Ремесленное мастерство во времена Возрождения пользовалось большим уважением в обществе, чем в древности, потому что ремеслами теперь занимались не рабы, а свободные люди. Их роль в сфере общественных и производственных отношений в новом обществе отличалась от положения власть имущих не так сильно, как во времена древности и раннего Средневековья.Дж. Д. Бернал
Сведения о развитии у народов Древнего мира ремесел, непосредственно связанных с химией, о возникновении технологий материалов, которые сыграли главную роль в развитии человеческой цивилизации можно почерпнуть из целого ряда сохранившихся до нашего времени оригинальных источников: это, прежде всего, древнеегипетские папирусы, а также труды античных греческих и римских ученых и врачей (см. гл. 2, пп. 2.1–2.6). На основании анализа содержания этих источников можно проследить становление химических ремесел с древнейших времен вплоть до падения Римской империи.
Крушение античных цивилизаций и Великое переселение народов не только отбросило народы Западной Европы в их экономическом и политическом развитии на много веков назад, но и практически на тысячелетие замедлило все эволюционные процессы. Нашествие варварских племен привело к фатальному уничтожению культурных и научных традиций античного мира, к утрате многих практических знаний, связанных с химическими ремеслами. Из бесценного опыта древних цивилизаций завоеватели приняли лишь то, что было доступно их миропониманию, поэтому технологии получения многих химических веществ оказались утерянными и были восстановлены лишь несколько сотен лет спустя.
Единственным местом, где сохранились (хотя и в измененном виде) ценности античной науки и культуры, оставалась Византийская империя. Однако ее влияние на развитие народов Западной Европы в период раннего Средневековья было весьма и весьма ограниченным. Именно этот период в европейской истории ученые называют «темными веками» еще и потому, что количество письменных источников, на основании которых можно судить об уровне развития общества, чрезвычайно мало. Исчерпывающих и надежных сведений о развитии химических ремесел того периода, к сожалению, нет, так как в сохранившихся до нашего времени источниках немало пробелов, а манускрипты, написанные арабскими и сирийскими алхимиками, почти не поддаются расшифровке.
Однако несмотря на многие политические потрясения, связанные с Великим переселением народов, и практически беспрерывные малые и большие вооруженные конфликты, в период раннего Средневековья европейцы сумели сохранить некоторые ремесленные традиции своих предшественников. Правда, в эпоху натурального хозяйства число мастеров, владеющих секретами получения жизненно важных материалов, было достаточно невелико. Их бесценный практический опыт ученики и подмастерья перенимали годами, стремясь уяснить, воспроизвести или скопировать познания и навыки учителя. Именно поэтому в Средние века сложился рецептурный характер передачи накопленного опыта, что, в свою очередь, не противоречило сложившемуся в то время схоластическому подходу в образовании и науке.
Как и в античные времена, средневековые ремесленники добывали и обрабатывали металлы, производили краски и мыла, изделия из стекла и глины, косметические и парфюмерные снадобья, мази, медикаменты, яды, деготь и многие другие «химические» товары. C развитием городов и переходом от натурального хозяйства к товарно-денежным отношениям ассортимент производимых ремесленниками веществ становился все разнообразнее, совершенствовались и способы их получения. Тем не менее развитие химического производства в этот период происходило довольно медленно. Лишь в начале XIII в. можно отметить резкую интенсификацию процесса накопления новых химических знаний. Импульсом в этом процессе послужило открытие новых веществ и технологий их производства: пороха, этилового спирта и важнейших неорганических кислот. В эпоху Возрождения химические ремесла получили новые стимулы для развития. Следует отметить, что этот период накопления опыта и знаний в области химии был значительно короче и завершился новой кульминационной фазой — промышленной революцией, начавшейся в середине XVIII в.
7.1. Преумножение традиций и развитие новых методов
7.1.1. Черная металлургия
Определенная доля химических ремесел, известных с античных времен, сохранилась и даже развивалась в эпоху Средневековья. Одной из таких технологий, получивших дальнейшее развитие даже в период «темных веков» является получение металлов. Как и в последующие времена, основным продуктом средневековой металлургии оставалось производство черных металлов. Сплавы на основе железа (сталь и чугун) были необходимы для производства различных видов оружия, доспехов и сельскохозяйственных орудий. Хотя к концу Средневековья объемы производства металлов несколько выросли, а качество продукции в определенной степени улучшилось, основные методы превращении, используемых в металлургии, изменились очень незначительно.
На протяжении почти трех тысячелетий металлургия железа не претерпела принципиальных изменений. Это наглядно подтверждает сравнительный анализ трудов по металлургии, которые появились в XVI в., с аналогичными работами античных авторов или сочинений ученых раннего Средневековья. К концу X в. и особенно в следующем столетии появляется несколько трактатов, посвященных металлургии и горному делу. Наибольшего внимания заслуживает манускрипт «Указатель различных искусств», принадлежащий бенедиктинскому пресвитеру Теофилу, жившему во второй половине XI в.
Сведения, содержавшиеся в книгах ученых-химиков XVI в. В. Бирингуччо и Г. Бауэра (Агриколы) (см. гл. 5, п. 5.3, 5.4), не сильно отличались от технологических приемов мастеров Древнего мира, тем не менее в этих сочинениях уже содержатся описания некоторых практических методов, не известных античным металлургам. Следовательно, книги В. Бирингуччо и Г. Бауэра (Агриколы) являются уже оригинальными произведениями, а не систематизированным набором сведений из более ранних рукописей по металлургии и ремесленной химии.
Как упоминалось уже в гл. 2, основным способом получения железа в Средние века оставался сыродутный процесс {237} — древнейшая технология производства этого металла, возникшая еще во II тыс. до н.э. (см. гл. 2, п. 2.3). В некоторых странах Европы этот метод просуществовал вплоть до начала XX в., а последние усовершенствования печей, в результате которого процесс получения сыродутного железа стал непрерывным, относится к концу XIX в. (Финляндия, Россия). Самый примитивный вариант этой технологии представлял собой получение крицы непосредственно из руды в сыродутных горнах, в качестве которых использовали ямы, футерованные огнеупорной глиной, или каменные очаги, которые функционировали на естественной тяге, для чего в нижней части устраивалась открытая фурма. После розжига слоя древесного угля на подине в горн сверху поочередно загружали железную руду и древесный уголь, при этом общее количество загружаемой руды не превышало 20 кг. Температура в рабочем пространстве горна (1100–1350 °С) была не достаточной для расплавления малоуглеродистого железа. Раскаленную крицу извлекали из горна и проковывали для уплотнения (сваривания) и частичного освобождения от шлака. Шлаки выпускали из горна по желобу в жидком виде. Такая технология позволяла получать сыродутное или сварочное железо (см. гл. 2, п. 2.3). Еще древние металлурги научились применять искусственное дутье с помощью мехов, что привело к интенсификации процесса выплавки сварного железа, а массу получаемой крицы удалось увеличить до 15–25 кг.
В раннем Средневековье наблюдалось своеобразное смешение металлургических традиций древнеримских мастеров с умениями и навыками ремесленников языческих германских, англо-саксонских и кельтских племен. Как свидетельствуют историки, в эпоху «темных веков» в Англии на территории многих католических монастырей существовали металлургические и кузнечные мастерские.
Дошедшая из XI в. до наших дней легенда рассказывает о случайной встрече святого Дунстана с дьяволом, закончившейся позорным бегством нечистой силы. Во время поединка монах отбивался раскаленными щипцами, которыми он пользовался, выплавляя металл в сыродутном горне.
Для повышения твердости изделий из сварочного железа его повторно нагревали в смеси с древесным углем, в результате чего поверхностные области крицы обогащались углеродом. Таким образом сварочное железо превращали в ковкую сталь.
Качество оружия, сельскохозяйственных орудий и других изделий из ковкой стали в значительной степени зависело от мастерства кузнеца. На завершающей стадии совершенствования механических свойств стальных изделий (повышение твердости при сохранении пластичности) добивались различными приемами — быстрым охлаждением от температуры красного каления (закалкой) и медленным нагреванием (отпуском). Профессиональный опыт и умение кузнецов высоко ценились у многих народов. Хранители древнего ремесла сыграли немаловажную роль в эволюции человеческой цивилизации. В средневековой Европе было немало умелых кузнецов и оружейников, чье мастерство и сегодня способно вызвать неподдельное восхищение. Многие музеи мира хранят коллекции рыцарских доспехов, среди которых особой известностью пользуются латы, изготовленные миланскими мастерами. Качество клинков, выкованных оружеиниками из испанского города Толедо, всегда высоко оценивали специалисты, изучающие средневековое холодное оружие.
Кузнецы за работой. Средневековая гравюра
Каталонский горн с водяной воздуходувной трубой:
1 — клапан; 2 — отверстия для воздуха; 3 — труба; 4 — слив воды; 5 — дутье; 6 — фурма; 7 — руда и древесный уголь; 8 — крица; 9 — шлак; 10 — выпуск шлака
Основные усилия ремесленников в тот период были направлены на увеличение размеров горнов и повышение мощности дутья. В VIII в. металлурги северной Испании усовершенствовали сыродутный процесс и создали так называемый каталонский горн — печь высотой более одного метра, способную производить до 150 кг кричного железа за один процесс. Печи таких размеров требовали существенного увеличения размеров мехов. Чтобы привести их в действие, физической силы человека было явно недостаточно, поэтому стали использовать энергию падающей воды.
В середине XIV в. невиданная эпидемия чумы (Черная Смерть) унесла примерно одну треть населения Европы. Резкое сокращение рабочей силы поставило горнодобывающую промышленность почти на грань остановки. Чтобы не снижать производства железа, без которого не могло обойтись оружейное дело, металлурги были вынуждены увеличивать эффективность металлургических процессов. Именно в этот период французские и немецкие ремесленники осуществили дальнейшее усовершенствование каталонского горна, увеличив его размеры до 5 м высотой, что обеспечило выход кричного железа до 350 кг. В этом случае для приведения мехов в действие применяли уже водяное колесо. В результате горны превратились в небольшие шахтные печи для производства сыродутного железа — домницы — немецкие штюкофены. Увеличение массы и размеров образующейся крицы привело к тому, что для ее проковки стали использовать большие молоты, которые приводили в движение с помощью водяного колеса.
Домница (штюкофен). Германия. XV–XVI вв.
Печь, предназначенная для переработки чугуна:
А — плоская лещадь, выстланная песком, формовочной смесью или огнеупорной глиной; В — по периметру лещади проложены металлические трубки, через которые непрерывным потоком поступает вода, чтобы предохранить от подплавления; C — дутьевая фурма.
Рисунок XVIII в.
По мере усовершенствования способов дутья и увеличения высоты горна температура процесса повышалась. Она достигла таких значений, при которых стал возможен процесс науглероживания железа, в результате которого получался чугун (точнее, передельный чугун). По сравнению с крицей чугун был более твердым, поэтому его нельзя было ковать. Этот сравнительно хрупкий продукт сначала считали отходом производства. Несмотря на то что технология изготовления чугуна была известна еще в древнем мире в VI–V вв. до н.э. (см. гл. 2, п. 2.3), по всей видимости, она была на некоторое время утрачена в эпоху «темных веков» раннего Средневековья, поскольку европейские народы еще не могли найти ей применение.
Позже было замечено, что при загрузке в горн не железной руды, а чугуна также получается низкоуглеродистая железная крица, причем такой двустадийный процесс (кричный передел) оказался более выгодным, чем сыродутный, поскольку практический выход сварного железа существенно увеличился. В XII–XIII вв. технология кричного передела получила широкое распространение в странах Западной Европы.
Начиная с XI в., в Западной Европе стали формироваться основные промышленные центры черной металлургии. Активную разработку рудных месторождений вели в Германии (Гарц, Нассау, Силезия) и Швеции (в провинциях к северу от Стокгольма).
C XIV в. чугун начали выплавлять не только как полупродукт для дальнейшего передела, но и как материал для отливки различных изделий — технология литья, известная еще античным металлургам, получила свое второе рождение в западноевропейских странах. Как считают специалисты, одна из самых первых домн была построена в шведском местечке Лапфитан в период с 1150–1350 гг. В 40-х гг. XIV в. домны появились в Германии (Рейнская долина) и Льеже (территория современной Бельгии). К 1409 г. первая домна была построена во Франции, а в 1496 г. по велению английского короля Генриха VII был создан центр черной металлургии в Ньюкасле. Стремительный рост объемов производства литейного чугуна был обусловлен появлением огнестрельного оружия, и в первую очередь пушек. C конца XIV в. чугун стали широко использовать для литья пушечных ядер, изготовления посуды и сооружения печей.
Плавильные печи с передним горном (из книги Г. Бауэра (Агриколы) «О горном деле и металлургии»). Базель, 1556
Еще одним достижением стало создание более эффективных дренажных и вентиляционных систем, что позволило добывать руду в шахтах большой глубины. Все это привело к тому, что производство черных металлов с 1460 по 1530 гг. увеличилось практически в пять раз.
Несмотря на то что Великобритания позднее других европейских стран обратила свое внимание на развитие новых технологий в черной металлургии, упущенные возможности были с лихвой восполнены большими объемами финансирования, а также использованием опыта высококвалифицированных иностранных специалистов, которых приглашали английские монархи. В 1543 г. английский металлург Уильям Леветт и приглашенный королем Генрихом VIII французский мастер Питер Боде создали первую в мире цельнолитую пушку из чугуна. В XVI–XVII вв. британские чугунные пушки по целому ряду параметров превосходили производимые в других европейских странах, а главное, их себестоимость была существенно ниже. По мнению специалистов, в разгроме испанской Великой армады в 1588 г. существенную роль сыграло более высокое качество британских корабельных орудий.
Росту производства чугуна способствовало также изобретение нового способа передела его в ковкую сталь (кричного передела). Технология кричного передела постепенно стала вытеснять прежние малопроизводительные способы на основе сыродутного процесса. При этой технологии в печах для обезуглероживания можно было снизить количество углерода и других примесей в чугуне до такого уровня, что материал поддавался ковке.
Кричный передел осуществлялся в горне, куда на слой горящего древесного угля над фурменной зоной помещали чугунные чушки. Переплавляя чугун в кричном горне, его рафинировали от примесей путем окисления их кислородом дутья и взаимодействием со специально загружаемым в горн железистым шлаком. Чугун плавился и, стекая по каплям вниз через окислительную фурменную зону, подвергался рафинированию. Получаемый продукт скапливался на поду горна, где благодаря окислительному воздействию железистого шлака подвергался дополнительно обезуглероживанию, образуя крицу массой 50–100 кг. Готовую крицу извлекали из горна и проковывали с целью уплотнения и выжимания шлака. Использование больших мехов с механическим приводом для подачи воздуха позволило увеличить размеры плавильных печей. Чтобы привести эти меха в действие, использовали водяные колеса. Домны высотой 5–6 метров с передним горном позволяли проводить непрерывную плавку металла. Ковкое железо, получаемое в таких печах, можно было «закаливать», вводя в него углерод, который с избытком присутствовал в чугуне.
Чугунная кухонная посуда. Рисунок XVII в.
На территории России производство железа известно с древнейших времен. Вначале для получения кричного железа применяли сыродутные горны. Примерно с IX в. для выплавки сварочного железа стали использовать наземные печи с дутьем ручными мехами. Интенсивное производство чугуна и ковкой стали развернули в 1632–1637 гг., когда близ Тулы был построен первый завод с доменной печью, выплавлявшей до 120 пудов металла в сутки. Следующий этап в развитии российской черной металлургии связан с именем Петра I. По его указам было создано несколько государственных («казенных») чугунолитейных заводов. В 1700 г. в России было выплавлено около 150 тыс. пудов чугуна. Увеличив за первую четверть XVIII в. его выплавку в 5 раз, Россия по производству черных металлов заняла первое место в мире и до начала XIX в. удерживала его.
Таким образом, в XV–XVI вв. появились две новые технологии — получение чугунного литья и производство ковкой стали посредством кричного передела. Дву стадийный способ получения ковкой стали на основе кричного передела достаточно долго сохранял свое значение и послужил прообразом создания современных схем производства в черной металлургии.
К началу XVII в. можно отнести первые исследовательские работы по разработке научных основ материаловедения сплавов на основе железа. Чугун и ковкая сталь, производимые в это время в Англии, отличались более высоким качеством по сравнению с металлами, которые получали в континентальной Европе (за исключением Швеции). В 1619 г. голландский металлург Ян Андреус Моербек стал импортировать из Англии руду, которую добывали в районе Ньюкасла. Голландский мастер сопоставил результаты анализа качественного состава импортной руды и аналогичного сырья, добываемого в долине Рейна. Это сравнение показало, что в английской руде содержатся некоторые известковые минералы, которых не было в немецком сырье. Моербек усовершенствовал технологию получения чугуна, предложив использовать флюс на основе известняка. Введенное голландским мастером новшество позволило усовершенствовать процесс отделения шлака от слитка чугуна и заметно повысило качество производимого металла.
Выплавка металла в печах с большими воздушными мехами
Сооружение огромных по тем временам домен, снабженных механизированными мехами, требовало экономических и технических затрат, которые значительно превосходили возможности средневековых ремесленников. В начале XVII в. существовали различные формы производственных объединений — коллективные мастерские (товарищества), плавильные заводы, финансируемые правителями княжеств и государств, и, наконец, предприятия, созданные на основе частного капитала. Становление капиталистических производственных отношений способствовало появлению крупных предприятий, которые охотно воспринимали различные новшества, направленные на усовершенствование технологических процессов в металлургии железа и его сплавов.
В XVIII в. доля довольно крупных капиталистических металлургических заводов значительно возросла. Многие из них насчитывали 200 и более рабочих. Укрупнение металлургических заводов способствовало повсеместному распространению новых перспективных технологий в производстве черных металлов, изобретение которых можно считать одним из проявлений промышленной революции XVIII в. По данным Г. Фестера, в 1740 г. в Англии насчитывалось 59 доменных печей, а во Франции в 1789 г. было 202 домны. Их высота достигала от 7 до 20 метров. В 1780 г. в Гарце (Германия) непрерывно функционировали 22 домны и 35 горнов для получения ковкого железа. Данные о производстве чугуна и стали ведущими странами Европы в конце XVIII в. представлены в табл. 7.1.
Немецкий металлургический завод с относительно низкой доменной печью (середина XVIII в.):
а — доменная печь; b — помещение для колошника доменной печи; с — домик, где размещены мехи для подачи воздуха; d — мост для подачи руды и угля к колошнику доменной печи; f — пруд; h — хранилище для угля; i — площадка для хранения руды; k — жилой дом; l — конюшня; m — пивная и помещение для отдыха; n — двор; о — подъездные пути
Таблица 7.1
Объем производства черных металлов ведущими странами Европы в конце XVIII в.
(Год … Объем производства черных металлов … Государство)
1796 … 125000 … Англия
1800 … 50000 … Австро-Венгрия
1789 … 15000 … Пруссия
1786 … 85000 … Россия
1789 … 69000 … Франция
1800 … 60000 … Швеция
В Средние века в производстве стали существовала еще одна чрезвычайно интересная технология, которую разработали и практиковали арабские металлурги, но к сожалению, секреты изготовления знаменитой дамассой стали [21]Дамасская сталь — происхождение этого термина окончательно не установлено. Одни историки считают, что термин берет начало от г. Дамаска — столицы Сирии, где изготавливали эту сталь, другие — что название происходит от арабского слова damas — «вода», поскольку поверхность такой стали покрыта муаром с особым рисунком, очень похожим на турбулентные потоки воды.
не сохранились. По всей видимости, оригинальные клинки из такой стали на протяжении X — первой половины XVIII в. изготавливали талантливые оружейники, жившие в Дамаске и его окрестностях. Дамасская сталь обладала удивительным сочетанием твердости и гибкости, которые обеспечивали превосходное качество изготавливаемого холодного оружия. Такие клинки сравнительно легко перерубали лезвия обычных мечей и даже камни. Крестоносцы, впервые познакомившись с дамасскими мечами, наделяли их поистине мистическими свойствами. Недавние исследования сохранившихся дамасских сабель, выполненные с использованием самых современных физико-химических методов, ставили своей целью получить сталь с похожими свойствами и, по возможности, реконструировать утерянную технологию. Ученые считают, что секрет изготовления дамасской стали восходит к технологиям, которыми владели металлурги Индии и Шри-Ланки еще в III в. до н.э., в основе которых лежит тигельный метод выплавки высокоуглеродистой стали со строго контролируемым содержанием других легирующих примесей. Такую сталь получали в небольших тиглях сплавлением железа, древесного угля и стекла, которое использовали в качестве флюса. Данная технология позволяла получать материал, представляющий собой смесь преципитатов очень твердых карбидов железа и легирующих металлов, окруженных пластичной низкоуглеродистой сталью. Технология получения дамасской стали оказалась утраченной приблизительно в середине XVIII в. В качестве одной из причин прекращения производства сплава историки называют исчерпание запасов особого сорта руды, которая содержала постоянную концентрацию примеси вольфрама и ванадия. Недавние детальные исследования структуры дамасской стали с использованием электронной микроскопии высокого разрешения обнаружили присутствие в ней углеродных нанотрубок, однако, чтобы подтвердить это предположение, необходимо провести дополнительные эксперименты.
Очень близкими по своим свойствам к дамасской стали в Средние века были клинки из булата [22]Булат (булатная сталь) (от перс . pulad — сталь), углеродистая литая сталь со своеобразной структурой и видом (узором) поверхности, обладающая высокой твердостью и упругостью. В Средние века и отчасти в Новое время булат служил для изготовления оружия исключительной стойкости и остроты.
, секретами изготовления которых владели индийские, персидские, монгольские и русские оружейники. Самый древний способ изготовления булата (англ. wootz steel) состоял в сплавлении очищенной железной руды с графитом в тиглях. Позднее для получения булата стали применять чистое железо, сплавляя его с чугуном. Булатного узора добивались в процессе медленного, в течение 3–4 дней, охлаждения сплава путем естественной кристаллизации стали. Качество булатной стали определяли по узору на ее поверхности. Особо ценным специалисты считают темный индийский булат «хинди». Технология русского булата была утеряна и восстановлена лишь в XIX в. русским ученым П.П. Аносовым (1799–1851).
В самом начале XVII в. западноевропейские металлурги разработали новый способ науглероживания ковкой стали. Этот метод получил название цементации, в результате его применения стали получать томленую цементированную сталь (англ, blister steel). Первый патент на технологию получения такого сорта стали был выдан Бэзилу Бруку из Колбрукдейла (Великобритания).
На протяжении многих лет лучшие по качеству сорта стали производили в Швеции. В XVI–XVIII вв. еще не могли распознать причину, почему шведская сталь превосходит аналогичную продукцию из других стран. Исследования, проведенные в более позднее время, показали, что шведская руда отличается очень низким содержанием фосфора, особенно по сравнению с сырьем, добываемым в Англии; на основании металлографических исследований было установлено, что сравнительно низкая концентрация фосфора в руде из Орегрунда способствовала образованию мелкозернистой и более прочной структуры шведских сталей.
Стремительное увеличение производства черных и цветных металлов в конце XVII в. поставило Западную Европу на грань экологической катастрофы. К этому времени для нужд металлургии в Англии, Франции и Германии были вырублены огромные лесные массивы. Однако от древесного сырья зависела не только металлургия, но и целый ряд других отраслей хозяйства: горное дело; строительство домов и мостов; машиностроение (водяные и ветряные мельницы, ткацкие и прядильные станки); изготовление транспортных средств и мебели; отопление жилищ. Дерево было необходимо и в других ремеслах, где процессы проходили при высоких температурах (производство стекла, соды, сахара, красок, керамики, фарфора и др.).
Прогрессивно мыслящие люди того времени отчетливо представляли, к каким катастрофическим последствиям может привести бесконтрольная вырубка лесов, и пытались этому противодействовать различными способами. Однако непрерывно растущий спрос на древесину и продукты ее переработки фактически сводил на нет все их усилия. Особенно остро эта проблема ощущалась в Англии. Попытки использовать в процессе получения чугуна каменный уголь, предпринятые английскими металлургами, относят еще к первой четверти XVII в. Известный химик И.И. Бехер (см. гл. 6, п. 6.4) проводил опыты с каменным углем в доменной печи, однако особых результатов не добился. Но долгие эксперименты с каменным углем наконец привели к созданию технологии коксования [24]Коксование — промышленный метод термической переработки природного топлива с целью получения кокса. Коксование каменного угля осуществляется нагреванием без доступа воздуха до температуры 900–1100 °С (побочные продукты — коксовый газ, каменноугольная смола). Коксование нефтепродуктов осуществляют при 450–540 °С и давлении 0,2–0,6 МПа.
. C 1709 г. Абрахам Дарби, основатель целой династии прославленных металлургов в небольшом английском городе Колбрукдейл — всерьез занялся проблемой внедрения кокса в процесс получения чугуна. Себестоимость кокса была существенно ниже, чем древесного угля, однако чугун, изготовленный по новой технологии, по качеству заметно уступал металлу, который получали традиционным способом. Проблему повышения качества чугуна, выплавляемого с использованием кокса, удалось решить в пятидесятых годах XVIII в. Абрахаму II Дарби — сыну основателя династии металлургов. Ему пришлось усовершенствовать технологию коксования, значительно снизив содержание серы в конечном продукте. Кокс, очищенный от примеси серы, позволил повысить качество чугуна, который стали охотно покупать для последующей переработки в ковкую сталь. Внук прославленного металлурга — Абрахам III Дарби принимал непосредственное участие в создании первого в мире моста, изготовленного целиком из литых чугунных деталей (с пролетом 31 м и с высотой над водой 12 м). В 1787 г. за модель этого моста через реку Северн Абрахам III Дарби получил от Общества искусств золотую медаль.
Во второй половине XVIII в. черная металлургия пережила подлинный переворот: широко применявшийся ранее древесный уголь был заменен каменноугольным коксом. Это один из примеров, который наглядно показывает, в какой степени производство отдельных материалов и развитие важнейших отраслей промышленности и даже всего хозяйства страны тесно связаны с появлением и внедрением новых видов сырья. В 1788 г. в Англии две трети доменных печей, высота которых уже достигала 20 метров, работали на каменноугольном коксе. В Германии первая домна, где металл выплавляется с помощью кокса, была запущена в 1796 г. в Глейвитце.
Применение каменного и бурого углей вместо древесного в черной металлургии повлекло за собой внедрение прогрессивных технологий и в других отраслях промышленности, где широко использовали высокотемпературные процессы. Это, в свою очередь, привело к значительным количественным и качественным изменениям во многих отраслях индустрии XIX в.
Однако для обезуглероживания чугуна, полученного с помощью кокса, все же еще требовалось определенное количество древесного угля. Многие химики и металлурги пытались избавиться от этого недостатка технологии использования кокса. Первый патент на новый металлургический процесс — пудлингование (от английского слова puddle — перемешивать) был выдан в Англии в 1766 г. Впервые отражательную печь для получения ковкого железа использовали англичане братья Т. и Д. Кранедж, применив в качестве топлива каменный уголь.
В 1784 г. британский инженер Генри Корт провел исследования, позволившие успешно внедрить пудлингование в практику, что способствовало быстрому развитию металлургии в Южном Уэльсе. При пудлинговании избыток углерода удаляли из чугуна следующим образом. Расплавленный металл и находящийся в печи шлак для увеличения поверхности контакта подвергали перемешиванию (пудлингованию) металлическими штангами или крючьями. Образующиеся на поду печи небольшие комочки железа «накатывали» на штангу в крицу (массой обычно 40–60 кг). Затем крицу извлекали из печи, проковывали на молоте и направляли в прокатный цех. Пудлинговое железо хорошо сваривалось и отличалось высокой пластичностью, поскольку содержало мало фосфора, серы и неметаллических включений.
Печь для пудлингования:
А — лещадь (металлоприемник); В — решетка или камин; C — горн с демпфером для регулировки тяги; D — перегородка, отделяющая решетку от лещади, для предотвращения прямой связи топлива с железом.
У метода пудлингования, разработанного Г. Кортом, был один недостаток. В качестве исходного материала можно было использовать только литейный или белый чугун. Если в пудлинговую печь загружали серый чугун, то нужного качества сталей получить не удавалось. Возникшую проблему успешно преодолел английский металлург М. Тидфил. Он несколько изменил конструкцию печи, что дало возможность снизить концентрацию кремния в конечном продукте.
Сочетание доменного процесса выплавки чугуна с технологией пудлингования позволило производить ковкую сталь с широким спектром содержания углерода в зависимости от нужд потребителя. Использование метода пудлингования совместно с доменным процессом привело к существенному увеличению объемов производимого металла. Поэтому такая технология получила широкое распространение в черной металлургии Западной Европы и сохраняла лидирующую роль вплоть до середины XIX в.
В середине сороковых годов XVIII столетия в Великобритании была восстановлена еще одна технология изготовления высококачественных сталей, известная металлургам древности (о ней упоминал еще Аристотель) и средневековым оружейникам арабского Востока. Бенджамин Хантсмен из Хендсуорта заново разработал тигельный метод изготовления высококачественных сталей. В рамках этой технологии ковкое железо и чугун сплавляли в небольших керамических тиглях до образования особо прочных сталей. Металл, полученный таким способом, превосходил по качеству цементированную сталь, но был существенно дороже. Тем не менее потребность в новых сортах стали была чрезвычайно высока, поскольку такие материалы существенно повысили качество холодного оружия, ножей, ножниц и сельскохозяйственных орудий. Превосходное качество металла обеспечило мировую славу стали из Шеффилда. Долгое время тигельный метод Б. Хантсмена оставался единственной технологией получения литой стали.
Замена древесного угля каменным позволила не только устранить сырьевую и экологические проблемы, но в конечном итоге повысить количество и качество выплавляемого металла. Значительные изменения произошли также в размещении металлургических заводов. Теперь их строили вблизи месторождений каменного угля, а не в лесных районах, как раньше, к тому же изобретение паровых машин позволяло не зависеть больше от близости рек, поскольку использование силы воды как источника механической энергии потеряло свое значение. Все это позволило существенно расширить возможности выбора мест для сооружения металлургических предприятий.
Таким образом, анализ эволюции методов получения черных металлов позволяет сделать вывод, что к концу XVIII в. были разработаны или восстановлены основные технологические процессы, дальнейшее усовершенствование которых привело к созданию современной металлургической промышленности. Новое значительное улучшение технологических процессов в черной металлургии было осуществлено во второй половине XIX в.
7.1.2. Производство цветных металлов
Во времена Средневековья усилиями европейских мастеров и ученых технические новшества появились не только в производстве чугуна и ковкой стали, но и в цветной металлургии. К семи металлам, известным с глубокой древности, стараниями алхимиков к началу XVII в. прибавилось еще четыре: мышьяк, сурьма, висмут и цинк (см. гл. 4, п. 4.7). Открытие этих металлов и подробное изучение их свойств незамедлительно вызвало их практическое использование, что привело к дальнейшему развитию цветной металлургии.
Опыт по разведыванию руд и добыче цветных металлов проанализировали и сопоставили в своих трудах В. Бирингуччо и Г. Агрикола (см. гл. 5, п. 5.4). Традицию издания чрезвычайно важных с практической точки зрения сочинений
по металлургии и прикладной химии в XVI в. продолжили труды менее известного немецкого ученого Лазаря Эркера. Несмотря на то что работы Л. Эркера значительно реже цитируются в современных исследованиях по истории химии, необходимо подчеркнуть, что по уровню компетентности они нисколько не уступали сочинениям В. Бирингуччо и Г. Агриколы. Наибольший интерес среди сочинений Лазаря Эркера представляет книга «Описание всех известных минеральных руд» («Beschreibung Allerfumemisten Mineralischen Ertzt»), изданная в 1574 г. В ней с особой скрупулезностью изложены не только методы получения металлов, но и способы определения их содержания в природных минералах.
Большое внимание автор уделял методикам пробирного анализа — определению степени чистоты полученных слитков золота, серебра и меди. Все это не без основания позволяет считать, что книга Лазаря Эркера является первым практическим руководством по аналитической химии в области материаловедения цветных металлов.
Титульный лист книги Эркера «Описание всех известных минеральных руд» («Beschreibung Allerfurnemisten Mineralischen Ertzt») (1574)
Говоря о книгах этого периода, нельзя не упомянуть сочинения известнейшего итальянского скульптора и ювелира эпохи Возрождения «Жизнь Бенвенуто Челлини, рассказанная им самим». Итальянский художник прославился своими скульптурами, а также изделиями из бронзы, серебра и золота, при создании которых он широко использовал технологию литья. Поэтому в книге Б. Челлини читатель мог найти не только факты из его насыщенной различными событиями жизни, но и сведения о производстве цветных металлов и методах их обработки.
В трактатах Бирингуччо, Агриколы и Эркера в деталях представлены важнейшие способы добычи цветных металлов и их соединений с древнейших времен и до середины XVI в. Невозможно уделить внимание всем методам добычи цветных металлов, описанным в этих сочинениях, остановимся только на наиболее принципиальных процессах, используемых в средневековой цветной металлургии.
Добыча и промывка золотоносной руды (из книги Л. Эркера «Описание всех известных минеральных руд»)
Первые упоминания о добыче меди и серебра на европейских рудных месторождениях относятся к IX в. Задолго до открытия Америки в Венгрии, Богемии, Саксонии, Гарце, Эльзасе и Швеции средневековые рудокопы и металлурги разрабатывали богатые месторождения цветных металлов: меди, серебра, олова, золота, висмута, сурьмы и мышьяка. В XIII–XIV вв. при производстве меди широкое распространение получил процесс цементации, известный в Венеции еще с XII в. В XVI в. стал популярен еще один процесс — амальгамирование, с помощью которого особенно успешно извлекали серебро и золото из руды, содержащей сульфиды.
C глубокой древности золото и серебро использовали для создания ювелирных украшений. Позднее они стали выполнять функцию денег. Первоначально обращение этих драгоценных металлов осуществлялось в форме слитков, а затем и в виде монет. В период раннего Средневековья преобладала чеканка золотой монеты.
C XVI в. в странах Европы из-за недостатка золота основным металлом, предназначенным для изготовления денег, становится серебро. Первые древнерусские монеты из серебра появились в IX–X вв. Золотые и серебряные монеты обращались по действительной стоимости содержавшегося в них благородного металла, причем ценностное соотношение между этими металлами складывалось стихийно, под влиянием рыночных факторов.
В Средние века одной из центральных проблем материаловедения цветных металлов оставалось определение степени чистоты золота и серебра, используемых для чеканки монет. Важную роль в совершенствовании процесса контроля содержания драгоценных металлов в монетах сыграло применение азотной кислоты. Агрикола и Эркер уделяли большое внимание описанию различных методик пробирного искусства, в том числе методов анализа исходного сырья и выплавляемых золотых и серебряных слитков с использованием различных минеральных кислот; в их трактатах описаны специальные стационарные и переносные печи для проведения пробирного анализа. Эти устройства можно было использовать при качественном и количественном анализе содержания веществ не только в лабораторных, но и в полевых условиях, что было особенно полезно при разведке рудных месторождений.
В XIV в. с появлением в Европе пороха и распространением огнестрельного оружия резко возросла добыча медной руды. Основная доля меди расходовалась на выплавку бронзы, которая практически полностью шла на производство пушек. Как уже было отмечено ранее, средневековые металлурги восстановили утраченную в период «темных веков» технологию литья бронзовых и латунных изделий. Позднее из бронзы стали отливать посуду, другие предметы обихода и даже украшения интерьера.
Оборудование для выплавки латуни (из книги Л. Эркера «Описание всех известных минеральных руд»)
Технология получения бронзы была известна и в России. Ярким доказательством этому является упоминание в летописях Пушечного двора, который занимал довольно обширную территорию в Москве на берегу р. Неглинка. В 1586 г. по приказу царя Федора Ивановича из высококачественной бронзы была отлита огромная мортира, получившая название «Царь-пушка». Имя ее создателя — литейного мастера Андрея Чохова указано на стволе. Длина орудия, украшенного надписями, фигурными фризами и орнаментом, составляет 5 м 34 см, наружный диаметр ствола — 120 см, калибр — 890 мм. На краю ствола вырублено: «2400 пуд» (39312 кг) — такова масса самой большой бронзовой пушки в мире.
C глубокой древности основным поставщиком оловянной руды была территория современной Великобритании. В эпоху бронзового века в поисках этого стратегического сырья к берегам Альбиона направляли свои корабли критские и финикийские мореплаватели (см. гл. 2, п. 2.3). До VIII в. до н.э. металлурги Древнего мира еще не умели получать олово в свободном состоянии. При выплавке бронзы в качестве источника олова они использовали главным образом касситерит в смеси с древесным углем. Однако позднее ремесленники Греции и Рима овладели технологией получения чистого олова. Металлургия олова не утратила своего значения и в Средневековье: с XII в. этот металл уже добывали не только в Англии, но и из месторождений в Рудных горах, которые расположены на границе Чехии и Германии. Достаточно большое количество производимого в Европе олова шло на изготовление столовой посуды.
Месторождения цинка были известны давно, а сульфат цинка стал предметом торговли еще с XIV в. Однако интенсивная добыча цинковых руд и получение чистого металла в промышленных масштабах прослеживается лишь с XVIII в. Важнейшие месторождения ртути, необходимой для добычи благородных металлов методом амальгамирования, а также для изготовления некоторых лекарственных препаратов, находились в Испании. C конца XV в. месторождения ртути были разведаны и в Центральной Европе — на территории современной Чехии и Германии. В XVI в. испанскими конкистадорами были открыты знаменитые перуанские месторождения ртути.
Выплавка и «высадка» олова (из книги Л. Эркера «Описание всех известных минеральных руд»)
Увеличению объемов добычи сурьмы в Западной Европе способствовало активное рекламирование Парацельсом в качестве эффективных лекарств многочисленных препаратов, содержащих соединения этого элемента (см. гл. 5, п. 5.2). Помимо этого сурьма служила добавкой к другим металлам при изготовлении различных сплавов, используемых, например, при отливе колоколов. C середины XVI в. стала разрабатываться технология получения висмута и его соединений. В качестве красителя был широко известен оксид висмута желтого цвета. Для получения сурьмы и висмута применяли сходные технологии. Чаще всего висмут использовали в сплаве с оловом. Технологические процессы, применявшиеся при выделении висмута, например так называемое гранулирование, использовали позднее и при получении голубого кобальтового стекла, смальт и голубых красок. Особенно ценилась смальта, которую производили в Богемии, Саксонии и Гарце (Германия). Ее использовали в качестве краски для живописи, а также для окрашивания в синий цвет стекол и керамических изделий, для получения искусственных драгоценных камней, подсинивания белья и бумаги. Основными потребителями смальты были Голландия и Франция.
Поначалу мышьяк получали на саксонских и богемских металлургических заводах как побочный продукт. Его экспортировали в Венецию, где применяли для изготовления ядов, а также в стекольном производстве (см. гл. 7, п. 7.2).
Средневековые рудокопы исследовали залежи руд не только металлов, но и некоторых неметаллов — например серы.
Сера встречается в природе в свободном (самородном) состоянии, поэтому она была известна человеку еще с глубокой древности. Это вещество привлекало к себе внимание характерной окраской, голубым цветом пламени и специфическим запахом, возникающим при горении (запах сернистого газа). Применение горящей серы для дезинфекции упоминается в знаменитых поэмах Гомера, а в Древнем Риме с помощью сернистого газа отбеливали ткани. В Библии говорится об использовании серы для очищения грешников. У человека Средневековья запах «серы» (сернистого газа) ассоциировался с преисподней, поскольку чаще всего залежи серы находили вблизи вулканов.
Пробирная лаборатория, в которой исследовали содержание золота и серебра в рудах (из книги Эркера «Описание всех известных минеральных руд»)
Издавна серу использовали и в медицине — ее включали в состав различных мазей для лечения кожных заболеваний, а сернистым газом окуривали больных. Арабские, а вслед за ними и европейские алхимики полагали, что все металлы, в том числе золото и серебро, состоят из находящихся в различных соотношениях элементов-принципов: серы и ртути (см. гл. 4, п. 4.3–4.4). Поэтому и вещественная сера играла важную роль в попытках алхимиков найти «философский камень» и превратить обычные металлы в драгоценные. В XVI в. Парацельс считал серу вместе с ртутью и «солью» одним из основных «начал» природы, «душою» всех тел. Практическое значение серы резко возросло после того, как изобрели дымный порох, в состав которого сера входила как один из основных компонентов. C этого момента данный неметалл стали широко использовать для военных целей. Издавна главным поставщиком серы была Италия. Крупные месторождения неметалла находились на острове Сицилия. Лишь в XVI в. Кристоф Сандер организовал в Раммельсберге (Германия) предприятие по добыче серы из серного колчедана.
Коренные изменения в экономике, которые произошли в XVI–XVII вв. после открытия Нового Света, отразились прежде всего на производстве благородных металлов. В этот период в Европе отмечается резкое снижение производства серебра и золота, главным образом потому, что испанские конкистадоры, разгромив государства ацтеков и инков, завладели их несметными сокровищами и природными ископаемыми. Например, общий объем выплавленного серебра с 1493 по 1520 гг. в Германии и Священной Римской империи составил 980 тонн, т.е. около 75% всей мировой добычи за это время. Однако уже с 1601 по 1620 гг. в этих странах получили всего 428 т серебра, в то время как испанские колонии в Америке произвели 7800 т. Для добычи драгоценных металлов испанцы использовали рабский труд покоренных индейцев. Чтобы вывозить награбленные драгоценные металлы из новых колоний, испанские короли снарядили Золотую и Серебряную флотилии. Динамику изменения соотношения добычи драгоценных металлов с 1781 по 1800 гг. между Старым и Новым Светом иллюстрируют данные, представленные в табл. 7.2.
На добыче меди открытие новых земель практически не отражалось вплоть до конца XVIII в., поскольку знаменитые чилийские месторождения были разведаны несколько позднее. К XVIII в. выплавка меди, как и многих других металлов, значительно увеличилась. Например, в Европе в начале XVIII в. общая добыча меди составляла примерно 1000 т, а к концу века — 8000 т. На резком увеличении выплавки этого металла сказались главным образом два фактора: использование каменного угля (кокса) и пламенных печей. Такие печи для выплавки меди в Англии стали применять уже с 1698 г. Несколько позднее с помощью подобных печей начали выплавлять свинец и олово.
Таблица 7.2
Производство драгоценных металлов в мире за период с 1781 г. по 1800 г.
(Место добычи … Масса добытого золота, т)
Старый Свет (Африка и Австро-Венгрия) … 55,6
Колонии в Новом Свете (Бразилия) … 284
Старый Свет (Германия и Австро-Венгрия) … около 100
Колонии в Новом Свете (Мексика) … 16000
XVIII век оказался весьма щедрым на открытия новых металлов (табл. 7.3). Новые элементы были обнаружены благодаря совершенствованию методов качественного анализа химических веществ.
Таблица 7.3
Металлы , открытые учеными-химиками в XVIII в.
Металл | Год открытия | Ученый, который открыл элемент | Страна |
Кобальт | 1735 | Г. Брандт | Швеция (Стокгольм) |
Никель | 1751 | А. Кронштедт | Швеция (Стокгольм) |
Марганец | 1774 | Ю. Ган | Швеция (Стокгольм) |
Молибден | 1781 | П. Гьельм | Швеция (Упсала) |
Теллур | 1783 | Ф.И. Мюллер фон Рейхенштейн | Румыния (Сибиу) |
Вольфрам | 1783 | Ф. д’Элуяр и X. X. д’Элуяр, | Испания (Вергара) |
Уран | 1789 | М.Ф. Клапрот | Германия (Берлин) |
Цирконий | 1789 | М.Ф. Клапрот | Германия (Берлин) |
Титан | 1791 | У. Грегор | Англия (Корнуолл) |
Иттрий | 1794 | Ю. Гадолин | Финляндия (Або) |
Бериллий | 1797 | Н.Л. Воклен | Франция (Париж) |
Хром | 1797 | Н.Л. Воклен | Франция (Париж) |
По мнению многих ученых, платина была известна человечеству с древнейших времен. Изделия, содержащие платину, найдены при раскопках древнеегипетских гробниц. Индейцы в Латинской Америке знали платину еще задолго до путешествий X. Колумба. Первое описание платины в Европе сделал А. де Ульолоа, который принимал участие во французской экспедиции в 1736 г. с целью определения длины экватора. В его записях упоминается благородный металл «platina», найденный в колумбийских золотых рудниках. В 1741 г. южноамериканские образцы металла были доставлены в Европу, где сначала платину рассматривали как «белое золото». Примерно в середине XVIII в. была установлена элементарная природа платины. В настоящее время «белым золотом» называют сплавы золота и платины. Расплавить чистую платину удалось в 1783 г. А.Л. Лавуазье. В 1805 г. английский химик У. X. Уолластон наладил производство порошка платины из южноамериканской руды.
Необходимо отметить, что кобальт, никель, хром, уран, иттрий, титан и цирконий были сначала открыты в виде оксидов. Чистые металлы удалось выделить несколько позднее.
Анализ эволюции черной и цветной металлургии в Европе с V по XVIII вв. позволяет с определенностью утверждать, что эти отрасли прикладной химии развивались поступательно, достаточно динамично, и к концу рассматриваемого периода достигли фазы наивысшего развития. Максимальный подъем в эволюции металлургии выразился не только в увеличении объемов выплавляемых металлов, усовершенствовании технологии и повышении качества конечного продукта, но, что особенно важно, — в создании первых теоретических представлений о химических превращениях и способах функционирования технических средств, используемых в этой отрасли производства.
7.2. Производство стекла
В Средние века и в эпоху Возрождения достаточно динамично развивались не только черная и цветная металлургия, но и другие ремесла, связанные с химическими превращениями. Уже в раннем Средневековье, когда металлургия еще развивалась достаточно медленно, заметный прогресс наметился в производстве стекла. Дамаск, а позже и Венеция, стали центрами ремесленных знаний того периода. Дамаск — богатейший город арабского Востока, прославился не только производством стального оружия (дамасские клинки), но и разнообразного стекла, керамики, эмали, глазурей и мозаики.
В Сирии в XII–XIV вв. создаются изделия, которые в Европе обобщенно называют дамасским стеклом, включая сюда все изделия производства ремесленников исламских государств. Наиболее характерной чертой изделии арабских мастеров является наложение эмалей на стеклянную основу. К XI в. относят и появление первых стеклянных зеркал, изготовленных арабскими мастерами на территории современной Испании.
Дамасская стеклянная лампа (XIV в.)
Изменение общей экономической ситуации в Европе эпохи Возрождения было вызвано прежде всего последствиями эпохи Великих географических открытий. Этому способствовали многие факторы, в частности удлинение торговых путей в результате открытия Америки, уменьшение объема химической продукции ряда стран из-за ее более дешевого импорта (например серебра и золота), снижение производства некоторых химических товаров в Европе вследствие более высокого качества веществ, ввозимых из заморских колоний. Конечно, это не означает, что все ремесла и отрасли производства развивались одинаково: одни из них переживали застой, приходили в упадок или даже прекращали существование; другие традиционные отрасли переживали явный подъем, возникали и новые.
Наиболее ярким примером является производство стекла в западноевропейских странах. C VII в. первым и главным центром производства стекла в Европе была Венеция. Именно к VII–VIII вв. относятся стеклянные изделия, найденные на острове Торчелло. Эти образцы можно рассматривать в качестве связующих звеньев, в которых явно ощущаются традиции стеклодувов Древнего Рима. В самом начале второго тысячелетия в северной Европе была разработана технология изготовления стекла на основе поташа, который получали из древесной золы, поэтому стеклянные изделия из северной Европы отличались по качественному составу от своих аналогов, производимых ремесленниками стран Средиземноморья. Производство стекла на юге Европы по-прежнему было основано на использовании соды.
В XI в. в Германии появилась оригинальная технология получения листового стекла. На первой стадии мастера выдували стеклянную сферу, которую в горячем состоянии деформировали до цилиндрической формы. Затем эти цилиндры разрезали и при высоких температурах превращали в плоские стеклянные листы. В XIII в. этот метод был усовершенствован венецианскими стеклодувами.
Резкий подъем в стеклоделии наблюдался уже в XIII в. C 1291 г. все производство стекла было сосредоточено на острове Мурано, находящемся рядом с Венецией, и объявлено секретным. Власти Венеции приказывали стеклодувам селиться именно на острове из-за опасности возникновения пожаров. Примеру Венеции последовали и другие города, которые не разрешали «огненных дел» мастерам работать в черте массовых жилых застроек. Ремесленники-стеклодувы при щедрой оплате их труда с этого времени находились фактически в заточении вместе с членами их семей. C другой стороны, с XVI в. стеклодувам Мурано были дарованы существенные привилегии: им было позволено носить холодное оружие, кроме того, они не подлежали судебному преследованию со стороны властей Венеции. Как свидетельствуют историки, социальный статус мастеров-стеклодувов был достаточно высок. Это подтверждает и тот факт, что дочери ремесленников были желанными невестами даже для отпрысков многих родовитых венецианских семей.
Чаша второй половины XVI в. Венеция. Техника «ретичелло» — «сетка»
В эпоху крестовых походов производство венецианского стекла испытало огромное влияние технологий арабского Востока. Необходимо отметить, что высокое качество изделий мастеров с острова Мурано было обусловлено уникальным составом стекла, рецепты изготовления которого держали в строжайшей тайне. Один из секретов оказался позднее разгадан: было установлено, что песок, используемый венецианскими ремесленниками, состоял практически из чистого кварца. Кроме того, его подвергали размолу до тонкого порошкообразного состояния.
На протяжении нескольких столетий Венеция владела монополией на производство многих видов стекла, и прежде всего — зеркал. Кроме того, мастера с острова Мурано умели получать и другие уникальные сорта стекла, особенно декоративно-прикладного направления. Венецианские ремесленники владели технологией изготовления хрустального стекла, разноцветной смальты, многоцветного стекла (millefiori), стекла молочного цвета (lattimo); могли имитировать различные драгоценные камни. Важнейшими изделиями стеклодувов были цветные стекла для церковных витражей, оконное стекло, зеркала, линзы для оптических приборов и стеклянные «жемчужины», поставляемые Венецией во многие европейские государства, в страны Ближнего Востока и даже в Китай. Мастера-стеклоделы не имели права уезжать из города, а ослушники подвергались смертной казни. И все же эти запреты удавалось преодолеть: со временем секреты технологии изготовления стекла стали известны и в других странах.
Мастерская средневековых стеклодувов. Рисунок XV в.
В XVII в. во Франции, Богемии, Англии появились предприятия по производству стекла, способные соперничать с венецианскими. Именно в это время начался новый мощный подъем стеклоделия. В 1615 г. в Англии для нагрева стеклоплавильных печей стали использовать уголь, что повысило температуру процесса. C начала XVII в. во Франции в г. Турвилле (близ Шербура) был освоен способ отливки зеркального стекла на медных плитах с последующей прокаткой. В это же время был открыт метод травления стекла смесью плавикового шпата и серной кислоты, освоено производство оконного и оптического стекла. Все эти технические новшества привели к тому, что во второй трети XVII в. во Франции уже производили высококачественные стеклянные изделия. Примерно в это же время в Лотарингии было налажено производство цветных листовых стекол.
К 1670 г. появились крупные стекольные заводы в Англии, а к 1695 г. — и в Германии. В это время были сконструированы новые типы печей, в частности для отжига, вытягивания стекла, прокаливания и кальцинирования стекольной массы. К 1696 г. в Англии работало около 90 стекольных заводов, которые производили бутылочное стекло, стекло без свинца (кронглас), силикатное стекло, зеркала и оконное стекло. В качестве сырья для производства стекла использовали песок, кварц, гравий, стеклянные осколки, а также золу, полученную при сжигании водорослей и древесины определенных сортов. Особенно высоко ценились дубы и буки. Дерево или древесный уголь и печи, о которых мы упоминали, были важнейшими средствами труда. Чтобы придать стекольной массе ту или иную окраску, ремесленники добавляли в нее соединения марганца, железа, меди, свинца, кобальта, олова, а также камедь, винный камень, уголь, серебро и даже соединения золота.
Первым научным трудом по материаловедению стекла считают вышедшую в 1612 г. во Флоренции книгу монаха Антонио Нери. В этом трактате были даны рекомендации по использованию окислов свинца, бора и мышьяка для осветления стекла, а также приведены составы цветных стекол. Проблемами, связанными с производством стекла, плодотворно занимались такие химики, как И.Р. Глаубер, О. Тахений. Немецкий алхимик Иоганн Кункель во второй половине XVII в. опубликовал сочинение «Экспериментальное искусство стеклоделия», в котором изложил свои результаты изучения состава различных сортов стекла. C точки зрения прикладной химии, наиболее важным моментом в работах Кункеля явилось изобретение способа получения «золотого рубина» — стекла рубинового цвета. Такой окраски И. Кункель добился за счет добавления золота к стеклянной массе.
Предложения И.Р. Глаубера по улучшению конструкции печей для изготовления стекла и проведенные И. Кункелем исследования состава стекла значительно ускорили развитие этих химических ремесел. Совершенствование и удешевление производства стекла имело далеко идущие последствия: во-первых, стеклянная посуда из достояния богачей превратилась в предмет домашнего обихода широких слоев населения; во-вторых, химическая стеклянная посуда, которая в эпоху алхимии была чрезвычайно дорогостоящей, с XVII в. стараниями И.Р. Глаубера все интенсивнее использовалась в различных химических процессах. Во многих лабораториях устраивали стеклодувные мастерские, в которых можно было изготовить стеклянную химическую посуду любой формы и назначения, поэтому трудно переоценить ту огромную роль, которую сыграла стеклянная лабораторная посуда в развитии химической науки.
В декоративно-прикладном искусстве Европы в XV–XVI вв. ведущие позиции сохраняло венецианское стекло. Однако с изобретением в XVII в. более твердого кальциевого стекла и развитием техники гравировки центр художественного стеклоделия переместился в Чехию. C 1770-х гг. (первоначально в Англии) стало широко применяться стекло, полученное на основе оксида свинца (хрусталь или флинт-гласе), основным способом обработки которого явилось так называемое алмазное гранение, выявляющее способность хрусталя преломлять или отражать свет. Начиная с XVIII в. интенсивно развивалось и производство искусственных драгоценных камней.
Долгие годы историки считали, что в России собственного стекольного производства не было вплоть до XVII в., а стеклянные изделия попадали на Русь торговыми путями, однако это не так. Первые данные об изготовлении стекла в домонгольской Руси были получены в конце XIX в. в результате раскопок под Овручем, на Украине, где обнаружили следы стекольного производства, осколки битых бус и браслетов. В результате археологических исследований в Киеве, в районе Десятинной церкви, а также близ Киево-Печерской лавры удалось обнаружить остатки стеклодельных мастерских XI в. Сохранились остатки горнов и куски разноцветной смальты. Одной из интереснейших находок были куски свинца, который киевские мастера добавляли для легкоплавкости в мозаичное стекло, а также в бусы, браслеты и в посудное стекло. Изделия из калиево-свинцовых стекол обнаружены при раскопках в Киеве, Минске, Смоленске, Вышгороде, Новгороде, Костроме, Галиче и других славянских поселениях. Древнерусским мастерам были известны четыре способа изготовления стекла: прессование, вытягивание, литье и выдувание.
Татаро-монгольское нашествие почти на три столетия остановило развитие культуры славянских народов. Погибли многие ремесла, в том числе и стеклоделие. Вновь оно возрождается на Руси только в середине XVII в. В 1635 г. шведом Елисеем (Юлием) Койетом на пустоши Духанино в Дмитровском уезде был построен стекольный завод. В грамоте, полученной от царя Михаила Федоровича, говорилось: «…Пушечного и рудознатного дела мастера Елисея Койета пожаловали, в нашем Московском государстве скляничное дело делать велели». На заводе работали мастера, вывезенные из Литвы. Завод выпускал посуду для аптекарского приказа. Царская аптекарская посуда представляла собой высокохудожественные изделия из цветного стекла (в основном темного, чаще коричневого тона), покрытые росписью золотом и серебром.
Несколько позднее был открыт казенный завод в Измайлове (1669–1710). Здесь наряду с иноземцами работали и русские мастера, которые осваивали основные приемы европейского стеклоделия. Характерным орнаментом для стаканов с гравировкой был бегущий олень на фоне архитектурного пейзажа — на манер работ богемских мастеров, но в отличие от чешского стекла измайловское было легким и тонким. Использовалось стекло бесцветное и зеленое. Изделия Измайловского завода можно было купить в московском Гостином дворе. Почти одновременно с Измайловским был устроен третий стеклозавод в Черноголовке. Завод был небольшой и выпускал незначительное количество изделий.
Начало XVIII в. можно назвать периодом подъема стеклоделия в России. Важной вехой его развития явилось открытие в 1706 г. стекольного завода на Воробьевых горах под Москвой, построенного по инициативе Петра I. Основными видами продукции Воробьевского завода были литые зеркала и зажигательные стекла. В 1710 г. близ г. Ямбурга князь А.Д. Меншиков учредил два стеклозавода. На этих заводах, соединенных вскоре в один под названием Ямбургский, работали более 90 человек, причем все мастера были русскими. Особо выделялись Василий Пивоваров и Дементий Войлоков. Они стали основоположниками русской школы гравирования.
Огромный вклад в производство цветного стекла (главным образом для мозаик, бижутерии и архитектурной облицовки) внес М.В. Ломоносов, создавший в 1753 г. Усть-Рудицкую фабрику. При императрице Елизавете Петровне один из частных подмосковных стекольных заводов был разделен и перенесен подальше от Москвы. Так образовалось стекольное производство в селе Дятьково и в г. Гусь-Хрустальный. Ассортимент изделий был необычайно широк — от дворцовых хрустальных сервизов до обычных бытовых стаканов с незатейливой гравировкой. Распространенной была фигурная посуда — графины и бутыли в форме птиц и зверей из зеленого и бесцветного полупрозрачного стекла. Традиция изготовления «потешных вещиц» прослеживалась на всем пути развития завода в Гусь-Хру стальном и не исчезла даже тогда, когда завод стал специализироваться на выпуске дорогой хрустальной посуды. В 1857 г. заводу было разрешено изображать на своих изделиях государственный герб Российской империи.
7.3. Керамика и фарфор
В Западной Европе производство стекла и изготовление керамики, особенно на первых этапах развития, испытали сильное влияние достижений арабских ремесленников, а те, в свою очередь, переняли и усовершенствовали опыт ремесленников античности. Кроме того, в Европе распространялись технологии испанских и английских ремесленников раннего Средневековья. Белая оловянная глазурь, которой в Валенсии покрывали изразцовые плитки и тарелки, скорее всего, была изобретена арабами. В XIII в. в Италии началось производство художественных гончарных изделий. Скульптор из Флоренции Лука делла Роббиа организовал гончарные мастерские в своем родном городе, а также в Фаенце и Урбино.
Вскоре это ремесло проникло во Францию. Здесь совершенствованием изготовления керамических изделий занимался известный химик Бернар Палисси (см. гл. 5, п. 5.3). В 1580-х гг. он опубликовал несколько книг, посвященных описанию техники добычи сырья и изготовления из него керамических изделий. Поводом к началу работ с керамикой послужило его желание разгадать секрет изготовления фарфора. Подобной идеей в то время были одержимы многие мастера. На протяжении практически шестнадцати лет Б. Палисси вел упорные исследования, однако секрет фарфора ему разгадать так и не удалось. Неудачные эксперименты ввергли его семью в состояние крайней нужды — чтобы обогреть свое жилище, он был вынужден сжечь даже мебель. Удача пришла совсем неожиданно.
Бернар Палисси (ок. 1510–1589 или 1590)
В 1548 г. в провинции Бордо, где жил Палисси, начались волнения. Присланный туда из Парижа для подавления бунта коннетабль де Монморанси увидел керамическую посуду французского мастера, которая была выполнена в традиционном «сельском» стиле и украшена рельефными цветными изображениями рыб, раковин, листьев, ящериц и лягушек, и пригласил Б. Палисси украсить такими изделиями свой дворец. C этого момента к французскому мастеру пришла известность. C 1563 г. он работал в Париже и занимался декоративным оформлением садов Тюильри и Лувра. Б. Палисси удалось разработать удивительные по разнообразию цветов и оттенков эмали и глазури, причем рецепты изготовления многих из них после его смерти разгадать так и не удалось. Во время Варфоломеевской ночи он был схвачен католиками и заключен в один из казематов Бастилии, где и скончался в 1589 г.
В немецких княжествах и Швейцарии для производства керамики использовали свинцовую глазурь. Особенно славились кафельные плитки для облицовки печей зеленого, черного и коричневого цветов, а также кружки и кубки — голубые, серые и коричневые. В конце XVI в. зародилось керамическое производство в Голландии. В этой стране мастера при изготовлении фаянсовых изделий имитировали внешний вид фарфора из Восточной Азии. Особенно высоко ценился фаянс из Делфта с голубыми рисунками на белом фоне (краска содержала оксиды олова).
Начиная с XVIII в. в Европе было развернуто производство различных видов фаянса. Развитие системы химических знаний оказало большое влияние на производство керамики. Особенно важными были результаты исследования состава и свойств различных глин, поиск оптимальных пропорций их смешивания, подбор наилучших условий температуры и влажности для сушки и обжига изделий. В дальнейшем развитие керамического производства определялось качеством глазурей и красок, с помощью которых производилось художественное оформление изделий. От внешнего вида зависел сбыт конечной продукции, что было крайне важно в условиях растущей конкуренции.
В Англии были широко распространены фаянсовые и гончарные изделия, изготовленные на мануфактуре Дж. Веджвуда. Эти изделия отличало высокое качество. Английский промышленник очень дорожил своей репутацией, если при посещении мануфактуры ему удавалось обнаружить изделие, не соответствующее высоким стандартам, он немедленно разбивал его своей тростью, приговаривая: «Эта работа не достойна Джозайи Веджвуда!» Промышленник внимательно следил за всеми новейшими научными разработками и непременно использовал их результаты в усовершенствовании работы своей мануфактуры.
Джозайя Веджвуд (1730–1795)
Именно подлинно научный подход к становлению всех технологических процессов обеспечил превосходное качество его продукции. Техника изготовления керамики и фаянса в мастерских Веджвуда достигла в это время высокого уровня. Фаянсовые изделия были изящно расписаны красками по белому, черному, красному или кремовому фону и очень красивы.
Если ранее подобные изделия были доступны только состоятельным слоям общества, то Веджвуд создал первое предприятие специально для изготовления керамической посуды для массового покупателя. Удешевить производство ему позволил подлинно научный подход к организации труда: Веджвуд широко использовал детальное разделение всего производственного цикла на отдельные операции. Один из знаменитых столовых сервизов Дж. Веджвуда был доставлен в Россию в 1774 г. по велению императрицы Екатерины II. В нем было 952 предмета, причем на каждом из них были изображены знаменитые здания или парки. Этот факт свидетельствует о том, что продукция английского мастера снискала себе мировую славу.
Способ изготовления фарфора был изобретен в Китае еще в IV–VI вв. н.э. Становлению технологии производства фарфора способствовали богатые месторождения каолина в этой стране. Сохранившиеся изделия начального периода истории фарфора представляют собой сосуды вытянутой формы с гладкой полированной поверхностью, нередко с лепным декором светлых тонов. В эпоху Тан (VII–X вв.) и Сун (Х-ХШ вв.) в страны Азии и Европы вывозятся голубые и бледно-зеленые вазы с рельефным орнаментом, которые в Европе получили название «селадон» (основное место производства Лунцюань). Эти вазы и кувшины имели формы, напоминающие античные сосуды, нередко с ручками в виде драконов и горлышками в виде животных. Начиная с XIV в. в эпоху Мин (XIV–XVII вв.) ведущим центром изготовления фарфора становится Цзиндэчжэнь, где было налажено производство изделий, украшенных свинцовыми глазурями трех цветов (саньцай) или подглазурной синей кобальтовой росписью, которая часто сочеталась с надглазурной росписью (доуцай).
В конце XIII в. итальянский торговец и путешественник Марко Поло привез в Европу из Поднебесной империи первые сведения об этом материале и образцы фарфоровой посуды. В XV в. торговля со странами Востока стала расширяться, поэтому количество фарфоровой посуды, ввозимой в Европу, заметно возросло. В XVII в. Япония стала главным поставщиком фарфора в Европу, хотя тогда же Голландия ввозила большие партии и китайского фарфора; взамен из Европы в Китай вывозили синие кобальтовые краски.
Высокая цена и необычайно большой спрос на фарфор в странах Европы вызывали стремление разгадать секрет его изготовления. Начиная с XV в. многие ремесленники и ученые предпринимали попытки воспроизвести технологию получения «белого золота». К XVI в. химики достигли очевидных успехов в этом направлении — было налажено изготовление так называемого мягкого фарфора (без каолина).
Иоганн Фридрих Беттгер (1682–1719)
«Твердый» фарфор получен лишь в начале XVIII в. Иоганном Фридрихом Беттгером и Эренфридом Вальтером Чирнгаузом в Саксонии (где вскоре возникло производство знаменитого на весь мир мейсенского фарфора). В результате продолжительных экспериментов, которые продолжались с 1703 по 1715 гг., этим ученым удалось разгадать состав заморского чуда. Путем долгих проб и ошибок они пришли к выводу, что оптимальному составу пасты для изготовления фарфора соответствует смесь каолина, жженого алебастра и тонкоизмельченного кварцевого песка. Из этой массы им удалось получить твердый, белый и полупрозрачный фарфор. По прошествии времени стало ясно, что Беттгер и Чирнгауз не скопировали китайские рецепты и технологии, а открыли собственный оригинальный состав. Китайский фарфор сыграл в этом открытии лишь роль побудительного мотива. Немецким ученым не удалось сохранить свое изобретение в тайне, и вскоре производство фарфора распространилось по всей Европе.
Важнейшим сырьем для производства керамических изделий были различные сорта глины. При изготовлении фарфора использовали каолин с добавками кварца и полевого шпата. Хранение и сушку сырья, а также продуктов гончарного производства проводили в помещениях, где поддерживались постоянными температура и влажность. Изделия покрывали красками и глазурью, а затем обжигали в специальных печах. По составу исходных паст и физико-химическим свойствам различали фарфор, покрытый глазурью, и фарфор неглазурованный (бисквит). Со временем мануфактурное производство фарфора распространилось во Франции, Англии, Италии, России, Дании, Польше, Швеции, Швейцарии и Нидерландах. Истинным законодателем мод с 1750-х гг. стал французский фарфор, который выпускался на мануфактуре в Севре (севрский фарфор).
Зачастую мануфактуры являлись собственностью государей, поэтому деятельность этих предприятий протекала под строгим надзором чиновников «двора».
В России состав фарфоровой массы разработал Д.И. Виноградов (1747). В 1744 г. в Санкт-Петербурге была открыта Порцелиновая мануфактура, на базе которой три года спустя Д.И. Виноградов получил твердый фарфор из местных материалов. C 1765 г. Порцелиновая мануфактура стала называться Императорским фарфоровым заводом, а с 1925 г. она носит имя М.В. Ломоносова. Предприятие выпускало простые и изящные по форме вазы, сервизы, табакерки и другие изделия. Со дня основания завод работал по заказам императорского двора.
Предметы сервиза ордена Александра Невского
Производство керамики и фарфора в значительной степени стимулировало укрепление международной торговли, обмен культурными ценностями, а также совершенствование химических знаний и практических навыков. C точки зрения истории химии совершенствование технологий изготовления керамики и фарфора было непосредственно связано с изучением состава почв, глазурей а также флюсов, используемых в черной и цветной металлургии. Кроме того, широкое применение в лабораторной практике керамической и фарфоровой посуды всемерно способствовало накоплению экспериментальных химических знаний.
7.4. Получение солей
7.4.1. Добыча поваренной соли
Одним из древнейших видов химических ремесел можно смело считать добычу поваренной соли. Сейчас мы привыкли рассматривать соль как неотъемлемый атрибут любого обеденного стола, однако с этим веществом связано немало удивительных, а порой и драматических страниц человеческой истории. Поваренная соль — не просто пищевая приправа: это вещество крайне необходимо для нормального функционирования организма человека и животных, поскольку в активной или пассивной форме участвует во многих биологических процессах. Ученые, занимающиеся историей медицины, предполагают, что чрезвычайно высокая смертность от ран в войсках Наполеона во время отступления из России была вызвана не столько скудостью рациона, сколько практически полным отсутствием соли в питании простых солдат.
В ритуалах многих религий соль и по сей день играет важную роль, символизируя неизменную и вечную чистоту. И сейчас в разных странах мира, встречая дорогих и желанных гостей, им преподносят хлеб и соль, эта традиция, по всей видимости, является одним из древнейших правил международного этикета.
Множество упоминаний о соли содержится в Библии; в сказках и легендах народов всего мира, а также в произведениях литературы Нового времени. В былые времена соли приписывались магические свойства, не случайно она являлась важным элементом-принципом в алхимических теориях (см. гл. 4, пп. 4.3–4.4).
Поваренная соль является одним из наиболее древнейших, эффективных и наиболее широко используемых консервантов для пищевых продуктов. Хлорид натрия являлся одним из основных химикалий, используемых древними египтянами для создания мумий (см. гл. 2, пп. 2.3–2.5). Поэтому можно сказать, что профессия солевара является одной из древнейших на Земле. Археологические исследования древних соляных копей и солеварен представляют большой интерес для современной науки.
В различные исторические периоды поваренная соль выполняла функцию денег, являясь причиной многих вооруженных столкновений и бунтов. В эпоху Римской империи солдатам выдавали определенную часть жалования поваренной солью «salarium argentums». Считается, что от этого словосочетания произошло английское «salary» — «заработная плата, жалованье». Производство и торговля солью были чрезвычайно важными факторами экономической и социально-политической жизни народов в Древнем мире и в Средние века. Налоги на соль служили постоянным источником пополнения государственной казны во многих странах. Монополия на торговлю солью привела к возвышению Венеции в Италии и Галле в Германии. Французские короли установили монополию на продажу прав на производство соли. C 1630 г. по 1710 г. налог на соль во Франции увеличивали 14 раз, что послужило одной из причин Великой французской революции. И в России налоги на соль были доходной статьей государственного бюджета.
C древности люди использовали следующие важнейшие способы добычи поваренной соли:
а) естественное испарение морской воды в «соляных садках» («морская соль»);
б) добыча в рудниках — «соляные копи» были известны еще во времена кельтов, а в Величке, около Кракова (современная Польша), они существовали с XIII в.;
в) выпаривание вод соляных источников.
Кристаллизация соли. Миниатюра XV в.
Как правило, соляные источники были собственностью феодальных правителей. Сами же предприятия по выпариванию соли сдавались в наем купцам, которые производили и продавали соль. Из сочинений В. Бирингуччо и Г. Arриколы (см. гл. 5, п. 5.3) хорошо известно, какие химико-технологические процессы применяли в то время для добычи соли. Растворы, содержавшие соль, выпаривали на больших противнях. При их кипячении добавляли кровь, чтобы удалить примеси (с помощью коагуляции) вместе с образовавшейся пеной. C конца XVI в. растворы соли очищали и концентрировали путем пропускания их через градирни, заполненные ветками кустарника или соломой. В дальнейшем при производстве поваренной соли стали применять более сложные аппараты и насосы. Производительность установок для выпаривания соляных растворов постоянно возрастала вместе с их размерами. Все это требовало значительных капиталовложений в производство, превышающих возможности нанимателей солеваренных предприятий и даже их объединений. Только правители феодальных государств могли содержать солеварни благодаря налогам на соль. Поэтому в XVIII в. солеварение все больше и больше становилось государственной монополией, а солеварни приобретали специфические черты капиталистических предприятий.
7.4.2. Добыча и производство других солей
Кроме поваренной соли важнейшими неорганическими продуктами, которые получали с помощью химических методов, были квасцы, сульфат цинка, бура, нашатырь, неорганические красители и лекарственные средства.
До XVI в. главными поставщиками квасцов служили страны Ближнего Востока и Египет. Экспортируя этот химический продукт, они получали высокие прибыли от торговли с европейскими странами. В XV–XVI вв. первые предприятия по добыче квасцов появились в Испании, Марокко, Алжире, а также в Неаполе и Пизе. Выходцу из Константинополя купцу Джиованни де Кастро удалось найти недалеко от Рима почвы, содержащие квасцы. Изготовление каждой новой партии квасцов папа Пий II праздновал так же пышно, как победу над турками; он наложил запрет на импорт «турецких квасцов» и благословил монопольную продажу квасцов, добытых в его государстве. В XVI в. уже во многих европейских странах действовали заводы, производившие квасцы. Это сырье широко использовали для дубления кожи, приготовления красителей, бумаги, различных клеев и лекарств; применяли в текстильных и других производствах.
Добыча и использование квасцов требовали достаточно развитых химических знаний. Сырье — сульфаты алюминия и калия — нагревали в печах, затем выдерживали в течение 40 дней при определенной влажности, после чего растворяли в воде, а образовавшийся раствор при нагревании концентрировали. Через 4–6 дней выделялись кубические кристаллы розового цвета.
Сульфат цинка, который еще в XVI в. добывали в Карпатах, использовали для производства красок, дубления кож и в фармакологии.
Монополия на производство буры с давних времен принадлежала странам Востока. Ее добывали главным образом в Индии, откуда в мешках из слоновых шкур транспортировали в Венецию. Там буру очищали, как и многие другие продукты, перекристаллизацией. Способы производства буры сохранялись в строжайшей тайне. Даже такой великолепно эрудированный химик, как Г. Агрикола в своей книге сообщал о способах получения буры только мало проверенные сведения. Лишь в XVIII в. буру стали очищать также в Амстердаме, Копенгагене и Париже. Это связано с тем, что был освоен новый торговый путь в Европу из Индии через Персию и Петербург. Буру применяли как антисептическое средство, флюс в металлургии, добавку к мылам и крахмалу. Ее также использовали для пайки, дубления кож, пропитки холстов, при производстве стекла, глазури и эмалей.
Нашатырь, необходимый при лужении металлов и производстве некоторых лекарственных препаратов, долгое время импортировали в Европу из Египта и Индии. Хотя еще в XIV в. Псевдо-Джабир описал способ получения этого соединения, лишь в XVIII столетии в Европе было налажено его производство. В основе этого способа лежала переработка ветоши, старой шерсти, костей, а также выделений и останков животных.
7.4.3. Получение соды по методу Леблана
Долгую и интересную историю имеет технология производства соды. К XVIII в. потребности в карбонате натрия резко возросли. Постоянно развивающееся производство стекла, мыла и текстиля нуждалось в больших количествах соды, и те несовершенные методы получения этой соли, которые применялись до XVIII в., запросы промышленности удовлетворить не могли. В то время природный карбонат натрия добывали из содовых озер в Египте, из некоторых минеральных пород Венгерской низменности между Дунаем и Тисой, а также из золы растений. Последний из перечисленных способов получения соды был дорогостоящим и вызывал возмущение общества, поскольку интенсивная вырубка лесов подвела Западную Европу практически к краю экологической катастрофы (см. гл. 7, п. 7.1.1).
Основными источниками карбонатов щелочных металлов были поставки из России, Скандинавии и Северной Америки, где еще сохранились обширные лесные массивы. Однако себестоимость импортируемых соды и поташа была достаточно высока, поэтому в первой трети XVIII в. европейские химики занялись поиском более эффективных способов получения больших количеств соды из того сырья, которое было наиболее доступным. В числе энтузиастов были известные ученые того времени — А.Л. Дюамель дю Монсо, А.С. Маргграф, К.В. Шееле, М. де ла Метри, Б. Хиггинс, А. Фордис, Г. де Морво, И.К. Фридрих Майер, Ж.А. К. Шапталь. Особенно важным оказалось открытие А.С. Маргграфа: ему удалось установить, что сода и поташ — это разные вещества, а не одно и то же, как считали ранее.
Дюамель в 1736 г. попытался из сульфата натрия с помощью уксусной кислоты синтезировать ацетат натрия с последующим превращением его в соду при нагревании. Маргграфу удалось получить в водном растворе нитрат натрия (из сульфата натрия и нитрата кальция), а из него при прокаливании с углем можно было синтезировать соду. Генрих Хаген в 1768 г. осуществил реакцию обмена сульфата натрия с поташем, а Торберн Бергман и И.К. Ф. Майер получили соду при реакции поташа с поваренной солью. Однако все эти методы были чрезвычайно трудоемкими, дорогостоящими и невыгодными для ремесленного производства.
В 1783 г. король Франции Людовик XVI и Парижская академия наук объявили конкурс на разработку наиболее экономичного и эффективного способа производства соды из морской соли. В награду победителю конкурса было обещано 2400 ливров.
В 1775 г. К.В. Шееле удалось разработать метод получения соды через промежуточное образование едкого натра из поваренной соли и соединений свинца. Этот способ, запатентованный в 1787 г., был положен в основу технологии на предприятиях по производству соды, сооруженных в Англии и Франции. Дальнейшее улучшение промышленного способа получения соды было осуществлено в 1777 г. Малербом: исходным сырьем служили поваренная соль и серная кислота, а в процессе использовали также уголь и железо. Вряд ли целесообразно рассматривать здесь многие другие способы получения соды, которые из-за их высокой стоимости и большой продолжительности процесса в дальнейшем не использовались.
Важную роль в развитии химической промышленности сыграл метод производства соды, предложенный в 1791 г. французским ученым Никола Лебланом. Метод Леблана представлял собой периодический технологический процесс, в результате которого из хлорида натрия получали карбонат натрия. На первом этапе исходное сырье под воздействием серной кислоты превращали в сульфат натрия:
2NaCl + H 2 SO 4 → Na 2 SO 4 + 2НСl.
Эта реакция была подробно изучена шведским химиком К.В. Шееле. Основным вкладом автора промышленного метода получения соды явился второй этап превращений, при осуществлении которого полученный сульфат натрия смешивали с мелкоизмельченным мелом и углем, а затем нагревали. Исходные вещества взаимодействовали между собой в соответствии со следующей реакцией:
Na 2 SO 4 + CaCO 3 + 2C → Na 2 CO 3 + CaS + 2CO 2 ↑.
Метод Леблана позволял достаточно легко разделить не только конечные продукты, но и возможный избыток мела или известняка, поскольку карбонат натрия обладает несравненно более высокой растворимостью в воде по сравнению с сульфидом кальция или исходным карбонатом кальция. Раствор карбоната натрия в воде подвергали испарению, в результате чего получали чистую соду.
В патентном описании метода Леблана говорится: «Между железными вальцами превращаются в порошок и смешиваются следующие вещества: 100 фунтов обезвоженной глауберовой соли, 100 фунтов очищенной извести (мела из Медона), 50 фунтов угля. Смешивание продолжается при нагревании в пламенной печи при закрытых рабочих окнах. Вещество приобретает вид кашеобразного флюса, пенится и превращается в соду; образовавшаяся таким образом сода отличается от продажной только более высоким содержанием основного продукта. В процессе плавления массу нужно постоянно перемешивать, для чего используются железные кочерги и другие подобные предметы. Над поверхностью плавящейся массы вспыхивает множество огоньков, похожих на огни свечей. Получение соды завершается как раз к тому времени, когда эти огоньки исчезают. Сплав извлекается из печи железными кочергами, после чего помещается для застывания в формы, придающие содовой массе вид блоков, которые могут поступать в торговлю. Эти процессы можно осуществлять также в закупоренных сосудах или тиглях. Однако таким образом получение соды обходится дороже. Можно также изменять соотношение различных видов сырья, например, взять меньше извести или угля. Но лишь использование вышеописанных пропорций дает наилучший результат. При этом получается около 150 фунтов соды».
Hикола Леблан (1742–1806)
В 1791 г. в Сен-Дени на землях герцога Орлеанского Луи Филиппа II Н. Леблан организовал первую фабрику по выпуску соды на основе новой технологии, причем ежегодный объем производимого ею продукта составлял 320–350 т. Однако в 1794 г. революционное правительство Франции конфисковало поместья герцога Орлеанского вместе с фабрикой и при этом отказало Леблану в выплате компенсации за понесенные убытки. Кроме того, новые власти разгласили все производственные секреты французского ученого. В 1802 г. Наполеон Бонапарт вернул фабрику прежнему владельцу. Однако у Леблана уже не было ни сил, ни средств, чтобы отремонтировать фабрику и повторно наладить производство. В 1806 г. в состоянии депрессии французский ученый покончил с собой.
В начале XIX столетия метод Леблана получил широкое признание не только на родине ученого, но и в других странах. К концу первого десятилетия XIX в. по новой технологии во Франции производили уже до 15000 т соды ежегодно. Особенно интенсивно метод Леблана стали внедрять в Англии. Первую фабрику по производству соды на основе метода Леблана построил Джон Лош в 1807 г. на реке Тайн. К семидесятым годам XIX в. производство соды в Англии достигло 200000 т в год, что превышало объем этого продукта, произведенный всеми европейскими странами в целом. Последняя фабрика по выпуску соды на основе технологии Леблана закрылась только в двадцатых годах XX в.
Получение соды по методу Леблана, как и производство серной кислоты, стало основной отраслью химической промышленности XIX в. Этот процесс имел большое значение и для совершенствования химических знаний. Его изучение поставило множество проблем перед химиками, таких, например, как изучение способов удаления побочных продуктов из смеси. Для промышленности было важно, что большие количества соды, необходимой для производства стекла, мыла, текстильных материалов, стало возможным производить дешевым методом из легко доступного сырья — поваренной соли, извести и угля. Кроме того, при этом удавалось сберечь значительное количество общественного труда, что является показателем технического прогресса. И сырье, и средства производства (печи, вальцы, крюки, шпатели) были хорошо известны химикам-практикам задолго до того, как Леблан запатентовал свое изобретение, оригинальность предложенного французским изобретателем метода состояла в нахождении оптимальных соотношений отдельных видов сырья и условий их взаимодействия, приводящих к образованию соды.
Тем не менее с точки зрения современности метод Леблана не лишен серьезных недостатков. Один из них — загрязнение окружающей среды. На первой стадии процесса, согласно уравнению реакции, выделялся газообразный хлороводород. В начале XIX в. этому соединению еще не нашли достойного промышленного применения, поэтому его просто выбрасывали в атмосферу. Еще одним из побочных продуктов производства соды являлся сульфид кальция, который в ту пору также не умели перерабатывать и сваливали в отходы на прилегающих к фабрикам территориях. Под влиянием атмосферных воздействий CaS подвергался гидролизу с образованием сильно ядовитого вещества — сероводорода.
Открытие Никола Леблана явилось результатом длительного развития химико-технических исследований. Его можно расценить как одно из важнейших составных частей фазы наивысшего развития химии в XVIII в. Изобретение Н. Леблана в немалой степени способствовало освобождению химии от «старых путей» и переходу ее в XIX в. на качественно новую ступень развития.
7.5. Изготовление письменных материалов
История письменных материалов неразрывно связана с возникновением письменности как знаковой системы фиксации речи, позволяющей с помощью начертательных (графических) элементов закреплять речь во времени и передавать ее на расстояние. Впервые письменность возникла в Древнем Междуречье в конце IV тыс. до н.э. Основными письменными материалами у древних шумеров были приготовленные специальным образом глиняные таблички.
Практически одновременно (может быть, с запозданием на несколько столетий) возникла письменность в Древнем Египте. В качестве основного письменного материала египтяне использовали папирус [29]Папирус (Cyperus papyrus) — растение, принадлежащее к семейству осоковых. В древности дикорастущий папирус был широко распространен в долине Нила, в настоящее время практически не встречается.
. В древности папирус встречался в Египте очень часто и даже изображался на гербе Дельты Нила. Впоследствии его культура стала монополией; его разводили лишь в немногих местах, желая поднять и без того высокую цену. В жизни древних египтян папирус играл очень важную роль и служил самым разнообразным целям: его молодые побеги употребляли в пищу, корень служил горючим материалом, используемым в производстве меди и железа. Из коры папируса делали сандалии, а волокна шли на изготовление различных тканей, которые ценились выше льняных. Из связанных стволов сооружали челноки для рыбной ловли и даже большие суда.
Особенно значимым было употребление папируса в качестве письменного материала. C этой целью стебли папируса древние мастера очищали от коры и разрезали вдоль. Получившиеся полоски раскладывали внахлест на ровной поверхности. На них выкладывали под прямым углом еще один ряд полосок и помещали под пресс. После сушки лист папируса отбивали молотком. Полученные таким образом листы папируса затем склеивали в свитки, а в более позднее время — соединяли в книги (лат. codex). Сторона, на которой волокна шли горизонтально, была лицевой. На папирусах писали скорописью, сначала иератическим письмом, а в I тыс. до н.э. — демотическим. Для записи сакральных текстов использовали курсивные египетские иероглифы. Кроме того, на папирусы наносили различные изображения — известным примером служат виньетки Книги мертвых. Наибольшую известность получили папирусы Среднего царства, которые выставлены в Британском музее, Эрмитаже и других хранилищах мировой культуры. От времен Нового царства дошло до нас множество папирусов самого разнообразного содержания. Весьма интересны школьные тетради писцов, судебные акты, сказки, письма чиновников, официальные бумаги, молитвы богам и другие религиозные тексты. От позднейших эпох Египта осталась масса греческих, коптских, арамейских и арабских папирусов, рассеянных по всем музеям и коллекциям.
Древнеегипетский папирус. Фрагмент из «Книги мертвых»
В античную эпоху папирус был основным материалом во всем греко-римском мире, но сохранились папирусы только в Египте благодаря уникальному климату. Самой большой коллекцией папирусов различных эпох и народов располагала знаменитая Александрийская библиотека. В Египте были найдены и греческие папирусы, которые внесли неоценимый вклад в классическую филологию: например, один из папирусов сохранил для нас «Афинскую политик)» Аристотеля, от которой в противном случае было бы известно только название.
Еще одним предшественником бумаги можно считать пергамент. По свидетельству врачевателя персидского царя Артаксеркса II Ктесия, уже в V в. до н.э. кожу животных в качестве письменного материала использовали народы Ближнего Востока. Откуда она, под именем дифтера, перешла в Грецию, где для письма употребляли обработанные овечьи и козьи шкуры.
По свидетельству Плиния во II в. до н.э. египетские цари династии Птолемеидов, желая поддержать книжное богатство Александрийской библиотеки, нашедшей себе соперницу в лице Пергамской, запретили вывоз папируса за пределы Египта. Тогда в Пергаме обратили внимание на выделку кожи, усовершенствовали древнюю дифтеру и пустили ее в оборот под именем pergament, по месту главного производства (у римлян membrana, с IV в. н.э. — pergamena). Иногда в качестве изобретателя пергамента называют царя Пергама Эвмена II (197–159 гг. до н.э.).
Популярности пергамента способствовало то, что при его использовании (в отличие от папируса) существовала возможность смыть текст, написанный растворимыми в воде чернилами, и нанести новый. Кроме того, на пергаменте можно было писать с обеих сторон листа. В монастырском книжном обиходе средневекового периода пергаментные кодексы постепенно вытеснили папирусные свитки. C IV в. н.э. уже был распространен обычай писать богослужебные книги только на пергаменте. В Средние века знали два основных сорта пергамента: собственно пергамент и веллум (лат. vellum), или также велен (от франц. velin). Для изготовления пергамента употреблялись козьи, овечьи и телячьи шкуры; на изготовление велена шли шкуры новорожденных и особенно мертворожденных ягнят и телят. Пергамент был толще и грубее велена. Однако раннее Средневековье практически не знало велена в строгом значении этого слова — его начали широко применять в производстве книг только с конца XII в.
Вне зависимости от того, какие шкуры использовались, мастера-пергаментщики начинали с промывки и удаления с них наиболее грубого и жесткого волоса. После этого шкуры подвергали золению — длительному вымачиванию в известковом растворе. В извести шкуры выдерживали от трех до десяти дней в зависимости от температуры окружающего воздуха, а затем промывали в воде, это облегчало удаление оставшегося волоса. После выпадения волосяного покрова шкуры натягивали на деревянные рамы и мездрили, то есть отделяли от дермы нижний слой — подкожную клетчатку. Эта операция производилась при помощи полукруглых ножей. Затем шкуры шлифовали и выглаживали пемзой.
На последней стадии обработки в пергамент втирался меловой порошок, впитывающий жир, не удаленный при предыдущих обработках. Помимо этого, меловой порошок делал пергамент более светлым и однородным по цвету. К писцам и художникам пергамент поступал разрезанным и, как правило, собранным в тетради. Дня ценных рукописей, чтобы придать им особую роскошь, использовали цветной, всего чаще фиолетовый пергамент, на котором писали серебром и золотом.
В Российской Национальной библиотеке (Санкт-Петербург) хранятся две поистине уникальных рукописи. Одна из них написана св. Августином на превосходном, мягком и тонком, почти белом пергаменте, выделка которого представляет своего рода совершенство. Второй манускрипт представляет собой греческое четвероевангелие, писанное золотом по фиолетовому пергаменту, по преданию, рукой византийской императрицы Феодоры.
В то время, когда в Египте, Греции и Риме писали на пергаменте и папирусе, в Китае уже употребляли бумагу. Создание бумаги по праву относят к четырем великим изобретениям древнего Китая. На основании китайских летописей официально признано, что в 105 г. н.э. технологию производства бумаги на основе хлопка впервые открыл китайский ученый Цай Лунь. Считается, что идею производства бумаги китайский изобретатель заимствовал у диких пчел и ос, которые используют пережеванную древесную массу при строительстве своих гнезд. Однако в последнее время историками обсуждаются факты, указывающие на то, что бумагу использовали китайские военные в северной провинции Гансу за сто лет до изобретения Цай Луня. Совсем недавно археологи отыскали образцы настоящей бумаги (правда, без надписей и рисунков) в культурных слоях, датируемых II в. до н.э.
Как доказывают недавние археологические исследования, бумагу знали племена майя уже в V в. н.э. Бумага была достаточно широко распространена среди мезоамериканских культур еще до завоевания испанскими конкистадорами. Некоторые традиционные методы изготовления бумаги, известные майя, сохранились и до настоящего времени.
Технология изготовления бумаги крайне медленно проникала в сопредельные с Китаем страны Востока. И хотя жители Кореи и Японии были знакомы с бумагой китайского производства, наладить ее изготовление не удавалось несколько столетий — китайские мастера весьма неохотно делились секретами производства. Приблизительно около 600 г. технология изготовления бумаги проникла в Корею, а спустя еще двадцать лет — в Японию.
Китай торговал бумагой и с ближневосточными государствами, однако рецепт ее изготовления был недоступен арабским ремесленникам вплоть до середины VIII в. Проникновение технологии производства бумаги на Запад связывают с битвой при Таласе. В этом сражении между арабскими и китайскими армиями решался вопрос о том, чьей сферой влияния окажется территория Средней Азии. В 751 г. победа оказалась в руках воинов ислама, поэтому Средняя Азия перешла под протекторат мусульманского мира. Арабским воинам достались не только богатые трофеи, но и огромное число пленных, среди которых оказались мастера, владеющие секретами изготовления бумаги. Так в VIII в. н.э. секреты производства бумаги стали известны в мусульманских государствах Ближнего Востока, Северной Африке и Испании. Именно из Кордовского халифата, которому принадлежало практически две трети современной Испании, бумага проникла в Западную Европу. Первой страной христианского мира, которая познакомилась с бумагой, была Италия. Самым древним из известных в Западной Европе документов, написанных на бумаге, является рукопись мусульманского требника, датируемая XI в., происхождение которого связывают с Кордовским халифатом.
В XI–XII вв. бумага уже известна в большинстве стран Западной Европы. Несмотря на все попытки сохранить в тайне секреты ее производства, в XIII–XIV столетиях ее изготовляли уже практически по всей Европе. При этом наряду с тряпьем и растительными волокнами льна и конопли использовали такие вещества, как щелочи, клей, отбеливающие и красящие соединения. Технология изготовления бумаги в то время была весьма примитивной. Практиковали ручной размол массы деревянными молотками в ступе, из которой ее вычерпывали формами с сетчатым дном. Только в 1238 г. в Испании была сооружена первая бумажная мельница.
Появление бумаги создало предпосылки для быстрой передачи знаний и ускорения общения между людьми. Особенно важную роль бумага стала играть после того, как в середине XV в. Иоганн Гуттенберг (см. гл. 5, п. 5.1) изобрел книгопечатание. Важнейшим следствием этого изобретения для науки, и в частности химии, стало значительное увеличение печатания книг не только религиозного, но и научного содержания. Распространение в XV–XVI вв. книгопечатания по своей значимости можно считать первой информационной революцией {276} . Оно оказало такое же громадное влияние на развитие знаний, как появление в XX в. радио и телевидения. Начиная с середины XVIII в. книги и газеты издавались все чаще не на латыни, а на «живых» языках европейских народов. Все это резко увеличило количество читателей в европейских странах.
Некоторые популярные печатные издания стали доступными европейским горожанам и даже крестьянам уже в XV в., однако цена большинства книг вплоть до XIX в. оставалась достаточно высокой. В эпоху Возрождения большинство людей, которые приобщались к знаниям посредством чтения, были представителями буржуазного сословия. Просвещение стало составной частью борьбы буржуазии за свои политические и экономические права. Многие ученые и книгоиздатели боролись со средневековыми цеховыми правилами, согласно которым опыт следовало хранить в тайне. В своих сочинениях, получивших широкую известность, В. Бирингуччо,
Г. Агрикола, Л. Эркер и другие ученые описали известные ранее лишь немногим сведения о способах производства разнообразных химических продуктов (см. гл. 5, п. 5.2, 5.3). Доступность знания приходила на смену сохранению традиций.
Ученые пытались сделать накопленную ранее информацию по проведению химических процессов полезной для решения практических задач.
Памятник первопечатнику Ивану Федорову работы С.М. Волнухина. Бронза. Установлен в Москве в 1909 г.
Большое значение для развития производства бумаги имело изобретение во второй половине XVII в. размалывающего аппарата — ролла.
В начале семидесятых годов XVIII в. английский бумажный фабрикант Дж. Ватман-старший ввел новую бумажную форму, позволявшую получать листы бумаги без следов сетки. В конце XVIII в. роллы уже позволяли изготавливать большое количество бумажной массы, но ручной отлив (вычерпывание) бумаги задерживал рост производства. В 1799 г. Н.Л. Робер (Франция) изобрел бумагоделательную машину, механизировав отлив бумаги путем применения бесконечно движущейся сетки. В Англии братья Г. и С. Фурдринье, купив патент Робера, продолжали работать над механизацией отлива и в 1806 г. запатентовали свою бумагоделательную машину. Технические усовершенствования, которые были осуществлены в промышленном производстве бумаги на рубеже XVIII–XIX вв., резко снизили себестоимость конечного продукта и улучшили его качество. В конечном счете, все эти технологические усовершенствования привели к заметному удешевлению печатной продукции.
Основателем книгопечатания в России и на Украине является Иван Федоров. В 1564 г. в Москве совместно с П. Мстиславцем он выпустил первую русскую датированную печатную книгу «Апостол». В 1574 г. И. Федоров напечатал во Львове первую славянскую «Азбуку», а несколько позднее в Остроге издал первую полную славянскую Библию («Острожская Библия»).
7.6. Производство сахара
Изготовление сахара, как и бумаги, отчетливо демонстрирует интернациональный характер развития многих технологических процессов. Впервые сахар начали получать в Индии. Технология очистки сахара, по-видимому, была освоена в Персии, а затем усовершенствована в Египте и Сирии. Марко Поло писал, что из Египта опыт производства сахара проник в Китай. Первоначально ремесленники ограничивались тем, что сок сахарного тростника сгущали и осветляли с помощью молока. Египтяне очищали сахарный сироп известью или золой. Леденцы и кристаллический сахар были весьма ценными товарами, которые позже стали монополией арабских торговцев. Именно арабы способствовали распространению посевов сахарного тростника на Сицилии и в Испании.
Как и многие другие товары, сахар поступал в Европу с Востока через Венецию. Долгое время в европейских странах сахар был настолько дорогим, что его применяли лишь в медицинских целях. C открытием Нового Света в XVI в. произошло расширение площадей, отведенных под сахарный тростник, новые плантации были заложены в Бразилии, Мексике, на острове Сан-Доминго и на Кубе. Увеличение производства сахара было обусловлено и быстро возросшим в XVI–XVIII вв. спросом на другие колониальные товары: чай, кофе и какао.
Вплоть до XVIII в. технология производства сахара мало отличалась от разработанной в средневековом Египте. Правда, в отличие от Египта, в Европе для совершения механической работы в производстве использовали не людей и животных, а чаще всего ветряные двигатели или водяные колеса. Силой ветра или падающей воды в движение приводили вальцы, которые выжимали сок из стеблей сахарного тростника, и мешалки, предохраняющие сироп от пригорания к стенкам варочных котлов.
Для очистки сахарного сиропа многократно повторяли промывание известковой водой со щелоком и нагрев, при котором вместе с образующейся пеной от сахара отделялись примеси. Густую сахарную массу после этого заливали в глиняные формы, в которых сахар затвердевал. Сахар обкладывали специальной сырой глиняной «кашей», которая поглощала примеси. После удаления этой «каши» и промывки сахарная «голова» приобретала чистый белый цвет. Производительность процесса очистки была сравнительно низкой: из 100 частей сахара сырца удавалось получить всего лишь примерно 20 частей рафинада.
C конца XVI в. рафинация тростникового сахара была освоена в Антверпене, Гамбурге, Нюрнберге, Аугсбурге, Дрездене, а также в некоторых английских и французских городах. В XVII–XVIII вв. производство сахара стало важнейшей отраслью химических ремесел, связанных с получением органических продуктов. В XVIII в. произошло заметное укрупнение предприятий по производству сахара-рафинада, они имели большие по тем временам производственные возможности.
Во второй половине XVIII в. в производстве сахара наметился переход на новое сырье и более передовые технологии рафинирования конечного продукта. В 1747 г. Андреас Сигизмунд Маргграф выпустил книгу, в которой описал способы получения из свеклы и некоторых других растений такого же сахара, как из тростника. Процессы, описанные А.С. Маргграфом, были наглядными примерами многочисленных химических реакций, осуществляемых в ту весьма практичную эпоху. Правители европейских государств стремились заменить на внутреннем рынке своих стран импортные продукты товарами собственного изготовления. Технология, предложенная Маргграфом, была необычайно важна для развития сахарной промышленности, однако предложенные им способы производства и сырье были слишком дороги, чтобы обеспечить полноценную замену тростниковому сахару. Лишь благодаря обширным изысканиям, проведенным в конце XVIII в. Францем Карлом Ахардом, удалось упростить процессы получения сахара и вывести сорт свеклы, содержащей повышенное количество сахарозы. В Германии промышленное производство сахара из свеклы распространилось в начале XIX в., а вскоре и во Франции сахароварение превратилось в мощную отрасль индустрии.
Появление отрасли промышленности, производящей сахар из свеклы, вызвало большие изменения в структуре сельского хозяйства и повлияло на переустройство системы землепользования во многих странах Европы. Прежде всего, производство сахара из свеклы привело к резкому снижению стоимости конечного продукта. В результате падения цен на сахар существенным образом изменился и рацион питания людей — сахар и кондитерские изделия, которые раньше могли позволить себе только состоятельные буржуа и аристократы, стали доступными для широких слоев населения.
7.7. Новые вещества и технологии
7.
7.1. Порох и зажигательные смеси
Как свидетельствуют историки, примерно с IV в. до н.э. армии греческих городов-государств и воевавшие с ними персидские цари в морских и сухопутных сражениях применяли зажигательные смеси. В их состав входили мелко раздробленный уголь, пакля, смола и нефть. Возможно, что уже в морской битве при Кицикосе в 678 г. н.э. византийцы применяли зажигательные смеси, в состав которых входила селитра. Существует мнение, что зажигательные смеси могли содержать негашеную известь, которая воспламенялась на поверхности воды. Смесь, содержащую негашеную известь, по всей видимости, и называли «греческим огнем». В «Огненной книге» Марка Грека, написанной в 1250 г. в Константинополе, приводится рецепт приготовления «греческого огня». В его состав входили смола, сера, нефть, масла и поваренная соль. Рукописные копии этого труда содержат также рецепты изготовления пороха из 6 частей селитры, 2 частей угля, 1 части серы. Однако копии этого манускрипта в Европе стали известны после 1250 г.
В середине XIII в. появились труды арабских ученых, где описывались свойства нового соединения — селитры и ее охлаждающее действие. В конце XIII в. увидела свет книга Хасана ар-Раммайя с описаниями многих способов грубой и тонкой очистки природной селитры. В этом фолианте содержались также рецепты зажигательных смесей и пиротехнических составов для так называемых «китайских стрел» или «китайских огненных копий». Эти названия в определенном смысле справедливы, так как порох был открыт в Китае и секрет его изготовления попал в Европу через Индию и арабские государства. C незапамятных времен в Китае узнали те звуковые эффекты, которые производит бамбук, если его бросить в огонь. Давление горячего воздуха и пара внутри полых стеблей с громким треском разрывало их. В дни новогодних праздников треск разрывающегося бамбука отпугивал злых духов и расчищал дорогу наступающему году. Взрывать бамбук было любимой потехой китайцев и во времена Марко Поло, который в 1295 г. привез в Европу свой полный чудес отчет о загадочной «стране Китай».
Открытие дымного пороха считают одним из четырех величайших изобретений древнего Китая. В IX в. н.э. появилось некое новое вещество, специально предназначенное для создания шума. По всей видимости, открытие этой смеси произошло случайно. Средневековые китайские алхимики, в отличие от своих коллег из арабского мира и Западной Европы, не стремились к получению золота. Своей главной задачей они считали разгадку состава эликсира бессмертия. На этом пути их внимание привлекали материалы с парадоксальными свойствами: золото — металл, который никогда не тускнеет; ртуть — жидкий металл; сера — камень, способный гореть, — не таят ли эти вещества секрет вечной молодости?
Главным компонентом «огненного зелья» стала селитра. В Китае ее можно было найти без труда — она выступала белой коркой на некоторых почвах. В местностях, где не хватало столовой соли, повара иногда использовали селитру, чтобы улучшить вкус блюд. Конечно, они замечали, как ярко вспыхивает огонь, если бросить в него щепотку этого белого порошка. Производство относительно чистой селитры было непременной частью обычного репертуара алхимиков, которые веками изучали ее свойства. Все алхимические трактаты эпохи Тан (618–907) упоминают о селитре и способах ее приготовления.
Давно знали китайские ученые и о горючих возможностях серы. Этот элемент — один из немногих, которые встречаются в природе в виде простого вещества. Третьим компонентом смеси стал древесный уголь, который издавна использовался как источник тепла. Селитра, сера и древесный уголь, вступая в сложное взаимодействие, вызывали к жизни магию «огненного зелья». Когда вспыхивал порох, газы выделялись мгновенно, а тепло, образующееся при реакции, заставляло их чрезвычайно расшириться. Стремительным расширением горячего газа и объясняются все эффекты «огненного зелья». В одном из отчетов средневековых китайских алхимиков указывалось, что при нагревании смеси селитры, древесного угля, серы и меда вырывается пламя, окутанное густыми клубами дыма. Еще одной важной задачей было установить правильное соотношение, в котором надо смешать все три ингредиента. Путем долгих экспериментов был вычислен оптимальный состав дымного пороха: селитру, серу и уголь соединяли в массовых соотношениях 15:2:3. Конечно, химические механизмы этого процесса тогда еще не были известны — до открытия кислорода оставалась еще почти тысяча лет. Китайские алхимики разрабатывали теории, исходя из собственной концепции движущих сил мироздания, которая рассматривала мир как систему находящихся в равновесии противоположностей: инь — пассивное, холодное, женское начало и ян — активное, горячее, мужское.
В исторической литературе бытует устойчивое заблуждение, что в Китае порох не использовали в военных целях, по крайней мере до нашествия монгольских завоевателей. Однако первые документы, подтверждающие применение взрывоопасной смеси в боевых условиях, относятся к самому началу X в. По всей видимости, первоначально порох использовали для создания «огненных стрел» — примитивных ракет. В этот период китайские военные применяли порох главным образом в качестве зажигательных и разрушительных средств. К XI в. были уже разработаны начиненные порохом бомбы и гранаты, которыми забрасывали вражеские войска с помощью катапульт. Свойства пороха как метательного взрывчатого вещества (пропеллентные свойства) стали использовать несколько позднее. Документ, в котором содержалось описание экспериментов с первой пушкой, представлявшей собой полый ствол бамбука, датируется 1132 г.
Металлические орудия (железные или бронзовые) в китайской армии династии Сун применили во время сражений с монгольскими ордами Хубилай-хана (внука Чингиз-хана) в 1268–1279 гг. Еще в 1257 г. некий китайский правительственный чиновник сетовал на то, что в сунских арсеналах отчаянно не хватает современного оружия, особенно железных бомб и огненных стрел. Однако эти предостережения не были услышаны. Хубилай-хан напал на сунский Китай и быстро обратил страну в придаток огромной Монгольской империи.
Китайские воины отражают атаку врага с помощью «огненных стрел»
В XIII в. порох стал известен в арабском мире. Как свидетельствуют историки, уже в начале сороковых годов XIII столетия арабы знали о существовании селитры («китайского снега»), пороха и первых ракет («огненных стрел»).
В книге по военному искусству арабского ученого Шемс-ад-Дина Мохаммеда, который жил в конце XIII — начале XIV вв., были описаны способы использования пороха для стрельбы. Автор писал, что вначале в дуло орудия засыпали «пороховой заряд», а поверх него — слой «орехов» (вероятно, свинцовых шариков). При воспламенении пороха образующиеся газы с силой выбрасывали «орехи» из ствола пушки. Использование такого орудия создало предпосылки для очень быстрого развития артиллерии в Западной Европе. В 1273 г. некое подобие пороховой пушки применил военачальник Абу-Юсуф из династии Меринидов при осаде города Сиджильмасы.
К настоящему времени не существует какой-либо единой версии о путях проникновения пороха в Западную Европу. Вероятнее всего, постепенно через страны Ближнего Востока по Великому шелковому пути порох дошел до европейских стран.
Первое письменное упоминание о порохе можно встретить в сочинении Роджера Бэкона (см. гл. 4, п. 4.3) «De Secretis Operibus Artis et Naturae», датируемом 1248 г. Спустя девятнадцать лет в своей книге «Великий труд» английский философ и алхимик подробно описал состав смеси, которую можно применять для изготовления фейерверков. Основываясь на этих трудах, некоторые историки приписывают изобретение пороха именно Роджеру Бэкону.
По всей видимости, появление пороха в Европе нельзя расценивать как открытие, имеющее однозначное авторство и дату своего рождения. Скорее всего, порох следует считать плодом коллективного труда многих алхимиков того времени: примерно в одно и то же время он появился в разных городах Европы. По свидетельству средневековых хронистов, в 1258 г. жители Кельна впервые в Европе использовали зажигательные составы. Изобретение пороха и применение его в военных целях способствовало появлению огнестрельного оружия: пушек, а затем ружей и пистолетов. Во Фрайбурге, где, согласно легенде, долгое время жил монах Бертольд Шварц, которого также некоторые авторы склонны считать европейским изобретателем пороха, в 1300 г. была отлита первая пушка.
Европейские монархи стремились быстро перевести свои армии на новое, более мощное и смертоносное вооружение. Порох вынудил полководцев пересмотреть аксиомы военного дела, незыблемые в течение столетий. К концу XIII в. порох стал известен и в России, по всей видимости, от монгольских завоевателей.
Бертольд Шварц. Гравюра конца XVI в.
Классическая пушка с зарядной камерой длиной в четыре диаметра ядра
Если в XIII в. выстрел из пушки был еще сенсацией, то уже в XIV–XV вв. пушки и ракеты начали производить в разных европейских странах. По мнению некоторых историков, первое широкомасштабное применение пушек, переломившее ход кровопролитного сражения, произошло во время Столетней войны в битве при Креси. В 1346 г. английский король Эдуард III с помощью нового оружия разгромил французскую армию, превышавшую по численности его войско. Военное значение огнестрельного оружия росло вместе с его распространением по всему миру. По сравнению с катапультами — машинами для метания камней — и разнообразными стенобитными устройствами, известными еще со времен Древнего мира, огнестрельные орудия обладали гораздо большей разрушительной и убойной силой, значительной дальностью стрельбы и более высокой мобильностью.
В середине XV в. порох уже научились зернить, что отразилось и в его названии. В XVI–XVII вв. появилось русское слово «порох», очевидно, связанное с порошком. То же мы видим и в других языках: в польском — proch, в английском — powder, в немецком — pulver. Зернение пороха привело к повышению его эффективности как метательного взрывчатого вещества и к дальнейшему усовершенствованию огнестрельного оружия.
Вообще первое известное европейское изображение ракеты и пусковой установки для нее относится к 1405 г. В 1410 г. появилась работа Жана Фруассара «Хроники» с описаниями ракет и пусковых устройств, в 1420 г. — «Энциклопедия военных инструментов» («Bellicorum Instrumentorum Liber») Джованни Фонтана, к которой прилагался альбом с зарисовками военных ракет. А первое зафиксированное применение боевых ракет в Европе произошло во время защиты Орлеана французскими войсками под предводительством Жанны д’Арк в 1429 г.
Страницы из книги Ж. Фруассара «Хроники»
Подобно колесу и компасу, порох помог человеку дойти до самого края света. C помощью огнестрельного оружия были покорены моря и континенты, разрушены цивилизации, уничтожены или порабощены целые народы. Испанские конкистадоры с поразительной легкостью завоевали два самых могучих государства Нового Света — империи инков и ацтеков. Армии правителей Куско и Теночитлана, вооруженные лишь стрелами, луками, копьями и мечами, были повержены не столько ядрами испанцев, сколько устрашающим пламенем и оглушительным грохотом, сопровождавшими применение огнестрельного оружия.
Развивающееся производство ружей и пушек требовало все больше механиков, техников, специалистов в области химии и физики. Увеличивалась и потребность в порохе, металле для пушек и ружей, в орудийных лафетах и другом воинском снаряжении и оборудовании. Совершенствование артиллерийской техники, необходимость прицельного огня орудий и изучение движения снарядов привели к возникновению баллистики как науки. Литейное «искусство» в XIII–XIV вв. уже было достаточно развито. Широкое распространение в это время уже получила отливка церковных колоколов. Изобретение пушек послужило новым стимулом для улучшения технологии литья металлов. Для орудийных стволов требовались специальные сплавы и совершенные методы обработки металлов — сверление, полировка и т.п. Это стимулировало развитие химических знаний и совершенствовало техническое мастерство литейщиков. Подобно печатному станку, порох способствовал рождению современной науки и подготовил промышленную революцию.
Переход к огнестрельному оружию привел к возникновению новых химических ремесел, основанных на приготовлении селитры и пороха. Первые пороховые заводы возникли в Германии: в Аугсбурге (1340), Лигнице (1344) и Шпандау (1348). Одним из основных компонентов при изготовлении пороха являлась селитра. Сначала европейские государства импортировали селитру. (Венеция, через которую товар попадал в Европу, имела большие прибыли от этой торговли.) Однако уже в XV в. из-за растущего спроса на селитру многие европейские государства организовали ее производство из местного сырья. Поставщики селитры получали привилегии от властей.
Добыча селитры (из книги Л. Эркера, 1574 г.):
В — выпаривание раствора селитры; F-G — кристаллизация селитры из растворов
C XVII в. интенсивные и систематические поиски селитры в Европе привели к организации ее искусственных «месторождений». Стали создавать «селитряные сады» или «плантации». Делали это так: продукты жизнедеятельности (органические остатки) и останки животных смешивались с известковыми почвами, землей кладбищ, захоронений, отходов скотобоен, донными отложениями прудов и болотной жижей. Туда же добавляли известь, мусор, золу и отходы мыловарения. Затем эту смесь засыпали в ямы либо закладывали послойно в кучи и заливали навозной жижей. За счет процессов разложения в течение двух-трех лет в этих ямах или кучах образовывалась селитра. Выход готового продукта составлял примерно 1: 6, т.е. из 6 кг «селитряной земли» получался 1 кг селитры.
Само собой разумеется, что правители европейских государств были крайне заинтересованы в производстве селитры. Например, в Швеции крестьяне даже были обязаны частично выплачивать селитрой налоги. В Швейцарии производить селитру должны были скотоводческие хозяйства и даже монастыри ордена иоаннитов.
Однако наиболее развито производство селитры было во Франции и Саксонии. Французское правительство в XVIII в. вознаграждало всех, кто занимался производством селитры. В 1777 г. во Франции было создано специальное государственное предприятие по ее получению; великому химику А.Л. Лавуазье (см. гл. 6, п. 6.7) было поручено осуществлять надзор за производством селитры. Этот факт указывает на то, что к этому времени между наукой и производством уже установились достаточно прочные связи.
История производства селитры показывает, что уже с начала XIV в. химические знания были достаточными для того, чтобы в больших количествах изготавливать порох и азотную кислоту — вещества, которые оказались очень важными для развития цивилизации. Со временем способы получения селитры в значительной степени усовершенствовались, в результате чего резко вырос объем ее производства. Однако коренные технологические изменения этих и других важных промышленных процессов были осуществлены лишь в XIX в.
Лаборатория для определения качества селитры (из книги Л. Эркера «Описание всех известных минеральных руд»).
А — выщелачивание «селитряной земли», … С — весы, … F — выпаривание пробы с помощью свечи
Обогащенные селитрой земли выщелачивали, нередко с добавлением золы, поташа или сульфата калия. Затем соляной раствор упаривали в железных или медных котлах. Туда же добавляли щелочь, уксус или винный камень для предотвращения образования накипи. Когда раствор достигал определенной концентрации, его переливали в медные или деревянные чаны, где происходила завершающая стадия — кристаллизация селитры.
Поскольку пороховые заводы предъявляли высокие требования к чистоте селитры, ее приходилось перекристаллизовывать по нескольку раз до определенной степени чистоты, обесцвечивать с помощью угля и квасцов, а также очищать от примесей поваренной соли промыванием в холодной воде.
Распространение и развитие химических ремесел, связанных с изготовлением пороха, оказало большое влияние на совершенствование естественнонаучных знаний, философских систем и даже развитие цивилизации. Густав Фестер указывал, что применение огнестрельного оружия оказало «такое громадное влияние на совершенствование военной техники, которое можно сравнить лишь с влиянием на развитие человечества использования железа, начавшееся примерно за три тысячелетия до этого». Эту мысль поддерживал и Дж. Бернал, который считал, что изобретение пороха оказало гораздо большее влияние на развитие науки, чем на совершенствование военной техники. «Порох и пушки взорвали не только экономические и политические отношения мира Средневековья, — писал Дж. Бернал, — они также стали важнейшими факторами, которые разрушили средневековое мировоззрение». По мнению Дж. Мэйоу (см. гл. 6, п. 6.4), «селитра произвела такой же шум в философии, как и на полях сражений».
Селитра оказалась также веществом, очень важным для других химических ремесел. Изготовление селитры требовало коренного совершенствования методов разделения и очистки солей, при этом особенно важную роль играли процессы растворения и кристаллизации. Появление огня при горении пороха и без доступа воздуха натолкнуло средневековых ученых на новые представления о процессах горения. Складывалось мнение, что селитра содержит «воздух», необходимый для горения. Изучение «селитряного воздуха» сыграло впоследствии громадную роль в разработке важных положений химической науки (см. гл. 6, п. 6.4).
7.7.2. Производство спирта
Среди веществ, впервые открытых в эпоху Средневековья и оказавших значительное влияние на развитие всей человеческой цивилизации, необходимо назвать этиловый спирт. В чистом виде спирт был получен примерно в то же время, что и селитра, хотя спиртные напитки были известны уже в течение тысячелетий (см. гл. 4, пп. 4.3–4.5). Чистый этиловый спирт удалось получить в результате усовершенствования методов химического эксперимента, а именно благодаря применению водяного охлаждения при перегонке и углублению знаний о химических процессах.
Простейшие виды перегонки были известны с давних пор, однако они были настолько несовершенны, что не позволяли получать из вина и пива даже такой легко кипящий продукт, как этиловый спирт. Следует отметить, что в древности с помощью перегонки получали отнюдь не спирт (хотя еще в эпоху античности знали, что при нагревании крепких вин из них выделяется пар, который может гореть), а масла (главным образом, розовое), скипидар и другие органические вещества. Относящееся к XIII в. сочинение Шемс-ад-Дина Мохаммеда «Космография» содержит описание процессов перегонки и соответствующих аппаратов, используемых для этой процедуры. Например, для получения розового масла в печь помещались несколько соединенных друг с другом колб, заполненных водой и лепестками роз, дистиллят улавливался в специальных сосудах-приемниках. «Розовая вода» (раствор розового масла) была одним из самых ценных товаров в торговле между странами от Ближнего и Среднего Востока до Китая.
Перегонка с водяным охлаждением (из книги Г. Бруншвига (1590))
Осуществление процесса перегонки спирта сильно зависело от техники охлаждения. Первоначально использовали только воздушное охлаждение; чтобы повысить его эффективность, всяческими способами старались увеличить путь от кипящего котла до приемника этилового спирта. Например в XV в. в Падуе (Италия), как указывают источники того времени, существовали такие установки для перегонки, у которых котел размещали в подвальном этаже здания, а приемник монтировали над перекрытием первого этажа. Понимая, что вода обладает лучшей теплопроводностью по сравнению с воздухом, ремесленники постепенно усовершенствовали аппаратуру для охлаждения. Важным этапом на этом пути стало применение водяного охлаждения. Поначалу приемник просто опускали в резервуар с водой. В других аппаратах трубку делали витой и также пропускали ее через воду.
Даже такая примитивная техника соответствовала требованиям, необходимым для перегонки этилового спирта. Сначала он применялся исключительно как лечебное средство. Во время эпидемий чумы в средневековой Европе этиловый спирт использовали как «живую воду». Его пили в чистом виде или готовили на его основе различные ликеры. Уже в XIV в., кроме вина, люди употребляли этиловый спирт, полученный при переработке зернобобовых культур. Использование картофеля в качестве сырья для приготовления этилового спирта отмечено лишь в XIX в.
Печи и другое оборудование для перегонки жидкостей (из книги: Jan van der Straet. Nova reperta. Antwerpen, 1638)
В человеческой истории зачастую алкоголь и война шли рука об руку. В Западной Европе не зря говорили, что «водка ведет к пороху». Завоевать огромные территории в Америке и Африке европейцам помогло не только огнестрельное оружие, но и «огненная вода». Типичным примером подобной тактики покорения туземных племен является приобретение острова Манхэттен. В 1626 г. голландцы выменяли эту землю у индейцев за три бочки рома.
Перегонка оказалась первым усовершенствованным химическим методом, который заметно стимулировал развитие химической теории и практики. Согласно мнению Дж. Бернала, производство этилового спирта «способствовало возникновению первой отрасли промышленности, созданной на научной основе». Процессы перегонки и сегодня являются одним из фундаментов химической промышленности. Возможность получения этилового спирта перегонкой привлекала внимание к этому интересному химическому методу и натолкнула специалистов на следующую мысль: нельзя ли приготовить с его помощью и другие летучие вещества? Как оказалось, данный метод дал прекрасные результаты при получении эфиров и некоторых эфирных масел. Многие используемые в фармакологии и парфюмерии масла растительного происхождения: лавандовое, можжевеловое, коричное, гвоздичное, анисовое, полыни, тимьяна, мяты, шалфея, ромашки, тмина, перца, кожуры лимонов и апельсинов — были получены при помощи перегонки. Другие вещества, которые и по сей день играют далеко не последнюю роль в химической промышленности: скипидар, канифоль, янтарное масло, бензойная кислота — были получены сухой перегонкой смол.
7.7.3. Минеральные кислоты
Еще одним важным достижением химии XIII в. следует считать получение сильных неорганических кислот. Первые упоминания об опытах с серной и азотной кислотами встречаются в византийской рукописи XIII в. Еще в древности было замечено, что при нагревании квасцов или купороса выделяются «кислые пары». Однако получение серной кислоты было освоено лишь в конце XIII в. В книгах Псевдо-Джабира (см. гл. 4, п. 4.5) описаны опыты по получению серной и азотной кислот, а также царской водки.
Долгое время серная кислота применялась лишь как реактив в лабораториях, лишь со второй половины XVIII в. ее стали использовать и в ремесленной практике — вначале при окраске веществ, а затем также и для отбеливания. В 1744 г. саксонский горный советник Барт из Фрейберга открыл процесс сульфирования индиго и впервые применил его для окраски шерсти. В связи с этим спрос на серную кислоту стал непрерывно увеличиваться, поэтому ученые стали задумываться над разработкой рациональных промышленных способов ее производства.
Бурное развитие текстильных фабрик в эпоху промышленной революции, осуществлявшееся благодаря созданию ткацких и прядильных станков, стало возможным лишь в связи с применением новых химических эффективных методов отбеливания и окраски тканей.
Получение серной кислоты при перегонке купороса; впервые описано и иллюстрировано Иоганном Христианом Бернхардтом
Первая английская фабрика по производству серной кислоты была построена в Ричмонде (около Лондона) д-ром Бардом в 1736 г. На этом предприятии в 50 стеклянных сосудах изготовлялось около 200 л серной кислоты в сутки.
В 1750 г. Хоум из Эдинбурга установил, что серную кислоту можно применять как заменитель кислого молока для подкисления при отбеливании льняных холстов и хлопка, причем это было выгодно: во-первых, серная кислота стоила дешевле, а во-вторых, отбеливание с помощью серной кислоты позволило сократить продолжительность процесса от 2–3 недель до 12 часов.
В отличие от серной кислоты азотную кислоту значительно раньше стали применять в ремесленной практике. Она была ценным продуктом, широко используемым в металлургии благородных металлов. В Венеции — одном из крупнейших культурных и научных центров эпохи Возрождения — азотную кислоту применяли еще в XV в. для выделения золота и серебра. Вскоре другие страны, такие, как Франция, Германия и Англия, последовали этому примеру. Это стало возможным благодаря тому, что величайшие технологи эпохи Возрождения — В. Бирингуччо и Г. Агрикола (см. гл. 5, пп. 5.2, 5.3) — подробно описали способы получения азотной кислоты. Согласно этому описанию, селитру вместе с квасцами или купоросом помещали в глиняные колбы, которые затем рядами устанавливали в печи и нагревали. «Кислые» пары конденсировались в специальных приемниках. Подобный способ производства азотной кислоты часто применяли затем в горном деле, металлургии и при получении других химических продуктов с помощью перегонки. Однако установки для перегонки стоили в то время очень дорого, поэтому вплоть до XVIII в. их использовали для иных целей.
Технология производства азотной кислоты не претерпела существенных изменений вплоть до конца XVIII в. Реторты изготовляли из стекла и металла, часто покрытого эмалью. В специальную печь помещали одновременно от 24 до 40 реторт. Различали азотную кислоту первой, второй и третьей степени крепости. Растворы азотной кислоты широко применяли в различных отраслях ремесленного и промышленного производства: при выделении благородных металлов, при окраске кошенилью, для обработки латуни, в скорняжном деле, при изготовлении головных уборов, гравировке по меди, а также для решения других практических задач.
Получение соляной кислоты из поваренной соли и серной кислоты (из работы И.Р. Глаубера (1648))
До того как в XVI в. была открыт способ получения соляной кислоты действием концентрированной H2SO4 на морскую соль (см. гл. 4, п. 4.5), «царскую водку» получали, растворяя нашатырь в азотной кислоте. C помощью азотной кислоты и царской водки удавалось добиться довольно высокой степени извлечения благородных металлов из руд. Это явление алхимики использовали как «доказательство» осуществления трансмутаций. Сложившаяся в эпоху Возрождения «экспериментальная философия» также придавала особое значение «крепкой водке». Некоторые химические процессы (растворение серебра и золота при последующем разложении нитратов с образованием исходных металлов), которые осуществляли с использованием этого соединения, подтверждали атомистические представления.
О соляной кислоте писали еще Василий Валентин (см. гл. 4, п. 4.5) и А. Либавий (см. гл. 5, п. 5.2). Однако первое подробное описание химических процессов получения соляной кислоты оставил лишь И.Р. Глаубер (см. гл. 5, п. 5.3). Соляную кислоту получали из поваренной соли и купоросного масла (концентрированной H2SO4) при обычных температурах, а также при нагревании смеси поваренной соли с купоросом. Хотя Глаубер писал о возможности разнообразных областей применения соляной кислоты (в частности, как приправы к еде), спрос на нее долгое время был невелик, соляную кислоту использовали только в медицинских целях. Потребность в соляной кислоте значительно выросла лишь после того, как химики разработали методику отбеливания тканей с помощью хлора. Кроме этого, хлороводородную кислоту использовали для получения желатина и клея из костей, а также для производства берлинской лазури.
На протяжении XVIII–XX вв. потребность человечества в сильных неорганических кислотах непрерывно возрастала. Дальнейшее развитие научной и технической химии в этот период было бы невозможным без использования серной, азотной и соляной кислот. Поэтому в течение практически двухсот лет ученые не оставляли попыток усовершенствовать существующие технологии производства этих важных веществ.
7.8. Краткие биографические данные ученых
ЧЕЛЛИНИ (Cellini) Бенвенуто (1500–1571), итальянский скульптор, ювелир и писатель. Представитель маньеризма. Автор виртуозных по мастерству ювелирных изделий («Солонка Франциска I», 1539–1543), статуи («Персей», 1545–1554), рельефов. Автор мемуаров «Жизнь Бенвенуто Челлини, рассказанная им самим».
РОББИА (Robbia). Семья итальянских скульпторов, представителей раннего Возрождения во Флоренции. Впервые применили в скульптуре технику майолики:
Лука делла Роббиа (1399 или 1400–1482), глава семьи (певческая кафедра в соборе Санта-Мария дель Фьоре, 1431–1438).
Его племянник Андреа делла Роббиа (1435–1525). Медальоны на фасаде Оспедале дельи Инноченти (1463–1466).
Джованни делла Роббиа (1469 — после 1529), сын Андреа делла Роббиа.
ПАЛИССИ (Palissy) Бернар (ок. 1510–1589 или 1590), французский художник-керамист и естествоиспытатель. Прославился декоративными керамическими изделиями с рельефными изображениями животных и растений, покрытыми цветными глазурями. Один из друзей выдающегося французского медика Амбруаза Паре. Во время Варфоломеевской ночи был арестован католиками. Умер в Бастилии.
ВЕДЖВУД (Уэджвуд, Wedgwood) Джозайя (1730–1795), английский керамист. Потомственный гончар, после смерти отца продолжил семейное дело. Веджвуду принадлежат самые революционные открытия XVIII в. в области керамического производства. Им были разработаны на основе каменной массы уникальные керамические смеси — кремовая, базальтовая и яшмовая. Изделия из первой стали известны как кремовые изделия. Они были легкими, изящными и стали альтернативой дорогому фарфору. Не останавливаясь на достигнутом, Веджвуд в 1762 г. усовершенствовал кремовый черепок и получил более качественные изделия, которые назвал «королевскими» в честь королевы Шарлотты.
БЕТГЕР (Bottger) Иоганн Фридрих (1682–1719), немецкий алхимик. Основные труды связаны с поиском компонентов фарфоровой массы и их оптимального соотношения. Получил ее первые образцы (1705–1707), на основе которых было организовано производство саксонского фарфора. В 1707 г. приготовил первый в Европе твердый белый фарфор, разработал технологию его производства ив 1710 г. организовал в Мейсене (Саксония) мануфактуру, выпускавшую всемирно известный мейсенский фарфор.
ВИНОГРАДОВ Дмитрий Иванович (1720–1758), русский химик-технолог. Создатель отечественного фарфора. Разработал технологию производства и получил первые образцы фарфора из отечественного сырья.
ШАПТАЛЬ ДЕ ШАНТЕЛУ (Chaptal de Chanteloup) Жан Антуан Клод (1756–1832), французский химик и государственный деятель. Иностранный почетный член Петербургской АН (1820). Труды по прикладной химии. Разработал способы получения соды из поваренной соли, производства серной кислоты.
ЛЕБЛАН (Leblanc) Никола (1742–1806), французский химик-технолог. C девятилетнего возраста остался сиротой. В 1759 г. поступил в школу хирургов в Париже. Получил степень магистра хирургии. Занимался частной врачебной практикой. В 1780 г. был приглашен герцогом Филиппом II Орлеанским на должность семейного врача. Участвовал в конкурсе на создание метода промышленного производства соды, объявленном Парижской академией наук. В 1787–1791 гг. разработал первый промышленный способ получения соды. Основал первую фабрику по производству соды, которая была конфискована революционным правительством Франции в 1794 г. В 1802 г. Наполеон Бонапарт вернул фабрику Леблану. Из-за нехватки средств ученому не удалось отремонтировать фабрику и повторно наладить производство. От безысходности своего положения покончил с собой в 1806 г.
ФЕДОРОВ Иван (ок. 1510–1583), основатель книгопечатания в России и на Украине. В 1564 г. в Москве совместно с П. Мстиславцем выпустил первую русскую датированную печатную книгу «Апостол». Позднее работал в Белоруссии и на Украине. В 1574 г. выпустил во Львове первую славянскую «Азбуку» и новое издание «Апостола». В 1580–1581 гг. в Остроге издал первую полную славянскую Библию («Острожская библия»). Известен и как пушечный мастер (изобрел многоствольную мортиру).
АХАРД (Ашард) Франц Карл (1753–1821), немецкий физик и химик. Член (1776) и почетный член (1812) Берлинской А.Н. Ученик и продолжатель работ своего тестя А.С. Маргграфа. Родился в Берлине. Учился в руководимой Маргграфом химической лаборатории Физического класса Берлинской А.Н. Основные работы посвящены технической химии и химической технологии. Исследовал химические свойства платины (1779) и впервые применил в лабораторной практике платиновый тигель (1784). В 1802 г. построил первый в мире завод по производству сахара из свеклы (Силезия). Описал способы получения спирта и уксуса из сахарной свеклы (1809).