит другое нарушение.

Но эта замечательная схема на деле оказалась не такой замечательной. Прежде всего, в большинстве организмов, за редкими исключениями, цепочка нуклеотидов, содержащая информацию о белке, кроме информационных кусков содержит шум, то есть цепочки нуклеотидов, которые не кодируют данный белок. Клетка научилась отличать сигнал от шума и эти включения, так называемые транспозоны, не использует для синтеза информационной РНК. Белок получив сигнал, что пошел шум, как бы перескакивает на нужный участок. Так только около 1,5 % генома человека состоит из кодирующих белок экзонов, а больше 50 % ДНК человека состоит из некодирующих повторяющихся последовательностей ДНК, то есть из шума. Причем куски шума могут перемешаться по хромосоме во время деления либо путём обратной транскрипции с их РНК.

Транспозоны были открыты Барбарой Макклинток, которая 1983 году была удостоена за эти исследования Нобелевской Премии.

Самое интересное, что старткодоны иногда не считываются и клетка может начать синтез информационной РНК не с того места. Тоже самое может быть тогда когда белок получает сигнал о появлении шума и перескакивает на другой участок ДНК. Здесь тоже могут быть ошибки. Из-за этих возможных разночтений в считывании информации у каждого белка имеется несколько изоформ. Например белок KDEL-рецептор последовательности 4 аминокислот, участвующий во внутриклеточном транспорте, может быть синтезирован на основе одного и того же гена в 60 различных вариантах.

Далее. Транспортная РНК захватывает аминокислоты, из которых сделан белок, а их всего 20 штук, и транспортирует их к рибосомам. Здесь на базе реплики с ДНК, танк называемой информационной РНК идет синтез белка. При этом каждая аминокислота кодируется тремя нуклеотидами. Транспортная РНК имеет комплементарный триплет, она случайно подходит к рибосоме и если триплет на информационной РНК комплементарен триплету на транспортной РНК, то аминокислота, присоединенная к транспортной РНК, соединяется с цепочкой формируемого белка. Здесь опять имеется огромное поле для ошибок. Итак, генетический код состоит из трёхбуквенных «слов», называемых кодонами, состоящих из трёх нуклеотидов (то есть АСТ САС ТТТ и т. п.). Поскольку из 4 букв можно получить 64 комбинации (43 комбинации) таких кодонов, а аминокислот только 20, то одна аминокислота может кодироваться несколькими кодонами. Ошибок при синтезе белка возникает так много, что клетка запаслась особой системой проверки их качества и только после этой проверки белки могут выполнять свою функцию.

Но и это ещё не все. Ошибки могут возникать и из-за процесса метилирования ДНК. Метилирование ДНК — это модификация молекулы ДНК без изменения самой нуклеотидной последовательности ДНК. Метилирование ДНК заключается в присоединении метильной группы к цитозину в составе CpG-динуклеотида в позиции N5 пиримидинового кольца. Метилирование резко нарушает функцию белков синтезирующих информационную РНК, и это ещё один источник ошибок при синтезе белка. Клетка решила и эту проблему создав особые белки деметиляторы. Обычно метилирование выключает данный ген из системы и белок на нем не может синтезироваться. Метилирование ДНК видимо, сохраняется при делении. На этом основано существование разных клеток и тканей в организме животных. Этот механизм можно рассматривать как часть эпигенетической (когда информация записана не на ДНК) составляющей генома. Но и это не все, но я пока дальнейшие тонкости опущу.

А теперь давайте подумаем, а есть ли вообще те неделимые кирпичики, кодирующие белки, которые Морган предлагал считать генами. Внешняя среда может оказывать воздействие на все эти рубежи, где возможны ошибки и вызывать синтез совсем не тех однотипных белков.

Самое интересное, что сложность и неопределенность в работе генетического аппарата не кончается на уровне генов и белков. Она продолжается на уровне признаков животного. Попробуйте ответить, какой ген ответственен за передачу носа с горбинкой или за кривые ноги и вы поймете, что генетики этого просто не знают.

2.2. ЧТО ТАКОЕ ГЕН?

Слово "ген" возникло после слова "генетика", и означает шарики диаметром несколько микрометров, в которых содержится неизменяемый от внешних воздействий "капитал расы". Их не нашли до сих пор. Теперь принято считать генами отрезки ДНК (как я уже говорил, непонятно откуда до куда надо резать эти отрезки, чтобы получить изолированный ген).

Сейчас одно стало совершенно ясно — никаких таких микроскопических генов-шариков, на которых настаивал Морган, нет. Никаких единичных генов, кодирующих наследуемые напрямую сложные фенотипические (внешне детектируемые) признаки на уровне целостного организма и доступных для генетического изучения во времена Моргана тоже нет и не было. Закон о неделимых частичках наследования оказался неверен. Они делимы. Белки могут иметь разные изоформы.

Как пишут в наиболее широко распространенном на Западе учебнике "Молекулярная биология клетки", обнаружение, что эукариотические (а проще небактериальные или клетки с обособленным ядром) клетки содержат интроны и что их кодирующая последовательность нуклеотидов может считываться более, чем одним способом, подняло вопрос о том, что такое ген. Ведь вроде бы подразумевалось, что один ген это одна полипептидная цепь. Сейчас считается, что это отрезок ДНК, который кодирует одну молекулу РНК, которая в свою очередь кодирует одну полипептидную (или белковую) цепь или сама по себе имеет особую клеточную функцию. Явление альтернативного сплайсинга (или считывания) подрывает и это определение. Самое интересное, что удаление интронов из генной последовательности нуклеотидов приводит к тому, что полученная информационная РНК не может покинуть пределы ядра.

Дубинин указывает: “…гены — это не зачатки признаков. … Принцип действия кода гласит — каждый признак определяется всеми генами, каждый ген в конечном итоге определяет все признаки организма”.

Современный ген — участок ДНК, кодирующий отдельный белок, уже не имеет ничего общего с геном в менделистском понимании. И в том, что наследственное вещество состоит из таких генов, не содержится ничего принципиально отличного от утверждения, что всякое вещество состоит из элементов. Идея о дискретности наследственного вещества опустилась от принципиального — “каждому признаку — свой ген” до тривиального — вещество наследственности состоит из элементов — отдельных отрезков ДНК.

Современная молекулярная биология ясно показывает, что большая фракция генов в популяциях полиморфна, они существуют в любой популяции в нескольких относительно общих формах. При анализе же менделевского расщепления обычно рассматривают только наличие или отсутствие признака, а если он количественный, то границу есть-нет устанавливают по принятому порогу. Если же выявить, какова степень проявления признака, обнаружится очень сильное варьирование результатов. Но это ещё не все. Есть масса фактов, не укладывающихся в рамки менделевских законов. Очень подробно разбирает все научные результаты, касающиеся внегенетической или как она называется неканонической наследственности в своей статье Голубовский.

Вот что пишет Голубовский: "Роль, время и место действия большинства “генов-номинантов” пока совершенно неясны.

Но есть и другая проблема. Под геномом надо понимать всю наследственную систему, включая не только структуру определенного набора ДНК элементов, но и характер связей между ними, который определяет ход онтогенеза в конкретных условиях среды. Налицо системная триада: элементы, связи между ними и свойства целостности. Отсюда следует важный вывод: знание структуры генов на уровне ДНК — необходимо, но вовсе недостаточно для описания генома. Мы лишь на пороге постижения динамического способа организации и неканонических форм наследования".

На разных видах животных (дрозофилах и мышах) была показана возможность наследования через мейоз измененного характера проявления мутантного гена. Опыты были довольно простыми — кратковременное (20 мин) прогревание тела восьмидневного мышонка самки вызывало стойкие изменения ооцитов, ослаблявшие действие вредной мутации у внуков! “Передача улучшения развития глаз, наблюдаемая в опытах с нагреванием, может быть объяснена только передачей свойств, приобретенных ооцитами нагретых самок по наследству”.

Гипотеза о генах есть типичная оказавшаяся неверной научная модель.

Как теплород или флогистон. Она была полезна, но она не была стопроцентной и критиковать Лысенко, который придерживался другой гипотезы было, было не правильно, а тем более начинать административные атаки. По-сути, морганисты подменили понятие признак на понятие ген. То есть идет расщепление признаков, а не генов, блоков генов, а не единичных последовательностей нуклеотидов.

Попробуйте задать вопрос тому генетику-снобу, который вызовется критиковать мою книгу, а какой ген, то есть белок, определяет черный или красный цвет надкрылий и как называется этот белок. Или спросите, а какой белок определяет морщинистость кожуры гороха — признак, который использовался Менделем в своих опытах. Просто название белка и все. Если он даст ответ, то я берусь публично признать, что данная книга есть дерьмо. Только не надо мне ссылаться на моногенные заболевания человека, где, действительно, патология одного белка вызывает заболевание с четкими фенотипическими признаками. Есть группа моногенных заболеваний — оттуда примеры не предлагать. Во времена Моргана они не были известны, кроме, может быть, гемофилии. Однако и здесь, сходный фенотип могут дать мутации и в других генах.

Вот например, в издании для детей, "Детская энциклопедия", раздел Биология (издательство Аванта) есть описание гена I и гена Е у кур. Будто бы ген I отвечает за их сплошной белый окрас, а ген Е за сплошную черную окраску перьев. Ещё один вопрос на засыпку генетикам, а как называется ген I и ген Е и что они делают в клетке? Сейчас ведь уже известно, что всего-то у млекопитающих и птиц имеется не более 10000 генов, ответственных за синтез белков в клетках.

Да! Наследственные задатки в некоторых редких случаях соединяются между собой не как две смешивающиеся жидкости, например, вода и молоко, а как индивидуальные частички, как бобы, например, белые и черные, которые не меняют окраску и сохраняют свою индивидуальность. Поэтому вся их масса после перемешивания может быть разделена по цвету на черные и белые.

Горох и именно те признаки, которые выбрал Мендель оказались чуть ли не уникальными как в растительном, так и в животном мире. Действительно, при таких исследованиях растения должны обладать контрастно различающимися признаками и гибриды должны быть защищены от влияния чужой пыльцы. Таким условиям удовлетворял в то время только горох.

Среди животных подобными качествами обладали пожалуй лишь двуточечные божьи коровки. Среди представителей этого вида часть особей может иметь черные надкрылья с несколькими красными пятнами, а часть имеет красные надкрылья с двумя небольшими черными пятнами. Независимо от того, какую окраску имели мать или отец, их потомство в первом поколении имели черные надкрылья с красными пятнами. При скрещивании потомства первого поколения друг с другом, внуки начальных родителей имели надкрылья либо черные с красными пятнами (75%), либо красные с черными пятнами (25%). В соответствии с законами передачи доминантных и рецессивных признаков Менделя (в скобках замечу, что доминантными называют такие признаки, которые после скрещивания родителей с двумя разными альтернативными признаками преобладают в первом поколении).

А возьмем судьбу овечки Долли. 256 экспериментов и все неудачные, кроме последнего. Ядро клетки молочной железы было пересажено в яйцеклетку, у которой было удалено ее собственное ядро. Долли быстрее состарилась и объяснения этому феномену у генетиков нет. Кроме того, успешным был как раз тот эксперимент, где клетки молочной железы содержались в условиях резкой нехватки питательных веществ, что вызвало почти что апоптотическую (когда клетка убивает сама себя) трансформацию ядра.

Генетики заявляют, что генетика — точная наука. Но это они явно преувеличивают. У млекопитающих не более 1% ДНК приходится на долю ДНК, кодирующей белки. Мутации нарушают функцию белков, только если они затрагивают главные их центры, те участки, которые определяют главную функцию белков. Поэтому многобелковые признаки не передаются, поэтому нет благоприобретения признака отсутствия хвоста или препуциума.

По сути, из всей генетики остались очень ограниченные в применении законы Менделя. Все остальное выделилось в новую науку -молекулярною биологию. Гены — не неделимые частички. Нет связи ген -сложный признак на уровне многоклеточных организмов. Если ген -белок, то почти все белки есть во всех клетках, только уровень экспрессии разный. Все белки есть во всех клетках, только уровень их синтеза очень разнится в зависимости от блокирования наследственного аппарата. Но они все равно синтезируются в малых или очень малых количествах. В других клетках таких белков больше.

Мендель оказался не прав, делая обобщение о расщеплении 3 к одному для большинства признаков. Генетика прокариотов вообще не знает расщепления признаков. Морган оказался не прав в определении генов. Неверно и то, что имеется соотношение ген-признак. Нет соответствия последовательность нуклеотидов — белок. В цепях нуклеотидов есть интроны, то есть попросту шум. А у большинства белков нет функции по прямому кодированию внешних признаков, которые могли бы быть детектированы во времена Лысенко.

Морганисты оказались не правыми в том, что приобретенные признаки не наследуются. Наследуются! И даже благоприобретенные. Способности белка быть синтезируемым и секретируемым в желудочный сок у взрослых особей может благоприобретаться. Как в случае с лактазой у человека. Клонирование животных показало, что приобретенные признаки наследуются, хотя и очень очень ограниченно. Правда, некоторые ученые считают, что о наследовании приобретенных признаков при клонировании говорить не приходится, т.к. процесс полового воспроизведения отсутствует. А речь в случае с Лысенко была именно о половых процессах, т.к. одноклеточными организмами он не занимался.

Интересно, что те же молекулярные биологи часто не знают функции белков в клетке. Для этого, ведь, надо знать клеточную биологию. А как говорил Козьма Прутков, специалист подобен флюсу — полнота его одностороння. Мне, клеточному биологу, например, при написании этой книги пришлось существенно освежить свою память по генетике и молекулярной биологии.

Итак, современные гипотезы в области молекулярной биологии больше соответствуют идеям Лысенко, а не морганистов. Многие положения Т. Д. Лысенко по генетике, которые не признавались его современниками, в настоящее время полностью подтвердились, как, например, положение о том, что наследственность может передаваться не только половым путём, но и соматическими клетками, а также и многие другие. В блестящей статье Голубовского показывается роль внегеномных или эпигенетических механизмов наследования. Это доказывает, что мичуринцы были правы, сомневаясь в жесткости так называемых законов расщепления признаков Менделя. По сути, генетики больше нет. Осталась молекулярная биология.

2.3. ОСОБЕННОСТИ ГЕНЕТИКИ РАСТИТЕЛЬНЫХ КЛЕТОК

Чтобы понять суть открытий Мичурина и Лысенко в области агробиологии, мне пришлось поднять литературу по физиологии растений. И оказалось, что мои знания были довольно ограниченными. Например, не знал я, что с информационной РНК можно в помощью специальных белковых механизмов перенести информацию на ДНК, расположенную в ядре.

Сейчас установлено, что генетическая информация из одной клетки растения передается в другие. Прививочный (вегетативный) гибрид — это растение, полученное в результате прививки (трансплантаци) чужеродной соматической ткани (привой) на материнское растений (подвой); примером стабильного межродового (Sorbus и Aronia) Примером может служить красно-черная рябина. Если генетические системы привоя и подвоя совсем несовместимы, то привой гибнет или же гибнут оба, так как генетическая информация от привоя отравляет клетки хозяина. Вегетативные гибриды на уровне знаний 1948 года с точки зрения школы Лысенко подробно описал И. Е. Глущенко.

Сам Мичурин открытым текстом называл некоторые (не все) свои гибриды вегетативными гибридами: «.. Несмотря на все отрицательные мнения иностранных исследователей, не признающих влияния подвоя, я, на основании своих долголетних работ, буду категорически утверждать, что это влияние существует и при выводке новых сортов плодовых растений, с ним неизбежно приходится садоводу серьезно считаться…».

Как же реализуется механизм переноса генетической информации от подвоя (растения-хозяина) к привою (пересаженному черенку)? Для объяснения механизма мне придется нарисовать очень сильно упрощенную модель.

Оказалось, что имеется существенное различие в механизмах передачи наследственной информации между растениями и животными. Там существует механизм горизонтального переноса генетической информации от растения-хозяина к побегу и наоборот. Именно Лысенко и Мичурин сделали великое открытие о возможности передачи наследственной информации от одной растительной клетки к другой в пределах целостного растения и закрепления ее в половых клетках. И это особенность только мира растений.

При прививании одного сорта другому существует механизм горизонтального переноса наследственной информации от левкоя (подвоя) к побегу (привою) и наоборот. Недавно эксперименты с привоями показали, что эндогенная (от хозяина, подвоя) информационная РНК (переносчик информации от ДНК к месту синтеза белка) перемещается по трубочкам, соединяющим клетки между собой, к клеткам привоя. Если говорить по-научному, то она входит и передвигается от одной клетки к другой по цитоплазматическим мостикам, соединяющим все растительные клетки в данном организме, в том числе клетки привоя и подвоя.

Открытие, что информационная РНК может передвигаться между клетками хозяина и по привою, раскрывает механизм, за счет которого эта наследственная информация может потом включаться в ДНК привоя. В последние годы несколько независимых групп исследователей доказали, что вызываемые в привоях вариации фенотипа стабильны и даже могут наследоваться. Запись информации в ДНК хозяина происходит с помощью особых ретровирусов и белковых частиц-ретротранспосом, тем самым информация оказывается интегрированной в геном привоя.

В учебнике молекулярной биологии клетки Альбертса с соавторами сказано, что растительные клетки соединены специальными цитоплазматическими мостиками диаметром 20-40 нанометров (вспомните нанотехнологию), или плазмодесмами. Каждая из них, как правило, содержит десмотрубочку, соединяющее эндоплазматические ретикулумы (это особые частички клетки, где происходит синтез белков) соседних клеток. По плазмодесмам могут передвигаться вирусы и информационная РНК. Плазмодесмы пропускают вирусы и информационную РНК. Зачем там находится мембранная трубочка эндоплазматического ретикулума, не ясно. Мостики видимо, рвутся при высыхании, клетки отделяются, а потом восстанавливаются или же клетки гибнут.

О растительном синцитии и транспортировке информационной РНК мало кто знает. Мало кто знает и о том, что после прививки клеточные системы подвоя и привоя становятся едиными. Об этом ничего не написано в российских учебниках. Даже в самом современном учебнике по физиологии растений я не нашел описания плазмодесм (трубочек между клетками) и возможности транспорта информационной ДНК по ним. Вот он. Беру этот современный российский учебник по физиологии растений и вижу, что там об этом нет ни слова. Хотя межклеточные мостики на схеме растительной клетки есть, но они в тексте не упомянуты и о них в тексте нет объяснения. Нет в этом учебнике ни слова о заслугах Лысенко в агробиологии, хотя в западных учебниках об этом есть упоминание. Хуже всего быть пророком в своем отечестве.

2.4. УПРОЩЕННАЯ МОДЕЛЬ ПЕРЕДАЧИ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ В РАСТЕНИЯХ

Представьте себе несколько закрытых бачков, заполненных субстанцией, которая похожа на раствор яичного белка, и соединенных между собой тонкими трубочками. Раствор в баках содержит не только белки, типа раствора яичного белка, но и сахара, ионы, небольшие растворимые молекулы РНК, аминокислоты и некоторые другие вещества. Баки герметически закрыты. Стенка баков есть аналог клеточной мембраны или плазматической мембраны, по-научному. Если в один из баков впрыснуть краску, то она быстро диффундирует в другие баки. Баки — это клетки, а трубочки — это плазмодесмы.

Внутри баков проложены миниатюрные железные дороги, которые могут перевозить небольшие грузы. В каждом баке имеется небольшая машинка для копирования дисков с большого твердого диска-винчестера. Эти диски могут прицепляться к паровозикам, курсирующим по миниатюрным железным дорогам. Итак, наша копировальная машина открывает винчестер, то есть ДНК и копирует на нем светооптический диск, то есть информационную РНК. Этот диск прицепляется к паровозикам, то есть микротрубочковым белкам-моторам и паровозики тащат диски по колеям к пересадочным станциям в виде плазмодесм-трубочек.

Информационная РНК (в нашем случае — CD-диски) может транспортироваться клеткой с помощью микротрубочек и специальных микротрубочковых моторов, которые используют энергию АТФ или других богатых энергией молекул для целенаправленного и активного перемещения по микротрубочкам в определенные места клетки.

Около межклеточных трубочек диски сгружаются и вручную переносят через трубочку с следующий бак, где они снова грузятся на паровозики и их везут к копировальной машине данного бака. Здесь включается считывание и генетическая информация считывается с диска и записывается на винчестер данного бака. Вот вся суть открытия Мичурина и Лысенко, объясненная с точки зрения современной молекулярной и клеточной биологии.

Что происходит при гибридизации? При пересадке привоя черенок другого растения-гостя внедряется в разрез на коре подвоя или растения хозяина. При разрезе или повреждении коры дерева или, в случае травянистого растения, наружной часто стебля под ней немедленно начинается активное деление и размножение окружающих клеток, которые формируют под корой скопление. В этом скоплении вновь образованные клетки устанавливают между собой цитоплазматические мостики, трубочки, или плазмодесмы. Одновременно делятся и клетки в месте отреза привоя на границе между омертвевшей древесиной и корой. Делящиеся клетки хозяина и гостя устанавливают контакты между собой и формируется общая клеточная система включающая клетки двух разных растений. По этой системе как по трубочкам между закрытыми бачками (см. выше) идет передвижение информационной РНК, а затем обратная трансляция информации на ДНК привоя и в меньшей степени на ДНК хозяина. Все это доказано экспериментально.

Вспомним, как работает генетический код. На диске каждая аминокислота записана комбинацией 3 из 4 возможных углублений, квадратного, круглого, треугольного и овального, отпечатанных на диске. Форма углубления является аналогией разных нуклеотидов. Если, например, круг, овал и квадрат, то в машину открывается дверка для грузовичка, перевозящего аминокислоту аланин; если три круга, то фенилаланин и т.д. Грузовичок или транспортная РНК, въезжает во двор, сгружает аминокислоты и ее приваривают в виде сегмента цепи к формирующейся огромной подвижной цепи. Эта гнущаяся цепь и есть белок. Грузовички -это транспортные РНК, двор — это рибосома.

Эта информация из соматических клеток потом может быть захвачена вновь формирующимися половыми клетками и она, конечно, будет расщеплена. Мичурин знал о расщеплении признаков и понимал, что надо добиваться получения гомозиготных растений. При половом размножении свойства сортов теряются. Кроме того, идет медленная деградация записанной наследственной информации. Почему имеется медленная деградация полученной генетической информации, не ясно.

Итак, в растениях передача наследственной информации идет по внутриклеточным путям синцития растений (или, как говорят, по флоэме). Недавно эксперименты с привоями подтвердили, что эндогенная (от хозяина) информационная РНК входит и передвигается по системам перемещения растворов в привоях. После открытия того факта, что информационная РНК может передвигаться между клетками хозяина и по привою раскрывают механизм за счет которого эта наследственная информация может потом включаться в ДНК привоя с помощью ретровирусов и ретротранспосом и поэтому оказывается интегрирована в геном привоя. Существует также механизм горизонтального переноса генетической информации от левкоя (подвоя) к побегу и наоборот — от привоя к подвою. В последние годы несколько независимых групп исследователей доказали, что вызываемые в привоях вариации фенотипа стабильны и даже могут наследоваться.

Вот, что написано в статье Йоргенсена с соавторами. "Эксперименты с трансгенными растениями показывают, что регуляция генной экспрессии взаимосвязана со всеми частями растения: перепроизводство трансгенного продукта (белка, который синтезируется исходя из информации, полученной с ДНК, которая пересажена из другого организма) в одной части растения часто влечет инактивацию гена (например, метиляцией регуляторных последовательностей гена) во всех тканях трансгенного растения". А теперь переведу с русского профессионального на русский обывательский. Здесь доказано, что если в какой-то клетке растения обнаруживается избыток какого-либо белка, то информация об этом быстро становится доступной для других клеток (они ведь образуют синцитий, будучи связаны межклеточными мостиками, по которым информация и передается) и они снижают синтез данного белка. Это было установлено с использованием метода пересадки генов от одного растения к другому. Предвосхищая нынешние открытия клеточных биологов, Лысенко считал, что из подвоя в привой переходят не хромосомы, а как он называл, ассимиляты.

Убежденный в действительном существовании вегетативных гибридов, Лысенко писал: “Каждый знает, что между привоем и подвоем происходит обмен только пластических веществ, обмен соков. Подвой и привой не могли обмениваться ни хромосомами ядер клеток, ни протоплазмой, и все же наследственные свойства могут передаваться из подвоя в привой и обратно. Следовательно, пластические вещества, вырабатываемые привоем и подвоем, так же обладают свойством породы, то есть наследственности”.

Итак, механизм передачи наследственных свойств подвою лежит в рамках современной генетической догмы. Белки и РНК могут легко проходить через флоэму (канальцы, связывающие клетки синтиция растений друг с другом) и поэтому также переходить от подвоя к привою. Таким образом, наследственная информация переносится от РНК подвоя к ДНК привоя или наоборот от РНК привоя к ДНК подвоя. Транспортируемые молекулы, синтезируемые в других частях организма, воздействуют на онтогенез и физиологию (и тем самым на фенотип) конкретной ткани, а не всего растения. Поэтому при нормальных условиях различия между частями растения очень трудно наблюдать.

Эта информация потом может быть захвачена и вновь формирующимися половыми клетками и она, конечно, будет расщеплена при половом размножении и надо добиваться получения гомозиготных растений. Недавние эксперименты с трансгенными (которым пересажены чужие ДНК) растениями показывают, что регуляция генной экспрессии взаимосвязана со всеми частями растения: перепроизводство трансгенного продукта в одной части растения часто влечет инактивацию гена (например, метиляцией регуляторных последовательностей гена) во всех тканях трансгенного растения.

Оказалось, что индивидуальные органы и ткани растения не обязаны быть фенотипически или даже генетически идентичными. Геномы их клеток могут разойтись в результате соматических мутаций, соматических рекомбинаций (результаты относительно общего митотического кроссинговера) или в результате наследственных (но часто обратимых) изменений (в основном — метиляций) генома. С точки зрения общей биологии более важен факт того, что наследственные различия в фенотипе существуют между клетками различных частей одного растения.

В последние годы несколько независимых групп исследователей доказали, что вызываемые в привоях вариации фенотипа стабильны и даже могут наследоваться. Пигментные посредники или синтезирующие пигмент ферменты или регуляторы экспрессии генов смешаны благодаря мобильности молекул информационной РНК в пределах всего растения.

У растений общее содержание ДНК остается неизменным, в то время как последовательность нуклеотидов меняется в разных клетках по-разному.

С точки зрения общей биологии более важен факт того, что наследственные различия в фенотипе существуют между клетками различных частей одного растения. Оказалось, что индивидуальные органы и ткани растения не обязаны быть фенотипически (то есть отличиями внешних признаков) или даже генетически (на основе записанной наследственной информации) идентичными. Геномы их клеток могут разойтись в результате соматических мутаций, соматических рекомбинаций (результаты относительно общего митотического кроссинговера) или в результате наследственных (но часто обратимых) изменений (в основном — метиляций, то есть присоединения метильной группы к ДНК) генома.

Гибридизация привоев оказалась простым, но мощным методом создания новых сортов. Она позволяет объяснить тайну выведения плодовых деревьев древним человеком.

После Лысенко соматическая гибридизация или спонтанного явление слияния неполовых (соматических) клеток in vitro (вне организма или точнее в культуре ткани) была переоткрыта руководителем лаборатории тканевых культур и вирусов Жорж Барский (Georges Barski) во Франции в 1960 году. Соматические гибриды клеток растений, полученные по методике Барского, можно выращивать в виде культуры тканей, и получать целое растение "на грядке".

Приведу небольшую цитату. "В 1960 г. … биолог Дж. Барский, культивируя в одном сосуде сразу две различные линии клеток, обнаружил, что у некоторых клеток хромосом было больше, чем полагалось. Барский предположил, что это было результатом случайного объединения клеток. Сначала сообщение о слиянии соматических (то есть не половых) клеток было встречено с недоверием, но последующие работы подтвердили факт спонтанной гибридизации клеток. Правда, гибридные клетки возникали очень редко, один раз на десять — сто тысяч случаев. Поэтому надо было как-то подстегнуть процесс слияния… Задачу решили с помощью вируса Сендай, который после встраивания в оболочки клеток, в стенки бачков, то есть) примерно в сто раз увеличивает возможность слияния клеток, изменяя их наружную оболочку. Недавно появился еще один способ добиться той же цели. Клетки обрабатывают синтетическими полимерами, например полиэтиленгликолем, которые тоже меняют свойства липидов клеточной мембраны и облегчают слияние".

Итак, современная молекулярная биология легко объясняет результаты вегетативной гибридизации. Чтобы заниматься селекцией, то есть по-русски — отбором, нужно иметь из чего отбирать. Нужно генерировать разнообразие. Для этого есть два главных способа: мутагенез и сбор существующего в мире разнообразия. Мичурин и Лысенко впервые применили на практике направленный мутагенез с помощью использования информационной РНК растения-хозяина для изменения наследственности в геноме растения привоя.

2.5. ЧТО ЖЕ ОТКРЫЛ МЕНДЕЛЬ?

Сначала небольшая историческая справка. Слово генетика (geneticos) происходит от слова "geneo" — порождаю. Как известно, Мендель показал, что при скрещивании растений, обладающих двумя парами контрастных признаков, каждый из них наследуется независимо от другого. Мендель показал свои законы наследования признаков, используя плоды гороха, которые отличались по морщинистости кожицы и цвету. Он показал, что если скрестить доминантный и рецессивный признаки, то в первом поколении все плоды имеют доминантный признак, а во втором поколении происходит расщепление признаков в соотношении 3 к 1. То есть три особи имеют доминантный признак, а одна особь рецессивный. При проведении экспериментов из множества признаков Мендель выбрал 7, которые были контрастны. Самые удачные распределения были с признаками окраски семенной кожуры, формы и величин семян.

Четкие законы расщепления признаков (обратите внимание, не генов, а признаков) не были сформулированы самим Менделем в той своей статье. Эти законы были сформулированы авторами, переоткрывшими Менделя. Когда он стал проверять свои законы на другом растении ястребинке, он не смог ничего воспроизвести. Оказалось, что у этих растений нарушен половой процесс и они дают семена и без него.

Оказалось, что Г. Менделю страшно повезло в том, что его признаки контролировались одним геном. Все остальные признаки, особенно морфогенетические, контролируются сотнями генов. Иначе он бы никогда не открыл законов генетики своего имени, так как граница между признаками настолько размыта, что количественный подсчет оказывается часто невозможным. Более того, в 1936 году Фишер опубликовал работу, где доказал, что полученные Менделем данные слишком близки к идеальным, тем самым обвинив Менделя в подгонке результатов. Пока его обвинение не опровергнуто.

В 80-е годы XIX-го века Август Вейсман (A. Weismann) предложил свою гипотезу, согласно которой в организме существуют два типа клеток: соматические и особая наследственная субстанция" названная им "зародышевой плазмой", которая в полном объеме присутствует только (!!!) в половых клетках.

Наконец, справедливости ради, отмечу, что еще до открытий Моргана Вейсман прямо говорил в своей книге Зародышевая плазма (1893 г.), что приобретенные признаки могут передаваться лишь тогда, когда они вызывают изменения в наследственном веществе, расположенном в ядре клетки. Т.е. тезис о том, что генетики "считали, что приобретенные признаки НИКОГДА не передаются" может считаться неверным и искажающим суть взглядов ранних генетиков. Более того, пример по поводу ошибок в ДНК более подходит к парадигме ранних классических генетиков, т.к. ошибки синтеза ДНК есть изменение наследственного вещества. Тем более, что опыты с мутагенетическими факторами были широко распространены — химический, температурный и радиационный мутагенез.

В 1909 г. для обозначения менделевского фактора наследственности был предложен термин «ген» (Иогансен). Было установлено, что признаки, возникающие под влиянием обычных внешних воздействий, т.е. благоприобретенные, не связаны с генами, не передаются по наследству. Было установлено, что для каждого вида форма и число хромосом постоянны, что в ходе развития половых клеток происходят редукция хромосом ровно в два раза и восстановление их прежнего числа при оплодотворении.

Цитоплазматическая наследственность была открыта в 1909 году. В 1910 г. была открыта локализация наследственных факторов в хромосомах. Сделал это Т. Морган (1866-1945), и теория получила название «морганизм». Хромосомная теория наследственности содержала много элементов механицизма: ген представлялся неделимым.

Мутагенное (ведущее к изменению последовательностей нуклеотидов в ДНК) действие внешних факторов (лучей рентгена) было открыто в 1925-27 годах.

Исключительная роль нуклеиновых кислот, точнее ДНК, в передаче наследственной информации была показана в 1941 — 1944 гг. В конце 40-х гг. были получены данные о равномерном содержании ДНК во всех клетках организма и о том, что количество ДНК у разных видов постоянно. Лишь в начале 50-х гг. были определены химические компоненты ДНК. Только в 1952 году было открыто явление трансдукции, то есть переноса вирусами генов хозяина, что доказало роль ДНК в осуществлении наследственности. Роль ДНК в наследовании окончательно была доказана лишь в 1955 г..

А что же было точно установлено в генетике в 30-40е годы? Очень не много. Например, академик Н. К. Кольцов (1872-1940) считал, что хромосома — это гигантская белковая молекула, состоящая из двух нитей, снизанных из параллельных рядов химических радикалов, расположенных в определенном порядке. Н. К. Кольцов утверждал: "Химически генонема с её генами остаётся неизменной в течение всего овогенеза и не подвергается обмену веществ — окислительным и восстановительным процессам". Критикуя Кольцова на сессии ВАСХНИЛ, Лысенко говорил: "В этом абсолютно не приемлемом для грамотного биолога утверждении отрицается обмен веществ в одном из участков живых развивающихся клеток. Кому не ясно, что вывод Н. К. Кольцова находится в полном соответствии с вейсманистской, морганистской, идеалистической метафизикой…"

Я не касаюсь здесь таких очевидных случаев, как откровенно одиозных идей Вейсмана о "непрерывной зародышевой плазме", бредовость которых уже тогда была ясна даже наиболее продвинутым генетикам — тому же Моргану. Вейсман же предположил, что имеется два типа клеток, соматические и особая зародышевая субстанция, названная им "зародышевой плазмой". Было предположено, что зародышевая плазма должна составлять материал хромосом. По мнению Моргана, гипотеза Вейсмана об обедненности генотипа неполовых клеток представляла только исторический интерес. Лишь к середине XX-го века Морган сформулировал гипотезу о том, что гены расположены в хромосомах как "бусы на нити".

Ну ладно бы только в России. Американские генетики в течение 8 лет не проявляли интереса к сделанному в 1944 году открытию роли ДНК в передаче генетической информации. Лишь к 1953 году, после создания теории, ставшей стержнем молекулярной биологии, выявилось значение этого открытия. Однако даже в 1960 году в Оксфорде вышла монография, в которой утверждалось, что ген имеет белковую природу.

Наконец, в то время морганисты связывали наследственность только с ядром и хромосомами и поэтому не могли признать результаты гибридизации, полученные Мичуриным. Как я уже писал выше, идея мобильные наследственных элементов дискредитируют т идею о том, что гены тождественны хромосомам.

2.6. ОТРИЦАЛ ЛИ ЛЫСЕНКО ГЕНЕТИКУ?

Противники мичуринской генетики приписывают Лысенко отрицание роли хромосом в передаче наследственной информации, да и вообще существование специфического вещества наследственности и прямое наследование приобретенных признаков. Однако, эти обвинения лживы, в чём можно убедиться по заключительной речи Лысенко на исторической сессии ВАСХНИЛ 1948 г. Лысенко указывает, что не отрицает роли хромосом в передаче наследственных признаков, но считает, что наследственность определяется в гораздо большей степени влиянием на семена всего тела и условий его жизни, чем механической комбинацией генов или «мутациями».

Позвольте мне процитировать стенограмму сессии ВАСХНИЛ: «Профессор Раппопорт, мы хотим, чтобы вы, цитологи и цитогенетики, поняли только одно. Мы не против цитологических исследований протоплазмы и ядерного аппарата у половых, соматических и каких угодно клеток, в том числе и микробов… Мы признаем, вопреки вашим утверждениям, безусловную необходимость и полную перспективность этих современных методов исследования. Мы, однако, решительно против тех вейсмановских антинаучных исходных теоретических позиций, с которыми вы подходите к своим цитологическим исследованиям. Мы против тех задач, которые вы хотите разрешить с помощью этих методов, мы против ненаучной интерпретации результатов ваших морфологических исследований, оторванных от передовой науки».

Его соратники, но не он, могли отрицать гены. В подтверждение — цитата из доклада проф. Турбина на Сессии ВАСХНИЛ (1948). : «В связи с этим я попытаюсь напомнить доценту Алиханяну и другим оппонентам академика Лысенко основные факты, которые на наш взгляд полностью подрывают основу генной теории. Это прежде всего факты из области вегетативной гибридизации, которые показывают, что можно получать гибридные организмы, сочетающие признаки взятых для прививки исходных форм без объединения хромосомных наборов этих исходных форм, а следовательно, без объединения гипотетических генов, локализованных в парных хромосомах».

Теперь позвольте привести другие тексты про генетику, написанные самим Лысенко. По ним вы сможете судить, насколько он отрицал генетику.

В 1936 г. Лысенко заявил: "Мы не против использования фактических материалов мировой науки". Замечу попутно, что в энциклопедии 1936 года Лысенко назван "выдающимся исследователем закономерностей менделизма".

Вот его текст про вероятность расщепления 3:1. Приводится обработанная стенограмма доклада на семинаре по вопросам семеноводства (Всесоюзный селекционно-генетический институт, 15 апреля 1938 г.).

"… На самом же деле, мне кажется, никто никогда не наблюдал разнообразия растений гибридного потомства, укладывающегося в схему 3:1 так, чтобы на каждые 3 экземпляра с одним каким-нибудь признаком, приходился обязательно один экземпляр с противоположным признаком. Ведь в опытах самого Менделя ни один гибридный куст гороха не давал потомства, разнообразящегося по окраске цветов или по окраске семян в отношении 3:1. Стоит просмотреть фактический материал опытов Менделя, как легко можно увидеть, что даже в потомствах десяти гибридных растений гороха, приведённых в таблицах Менделя, потомство одного растения на 19 жёлтых зёрен имело 20 зёрен зелёных, а потомство другого растения на 33 жёлтых дало только одно зелёное зерно. В потомствах разных растений одной и той же гибридной комбинации наблюдалось разное соотношение типов. Не исключена, конечно, возможность, что в потомстве того или иного гибридного растения может получиться и отношение 3:1, но это будет так же часто или так же редко, как и отношение 4:1, 5:1, 50:1, 200:1 и т. д. В среднем же, конечно, может и бывает (правда, далеко не всегда) отношение 3:1.

Ведь среднее отношение три к одному получается и генетиками выводится (ими это и не скрывается) из закона вероятности, из закона больших чисел. Ведь известно, что самым распространённым примером для уяснения этой «биологической закономерности» на уроках генетики является способ подбрасывания двух монет. При этом учащимся советуют под монетами разуметь половые клетки (хотя бы гороха) и при каждом подбрасывании монет регистрировать, сколько раз обе монеты упадут решками вверх, сколько раз гербами и сколько раз одна гербом, а другая решкой. Советуют число бросков сделать как можно большим. И действительно, при большом числе бросков получается примерно: 25% из всего числа бросков—выпадение решек, 25% гербов и 50% решек-гербов, то-есть отношение 1:2:1.

Развитие гибридных растений всегда идёт в том из возможных направлении, какому наилучше соответствуют условия данного поля.

Всегда при развитии гибридных организмов получается преимущество для раз— вития той или иной возможности данного организма. Генетики говорят, если доминирует, то-есть получается преимущество герба (допустим, что под этим понимается красная окраска цветов гороха), то, следовательно, все те организмы, которые получались при соединении двух половых клеток, одна из которых имела возможность развивать красный цвет, а другая — белый, разовьются с красными цветами. Красноцветковых растений, согласно «биологической» проверке с подбрасыванием монет, будет 50% и 25%, где обе половые клетки несли возможность развития красного цвета; итого 75% красноцветковых и 25% белоцветковых, т. е. отношение 3:1. Так должно быть, по глубокому убеждению генетиков, у всех потомств гибридов всей живой природы, где бы и как бы они ни скрещивались и произрастали.

В действительности это, конечно, не только не присуще всей живой природе, но не присуще и гибридам гороха, на котором выведен этот, по меткому замечанию И. В. Мичурина, «гороховый закон». Одним словом, общего между биологической закономерностью и «законом Менделя» ровно столько, сколько есть общего между пятачком и растением гороха. После детального моего наблюдения над поведением растений в семенных питомниках озимых пшениц, в особенности Крымки от внутрисортового скрещивания, я смею утверждать, что никто никогда не наблюдал, чтобы гибридные потомства разных растений одной и той же комбинации все разнообразились в одинаковом отношении (3:1)n. Такое отношение можно наблюдать только при большом числе подбрасываний монет или при любом другом явлении, где играет роль только построенная на случайности равная вероятность, где усреднена необходимость…..

Мы знаем, что чем труднее идёт скрещивание данных двух форм растений, тем разнообразнее потомство от такого скрещивания. Ведь не зря же в генетике ввели термин «сумасшедшее» расщепление в отношении потомств от трудно скрещиваемых растений. При лёгких же скрещиваниях, например одного сорта пшеницы с другим, потомство получается менее разнообразным. Нетрудно прийти к выводу, Что чем биологически больше будет соответствовать при оплодотворении одна гамета (половая клетка) другой, тем более устойчивое, менее разнообразящееся потомство будет получаться в дальнейших поколениях от такого скрещивания. … Если я резко выступаю против твердыни и основы генетической науки, против «закона» Менделя, подправленного и подправляемого морганистами, так это прежде всего потому, что этот «закон» довольно сильно мешает мне в работе, в данном случае мешает улучшению семян хлебных злаков".

Как видим, Лысенко чувствовал, что на самом деле в моделях морганистов смешены понятия ген и признак и что почти нет признаков, которые бы соответствовали одному гену.

А вот что писал сам Лысенко в энциклопедии 1946 г. про законы Менделя. Статья написала для 3-го издания Сельскохозяйственной энциклопедии (том I, слово «Генетика»). — Ред. Впервые опубликовано в 1946 г. МЕНДЕЛИЗМ-МОРГАНИЗМ (Хромосомная теория наследственности)

Для изложения сущности менделевско-моргановской генетики воспользуемся основными положениями статьи Моргана «Наследственность», опубликованной в США в 1945 г. в Американской энциклопедии (Encyclopedia Americana, 1945 г.). «Начиная с 1883 г. Август Вейсман в ряде статей, которые были частично умозрительными, однако подкреплялись постоянной ссылкой на наблюдения и опыты, подверг критике господствующую идею о том, что признаки, приобретённые индивидуумом, передаются зародышевым клеткам и могут появиться в потомстве. Во многих случаях было показано, что зародышевые клетки уже на ранних стадиях развития эмбриона отделяются от остальных клеток и остаются в недифференцированном состоянии, в то время как другие клетки,из которых образуется тело индивидуума, дифференцируются. Зародышевые клетки становятся впоследствии основной частью яичника и семенника. Поэтому по своему происхождению они независимы от остальных частей тела и никогда не были его составной частью. Тело защищает и кормит их, но в каком-либо другом отношении на них не влияет (то-есть не изменяет.—Т. Л.). Зародышевый путь является неиссякаемым потоком, который в каждом поколении отделяет клетки тела, назначение которых сохранять зародышевые клетки. Все новые изменения сначала возникают в зародышевых клетках и впервые проявляются как признаки у особей, развивающихся из этих зародышевых клеток. Эволюция имеет зародышевую, а не соматическую (то-есть телесную.—Т. Л.) природу, как думали раньше. Это представление о происхождении новых признаков в настоящее время принимается почти всеми биологами. Поэтому наследственность обусловливается сохранением в зародышевой плазме тех элементов, как старых, так и новых, которые возникали в ней от времени до времени. Зародышевая плазма представляет собой капитал расы, причём на образование новых особей в каждом поколении расходуются лишь проценты. …

Мендель открыл подлинный механизм наследственности…

Было найдено, что законы Менделя применимы не только к признакам культурных растений и домашних животных, не только к таким внешним признакам, как окраска, но также и к признакам диких животных, к видовым различиям, и к самым основным свойствам живых существ. Менделевский закон расщепления устанавливает, что элементы, которые приносятся двумя родителями потомству, составляют пары и что при образовании зародышевых клеток потомства члены каждой пары отделяются друг от друга таким образом, что каждая зародышевая клетка содержит только по одному члену каждой пары. Например, Мендель скрещивал сорт столового гороха, имеющего зелёные семена, с сортом, имеющим жёлтые семена. Все семена потомства были жёлтыми. Жёлтый доминирует над зелёным. Если растения от этих гибридных семян самоопыляются (или скрещиваются между собой), они дают как жёлтые, так и зелёные семена в отношении три жёлтых к одному зелёному.

Зелёные семена являются чистыми и всегда дают только зелёные семена. Однако было найдено, что жёлтые семена бывают двух родов; часть из них является чистой в отношении жёлтой окраски, всегда дающей только жёлтых потомков, другая часть является гибридной, дающей как жёлтые, так и зелёные семена в отношении три к одному. Семена второго поколения появляются в отношении один чистый жёлтый, два гибридных жёлтых, один чистый зелёный. Мендель отметил, что если исходный зелёный предок привнёс элемент зелёной краски, а жёлтый предок—элемент жёлтой окраски, то эти контрастирующие элементы образуют у гибридов пару, члены которой отделяются один от другого (расщепляются) при образовании зародышевых клеток (гамет). В результате половина яйцеклеток будет содержать элемент жёлтой, а половина—элемент зелёной окраски. Точно так же половина пыльцевых зёрен будет содержать элемент жёлтой, а половина—элемент зелёной окраски. Случайные сочетания яйцеклеток и пыльцы дают, таким образом, следующие сочетания: 1 зелёный зелёный; 2 зелёный жёлтый; 1 жёлтый жёлтый.

Второй закон Менделя относится к случаям, когда включаются более одной пары признаков. Было обнаружено, что высокий и низкий рост рас гороха представляет собой контрастирующие признаки, расщепляющиеся таким же образом, как жёлтая и зелёная окраски. Если высокорослая раса с жёлтыми семенами скрещивается с низкорослой расой, имеющей зелёные семена, то расщепление каждой пары не зависит от расщепления другой пары, так что четверть яйцеклеток такого гибрида содержит элементы высокого роста и жёлтой окраски; четверть содержит элементы высокого роста и зелёной окраски; четверть—элементы низкого роста и жёлтой окраски и четверть—элементы низкого роста и зелёной окраски. Точно так же при формировании пыльцы образуются такие же четыре типа гамет. Случайные сочетания яйцеклеток и пыльцы дают 16 комбинаций. Поскольку жёлтый доминирует над зелёным, а высокий над низким, в этом втором (F2) дочернем поколении будет девять высоких жёлтых; три низкорослых жёлтых; три высоких зелёных; одно низкорослое зелёное. Следовательно, во время созревания зародышевых клеток, когда происходит расщепление членов каждой пары факторов гибрида, разделение каждой пары происходит независимо от другой. В этом состоит второе открытие Менделя, которое может быть названо законом независимого распределения. Мендель показал, что три пары признаков ведут себя таким же образом, то-есть их гены распределяются независимо, и есть основания полагать, что этот закон применим во всех случаях, когда гены, обусловливающие две или более пары признаков, находятся в разных парах хромосом. Но, как будет показано ниже, если гены расположены в одной и той же паре хромосом, их распределение определяется третьим законом наследственности, а именно законом сцепления. Элементы, которые, как предполагается, в некотором смысле пред— ставляют наследственные признаки, обычно именуются генами, а термин «генетика», или изучение поведения генов, в современных работах по наследованию заменил старый термин «наследственность» с его многочисленными сопутствующими значениями. О менделевских признаках часто говорят, как об единичных признаках, и иногда предполагают, что ген непосредственно образует каждый такой признак. Однако ясные данные указывают, что так называемый единичный признак представляет собой лишь одно и» многочисленных проявлений действия гена, которое ген может производить всегда совместно со многими, а быть может, со всеми другими генами. Таким образом, зародышевая плазма рассматривается как общая сумма всех генов, совместное действие которых ответственно за каждый признак тела.

Между тем как тело строится взаимодействием веществ, образуемых генами, при образовании зародышевых клеток, гены действуют как независимые единицы, которые собираются в пары, затем расщепляются. Гены, которые расположены в различных парах хромосом, распределяются независимо друг от друга, те же гены, которые расположены в одной хромосоме, оказываются сцепленными.

Современные работы по клетке безошибочно указали на тот механизм, при помощи которого осуществляется как расщепление генов, так и распределение хромосом. Каждая клетка тела или незрелая половая клетка содержит двойной набор хромосом (за исключением самцов некоторых групп, у которых отсутствует одна из половых хромосом). Один из членов; каждой пары происходит от отца, другой—от матери. Во время процесса созревания материнские и отцовские хромосомы конъюгируют друг с другом v подобная с подобной. Затем, при так называемом редукционном делении, один из членов каждой пары отходит в одну дочернюю клетку, а другой член — в другую дочернюю клетку. Если хромосомы содержат менделевские гены, то материнские и отцовские гены будут расщепляться во время редукции хромосом при образовании гамет. Однако при редукционном делении не происходит отделения всех материнских хромосом от всех отцовских как группы в целом, но каждая пара хромосом расщепляется независимо от других пар, вследствие чего дочерние клетки могут получить любой возможный набор из отцовских и материнских хромосом, но всегда лишь один или другой член каждой пары. Это положение полностью удовлетворяет условиям второго закона Менделя о независимом распределении. Но очевидно, если хромосомные нити, как предполагают, являются носителями генов и если, как обычно принимается в настоящее время, нить представляет собой структурный элемент, остающийся неизменным даже в покоящихся клетках, то гены должны наследоваться группами, соответственно числу хромосом. Одним словом, все гены в данной хромосоме должны быть сцепленными между собой. Самые последние данные показывают, что это так и есть, и что число групп сцепленных генов равно числу хромосом. Начиная с 1906 г. число известных случаев сцепления генов неизменно возрастало, и в настоящее время не может быть сомнения относительно того, что это явление представляет собой характерную черту менделевского наследования. На одном примере, у плодовой мушки Drosophila ampelophila, было показано, что 200 известных наследственных различий наследуются в четырёх группах, соответственно четырём парам хромосом. Таким образом, менделевский закон расщепления нашёл своё подтверждение в цитологическом механизме редукции в половых клетках, в то время как его закон независимого распределения подтверждается способом распределения хромосом. Впоследствии открытие значения явления сцепления привело все основные свойства наследственности в полное соответствие с хромосомным механизмом. Было найдено, однако, что индивидуальность хромосом, обусловливающая сцепление, не является абсолютной, так как было показано, что члены одной пары иногда обмениваются эквивалентными частями. Но этот обмен подчиняется определённой закономерности и если и усложняет результаты, то ни в коем случае не подрывает общего принципа. У некоторых видов обмен (кроссинговер) имеет место только у самок (Drosophila), у некоторых видов—только у самцов (шелкопряд), в то же время у других видов обмен происходит у обоих полов, как у некоторых обоеполых растений. Наследование пола явилось одним из великих биологических открытий нашего столетия. Было показано, что фактор или факторы пола расположены в особых хромосомах, называемых половыми хромосомами. В некоторых больших группах (млекопитающие, большинство насекомых и т. д.) присутствие двух таких хромосом, называемых Х-хромосомами, образует самку; присутствие одной из них образует самца. Таким образом, самка имеет строение XX, а самец X. При редукционном делении у самки одна Х-хромосома элиминируется из яйца, поэтому каждое яйцо содержит лишь одну Х-хромосому. У самца имеется только одна Х-хромосома, которая при редукционном делении отходит только в одну из двух образованных клеток спермы, в результате чего возникают два класса сперматозоидов. Во время оплодотворения случайные встречи любого яйца с любым сперматозоидом дают два класса индивидуумов, имеющих две Х-хромосомы (самки) и одну Х-хромосому (самцы). Этот механизм обеспечивает численное равенство полов. В других группах (птицы, бабочки) отношение обратное, самец несёт две Х-хромосомы, а самка—одну; следовательно, все сперматозоиды содержат одну Х-хромосому, половина яиц несёт только одну Х-хромосому, а другая половина лишена её». Таковы основные положения хромосомной теории наследственности в изложении Т. Моргана — основоположника этой теории. …" Отмечу, что за статьи в энциклопедиях ученым платили хорошие деньги.

А вот другая цитата, показывающая отношение Лысенко к законам Менделя: "Мендель, Грегор Иоганн (1822-84), австр. реакц. биолог. См. менделизм". "Мендель Грегор-Иоганн — 1822-1884. Монах, позднее настоятель монастыря в г. Брюнне (Австрия). Известен своими исследованиями над гибридами гороха. Работа Менделя стала известной с 1900 г., через 34 года после ее опубликования. «Закон» Менделя, — говорит акад. Т. Д. Лысенко, — это закон не биологических явлений, а усредненной, обезличенной статистики. Сам Мендель, как известно, никакого значения не придавал выводам из своих опытов. За это говорит хотя бы то, что как только у Менделя досуга стало меньше, когда его из монахов перевели в игумены, он вообще перестал заниматься игрой с опытами над растениями. Никакого отношения к биологической науке Мендель не имеет. Положения менделизма, развитые не Менделем, а менделистами-морганистами, не дают нам никаких действенных указаний в нашей практической семеноводческой работе». Вейсманисты (менделисты-морганисты) исповедовали так называемые законы Менделя в своих реакционных целях — в целях борьбы против марксистско-ленинского естествознания" (с) именной указатель к изданию 1949 г. книги Мичурина "Итоги 60-летних работ".

А вот что писал про хромосомы и генетику сам Лысенко:

Большая Советская Энциклопедия. Изд. 2, т. 10, ст. “Генетика”.

Генетика — раздел биологической науки о развитии организмов. Ее можно также назвать разделом науки, изучающей наследственность и ее изменчивость.

Верно, что хромосомы существуют. В половых клетках число их в два раза меньше, нежели в обычных. При наличии половых клеток с теми или иными хромосомными изменениями из этих клеток получаются измененные организмы. Правильно, что те или иные видимые, морфологические изменения данной изученной хромосомы клетки часто, и даже всегда, влекут за собой изменения тех или иных признаков в организме. Доказано, что наличие двух Х-хромосом в оплодотворенном яйце дрозофилы обычно решает вопрос выхода из этого яйца самки, а не самца. Все эти факты, как и другие фактические данные, верны. … "

Итак, если прочитать статью Лысенко "Генетика" в сталинской энциклопедии за 1949 год, то не очень заметно, чтобы эта статья отвергала рациональное зерно западной генетики, хотя многие положения генетики имели после каждого параграфа жесткую критику с точки зрения марксизма. В своей статье Лысенко определял границы применимости теории оппонентов. Он там признаёт всё то в генетической теории, что было правильным — признал, что изменение хромосом влечёт изменение наследственности, признал соотношение 3:1, признал, что Y-хромосома влечёт вылупливание самца…

В то же время в своих работах и высказываниях Т. Д. Лысенко признавал роль хромосом в наследственности. Он писал: «Не прав акад. Серебровский, утверждая, что Лысенко отрицает гены. Ни Лысенко, ни Презент никогда существования генов не отрицали. Мы отрицаем то понятие, которое вы вкладываете в слово «ген», подразумевая под последним кусочки, корпускулы наследственности. Но ведь если человек отрицает «кусочки температуры», отрицает существование «специфического вещества температуры», так разве это значит, что он отрицает существование температуры как одного из свойств состояния материи».

Сам Трофим Денисович Лысенко так никогда и не поверил, что признаки расщепляются согласно законам Менделя. Он писал в отчете о своей научной работе за 1974 год: «Никакого шифра или кода, записей информации и т.п. в ДНК также нет. … О какой матрице для копирования наследственного вещества можно говорить, зная детально наши экспериментальные данные по получению озимых из яровых?». Обратите внимание, что даже в 1974 году он продолжал верить в результаты своих экспериментов, что начисто исключает версию сознательном подлоге в его результатах.

Итак, генетику Лысенко не отрицал (более того 25 лет был ее руководителем). Да, он не верил в модель, но не отрицал ее. Мичуринская школа генетики полностью не противоречила существовавшему большому количеству экспериментальных фактов, убедительно показывавших, что передаваемые из поколения в поколение признаки каким-то образом кодируются в хромосомах. Мичуринская школа генетики обладала более широким взглядом на проблему наследственности, чем так называемая классическая или формальная школа. Она не противоречит современной молекулярной биологии, основывающейся на том, что наследственная информация кодируется структурой ДНК, на матрице которой синтезируется РНК и, далее, белок.

Ученые могут верить в бога и их никто не осуждает. Лысенко мог не верить в законы Менделя и его тоже никто не должен осуждать. Самое интересное, что в 1930 и 1940-х годах Лысенко поддерживали некоторые западные генетики, такие как Дж. Нидман, Дж. Бернал и Дж. Халдане. А ещё в 1938 году немецко-американский генетик Гольдшмидт проповедовал теорию "зародышевой плазмы" в которой индивидуальным генам нет места.

Вообще, мне очень странно видеть, как нынешние российские ученые, верующие в бога, осуждают Лысенко и Лепешинскую. Если ученый верит в схождения огня на Пасху, то почему бы ему не верить, что передача наследственных механизмов есть провидение бога и их изучать не надо ибо пути господни неисповедимы? Почему бы не поверить, что свои "открытия" самозарождения жизни Лепешинская делала под божественным воздействием? Да что ученые! Общество стремительно погружается в мракобесие. Сейчас в России идут суды над учением Дарвина. Астрология по телевизору каждый день. Неопознанные летающие объекты, учение Фоменко… И поговоришь с учеными и они верят хотя бы в одно из всех этих мракобесий, идущих по телеящику.

2.7. РАЗЛИЧИЯ ВО ВЗГЛЯДАХ МИЧУРИНЦЕВ И МОРГАНИСТОВ ИЛИ КТО БЫЛ ПРАВ

В данном разделе, предельно упрощая и избегая залезания в дебри семантики, я принял постулат, что морганизмы считали, что приобретенные признаки НИКОГДА не передаются, а Лысенко говорил, что могут передаваться иногда. То есть, я резко огрубил позицию обеих сторон, для выявления сути разногласий.

Так в чем же отличия взглядов Лысенко и морганистов? Насколько я себе представляю, если вникать в детали, морганисты и мичуринцы расходились по следующим основным вопросам.

1. До открытия молекулы ДНК генетики-вейсманисты (или в советской терминологии — вавиловцы) утверждали, что гены — это шарики диаметром 0,02-0,06 микрометра (миллионная доля метра), которые никак не зависят ни от самого организма, ни от окружающей среды. как сейчас трактует процесс наследования современная генетика. Дискретные наследственные факторы — суть генетики. Морганисты утверждали, что существует ли некое, отдельное от тела организма ‘наследственное вещество’, посредством которого и только посредством которого передаются наследственные признаки.

В отличие от морганистов, Лысенко считал, что наследование есть свойство целого организма, а не только генов. Следуя определению Лысенко, наследственность есть способность живого тела требовать для своего развития определенных условий и реагировать на эти или отличающиеся условия определенным образом. Да! Имея те же средства и приборы для научных исследований, Лысенко пришел к выводу, что за наследственность организма несут ответственность не эти пресловутые шарики, а любая частица организма, и изменяется организм под воздействием окружающей среды. Чуть ли не 50 лет спустя вооруженная электронными микроскопами и компьютерами Барбара Макклинток "снова" сделала это открытие. В 1983 г. она получила Нобелевскую премию.

Для морганистов ген стал своеобразным фетишем. Однако, генетика — это наука о наследовании признаков родительских организмов потомками, и ни в коем случае не может ограничиваться догмой о передаче наследственных признаков исключительно генами, вернее, их механической комбинацией. Существование вегетативной гибридизации несомненно доказано опытами и противоречит некоторым догмам генетиков-вейсманистов, что и вызывает их иррациональное озлобление. Современная молекулярная биология ясно показывает, что большая фракция генов в популяциях полиморфна, они существуют в любой популяции в нескольких относительно общих формах.

Кроме того, Лысенко и мичуринцы говорили, что изменения наследственных признаков у животных и растений, порождаемые измененными условиями жизни, происходят не один раз на 10-100 тыс. поколений у единичных особей, как утверждала "классическая генетика", а во много раз чаще. "Современная" молекулярная генетика и в этом вопросе отказалась от позиции, которая защищалась "классической" генетикой и Вавиловым: молекулярная генетика признала, что наследственные изменения, связанные с внедрением мобильных "контролирующих" элементов, происходят в десятки, сотни, а порою, и в тысячи раз чаще, чем это считала "классическая" генетика.

Эволюционные исследования говорят о том, что видимые исследователю мутации в среднем гене возникают один раз каждые 200000 лет. Но как тогда объяснить возникновение способности сбраживать лактозу, то есть наличие лактазы в желудочно-кишечном тракте у взрослых людей у некоторых популяций человека, эволюция, происшедшая за 5000 лет, когда были одомашнены коровы?

Далее. ДНК каждой клетки человеческого организма теряет за сутки около 5000 остатков аденина и гуанина, компонентов нуклеотидов, вследствие температурного разрыва гликозидных связей между пурином и дезоксиробозой. При этом постоянно идет ремонт разрушенных участков молекулы ДНК, но ремонт этот не обладает 100% точностью. Возможны ошибки в отношении триплетов, которые кодируют не очень важные аминокислоты или в тех участках гена, которые не оказывают существенного влияния на его функцию. В этом случае мутации не заметны генетикам и биологам. Если же ошибка оказывается в участке белка, который является определяющим в реализации функции белка, то мутация детектируется биологами и генетиками.

2. Если морганисты считали, что ядру принадлежит монополия в передаче признаков по наследству. "Классическая" генетика утверждала, что гены сосредоточены ТОЛЬКО в хромосомах, а потому передавать наследственные признаки при гибридизации можно, ЛИШЬ передавая хромосомы. Лысенко это отрицал, полагая что роль цитоплазмы также существенна и наследственность может передаваться через ассимиляты. Лысенко и мичуринцы, исходя из своей концепции наследственности, утверждали (и показывали это экспериментально), что передавать и создавать наследственные признаки можно и без передачи хромосом. "Современная" молекулярная генетика признала, что и в этом вопросе "классическая" генетика не права: молекулярная генетика признала, что цитоплазма также является носителем генетических свойств клетки.

Поскольку в то время морганисты связывали наследственность только с ядром и хромосомами и поэтому не могли признать результаты гибридизации, полученные Мичуриным. Сейчас доказано, что гены могут двигаться между хромосомами и между видами. Мобильные гены торпедируют идею о том,что гены тождественны хромосомам.

3. Лысенко считал, что изменения внешней среды оказывают очень значительное влияние на наследственность и новые свойства могут быть переданы по наследству. В отличие от морганистов Лысенко полагал, что приобритенные организмом при жизни признаки могут наследоваться и возможно направленное изменение признаков (т.е. не просто выбор подходящих для селекционной работы мутаций из случайного набора, а направленное изменение нужных признаков). Он не считал, что мутации являются принципиально случайными и ненаправленными.

Приобретенные признаки наследуются — см. ту же статью Голубовского: "Кратковременное (20 мин) прогревание тела восьмидневного мышонка самки вызывало стойкие изменения ооцитов, ослаблявшие действие вредной мутации у внуков! “Передача улучшения развития глаз, наблюдаемая в опытах с нагреванием, может быть объяснена только передачей свойств, приобретенных ооцитами нагретых самок по наследству” [16]16 . Александров В. Я.
. " Т.е. воздействие на организм температуры привело

а) к направленной мутации (а не случайной, как того требовала классическая генетика

б) к наследованию приобретенного в результате направленной мутации свойства по наследству.

И здесь правота Лысенко несомненна.

Лысенко и мичуринцы говорили, что изменения наследственных признаков под влиянием измененных условий жизни НЕ случайны, а НАПРАВЛЕННЫ. "Современная" молекулярная генетика и здесь сдала позиции, которые защищали Н. И. Вавилов и "классическая" генетика: с точки зрения "современной" молекулярной генетики, мутации не случайны, а зависят от типа подвижного элемента, внедряющегося в ген.

4. Лысенко шел ещё дальше. Он считал, что путем направленного воздействия на растение можно добиться скачкообразного перехода одного вида в другой. В частности Лысенко считал, что озимая пшеница может быть изменена на яровую. Казалось бы — это один из наиболее одиозных пунктов разногласий. Эксперимент по превращению яровых в озимые, в котором, по сути дела, были получены МАССОВЫЕ, 100%(!), направленные мутации превращения ярового в озимое, где в качестве "контролирующего" процесс изменения наследственности "элемента" выступил СРОК осеннего посева изменяемых растений. Это достижение было отражено еще в научном отчете академика Т. Д. Лысенко за 1937 г., который был представлен им в Академию Наук СССР. Есть факты, что и этот пункт критики Лысенко будет свернут. Оказывается, что под влиянием "стресса" (подзимний посев яровой пшеницы — чем не "стресс"?) мобильный контролирующий аппарат генома так перестраивается, что начинается процесс унаследования нового свойства. Причем этот процесс идет ступенчато — в 3, 5 поколений ("по Лысенко"!). И возникающие при этом наследственные изменения носят явно приспособительный характер.

Лысенко и мичуринцы утверждали, что изменения наследственных признаков НАПРАВЛЕННЫ и соответственны измененным условиям жизни организмов. И вот ТОЛЬКО в этом пункте "современная" молекулярная генетика осталась солидарна с "классической" генетикой (с менделизмом-морганизмом) — она это напрочь отрицает. Тем более у нас есть основание сослаться на описанный выше эксперимент по превращению яровых в озимые, в котором, по сути дела, были получены (и уже не в первый раз) МАССОВЫЕ, 100%(!), направленные мутации превращения ярового в озимое, где в качестве "контролирующего" процесс изменения наследственности "элемента" выступил СРОК осеннего посева изменяемых растений. Это достижение было отражено еще в научном отчете академика Т. Д. Лысенко за 1937 г., который был представлен им в Академию Наук СССР. Есть факты, что и по этому пункту можно ждать сдачи позиции "молекулярной" генетикой. Оказывается, что под влиянием "стресса" (подзимний посев яровой пшеницы — чем не "стресс"?) мобильный контролирующий аппарат генома так перестраивается, что начинается процесс унаследования нового свойства. Причем этот процесс идет ступенчато — в 3, 5 поколений ("по Лысенко"!). И возникающие при этом наследственные изменения носят явно приспособительный характер. Именно за эти исследования американке Барбаре Макклинток в 1983 г. была присуждена Нобелевская премия, а Лысенко продолжают считать невежей".

Генетики утверждают, что представление о существовании направленных мутаций противоречит фундаментальным биологическим концепциям, — от молекулярной биологии до эволюционной теории. Но это ложь. Никаким фундаментальным концепциям это не противоречит. Механизм этого феномена ясен. Это транспорт информационной РНК от подвоя к привою по межклеточным трубочкам, а затем переписывание генетической информации с прибывшей в клетки информационной РНК подвоя на ДНК привоя и закрепление наследственной информации в виде гена в ДНК половых клетках.

5. В отличие от морганистов Лысенко считал, что наследственность растений может быть изменена путем гибридизации. Гибридизация во многом аналогична половому размножению. Гибридизация может быть использована для целенаправленного изменения свойств растений. Гибридизация между видами может быть использована для увеличения урожайности. Не существует принципиальной разницы между половым размножением и гибридизацией. После гибридизации при половом размножении признаки могут расщепляться.

Морганисты, работавшие с животными, где все клетки отделены друг от друга, не учли, что у растений клетки одного организма образуют синтиций, то есть связаны между собой внеклеточными мостиками, что позволяет осуществлять транспорт информационной РНК из одной уже мутированной клетки в другую (см. раздел Х). Если добавить открытие возможности перезаписи информации от РНК на ДНК, то для отбора полезных мутаций и, следовательно, наследовании приобретенных признаков оказывается нет ничего невозможного. Для животных речь идет скорее о том, что очень трудно передать полезные мутации в половые клетки. Но и здесь нет полного запрета, так как в процессе сперматогенеза и особенно во время отбора сперматозоидов и яйцеклеток обогащение в созревающих половых клетках полезных мутаций тоже возможно. Другое дело, что признаки, кодируемые сразу несколькими генами, не передаются по наследству, так как требуется одновременная мутация нескольких генов. Физиолог Л. А. Орбели как-то в шутку заметил, парируя доводы ламаркизма, тысячелетиями евреям режут препуции, однако все их мальчики рождаются необрезанными. То есть обрезание у евреев в течение тысячелетий не привело к исчезновению у них крайней плоти.

Напротив, признаки, которые кодирует один ген могут быть отобраны. Именно этим можно объяснить быстрое накопление у всей популяции жителей Северной Европы способности переваривать молоко во взрослом состоянии за те 5000 лет, что прошли после одомашнивания коров. Этим признаком не обладают жители Азии, например, китайцы.

6. Ну и, конечно, идеология. Лысенко, считал, что морганизм не соответствует диалектическому материализму.

А теперь по пунктам. То, что мутации могут быть не случайными — ясно показано в статье Голубовского: "Открытия в области подвижной генетики показали, что клетка как целостная система в ходе отбора может адаптивно перестраивать свой геном. Она способна ответить на вызов среды активным генетическим поиском, а не пассивно ждать случайного возникновения мутации, позволяющей выжить. А в опытах супругов Ледерберг у клеток не было выбора: либо смерть, либо адаптивная мутация". Правота Лысенко здесь неоспорима. На мой взгляд — здесь и корень разногласий. Под прикрытием "случайных" мутаций очень легко было не давать практического результата по новым сортам сколько угодно времени.

Тот факт, что хромосомы не являются тем носителем ‘наследственного вещества’, в котором и "только" (это важнейший пункт разногласий мичуринцев и вейсманистов) в котором сосредоточена информация о том, какие наследственные признаки будут у потомства — доказано опытами Б. Макклинток, которая в "…самом начале 50-х годов Б. МакКлинток открыла мобильные элементы, способные причудливо перемещаться по хромосомам и вне их". Т.е. сама цитоплазма ооцита оказывает влияние на, по крайней мере, степень проявления признака у потомка.

Тем самым опровергнута и догма классической генетики о "принципиальной" случайности мутаций.

Или такой пример. В 1951 г. в юбилейной статье, посвященной академику О. Б. Лепешинской, Лысенко написал: "Нашей мичуринской биологией уже безупречно показано и доказано, что одни растительные виды порождаются другими ныне существующими видами… Рожь может порождать пшеницу, овес может порождать овсюг и т.д. Все зависит от условий, в которых развиваются данные растения".

Над этими фразами по сей день потешается каждый образованец: вот-де каким дураком был Лысенко! Надо сказать, что это поразительное научное провидение Лысенко было не просто смелым, оно было дерзким! Основанное на научном гении, это открытие в те годы не нашло прямых подтверждений, сам Лысенко к концу научной карьеры засомневался в нем и выдвинул гипотезу о том, что у существующих видов имеются защитные генетические механизмы, не дающие одному виду преобразовываться в другой, известный.

Но сегодня и эти идеи Лысенко в принципе подтверждены. Как пишет один участник интернет-форума, вот, к примеру, брошюра М. С. Тартаковского об эволюции жизни. В ней сообщается: "Но вот энтомолог-практик Г. Шапошников, доктор биологических наук, как-то случайно нарушил это табу. Изменив питание тлей, он вывел неизвестный природе вид насекомых. Работа была опубликована в авторитетном энтомологическом обозрении, докладывалась на международном конгрессе.

Сам ученый не делал никаких теоретических выводов из установленного им факта, но похоже все-таки, что именно среда (в данном случае питание) привела к кардинальной изменчивости организма. Причем благоприобретенные признаки переходят следующим поколениям, наследуются. Более того, новая форма тлей, как и положено отдельному виду, потеряла способность производить потомство со своими столь недавними предками".

То есть, пусть и не известный ранее, но все же абсолютно новый вид получен уже даже не в растительном мире, а в мире живых существ. Получен, как и требовал Лысенко, путем изменения "условий, в которых развиваются данные" виды.

Последний пункт я не буду комментировать, так как не считают правыми ни тех ни других.

Наконец, в трех последующих разделах я приведу описания новых результатов в области молекулярной биологии, которые подтверждают позиции Лысенко. Недавно исследователи показали, что растения могут переписывать генетический код, который они наследуют от родителей, и возвращаться к таковому их бабушек и дедушек. Обнаружены механизмы создания новых генов в ходе клеточного номогенеза и антителообразования. Обнаружена также способность клеток контролировать скорость мутирования. Каюсь. Я эти сообщения сам по оригинальным статьям не проверял и готов признать, что они содержать чуть искаженную информацию. Пусть генетику меня "обуют". Описания их достаточно сложные и неискушенный читатель в принципе их может пропустить. А вообще, для общего развития рекомендую отличную статью Голубовского о внегенетическом наследовании.

2.8. ПЕРЕЗАПИСЬ КОДА

Недавно исследователи показали, что растения могут переписывать генетический код, который они наследуют от родителей, и возвращаться к таковому их бабушек и дедушек. Обнаруженный факт изумил бы морганистов. Он бросает вызов правилам учебника генетики, которые заявляют, что дети просто получают комбинации генов, которые несут их родители. Принцип этот, как известно, был установлен в девятнадцатом веке австрийским монахом Грегором Менделем в его опытах с растениями гороха". Приведу цитату из Интернета.

"Исследование, опубликованное на этой неделе в Nature, показывает, что не все гены ведут себя по этим правилам. Предполагается, что растения, и возможно другие организмы, включая людей, могут обладать механизмом дублирования, который может обходить нездоровые генные последовательности их родителей и возвращаться к более здоровому генетическому коду, которым обладали их бабушка и дедушка или прабабушка и прадедушка.

Роберт Прюитт (Pruitt) и его коллеги из Университете Пёрдью (Вест Лафайет, Индиана) натолкнулись на открытие при изучении конкретного сорта cress растения Arabidopsis, который несет мутацию в обеих копиях гена, именуемого HOTHEAD. На мутантных растениях лепестки и другие части цветка неправильно сращены вместе. Поскольку эти растения передают мутантный ген своим потомкам, обычная генетика диктует, что те будут также иметь сросшиеся цветки. На практике не так: группа Прюитта выяснила в результате некоторого времени наблюдений, что около 10% потомства имеют нормальные цветки.

Используя генетическое секвенсирование, то есть расшифровку последовательности нуклеотидов в ДНК, исследователи показали, что это второе поколение растений переписало последовательность ДНК одного или обоих из их генов hothead. Они заменили неправильный код их родителей обычным кодом, которым обладали более ранние поколения.

А когда команда изучила большое количество других генов, обнаружилось, что растения также часто редактировали их обратно к более ранней форме. "Это был большой сюрприз," — говорит Прюитт. Открытие оставило генетиков потрясенными. "Это действительно ошеломляюще," — говорит Детлеф Вейгель (Weigel), который изучает генетику растений в Институте Макса Планка, Германия. "Это механизм, о существовании которого никто не подозревал".

Генетик Стивен Джакобсен (Jacobsen) из Калифорнийского университета, Лос-Анджелес, резюмирует еще более кратко. "Это действительно сверхъестественно," — говорит он.

Прюитт и другие исследователи ломают голову, чтобы объяснить точно, как растения могут переписывать их генетический код. Чтобы делать это, те нуждаются в некоем шаблоне (версии кода их бабушек и дедушек), который можно передавать от одного поколения к следующему.

Одна из возможностей состоит в том, что растения используют дополнительную копию гена, расположенную в другом месте в их ДНК. Но это кажется маловероятным, потому что команда ученых обнаружила, что растения могут переписывать код генов, которые не имеют никаких подобных им копий в другом месте генома.

Вместо этого, полагает Прюитт, растения несут неизвестный прежде запас связанной молекулы РНК, который действует как резервная копия ДНК. Такие молекулы могут передаваться в пыльцу или семена наряду с ДНК и использоваться как шаблон, чтобы исправлять некоторые гены. "Это — наиболее вероятное объяснение," — соглашается Вейгель.

Прюитт предполагает, что этот тип исправления гена происходит у Arabidopsis при нормальных условиях, только очень редко. Он говорит, что это происходит, когда ген hothead мутирует, возможно потому, что растение переживает стресс.

Действительно, такой процесс может существовать, потому что это помогает растениям выживать всякий раз, когда они окажутся в трудных условиях, вроде недостатка воды или питательных веществ. Такой стресс мог бы запускать у растений механизм возврата к генетическому коду предков, который является возможно более выносливым чем таковой их родителей. Чтобы проверить это предположение, Прюитт пытается выяснить в ходе исследований, побуждают ли стрессовые ситуации в действительности это явление.

Подобный процесс может иметь место даже у человека. В пользу этого говорят редкие случаи с детьми, унаследовавшими болезнетворные мутации, но выказывающими лишь слабые симптомы, возможно потому, что некоторые из их клеток вернулись к нормальному и более здоровому генетическому коду.

Если организм человека исправляет гены аналогичным образом, Прюитт полагает, что процедура могла бы быть с пользой позаимствована исследователями или докторами. Они могли бы идентифицировать РНК молекулы, которые выполняют "ремонт" и использовать их для исправления вредных мутаций в генах пациентов.

Но пока Прюитт и другие исследователи данной области ожидают, что их публикация вызовет много скептицизма. "Немедленная реакция — что они, должно быть, сделали ошибку," — говорит Вейгель, — "но я так не думаю".

2.9. ГЕНЕТИКА ИМУННОГО ОТВЕТА

В дарвинизме появление новых генов не рассматривается: все рассуждения ведутся вокруг уже существующих генов — либо их включения и выключения, либо замены в них отдельных нуклеотидов (а таким путем, как мы знаем, ничего всерьез нового нельзя создать даже у бактерий). Эту несуразность можно было не замечать, пока процесс формирования нового гена не был описан фактически. Однако в 19651982 годах несколько выдающихся генетиков из разных стран сумели расшифровать процедуру формирования целой плеяды генов. Каждый из них кодирует антитело (белковую молекулу иммуноглобулин, которая связывает антиген — чужеродную частицу, попавшую в организм теплокровного животного).

У зародыша млекопитающих совсем немного генов, кодирующих иммуноглобулины, — около сотни, тогда как множество различных антигенов необозримо велико. Поэтому в ходе развития и жизни организма разнообразие иммуноглобулинов каждый раз создается заново (точно так же, как заново создается любой орган). Происходит это путем комбинирования фрагментов существующих генов. Конкретное антитело обычно не выбирается из наличных иммуноглобулинов, а продуцируется в ответ на конкретную заразу (на антиген).

В стрессовой ситуации, которую вызывает массовое вторжение антигена, включается механизм перестройки иммуноглобулиновых генов: по каким-то не вполне еще понятным правилам генетическая система режет и сшивает фрагменты генов до тех пор, пока не найдет приемлемый вариант — тот, что синтезирует антитело, которое реагирует с вторгшимся антигеном, связывая его. Найденный вариант гена интенсивно размножается (копируется).

Механизм комбинаций работает, но довольно плохо, то есть поставляет антитела, связывающие антигены, но довольно слабо. Поэтому существует еще один механизм — соматический гипермутагенез, который включается после создания нужной комбинации фрагментов. Заключается он в том, что при копировании гены найденного варианта мутируют с огромной частотой (тут каждый тысячный нуклеотид заменяется, тогда как обычно точковый мутагенез в 100 миллионов раз менее интенсивен), так что порождается масса чуть отличных антител, различающихся одной аминокислотой или двумя, чем и достигается точная подгонка антитела к антигену. Конечный вариант гена снова копируется и запоминается иммуногенетической системой организма, то есть наследуется на время жизни особи.

Все это стало известно в 1982 году, когда генетик Судзуми Тонегава (образование получил в Японии, работу начал в Швейцарии и завершил в США) обнародовал итоговую работу по данной теме (через 5 лет он, и только он, получил Нобелевскую премию за расшифровку всего механизма — так уж в Нобелевском комитете заведено). За истекшие четверть века этот великолепный результат не вошел ни в одно известное мне руководство по биологической эволюции, а на недоуменные вопросы их авторы (и прочие ведущие дарвинисты) спокойно отвечают, что Тонегава лишь подтвердил справедливость принципа случайной изменчивости: и перебор фрагментов, и гипермутагенез идут ненаправленно, случайно.

Странно, если подтвердил, да столь красиво, почему бы не включить это в учебники? Ведь на счету дарвинизма ярких побед давно нет. Оказывается, ничего он не подтвердил (хотя и утверждал это в нобелевской лекции), на что и указали немногочисленные ламаркисты.

В книге "Что, если Ламарк прав?", которую написали австралийские иммуногенетики Э. Стил, Р. Бланден и Р. Линдли, приведены на сей счет любопытные цифры.

На первом этапе синтеза гена антитела идет, как мы знаем, комбинирование блоков. Если бы механизм Тонегавы перебирал одну за другой все возможные их комбинации, то, как показывает расчет, он наработал бы в одном организме мыши за ее жизнь 3 млн различных антител. Но возможных антигенов — миллиарды, и нет никакой гарантии, что среди созданных были бы те самые антитела, какие в данное время для данной особи нужны. Поэтому естественно, что процесс идет иначе: при комбинировании выбираются одни варианты много чаще других.

Разнообразие антител на первой стадии достигается комбинированием разнотипных участков генома, обычно именуемых буквами V, D и J.

Точнее, в каждом иммуноглобулине комбинируются элементы из следующего набора: 100 V-элементов, 20 D-элементов и 4 J-элемента. Поскольку основной вклад в создание разнообразия вносят V-элементы, можно было бы ожидать, что они будут очень отличны друг от друга. Однако оказывается наоборот — они почти неразличимы. Это похоже на алфавит: разные буквы одного алфавита могут очень мало отличаться одна от другой и тем самым вызывать затруднения у постороннего (иврит, средневековая латынь, арабская вязь), но прекрасно выполнять свою функцию.

Еще удивительнее, что "около половины V-элементов никогда не участвуют в образовании антитела", а реальное одновременное разнообразие антител — отнюдь не 3 млн: наоборот, их всегда меньше 10 тыс. Но самое удивительное в том, что деление лимфоцита занимает более 5 часов, наработка нужного лимфоцита производится (как известно врачам) двое суток, то есть за это время произойдет всего 10 делений каждого лимфоцита. Это значит, что если нужный вариант найден лишь однажды, то появится всего лишь тысяча нужных клеток. В то же время болезнетворные бактерии делятся впятеро быстрее, и клонирование никак не сможет поспеть за их размножением. Дело явно не в одном лишь клонировании — нужно, чтобы клонов было сразу много.

Ход работы иммунной системы таков. Каждый В-лимфоцит (иммунная клетка, вырабатывающая антитела) синтезирует лишь один тип антител. Если бы множество В-лимфоцитов, производящих нужное антитело, действительно было клоном, происшедшим от единственной клетки, случайно нашедшей нужный ген антитела, то следовало бы ожидать огромного разброса сроков иммунного ответа больных — кому как повезло с поиском. Но этого нет. Первичная иммунная реакция организма наступает сразу, а затем несколько суток (острый период инфекционной болезни) тратится на создание "зародышевых центров", то есть так называемых фабрик антител. Если случайный поиск тут и идет, то он занимает очень мало времени по сравнению с остальными процессами. В любом случае это не череда случайных мутаций, а генетический поиск, то есть активность.

Очевидно, что нужный вариант бывает найден сразу многими клетками, поэтому разбросы усредняются, а множество нужных В-клеток оказывается достаточно велико. Это и понятно: поскольку у мыши одновременно имеется около 50 млн экземпляров В-лимфоцитов, а число различных антител, одновременно присутствующих в ее крови, близко к 10 тыс., то каждый тип антитела вырабатывается в среднем пятью тысячами клеток. Они-то при появлении заразы и ведут поиск нужного варианта антитела одновременно, чем обеспечивают создание многих клонов.

Но если очень многие лимфоциты почти сразу находят один и тот же вариант антитела, то налицо клеточный номогенез. Механизм его пока неизвестен, но уже видно, что его выяснение радикально повлияет на развитие и идей эволюции, и иммунологии. Жаль, что его никто пока не ищет, поскольку всех (насколько знаю из бесед с иммунологами) устраивает уверение, что достаточно случайной изменчивости и отбора, а затем — клонирования единственной клетки.

2.10. ПРОБЛЕМА РАЗНООБРАЗИЯ АНТИТЕЛ

Способность клеток контролировать скорость мутирования особенно ярко проявляется в работе иммунной системы. Биологов и медиков давно интересовал вопрос, каким образом белым кровяным клеткам -лимфоцитам — удается порождать такое огромное разнообразие антител, используемых для борьбы с различными инфекциями. Антитела — это белки, которые умеют безошибочно узнавать определенные бактерии, вирусы, а также любые чужеродные белки (и многие углеводы) и прикрепляться к ним, что приводит к обезвреживанию возбудителей и выделяемых ими токсинов. По примерным оценкам, организм человека способен производить не менее миллиона разных антител. Даже если в организм вторгается вирус, который раньше не встречался в природе, уже через несколько дней в крови можно обнаружить антитела, которые безошибочно узнают и "связывают" именно этого возбудителя (и никакого другого!).

Организм человека не может заранее заготовить антитела на все случаи жизни, тем более способные противостоять неведомым бактериям и вирусам! Для кодирования миллиона антител понадобилось бы два миллиона генов (поскольку каждое антитело состоит из двух белковых молекул), но ведь после расшифровки человеческого генома выяснилось, что общее число генов у человека не превышает 30 тысяч. Впрочем, еще задолго до расшифровки генома стало очевидно, что гены большинства антител, образующихся в крови при различных инфекциях, не закодированы в геноме изначально, а "изготавливаются" по мере необходимости из небольшого числа генов-заготовок. Происходит это путем интенсивного мутирования. В "гены-заготовки" вносятся случайные изменения (соматические мутации) до тех пор, пока не получится нужный белок — такой, который будет безошибочно "узнавать" нового возбудителя. Это открытие показало, что у клетки могут целенаправленно изменять собственный геном.

Но и это еще не все. Группа австралийских иммунологов показала, что изменения, приобретенные генами иммунных белков в течение жизни организма, иногда могут передаваться по наследству. И тогда потомство прямо от рождения оказывается более устойчивым к некоторым возбудителям. Ученые предположили, что тут имеет место механизм, благодаря которому приобретенный признак (ген нового антитела) может быть передан из лимфоцитов в половые клетки. Лимфоциты образуют внутри себя некое подобие РНК-содержащих вирусов, которые захватывают молекулы РНК, несущие информацию о строении нового антитела. Эти "вирусы собственного изготовления" выходят из лимфоцитов и разносятся с кровью по организму, попадая в разные клетки, в том числе и половые. Здесь методом обратной транскрипции генетическая информация переписывается с РНК на ДНК, и получившийся фрагмент ДНК встраивается в одну из хромосом половой клетки. Эти самодельные РНК-вирусы, образующиеся в лимфоцитах, по всем признакам и свойствам точно соответствуют геммулам, существование которых предсказывал великий Дарвин.

Итак, имея те же средства и приборы для научных исследований, Лысенко пришел к выводу, что за наследственность организма несут ответственность не эти пресловутые шарики, а любая частица организма, и изменяется организм под воздействием окружающей среды. Чуть ли не 50 лет спустя вооруженная электронными микроскопами и компьютерами Барбара Макклинток "снова" сделала это открытие. Главный же вывод состоит в том, что Лысенко был прав в своём споре с морганистами.

Итак, Лысенко отвергал всеобъемлющее значение генетического кода. Морганисты же отрицали возможность наследования благоприобретенных признаков. Как видим, генетика в представлении морганистов и вейсманистов оказалась во многом неверной. Была открыто эпигеномное наследование. Оказалось, что факторы внешней среды имеют не меньшее, если не большее, значение, чем генетический код. Сам код оказался неточным и одна и та же запись нуклеотидов может давать вследствие сплайсинга и присутствия интронов и экзонов до 60, а то и больше разных вариаций одного и того же белка. Раз так, то о каком точном кодировании может идти речь? Не больше, чем о вероятностном. Следовательно, современная наука показала, что обе стороны занимали односторонние позиции. Но Лысенко был правее. О том, что Лысенко прав писал и Флегр. В последние годы появилось несколько наблюдений (см. разделы 2.8-2.10), которые делают позицию Лысенко в том стародавнем споре ещё более прочной.

2.11. ЧТО ВИДИТ УЧЕНЫЙ?

В чем же суть спора и почему обе стороны оказались односторонни. Дело в том, что видит ученый. Ученый видит факт, только если у него есть бинокль в виде научной модели. Например, неграмотный человек видит в книге какие-то рисуночки, а грамотный понимает написанный там текст.

Расхождение касалось не только теорий, фактов и методов, непосредственно связанных с генетикой, оно было гораздо шире. Так в своем выступлении П. М. Жуковский сказал: "никогда не употребляются нашими оппонентами такие понятия как витамины, гормоны, вирусы". Т. Д. Лысенко в заключительном слове, касаясь выступления В. С. Немчинова, упомянувшего о подтверждении хромосомной теории методами математической статистики, высказал философское положение: "Изживая из нашей науки менделизм-морганизм-вейсманизм мы тем самым изгоняем случайности из биологической науки".

Вспомним стенографический отчет о сессии ВАСХНИЛ 1948. На сессии выявилась полная противоположность двух познавательных структур у генетиков и лысенковистов. "В. С. Немчинов … Я не могу разделить точку зрения товарищей, которые заявляют что к механизму наследственности никакого отношения хромосомы не имеют (Шум в зале.)

— голос с места. Механизмов нет.

В. С. Немчинов Это Вам так кажется что механизмов нет. Этот механизм уже умеют не только видеть, но и окрашивать и определять. (шум в зале)

— голос с места. Да это краски. И статистика".

Да! Лысенко прав, по крайней мере более прав, чем морганисты. Но почему они не могли понять друг друга? Спор морганистов и мичуринцев можно представить в виде спора о том, куда относится корейский язык, к иероглифическим языкам или основанным на буквенном алфавите. Морганисты утверждали, что корейский язык есть язык иероглифический, так как слова там запиусываются иероглифами. Мичуринцы говорили, что это не иероглифы, уж больно похожи элементы иероглифов. В действительности корейский язык основан на 24 буквах, но когда слога складывают слово, то они буквы организуются в пространстве таким образом, что образуется как бы иероглиф.

Особенно мне нравится вывод статьи Флегра, статьи, где он последовательно доказывает, что Лысенко в целом оказался прав: -"теории лысенкоистов настолько безумны, что их эксперименты никто другой раньше не делал, а их репутация так плоха, что ни один информированный и приличный ученый не захочет читать их работы или повторять их эксперименты". Ну не видно ему, что корейский язык не состоит из иероглифов и все тут. Ну нет у генетиков биноклей.

Лысенко чувствовал, что законы Менделя не стопроцентны. Наверное, это было виднее с точки зрения его научной парадигмы и на базе его практического опыта. Тем не менее, несмотря на ошибки обеих сторон, Лысенко назвали шарлатаном и обвинили во всех смертных грехах, а морганистов подняли на щит. Это по меньшей мере не справедливо.

Итак, ни те ни другие не оказались полностью правыми. И те и другие оказались в чем-то не правы. Другими словами, современная наука показала, что обе стороны занимали односторонние позиции. Лысенко значение генетического кода не отрицал, но считал, что благоприобретенные признаки могут передаваться по наследству, хотя и на базе особых молекулярных механизмов считывания генетической информации. Но ведь в истории науки есть масса примеров, когда ученые были убеждены в неправильной научной модели, например, модели флогистона, модели мирового эфира, модели теплорода. Даже Менделеев, создатель периодического закона, допустил научную ошибку, считая, что закон основан на увеличении атомной массы. На самом деле свойства элементов периодически изменяются на основе увеличения заряда атомного ядра.

В 1948 г. «классическая генетика» была подвергнута критике прежде всего из-за низкой практической отдачи её для сельского хозяйства страны, схоластичности отдельных и основополагающих её положений, схоластичности многих работ учёных-генетиков этого направления, крайне низкого числа практически полезных разработок, многочисленности неудач и беспочвенных обещаний. Эти неудачи выглядели особенно ярко на фоне успехов мичуринской генетики и даже традиционной селекционной работы, известной задолго до возникновения так называемой генетики Вейсмана — Менделя — Моргана.

ИТОГИ ГЛАВЫ

Поэтому даже теперь, спустя годы почитатели Лысенко заявляют, что Лысенко мол формально оказался прав. Прав в том, что приобретенные изменения могут наследоваться, хотя и через механизм мутагенеза. Действительно, клонирование животных показало, что приобретенные признаки наследуются, хотя и очень очень ограниченно. В частности клонированные животные ускоренно стареют. Почти что найден и механизм для этого — процесс восстановление структуры ДНК в ядре особым белком и процесс синтеза этого белка. Но повторю, уровень наследования очень низкий и не все признаки передаются. Более того, в рамках той дискуссии речь о изменениях состояния ДНК идти не могла по причине ограниченности знаний того времени, т.е. можно лишь говорить о фенотипических признаках, видимых глазу и т.д., информация о которых непостижимым образом передавалась потомкам.

Благоприобретенные изменения могут наследоваться путем воздействия на процесс репарации и синтеза ДНК. Например, если животного кормить пищей с отсутствием какой нибудь аминокислоты и резким преобладанием другой, то при синтезе белков начнутся ошибки. Хотя в целом белок будет иметь почти ту же конфигурацию, но накопление невидимых (те. расположенных вне энзиматических и регуляторных доменов) конформационных изменений белка будет влиять на синтез белков, участвующих в воспроизводстве ДНК, ее репарации. Поэтому будут накапливаться приобретенные изменения, а затем и передаваться по наследству. Конечно, тут опять есть опасность соскальзывания на путь терминологических споров. Например, можно утверждать, что путем кормления стимулируется мутагенез.

Ладно, оставим теорию и вернемся к жизни. Мы много говорили о Лысенко, о Мичурина. Но кто же они?