Евклидово окно

Млодинов Леонард

Часть V. История Виттена

 

 

Глава 29. Диковинная революция

Есть ли связь между природой пространства и законами, которым это пространство подчиняется? Эйнштейн показал, что присутствие материи влияет на геометрию, искажая пространство (и время). Для своего века — довольно радикальная мысль. Но в современных теориях природа пространства и материи переплетены между собой куда глубже, нежели представлял Эйнштейн. Да, материя может искажать пространство: там — самую малость, сям — чуть сильнее, если очень постарается. Однако в новой физике пространство может отыграться на материи гораздо больше. Согласно этим теориям, самые основные свойства пространства — например, его размерность — определяют законы природы и свойства материи и энергии, из которых состоит наша Вселенная. Пространство из емкости Вселенной превращается в судию, который решает, чему вообще быть.

В рамках теории струн существуют настолько малые дополнительные измерения пространства, что свободное место в них невозможно наблюдать в современных экспериментальных условиях (хотя косвенно, вполне вероятно, нам это вскоре удастся). Они, может, и крошечные, однако своей топологией, т. е. свойствами, обусловливающими их форму, — к примеру, плоскости, сферы, кренделя или бублика, — определяют, что внутри них существует (например, мы с вами). Сверни мы эти крошечные бубличные измерения в крендель и — пшик! — электроны (и, как следствие, люди) могут перестать существовать. Более того: струнная теория, по-прежнему плохо понятая, развилась в другую, М-теорию, о которой мы знаем еще меньше, но она, похоже, ведет нас к следующему заключению: пространство и время на самом деле не существуют, а являются лишь аппроксимациями чего-то более сложного.

В зависимости от свойств вашей личности вы к этому моменту либо приметесь хохотать, либо выкрикивать глумливые замечания в адрес ученых, тратящих тяжким трудом заработанные налоговые средства. Мы еще увидим, что сами физики долгие годы реагировали на происходящее так же. Некоторые — до сих пор. Но для тех, кто ныне работает в области теории элементарных частиц, теория струн и М-теория, хоть и не доказанные строго, — все равно в порядке вещей. И, независимо от того, будут ли доказаны или опровергнуты эти теории или их производные, станут ли они некой «окончательной теорией», они уже изменили и математику, и физику.

С явлением струнной теории физики вновь вернулись к партнерской дисциплине — математике, абстрактной науке, занятой со времен Гильберта правилами, а не реальностью. Теория струн и М-теория пока движимы не традицией озарения физиков и не экспериментальными данными, которых не хватает, но открытиями их математической структуры. Не в честь угадывания новых частиц льется текила, а за открытие того, как теория объясняет существование уже имеющихся. Вполне осознавая, что подобные открытия обратны обычному ходу науки, физики придумали новый научный термин — постсказание. В странной акробатике научного метода сама теория стала предметом (ментального) эксперимента, а поборники экспериментальности — теоретиками. Неслучайно Эдвард Виттен, ныне главный идеолог новой теории, получил не Нобелевскую премию, а медаль Филдза — математический эквивалент Нобелевки. Поскольку геометрия и материя — отражения друг друга, так же должны быть связаны между собой и их современные исследования. Виттен идет еще дальше: он утверждает, что струнная теория должна стать новой ветвью геометрии.

Все это похоже на предыдущие революции — они тоже меняли не только представления о пространстве, но и метод, каким это пространство исследуют. История этой революции, однако, отличается от предыдущих одной важной деталью: она все еще в разгаре, и никто не ведает толком, чем она обернется.

 

Глава 30. Десять причин моей ненависти к вашей теории

На дворе стоял 1981 год. Джон Шварц услышал в коридоре знакомый голос. «Эй, Шварц, ты нынче в скольких измерениях?» Это Фейнман, в те времена еще не «открытый», — культовая фигура лишь в разреженных сферах физики. Фейнман считал теорию струн сумасбродной. Шварц не возражал. Он уже привык, что к нему не относятся серьезно.

В тот год один старшекурсник представил Шварцу нового юного коллегу по фамилии Млодинов. Когда Шварц вышел, старшекурсник покачал головой. «Он лектор, а не настоящий профессор. Девять лет тут уже, а все никак постоянное место не получит». Смешок. «Работает над этой своей безумной теорией в двадцати шести измерениях». Вообще-то старшекурсник заблуждался: все начиналось, да, с теории двадцати шести измерений, но с тех пор она усохла до десяти. Все равно многовато.

Долгие годы теория кишела и другими «затруднениями», как их называют физики, — содержала предсказания, мало походившие на реальность. Отрицательными вероятностями. Частицами мнимых масс, движущимися быстрее света. И все равно Шварц оставался предан своей теории — ценой собственной карьеры.

Есть такой фильм, «10 причин моей ненависти», он нравится Алексею. Это кино о группе старшеклассников, в котором героиня выходит к доске и читает всему классу стихотворение о десяти причинах ее ненависти к бойфренду, хотя на самом деле это стихотворение о ее любви к нему. Легко представить Джона Шварца, читающего подобный опус, посвященный его теории: он любил ее и не бросал — вопреки, а иногда и благодаря ее трогательным маленьким погрешностям.

Шварц видел в струнной теории нечто такое, чего не замечали прочие: некую глубинную математическую красоту, которая, по его ощущениям, не могла быть случайна. То, что развитие теории давалось с большим трудом, никак его не обескураживало. Он пытался решить задачу, о которую преткнулся Эйнштейн и все остальные после него: согласование квантовой теории с относительностью. И простого решения не предвиделось.

В отличие от теории относительности, первая обобщенная квантовая теория не рождалась десятки лет после открытия Планком квантования энергетических уровней. Все изменилось в 1925–1927 годах благодаря усилиям австрийца Эрвина Шрёдингера и немца Вернера Гейзенберга. Независимо друг от друга они открыли — возможно, точнее будет сказать «изобрели» — элегантные теории, объяснявшие, как заменить ньютоновы законы движения другими уравнениями, включавшими принципы квантовой теории, выведенные за последние несколько десятилетий. Две новые теории получили названия волновой механики и матричной механики соответственно. Как и в случае специальной теории относительности, следствия квантовой теории были заметны лишь в отрыве от повседневной жизни, на сей раз — не из-за бешеной скорости, а из-за малости размеров. Поначалу не только связь между двумя теориями и теорией относительности оставалась невнятной, но и их отношения между собой. Математически они выглядели столь же разными, сколь их первооткрыватели.

Вообразите Гейзенберга — добропорядочного немца, в идеальном костюме и при галстуке, на столе у него полный порядок. Постепенно превратившись из «всего лишь националиста» в «умеренного пронациста», Гейзенберг возглавил работу Германии над атомной бомбой. После войны он пытался отбиваться от издевок методом «ну-да-но-я-на-самом-деле-это-все-через-силу». Гейзенберг создал свою теорию, активно опираясь на экспериментальные данные, в сотрудничестве с коллегой-физиком Максом Борном и будущим штурмовиком Паскуалем Йорданом. Вместе они разработали теорию, объединившую разрозненные физические правила и закономерности, наблюдавшиеся физиками более двадцати лет. Физик Мёрри Гелл-Манн описывал этот процесс так: «Они слепили это все воедино. Выработали всякие правила сложения. Как-то раз Борн был в отпуске, а они при помощи этих правил переизобрели матричное умножение. Они и не знали, что это. Когда Борн вернулся, он, должно быть сказал: “Постойте, господа, это же теория матриц”». Физика привела их к рабочей математической структуре.

А вот Шрёдингера представьте Дон Жуаном физики. Он как-то писал: «Не бывало такого, чтобы женщина переспала со мной и не пожелала бы, как следствие, прожить со мной всю ее жизнь». Тут самое время и место заметить, что Гейзенберг, а не Шрёдингер предложил принцип неопределенности.

В своем подходе к квантовой теории Шрёдингер более полагался на математические рассуждения, нежели на экспериментальные данные, как у Гейзенберга. Представьте серьезного Шрёдингера — с легчайшей тенью улыбки на лице, лохматого, почти как Эйнштейн. Он задумчиво что-то пишет во вполне школьную тетрадку. Пошумите — и он, нимало не заботясь об этикете, засунет в каждое ухо по жемчужине, чтобы не отвлекаться. Но одной тишины его творчеству мало. Его волновая теория появится не во время протяженного монашеского отшельничества, а в разгар того, что принстонский математик Герман Вайль назвал «поздним эротическим всплеском его жизни».

Шрёдингер впервые записал свое волновое уравнение на свидании на горнолыжном курорте, пока его жена была в отъезде в Цюрихе. Говорят, что общество его загадочной визави питало его безумную плодовитость целый год. Такое сотрудничество обычно не отмечают в статьях; не было соавторов и у статей Шрёдингера. Имя этого конкретного соавтора, похоже, утеряно навсегда.

Хотя у Шрёдингера условия труда были получше, эквивалентность его волновой механики и матричной механики Гейзенберга вскоре доказал английский физик Поль Дирак. Единая теория, которую они представляли, получила нейтральное название квантовой механики. Дирак также расширил квантовую механику и включил в нее принципы специальной теории относительности (и разделил Нобелевские премии за квантовую механику 1932 и 1933 годов). Дирак, однако, общую теорию относительности в свои рассуждения не включил. И на то есть причина: сделать это невозможно.

Эйнштейн, родитель обеих теорий, отчетливо видел конфликт между ними. Хотя общая теория относительности глубоко ревизовала взгляды Ньютона на Вселенную, она сохранила одну из «классических» догм: определенность. Располагая нужной информацией о системе — хоть о вашем теле, хоть обо всей Вселенной, — вы могли бы, согласно парадигме Ньютона, рассчитать события будущего. А вот по квантовой теории это не так.

Именно это Эйнштейн терпеть не мог в квантовой механике. Сила чувства привела его к отвержению этой теории. Последние тридцать лет жизни он пытался расширить общую теорию относительности так, чтобы она включала все силы природы, и надеялся, что в процессе ему удастся разобраться с противоречием между теорией относительности и квантовой теорией. Не удалось. Через тридцать лет после смерти Эйнштейна Джон Шварц почуял, что нашел ответ.

 

Глава 31. Необходимая неопределенность бытия

Неопределенность в квантовой механике — дело принципа. Принципа неопределенности. Согласно ему, некоторые характеристики систем, количественно описанные ньютоновскими законами движения, не могут быть описаны бесконечно точно.

Недавно Алексею страшно понравилась одна старая хохма. Монашка, священник и раввин играют в гольф. Промазывая, раввин всякий раз восклицает: «Бога в душу, я промазал!» К семнадцатой лунке священник начинает закипать. Раввин обещает сдерживаться, однако, промахнувшись мимо очередной лунки, опять кричит: «Бога в душу, я промазал!» Тут священник предупреждает его: «Еще раз ругнешься, Бог тебя поразит на месте». У следующей по счету лунки раввин снова дал зевка и опять ругнулся. Небеса потемнели, поднялся ветер и сквозь тучи жахнула ослепительная молния. Когда дым рассеялся, перепуганный священник и остолбеневший раввин уставились на останки монашки, поджаренные до хруста. И тут с небес раздался громоподобный голос: «Бога в душу, я промазал!»

Алексей говорит, что это смешно, потому что непочтительно к Богу, т. е., иными словами, представляет божество несовершенным, способным на человеческие оплошности. Понятие о несовершенном Боге или Природе — вот что заботило многих физиков в квантовой механике. Богу же указать местоположение чего бы то ни было точно — раз плюнуть, нет?

Этот предел определенности в природе вдохновил Эйнштейна на знаменитое высказывание: «Квантовая механика действительно впечатляет. Но внутренний голос говорит мне, что это еще не настоящий Иаков. Эта теория говорит о многом, но все же не приближает нас к разгадке тайны Всевышнего. По крайней мере, я уверен, что Он не бросает кости». Если бы хохма была в ходу во времена Эйнштейна — а это очень старая шутка, — он, возможно, пробормотал: «Всевышний может метнуть молнию куда и когда пожелает».

Вероятно, — за исключением отношений Шрёдингера с особами противоположного пола — все в нашей жизни есть сплошная неопределенность. Так отчего же, спросим мы, принцип, утверждающий нечто очевидное, заслуживает столь величавого имени? Неопределенность принципа Гейзенберга — странного фасона. Это разница между классической и квантовой теорией — между пределами человеческих возможностей и, скажем так, божественных.

Загадайте ребенку загадку: все гамбургеры-«четверть фунтовики» в «Макдональдсе» весят по четверти фунта — правда или чушь? Детишки-циники скажут «чушь», исходя из логики, что компания, продающая сорок миллионов гамбургеров ежедневно, может крупно сэкономить на мясе, не докладывая сотую долю фунта в каждый. Но речь не о системной ошибке — в равной степени не может быть, что каждый гамбургер весит ровно 0,24 фунта. Весь фокус в том, что каждый бургер в «Макдональдсе» весит немножко по-разному.

Разница тут не сводится к кетчупу. Если аккуратно все измерить, выяснится, что каждый гамбургер имеет разную толщину, уникальную форму и личность — на микроскопическом уровне. Как и среди людей, среди гамбургеров нет двух одинаковых. С точностью до какого десятичного знака надо померить бургеры, чтобы все их различать по весу? Раз их продают свыше миллиарда в год, т. е. 109, этих знаков должно быть не менее 9. Однако вряд ли у этих бургеров поменяют название на «0,250000000-фунтовики».

Бургер бургеру рознь — то же верно и для экспериментальных замеров. Действия, производимые в процессе измерения, механическое и физическое состояние весов, потоки воздуха вокруг, местная сейсмическая активность, атмосферное давление — уйма мельчайших факторов, и каждый чуточку меняется при всяком следующем замере. Вводим различение потоньше — и с гарантией не получаем воспроизводимых результатов.

Вот это — не принцип неопределенности.

Квантовый принцип неопределенности идет дальше; он гласит, что определенные качества образуют комплементарные пары — пары, у которых есть определенное ограничение: чем точнее измерено одно качество, тем менее точно удастся измерить другое. Согласно квантовой теории, значение этих комплементарных свойств за пределами ограничивающей точности неопределенно, а не просто за пределами возможностей нашего оборудования.

Многие годы физики пытались доказать, что таково ограничение нашей теории, а не самой природы. Они предполагали, что где-то прячутся «скрытые переменные» — определенные, но неподвластные нашим измерениям. Оказывается, единственный вид измерения, доступный нам, — такой, что позволяет отмести эти самые скрытые переменные. В 1964 году американский физик Джон Белл объяснил, как это можно проделать. В 1982-м эксперимент поставили, и он показал, что предположение о скрытых переменных неверно. Ограничение действительно обусловлено законами физики.

Математика принципа неопределенности утверждает: результат неопределенности двух комплементарных членов пары должен равняться числу, называемому постоянной Планка.

Местоположение — часть одной из комплементарный пар принципа неопределенности. Ее напарник, импульс, есть — без учета фактора массы — скорость объекта. Брачное свидетельство описывает ограничение для этой пары: погрешность одного меняется в обратной пропорции к точности второго. У этого ограничения нет исключений, это очень католический брак: никаких неверностей, никаких разводов. Умножаем погрешность определения местоположения на погрешность определения скорости и получаем число, равное числу герра Планка.

Постоянная Планка — малюсенькое число. В противном случае мы бы заметили квантовые эффекты гораздо раньше (если бы в таком мире вообще могли существовать). Прилагательное «малюсенький» в данном случае есть буквально «порядка миллиардных». Постоянная Планка примерно равна одной миллиардной миллиардной миллиардной, или 10-27 чего-нибудь, в данном случае — единицы эрг-грамма. Разумеется, значение постоянной Планка зависит от того, в каких единицах она выражена. Эрг-грамм — единица, с которой мы сталкиваемся в быту. Представьте неподвижно лежащий на столе однограммовый пинг-понговый шарик. Для большинства из нас «неподвижно лежащий» означает скорость, равную нулю. Физик-экспериментатор знает: измерение без указания пределов погрешности имеет мало смысла. Вместо описания «шарик лежит неподвижно» в записях экспериментатора появится скорее такая формулировка: «Шарик не движется быстрее одного сантиметра в секунду». В классической физике это и будет весь сказ. В квантовой механике даже эта не бог весть какая точность имеет цену: она устанавливает предел, с которым можно определить местоположение пинг-понгового шарика.

Предел точности в 1 сантиметр в секунду приводит к граничной точности, которая, как и постоянная Планка, — ма-а-аленькая-малюсенькая. Проделав вычисления, выясним, что местоположение шарика мы можем установить с точностью до 10-27 см. Поскольку такой предел не слишком стесняет, возникает знакомый вопрос: и кому это надо? До конца XIX века никому и не было надо — вернее, никто не обращал внимания. Но давайте-ка заменим пинг-понговый шарик на электрон. Как раз такую замену и произвели физики в конце позапрошлого века.

Помните оборот «без учета фактора массы», который столь непринужденно включен в определение импульса? Оно, может, в свое время и не производило особого впечатления, однако именно это уточнение — причина заметности квантовых эффектов в масштабах не пинг-понговых шариков, но атомов.

Мы определили массу шарика для пинг-понга в 1 грамм. Масса электрона — 10-27 граммов. В отличие от шарика, погрешность определения скорости в 1 см/сек для электрона превращается в ограничение определения точности импульса до 10-27 г-см/сек — из-за фактора массы электрона измерение скорости, казавшееся небрежным, делает определение импульса очень точным. Зато с возможностью определить местоположение электрона дело плохо.

Если, как и в случае с шариком для пинг-понга, мы определяем скорость электрона с точностью до ± 1 см/сек, местоположение электрона не удастся определить точнее, чем ± 1 см. Такое ограничение точности — совсем не малюсенькое. Напротив, оно довольно заметно. Паршивая выйдет игра в пинг-понг при такой точности определения местоположения шарика, но на атомном уровне ситуация именно такова. Для электронов в атоме определять их местоположение как «ну где-то в радиусе 10-8 см», что и есть примерные размеры атома, означает вынужденную неопределенность в части скорости электронов до 10+8 см/сек, а эта неопределенность практически равна самой скорости электрона.

Квантовой механике в формулировке Гейзенберга и Шрёдингера удалось весьма успешно описать явления и атомной, и даже ядерной физики своего времени. Но применение принципа неопределенности к гравитации в описании теории Эйнштейна приводит нас к довольно диковинным выводам о геометрии пространства.

 

Глава 32. Битва титанов

Эйнштейнов поиск объединенной теории поля получил не слишком активную поддержку в том числе и потому, что конфликт между общей теорией относительности и квантовой механикой становится очевиден лишь в областях настолько малых, что даже в наши дни нет никакой надежды наблюдать их впрямую. Но Евклид говорил, что пространство состоит из точек, и геометрия должна быть применима к любой сколь угодно малой области, какую только можно вообразить. Если же теории конфликтуют, значит, что-то не так с одной теорией или с обеими — ну или с Евклидом.

Область, в которой возникает этот самый конфликт, часто описывают как ультрамикроскопическую. Для приверженцев строгих цифр: это расстояние порядка 10-33 сантиметра, и называется оно планковской длиной. Для любителей зрительных образов: если увеличить планковскую длину до диаметра яйцеклетки человека, обычный детский игральный шарик раздуется до размеров наблюдаемой Вселенной. Планковская длина — о-очень маленькая. И все же по сравнению с точкой ее размер громаден сверх всякой меры.

Как-то ночью, после работы над этой главой, битва между Эйнштейном и Гейзенбергом явила себя во сне. Сон начался с того, что пришел Николай в образе Эйнштейна и показал мне кое-какие теоретические выкладки, которые он накропал цветным карандашиком в своем школьном альбоме по рисованию:

Николай в роли Эйнштейна: Пап, я открыл общую теорию относительности! Когда вокруг есть материя, пространство искривляется, а в пустом пространстве гравитационное поле равно нулю и пространство плоское. На самом деле, если взять достаточно малую область, пространство приблизительно плоское.

(Тут я уже собираюсь сказать: «Какая замечательная теория! Можно я ее на стенку повешу?» — как входит Алексей.)

Алексей в роли Гейзенберга: Пррошу пррощения. Гравитационное поле, как и любое другое, подчиняется принципу неопределенности.

Николай в роли Эйнштейна: И что?

Алексей в роли Гейзенберга: А то, что в пустом пространстве поле в среднем, может, и ноль, но на самом деле оно флуктуирует в пространстве и времени. И в прям очень маленьких областях эти флуктуации — мегаздоровенные.

Николай в роли Эйнштейна (ноет): Но если гравитационное поле флуктуирует, то флуктуирует и кривизна пространства, потому что мои уравнения показывают, что кривизна пространства связана со значением силы поля…

Алексей в роли Гейзенберга (насмехается): Ха-ха! Это означает, что пространство крошечных областей нельзя считать плоским… На самом деле, если приглядеться поближе — в масштабах планковской длины — возникают крошечные черные дырочки… Некрасиво…

Николай в роли Эйнштейна: Я сказал, хочу, чтобы крошечные области пространства были плоскими!

Алексей в роли Гейзенберга: А вот и нет!

Николай в роли Эйнштейна: А вот и да!

Алексей в роли Гейзенберга: Нет.

Николай в роли Эйнштейна: Да.

…Диалог продолжался в том же духе, покуда я не проснулся весь дрожа. (Это знак! Не следовало ложиться спать, не дописав главу.)

Одновременное применение принципа неопределенности и общей теории относительности к малым областям пространства приводит к фундаментальному противоречию с теорией относительности вообще. Кто прав — Гейзенберг или Эйнштейн? Если прав Эйнштейн, квантовая теория неверна. Но история с квантами не похожа на ошибочную: эксперимент и теория сходятся с точностью выше миллионной доли. Корнеллский физик Тоитиро Киносита, один из ведущих в квантовой электродинамике ученых, называет это «самой достоверной теорией на Земле, а может, и во всей Вселенной — в зависимости от того, сколько в ней инопланетян».

Если квантовая теория верна, значит, ошибочна теория относительности. Да, у теории относительности были свои поводы торжествовать. Однако есть нюанс. Победы теории относительности связаны с наблюдением макроскопических явлений — со светом, движущимся мимо Солнца, или с летающими вокруг Земли часовыми механизмами. Общая теория относительности в малых масштабах элементарных частиц пока еще не проверена. Измерять воздействие сил тяготения на них невозможно — их массы для этого слишком малы. Поэтому физики предпочитают ставить под вопрос резонность теории относительности, особенно эйнштейновы допущения о приблизительной плоскости мельчайших областей пространства. Быть может, необходимо пересмотреть теорию Эйнштейна в отношении ультрамикроскопических областей.

Если Планк и впрямь победил в споре с Эйнштейном, и метрика ультрамикроскопического пространства флуктуирует в широком диапазоне значений, возникает другой вопрос, поглубже. Какова структура пространства на ультрамикроскопическом уровне? Ключ к ответу, похоже, — в идее, которую Фейнман и другие проглотили с таким трудом и за которую дразнили Шварца, однако он не считал это недостатком, а просто милой особенностью возлюбленной своей теории. В царстве ультрамикроскопичности есть, судя по всему, другие измерения, свернутые в себе самих, настолько малые, что, как и квант в 1899 году, остаются незамеченными. Они и есть ключевой ингредиент в спасительном снадобье для общей теории относительности. Именно о них размышлял, но позднее отбросил десятки лет назад сам создатель теории относительности.

 

Глава 33. Посланье в бутылке Клейна-Калуцы

За день до своей смерти Эйнштейн попросил, чтобы ему подали его последние расчеты по объединенной теории поля. Он тридцать лет бесплодно пытался изменить общую теорию относительности так, чтобы она охватывала и электромагнитные силы. Один из самых многообещающих вариантов возник у Эйнштейна в 1919 году, в самом начале его поисков, пока он разбирал почту. Идея посетила его сознание не напрямую, а через письмо одного нищего математика по имени Теодор Калуца.

В письме Эйнштейн нашел предложение, как можно объединить электромагнитные силы с гравитационными. У этой теории была одна маленькая странность. Эйнштейн написал в ответ: «Идея создания посредством пятимерного цилиндрического мира никогда не приходила мне в голову…» Пятимерный цилиндр? Да кому вообще такое могло прийти в голову? Никто не знает, как Калуца до этого додумался, однако Эйнштейн в том же письме добавил: «Мне чрезвычайно симпатична ваша мысль». Сейчас нам понятно, что Калуца обогнал время, однако пожадничал измерений.

Мы уже видели, что общая теория относительности описывала, как материя влияет на пространство через метрику, чьи компоненты — g-факторы — сообщают, как именно измерять расстояние между соседними точками на основании разности их координат. Количество g-факторов зависит от количества измерений пространства. Например, в трехмерном пространстве их шесть. В плоском расстояние равно (разница между координатами х)² + (разница между координатами у)² + (разница между координатам z)², т. е. g xx , g yy и g zz все равны 1, а факторы, соответствующие перекрестным — g xy , g yz и g xz — все равны нулю и их нет в уравнении. В четырехмерном неевклидовом пространстве из общей теории относительности выходит десять независимых g-факторов (принимая во внимание равенства типа g xy = g yx ), все они описываются уравнениями Эйнштейна. Калуца сначала осознал вот что: если взять пять измерений, возникнут еще g-факторы, отвечающие дополнительному измерению.

Далее Калуца задался вопросом: если формально расширить эйнштейново поле до пяти измерений, какие уравнения получатся для дополнительных g-факторов? Ответ ошеломительный: выходят уравнения Максвелла для электромагнитного поля! Начиная с пятого измерения электромагнетизм вдруг возникает в теории гравитации. Эйнштейн писал: «Формальное единство вашей теории поразительно».

Конечно, интерпретация метрики дополнительного измерения как физического электромагнитного поля требует некоторой возни с теорией. И что там, кстати, с той самой маленькой странностью — дополнительным измерением? Калуца утверждал, что оно конечно по длине, а еще точнее — такое маленькое, что мы бы и его и не заметили, даже если бы сами копошились внутри. Сверх того Калуца заявил, что новое измерение имеет новую топологию: в ней вместо прямой — окружность, т. е. оно замыкается на себе, свертывается (и поэтому, в отличие от конечной прямой, концов не имеет). Представьте Пятую авеню с нулевой шириной — в виде простой линии. В новом измерении Калуцы пересекающие ее улицы превратятся в окружности, прорезывающиеся из Пятой авеню. Разумеется, пересекающие улицы возникают с интервалом в квартал, но дополнительное измерение есть в каждой точке вдоль авеню. Таким образом если добавить линии новое измерение, она не обрастет окружностями, а превратится в цилиндр наподобие садового шланга. Только очень тонкого.

По сути, Калуца утверждал, что гравитация и электромагнетизм на самом деле суть компоненты одного и того же, но выглядят по-разному потому, что мы наблюдаем некоторое усредненное неощутимое движение крошечного четвертого пространственного измерения. Эйнштейн сомневался в теории Калуцы, однако чуть погодя все же передумал и в 1921 году помог Калуце опубликовать его теорию.

В 1926-м Оскар Клейн, ассистент профессора в Университете Мичигана, независимо от Калуцы предложил ту же теорию, но с некоторыми усовершенствованиями. Одно из них — осознание, что эта теория приводит к верным уравнениям движения частиц, если в этом загадочном пятом измерении частица имеет определенные значения импульса. Эти «разрешенные» значения оказались кратны определенному минимальному импульсу. Если допустить, как это сделал Калуца, что пятое измерение замкнуто на само себя, можно применять квантовую теорию для того, чтобы рассчитать из минимального импульса возможное значение «длины» этого свернутого пятого измерения. Если бы вдруг выяснилось, что измерение это — обозримого, макроскопического размера, теория оказалась бы под угрозой, поскольку мы этого измерения никак не наблюдаем. Но получился размер 10-30 сантиметра. Без проблем. Измерение скрыто от глаз будь здоров.

Теория Клейна-Калуцы намекала на формальную связь между теориями, но не на структуру, которая тут же предоставляла нечто совершенно новое. Следующие несколько лет физики искали другие предсказания, какие могла бы дать эта теория, — примерно в том же ключе, в каком Клейн рассуждал о размерах нового измерения. Им удалось найти новые доводы, которые вроде бы подразумевали, что с ее помощью можно предсказывать соотношение массы электрона и его заряда. Однако результат предсказания сильно расходился с реальностью. Где-то на полпути между этим затруднением и странным предсказанием пятого измерения физики охладели к новой теории. Эйнштейн в последний раз вернулся к ней в 1938 году.

Калуца, умерший за год до Эйнштейна, так почти и не продвинулся далее. Но кое-что с его неоперившейся теории ему по-крупному перепало. Когда он писал Эйнштейну, ему было 34 и он уже десять лет содержал семью на жалованье приват-доцента (примерный аналог ассистента профессора) в Кёнигсберге. Это самое жалованье лучше всего описывается в терминах дорогой его сердцу математики: за каждый семестр он получал 5 раз по х раз у немецких марок (или, говоря строго, золотых марок), где х было равно числу студентов в его классе, а у — числу лекционных часов еженедельно. В итоге получалось примерно 100 марок в год. В 1926 году Эйнштейн назвал такие условия жизни «schwierig», что примерно означает «только собаки могут жить так». С помощью Эйнштейна Калуца в 1929 году наконец получил профессорское звание в Университете Киля. Он перебрался в Гёттинген в 1935 году, где стал полноправным профессором. Там он и прожил еще девятнадцать отведенных ему лет. Однако вплоть до 1970-х возможность новых измерений всерьез не рассматривал никто.

 

Глава 34. Рождение струн

Кто знает, когда нахлынет вдохновение? Еще невозможнее узнать, куда оно заведет. История струнной теории начинается на вершине 750-футовой горы в Средиземноморье. Город называется Эриче, что на Сицилии, — неспешный, жаркий, улицы его узки и одеты в древний камень. Эриче был Эриче, когда по Земле еще бродил Фалес. Ныне город знаменит в первую очередь своим «Centro Ettore Majorana» — культурным и научным центром, в котором не один десяток лет проходят летние школы примерно недельной протяженности. Школы «Этторе Маджорана» — сборища студентов старших курсов и младших сотрудников факультетов, где они встречаются с ведущими учеными разных областей и прослушивают лекции по самым передовым темам науки.

Летом 1967 года одной из таких передовых тем оказался подход к теории элементарных частиц под названием «теория S-матриц». Габриэле Венециано, итальянский выпускник Института Вейцмана в Израиле, находился в аудитории и слушал своего интеллектуального героя — Мёрри Гелл-Манна. Гелл-Манн вскоре получит за свое открытие кварков Нобелевскую премию — их в то время считали внутренними составляющими семейства элементарных частиц, называемых адронами (в то же семейство входят протон и нейтрон). Вдохновение, которое Венециано обрел на той лекции, через несколько лет подвигнет его к созданию начал струнной теории. Темой тогдашней лекции Гелл-Манна были закономерности математической структуры S-матрицы.

S-матрицу придумал Гейзенберг, впервые в 1937 году применил Джон Уилер, а расцвет ее пришелся на 1960-е, и обеспечил его физик из Беркли Джеффри Чу. Буквой S обозначается «scattering» (рассеяние), поскольку главный способ изучения элементарных частиц физиками таков: физики разгоняют частицы до бешеных скоростей и энергий, после чего вляпывают их друг в дружку и смотрят, какие именно дребезги полетят во все стороны. Примерно как изучать устройство автомобиля путем организации автокатастроф.

В мелких авариях удается оторвать что-нибудь скучное, вроде бампера, а вот на гоночной скорости глазам пристального наблюдателя представится полет даже самых крепко ввинченных в пассажирское сиденье болтов и гаек. Но есть одна большая разница. В экспериментальной физике, влепив с размаху «шеви» в «форд», можно получить на выходе комплектующие от «ягуара». В отличие от автомобилей, элементарные частицы могут превращаться друг в друга.

Когда Уилер разработал матрицу рассеяния, уже собрался — и продолжал накапливаться — немалый корпус экспериментальных данных, однако успешной квантовой теории создания и исчезновения элементарных частиц не существовало даже в части электродинамики. S-матрица являла собой черный ящик, в который можно было что-нибудь засунуть — определения сталкивающихся частиц, их импульсов и т. д. — и получить на выходе аналогичные данные, но для вновь возникших частиц.

Для построения матрицы рассеяния, т. е. внутренностей черного ящика, вообще говоря, требовалась теория взаимодействия частиц. Но даже и без теории кое-что об S-матрице сказать можно — основываясь лишь на природных симметриях и общих принципах вроде согласованности с теорией относительности. Соль S-матричного подхода заключалась в выяснении, насколько далеко можно уехать на одних этих принципах.

В 50-х и 60-х годах прошлого века такой подход был практически повальным увлечением. В своей лекции в Эриче Гелл-Манн рассказал о некоторых поразительных закономерностях, называемых дуальностями, которые можно наблюдать при столкновении адронов. Венециано задумался, возникнут ли такие закономерности в более общем случае. Через полтора года он понял: все математические свойства матрицы рассеяния, которые он рассматривал, присущи одной простой математической функции — эйлеровой бета-функции.

Теория Венециано (дуальная модель Венециано) оказалась поразительным открытием. С чего бы потенциально сложной матрице рассеяния принимать столь простую изящную форму? Но таково оказалось первое математическое чудо в ряду многих, какие потом будут регулярно проявляться в струнной теории — как раз такие красивые результаты убедили Шварца, что он не впустую тратит жизнь на теорию струн.

Результат, полученный Венециано, показался физикам настолько элегантным, что вдохновил их на совершенно не S-матричный вопрос: как же устроены процессы столкновения частиц, из-за которых получается матрица рассеяния? Что же у черного ящика внутри? Если бы удалось с этим разобраться, прояснилась бы внутренняя структура сталкивающихся адронов, а также взаимодействие, именуемое сильным, которое ими управляет.

В 1970 году Ёитиро Намбу из Университета Чикаго, Хольгер Нильсен из Института Нильса Бора и Леонард Сасскинд из Университета Иешивы, ответили на вопрос: нужно моделировать элементарные частицы не как точки, а как малюсенькие колеблющиеся струны.

Мы теорию открываем или изобретаем ? Физики — дети, блуждающие в сумерках по парку с фонариками в поисках истины, или же дети с кубиками, возводящие башни, пока они не осыплются? Или, на самом деле, — и то, и другое? Тогда какого рода эта дуальность — как та, о которой говорил Гелл-Манн, или как та, что есть у волны и частицы?

Есть и менее приятные синонимы к глаголам «изобретать» и «открывать». Например, «стряпать» или «натыкаться на». Исходная струнная теория — под названием бозонной теории струн — однозначно была «стряпней». Ей не доставало естественности, она полнилась невероятными свойствами, и ее явно собрали в кучу, лишь бы воспроизвести озарение, посетившее Венециано. Но Намбу с коллегами кое на что и наткнулись. Они открыли струнную теорию практически в том же смысле, что Планк когда-то — квантовую. Оба набрели на идею: энергетические уровни можно представить количественно, а частицы можно представить как струны; в обоих случаях ни подлинное значение, ни широта охвата этих идей не были поняты, а на формирование осмысленной теории потребовались годы. Оба набрели на то, что могло быть новым законом природы — или просто математической ужимкой. И лишь годы усилий могли определить, что есть что. В случае с квантовой теорией потребовалось 25 лет — от Планка до Гейзенберга и Шрёдингера. Струнная теория уже проскочила этот рубеж.

 

Глава 35. Частицы-фиглицы!

За десяток лет до струн Джеффри Чу, один из самых многообещающих физиков конца 1950-х — начала 60-х, выступил на одной конференции с заявлением, что теория поля не годится. Не должно быть никаких элементарных частиц, сказал Чу. Следует мыслить частицы составленными друг из друга. Он предложил физикам поискать какую-нибудь такую теорию-про-одну-частицу-из-которой-вообще-всё, и теорию эту назвали в духе холодной войны «ядерной демократией». Более того, Чу не верил в подход, предполагавший развитие различных теорий с оглядкой и приладкой к свойствам всяких разных сил. Он считал, что физикам надо как следует разобраться со всеми мыслимыми S-матрицами, и тогда они обнаружат, что лишь одна соответствует общим физическим и математическим законам. А все потому, что, по его мнению, Вселенная такая, какая она есть, потому что другого способа ее существования не может быть.

Теперь-то нам известно, что условия, выдвинутые Чу, недостаточны для исчерпывающего описания физики. Виттен называет теорию S-матрицы «подходом, а не теорией». Гелл-Манн говорит, что ее раздули сверх меры, и что это слишком помпезное название для подхода, который он же сам первым и представил на конференции в Рочестере, Нью-Йорк, в 1956 году. И все же, добавляет Гелл-Манн, «S-матричный подход оказался верным. Он и поныне применяется в теории струн». У Чу для подобных эстетических воззрений были веские основания. Даже нынешняя Стандартная модель, несмотря на ее успешность, не слишком симпатичная. Проблемы начались еще в 1932 году, когда открыли две новые экзотические частицы. Одну назвали позитроном — это античастица электрона. А вторая стала новым членом ядра, она смахивает на протон, только не несет на себе заряда, — это нейтрон. Физики неохотно приняли саму возможность существования новых частиц. Настряпали новых объяснений. Дирака, чья теория предсказывала существование позитрона, поначалу вынудили назвать ее чем-то типа «легкого протона» (у позитрона такой же заряд, как и у протона, однако масса составляет примерно 1/1000 протоновой). Производились попытки объяснить нейтрон как протон и электрон в очень тесных объятьях друг друга. И все же физикам с трудом удавалось удерживать позиции — точь-в-точь как родителям подростка. Вскоре они приняли не только новые частицы, но и понятие об антиматерии и двух новых взаимодействиях, сильном и слабом, играющих важную роль в ядре атома.

К 1950-м ускорители элементарных частиц позволили изучать десятки новых частиц — нейтронов, мюонов, пионов… Дж. Роберт Оппенгеймер предложил давать Нобелевскую премию ученым, которые не открыли новую «элементарную» частицу. Энрико Ферми отмечал: «Если б я мог запомнить названия всех этих частиц — стал бы ботаником».

Физики сживались с переменами, разрабатывая новые квантовые теории поля, описывающие причины возникновения и исчезновения частиц. Квантовая механика была придумана для описания взаимодействия, а не создания, уничтожения или превращения частиц друг в дружку. В квантовой теории поля есть лишь один способ, каким осуществляется любое взаимодействие во Вселенной: через обмен частицами, известными под названием калибровочных. То, что физика на протяжении веков именовала «силой», есть, согласно теории поля, всего лишь более высокоуровневое описание обмена частицами между частицами.

Представим двух баскетболистов: они бегут по игровому полю и пасуют мяч друг другу. Спортсмены символизируют частицы. Их взаимодействие, сближает оно их или отдаляет друг от друга, осуществляется мячом — это калибровочная частица. В электромагнитных взаимодействиях калибровочная частица — фотон. В квантовой электродинамике заряженные частицы — электрон и протон, например, — электромагнитно взаимодействуют через обмен фотонами. Незаряженные частицы типа нейтрино фотонами не обмениваются.

Первая успешная квантовая теория поля как раз описывала электромагнитное поле — ее разработали в 1940-х Фейнман, Джулиан Швингер и Синъитиро Томанага. В 1970-х возникла новая теория, объединившая электромагнитное поле и поле слабых взаимодействий. Вскоре по аналогии с квантовой термодинамикой разработали теорию сильных взаимодействий, и в ней калибровочными частицами являются глюоны. Теория поля, учитывающая эти три взаимодействия, и есть то, что называется Стандартной моделью.

Если вы — ботаник, с вашей точки зрения физики проделали восхитительную работу. Классификация элементарных частиц в пределах Стандартной модели красою не блещет, хоть она и есть победа силы предсказания. К примеру, у элементарных частиц материи, в отличие от калибровочных частиц, есть семейства. В каждом семействе — по четыре частицы: электроноподобная, нейтриноподобная и два кварка. Одно такое семейство состоит из обычного электрона и нейтрино, а также из двух кварков, которые суть знакомые нам протон и нейтрон. Соответствующие частицы из двух других семейств отличаются только по массе — в этих «экзотических» семействах частицы значительно увесистее. Стандартная модель отражает эту структуру, однако она включена в теорию без всяких объяснений. Почему семейств три и почему по четыре члена в каждой? Почему массы такие, какие они есть? Стандартная модель не имеет ответа ни на один подобный вопрос.

Сила каждого взаимодействия — тоже данность без объяснения, зашифрованная в цифрах под названием константа связи. Реакция частицы на воздействие силы характеризуется количественно через заряд — обобщение от электрического заряда. Обыкновенно некоторая заданная частица несет более одного типа заряда, т. е. участвует в более чем одном виде взаимодействия. Эти заряды тоже не имеют объяснения в рамках теории.

Если у Ферми возникали сложности с запоминанием названий элементарных частиц, Стандартная модель все лишь усугубила. Чтобы запомнить уравнения этой модели, ему пришлось бы выучить значения девятнадцати невыводимых параметров. И это вам не симпатичные числа, которыми бы мог гордиться Пифагор, а уродцы с именами вроде угла Кабиббо и значениями типа 1,167391 х 10-5 (это константа связи Ферми в ГэВ-2). Книга Бытия гласит: «Да будет свет. И стал свет». Согласно современной физике, Бог к тому же старательно настроил постоянную тонкой структуры так, чтобы она в точности равнялась 1/137,035997650 (плюс-минус несколько миллиардных долей).

Не вдаваясь в философию науки, словосочетание «фундаментальная теория» содержит нечто, словно подразумевающее, будто десятки исследователей не должны зарабатывать себе на жизнь, измеряя девятнадцать «фундаментальных» параметров до точностей в семь десятичных знаков. Возникает желание похлопать этих теоретиков по плечу и спросить: «Вы вообще слыхали, что был такой мужик, звали Птолемеем?» При должной сноровке любой смышленый ученый может подогнать что угодно под любые данные.

Теоретики-струнники протестуют против того, чтобы эту модель считали фундаментальной. Они надеются, что однажды смогут ее вывести. Как и теоретики S-матрицы, но совсем не как теоретики поля, они добиваются результата, при котором не придется определять не только вводные параметры, но даже и структурные, вроде числа измерений пространства. Как и Чу, они нацеливаются найти теорию, полностью определяемую из общих принципов. Они верят, что из нее смогут понять происхождение и силу всех взаимодействий, виды и свойства частиц, структуру самого пространства. И в их теории — как и в мечте Чу — одна частица на все годится. Разница лишь в том, что, согласно их теории, частица есть струна.

Струна сделана из ничего, поскольку определение материального состава предполагает наличие некой более тонкой структуры, которой у струн нет. И вот поди ж ты — из них сделано все. При длине в 10-33 сантиметра они надежно защищены от наших взоров — на 1016. В таблице проверки зрения они, может, и ориентированы-то и горизонтально, и вертикально, и по диагонали. Но даже наш самый мощный микроскоп провалит эту проверку зрения. «Вниз? Вверх? В стороны?.. Простите, доктор, вижу одни точки».

Сокрытость струн из-за их крошечных размеров не должна удивлять: в конце концов их же вывели из теории, а не из наблюдений. Но определение степени их сокрытости смерти подобно. Согласно различным оценкам, ускоритель, потребный для прямого засечения струны экспериментально должен быть размерами от нашей галактики до всей Вселенной. Историк, выкопав потрепанный экземпляр этой книги в 3000 году, может, и хихикнет над такими оценками: к тому времени мы, вероятно, уже научимся разглядывать их, смешав вермут с водкой (в правильных пропорциях). Однако пока прямое наблюдение за струнами — пустой разговор.

В квантовой механике волны и частицы — дуальные аспекты одного и того же явления. В квантовой теории поля частицы и материи, и энергии считаются возбуждениями различных квантовых полей. Это верно и для теории струн, однако в ней есть лишь одно поле. Все частицы возникают из-за вибрационных возбуждений одного вида элементарных объектов: струн.

Представьте гитарную струну, натяжением настроенную до нужного напряжения. Музыкальные ноты такой струны называются модами возбуждения — в отличие от состояния струны в покое. В акустике они еще называются высшими гармониками. В струнной теории они проявляются как разные частицы.

Пифагорейцы первыми занялись изучением математических и эстетических свойств музыкальных звуков. Они обнаружили, что, если дергать струну, она производит звук, или частоту, которая сильно меняется в зависимости от длины струны. Эта фундаментальная частота связана с модой вибрации, в которой возникает максимальное отклонение от состояния покоя струны в ее средней точке. Но струна может колебаться и так, что ее средняя точка останется неподвижной, а максимумы отклонений возникнут посередине между концами струны и ее серединой. Такова будет фундаментальная мода колебаний, если прижать струну посередине. Это колебание с двумя одинаковыми волнами в пределах одной струны, но с вполовину меньшей длиной волны и удвоенной частотой по сравнению с фундаментальной. В музыкальных терминах она именуется второй гармоникой и звучит на октаву выше.

Если дернуть струну, возникнут колебания в форме трех полных волн, четырех и т. д. (но никогда не дробное число, иначе нарушится условие, что концы струны зафиксированы). Это высшие гармоники. Ноте, взятой на скрипке или пианино, к примеру, обычно сопутствует более сильная относительная амплитуда первых шести гармоник, нежели те, что дают другие инструменты. Звук трубы органа, с другой стороны, относительно обделен более высокими гармониками. Благодаря высшим гармоникам музыкальные инструменты — и семейства элементарных частиц — столь разнообразны.

Струны из струнной теории не привязаны за концы, как гитарные. Они бывают открытые и замкнутые. Они могут щепиться и соединяться или сливаться концами и образовывать две петли. Струна щепится или слипается — свойства ее меняются: издалека похоже, будто возник новый вид частиц. Обмен калибровочными частицами на самом деле есть расщепление и соединение струн, плавающих в пространстве-времени.

Из всего этого получается, что частицы, которые мы наблюдаем, — музыкальные шкатулки, а их свойства — слышимая нами музыка, которую они играют. В зависимости от сорта исполняемой музыки эти шкатулки, похоже, бывают многих разновидностей. Согласно теории струн, все музыкальные шкатулки идентичны и отличаются не внешним видом, а тем, как именно в них колеблется струна.

К примеру, энергия колебания зависит от длины волны и амплитуды. Чем больше пиков и провалов вдоль ее длины и чем сами они больше, тем энергичнее колебание. Поскольку из теории относительности нам известно, что масса и энергия эквивалентны друг другу, нас, вероятно, не удивит, что за пределами черного ящика струны, колеблющиеся энергичнее, воспринимаются нами как более массивные.

Это верно и для других свойств, не только для массы, — например, для разных видов заряда. Почему бы и нет? В смысле теории поля масса частицы есть разновидность заряда — по отношению к гравитационному полю. Согласно струнной теории все частицы в природе, включая и калибровочные, при всем разнообразии всевозможных свойств, суть разные формы колебаний струны.

Во Вселенной великое множество и разнообразие частиц. Достанет ли колеблющейся струне богатства и насыщенности, чтобы охватить всю эту великую непохожесть? Не в евклидовом мире.

Но моды колебаний струны, а значит, и предсказание существования частиц и их свойств сильно зависят от числа измерений, в которых струна колеблется, и от топологии этих измерений. Вот он, источник глубинной связи между свойствами пространства и свойствами самой материи: согласно теории струн, структура пространства определяет физические свойства элементарных частиц и сил природы. В струнной теории всего трех пространственных измерений недостаточно. Именно точная геометрия и топология дополнительных измерений определяют теорию элементарных частиц и сил, которые предсказывает теория струн.

Струна в одномерном пространстве может колебаться лишь одним способом: растягиваться и сокращаться. Такие колебания называется продольными. В двух измерениях струна может колебаться и таким способом, однако теперь ей доступен еще один, новый вид колебаний: поперечный, — он происходит перпендикулярно длине струны. Их мы, по сути, и обсуждали. В трех измерениях направление поперечных колебаний может вращаться по спирали — вспомните пружину Слинки. В высших измерениях все лишь усложняется.

Топология тоже влияет на колебания. Топологию так запросто не определишь, но, грубо говоря, она имеет отношение к свойствам поверхностей и пространств, которые связаны с их свойствами, но не с их метрикой (отношениями расстояний) или кривизной. Отрезок прямой топологически отличается от круга, потому что у него есть два конца, а у круга — ни одного. А вот разница между кругом и эллипсом тополога не интересует — это всего лишь вопрос кривизны. Можно еще вот так представлять себе эту разницу: любые две фигуры, которые можно трансформировать друг в друга растяжением без разрывов, имеют с точки зрения тополога одинаковые свойства.

Как топология пространства влияет на струну? Предположим, струнной теории нужны лишь два дополнительных измерения. Поскольку эти дополнительные измерения в струнной теории предположительно малы, представим «маленькое» двухмерное пространство — квадрат или прямоугольник — вроде плоскости, только конечной. Это пространство имеет один топологический тип. Теперь свернем из него цилиндр. Говоря геометрически, кажется, что он искривлен, однако считается плоским, как планарное пространство. Это означает, что у него нулевая кривизна: любая фигура, нарисованная на плоскости, может быть свернута в цилиндр без искажения расстояний между любыми двумя точками. Но цилиндр отличается от плоскости соединенностью — топологически. Например, на плоскости любой круг или другая простая замкнутая кривая могут быть сжаты до точки в пределах того же пространства. На поверхности цилиндра существуют кривые, с которыми так поступить нельзя, — например, любая кривая, располагающаяся вокруг оси цилиндра. Колебательное движение этого вида у струны в цилиндрическом пространстве ограничено и отличается от колебаний на плоскости, поэтому струнная теория предписывает Вселенной, имеющей такую форму, иные виды частиц и их взаимодействий. Цилиндр близко связан с другой фигурой — тором, он же пончик. Чтобы получить тор из цилиндра, достаточно соединить его края. Но возможны и гораздо более сложные топологии — например, вместо пончика с одной дыркой можно взять пончик со множеством дырок. Каждый имеет разные колебательные спектры. Чем больше измерений добавляем, тем сложнее возможные пространства, особенно если допустить неплоскость этих пространств. И во всех этих разнообразных пространствах возможные моды колебаний разнятся. Такое богатство видов колебаний и позволяет теории струн объяснять разнообразие элементарных частиц и их взаимодействий — во всяком случае, в теории.

Тут было бы так мило заявить, что из-за всяких логических требований к дополнительным измерениям струнной теории возможен лишь один вид пространства и что свойства элементарных частиц, соответствующие колебаниям струн в таком пространстве, — аккурат те, что мы наблюдаем в природе. Ага, размечтались. Но есть и хорошие новости. По крайней мере сгодятся не любые дополнительные измерения. Похоже, их должно быть шесть (к этому мы еще вернемся), и у них обязаны присутствовать особые свойства — они, к примеру, должны быть свернуты, как те, что в теории Калуцы. В 1985 году физики открыли класс пространств с самыми подходящими особенностями. Они называются пространствами Калаби-Яу (или формами Калаби-Яу — они, вообще говоря, конечны). Как можно догадаться, шестимерные пространства Калаби-Яу несколько сложнее, чем, скажем, пончик с шоколадной глазурью. Но общее с пончиком у них есть — дырка. На самом деле число этих дырок может быть разным, и сами они тоже непростые, многомерные объекты, но это всё детали. Суть в следующем: существует семейство струнных колебаний, связанных с каждой дыркой. Таким образом, струнная теория предсказывает наличие семейств у элементарных частиц. Это пример одной из замечательных «производных» от экспериментально наблюдаемых фактов, которые Стандартная модель вынуждена была включать «вручную», без теоретического объяснения. Это были хорошие новости.

А плохо вот что: существуют десятки тысяч известных видов пространств Калаби-Яу. Большинство содержит в себе более трех дырок, хотя элементарных частиц есть всего три семейства. А для расчетов, необходимых для вывода свойств частиц, которые лишь заявлены Стандартной моделью, т. е., допустим, массу и заряд частицы, физикам необходимо знать, какое из великого множества пространств выбрать. Пока никому не удалось найти такое пространство Калаби-Яу, которое давало бы физическому миру, каким мы его знаем, точное описание, т. е. Стандартную модель или фундаментальный физический принцип, который оправдал бы выбор именно этого пространства. Некоторые скептики считают, что такой подход никогда не принесет плодов. Но подобных критиков гораздо меньше, чем было поначалу, когда работа над теорией струн равнялась поцелую профессиональной смерти.

 

Глава 36. Струнные неприятности

Когда Намбу с коллегами предложили струнную теорию, у нее были некоторые особенности. Например, их теория не согласовывалась с теорией относительности, если не заставить некий неприятный фактор равняться нулю: (1 — (D — 2)/24). Любой старший школьник скажет, что у этого уравнения одно решение: D = 26. Но с этого все только начинается: D в этом уравнении есть число измерений пространства. Вскоре все заинтересуются работами Калуцы, вот только его пять измерений не покажутся ни избыточными, ни диковинными, а недостаточно диковинными.

У теории были и другие проблемы. Как говорилось ранее, когда вероятности некоторых процессов рассчитывали согласно правилам квантовой механики, математика выдавала отрицательные ответы. Теория также предсказывала существование неких частиц, называемых тахионами, чья масса не являлась действительным числом, а двигались они быстрее света. (Теория Эйнштейна, строго говоря, не запрещает такого; она лишь не позволяет частицам двигаться в точности со скоростью света.) А еще она предсказывала существование кое-каких дополнительных частиц, которых никто никогда не наблюдал.

Если местный прогноз погоды предсказывает отрицательные 50 % вероятности шторма, выпадение осадков вверх и осыпь жаб с небес, компьютерная модель метеорологов, скорее всего, не вызовет у вас доверия. Физики тоже настроились скептически. Но предположите, что прогноз при этом предсказал температуру воздуха — и угадал. Связь между бозонными струнами и поведением адронов оказалась слишком интригующей — рука не поднималась ее отмести.

Много чего в теории уже выглядело довольно неуклюжим, но вскоре физики поняли, что есть и еще одно узкое место, совсем уж затруднительное. В квантовой механике все частицы могут принадлежать к одному из двух типов: бозоны и фермионы. Технически говоря, разница между бозонами и фермионами — в типе внутренней симметрии, известной как «спин». Но на практическом уровне эта разница выражается в том, что никакие два фермиона не могут иметь одно и то же квантовое состояние. Это вполне хорошее свойство, если городить, скажем, атомы, из которых сделана материя. Это означает, что электроны в атоме не будут толпиться все разом на самом нижнем энергетическом уровне. Если б толпились, они у всех химических элементов там преимущественно и оставались бы. А на самом деле атомы элементов периодической системы получаются путем заполнения электронами энергетических уровней, одного за другим, вплоть до внешних; благодаря этому атомы разных элементов имеют разные физические и химические особенности. У бозонов такого ограничения нет. Поэтому материя сделана из фермионов. Калибровочные частицы, обеспечивающие взаимодействия между фермионами, — бозоны. Однако в бозонной теории струн все частицы… что? Именно — бозоны.

Вот с этой-то закавыкой струнной теории Шварц и взялся разбираться в первую очередь. Этим он завоевал расположение своего наставника и возможность остаться в лучшем университете, где его работа хоть и не вызывала доверия, но, по крайней мере, могла быть замечена.

В 1971 году Пьер Рамон из Университета Флориды вывел струнную теорию для фермионов, обнаружив начатки формы новой симметрии, названной суперсимметрией, и она связала бозоны и фермионы. Тут-то Шварц, совместно с Андрэ Невё, развил теорию, известную под названием спиновой теории струн, которая включала в себя частицы и фермионного, и бозонного типа, избавлялась от тахионов и уменьшала число требуемых измерений с двадцати шести до десяти. Эта работа оказалась значимой поворотной точкой и в истории струнной теории, и в карьере Шварца.

Гелл-Манн, работавший тогда в Женевском ЦЕРНе (Европейская лаборатория физики частиц), говорит: «Как только вышла статья Шварца, я его нанял». Они даже не встречались. Следующей осенью Шварц перебрался в Калтех из Принстона, где ему отказали в пожизненном профессорстве. Пока Фейнман считал теорию струн одной из тех патентованных панацей-однодневок, что вечно появлялись и исчезали, Гелл-Манн разделял веру Шварца. «На что-нибудь она должна была сгодиться, — говорил он. — Я не понимал, на что именно, но на что-нибудь-то уж точно». В 1974-м Гелл-Манн притащил в Калтех погостить еще одного теоретика струн, Джоэла Шерка. Шварц и Шерк вскоре сделали потрясающее открытие.

В теории струн была частица со свойствами глюона, калибровочной частицы сильных взаимодействий. Но существовала при этом и досадная неловкость — дополнительная частица, тоже из категории калибровочных, от которой вроде бы не было никакого толка. До работы Шварца и Шерка длину струны считали равной 10-13 сантиметров, что есть примерный диаметр адрона. Но они обнаружили, что если предположить куда меньший размер — 10-33 сантиметра, т. е. планковскую длину, — дополнительная калибровочная частица отлично подходит по свойствам под гравитон — гипотетическую калибровочную частицу поля тяготения. Струнная теория — это же не только теория адронов, она включала в себя и гравитацию, а может, даже и электрослабые взаимодействия!

Но постойте-ка. Разве мы не выяснили, что смешение гравитации с квантовой механикой приводит к хаосу и противоречию? В теории Шварца и Шерка — именно потому, что струны не считались лишенными размерностей точками, а объектами конечной длины, — проблем ультрамикроскопичности не возникло. Они нашли то, что сочли непротиворечивой квантовой теорией поля, из которой могли вывести уравнения Эйнштейна, но которая на ультрамикроскопическом уровне вела себя иначе именно так, как требовалось для снятия противоречий между общей теорией относительности и квантовой механикой. Эйнштейн, опубликовав статью об относительности, ожидал нападок. Шварц и Шерк — шквала восторгов.

Шварц и Шерк покатались по миру с лекциями. Публика вежливо поаплодировала, после чего забыла об их работе. Пристань к ней с вопросами, она бы сказала, что не верит. В защиту «публики»: математика была (и остается) чрезвычайно трудной и сложной. «Публика не пожелала вложиться в понимание, а без вельможной санкции никаких усилий от нее не дождешься», — говорит Шварц.

Гелл-Манн сошел бы за такого вельможу, но сам он мало что сделал в этой области исследования. Те немногие статьи их совместного со Шварцем авторства, как хмыкал сам Шварц, «были среди тех двух непамятных для нас обоих». Джону Шварцу профессорская кафедра в Калтехе не светила — он мог рассчитывать лишь на череду продлений его ставки исследователя. «Я не мог добыть для Джона постоянной профессорской работы, — говорит Гелл-Манн. — Люди были настроены скептически». В 1976 году Шерк и другие показали, как включить суперсимметрию в теорию струн, создав наконец так называемую теорию суперструн. Вроде бы еще один большой прорыв, но всем опять оказалось неинтересно. Интересной смотрелась теория-соперник — супергравитация, а также более традиционная теория поля sans гравитации — Стандартная модель. Объединив электромагнитное взаимодействие со слабым и сильным ядерными, Стандартная модель двигалась от победы к победе, включая экспериментальное создание в 1983 году W- и Z-бозонов — калибровочных частиц слабого взаимодействия.

Струнная теория надолго села на мель. Никто не понимал, как произвести с ее помощью хоть какие-нибудь практически значимые расчеты. Остались загвоздки с дополнительными измерениями и прочие неувязки. У Шерка случился нервный срыв. Он шатался по улицам Парижа. Слал странные телеграммы физикам уровня Фейнмана. Он все еще как-то умудрялся работать — хоть часть дня, поражая врачей и своих коллег. Затем он разошелся с женой, и та уехала в Англию вместе с детьми. В 1979 году он совершил самоубийство, что стало для маленькой компании струнников великой потерей. В начале 1980-х у струнной теории обнаружились новые напасти. Всем казалось, что Шварц застрял в переулке без всякого просвета впереди — в тупике.

Кое-кто поговаривал, что Шварц повторяет «зряшные» усилия руководителя своей докторской диссертации — Джеффри Чу. На достижение своей цели Чу, как и Шварц, потратил двадцать пять лет, трудясь над теорией S-матрицы. Первые несколько из этих лет он провел в славной компании, а последние пятнадцать возился фактически один — подвергаясь, как и Шварц, эпизодическим нападкам. В конце концов Чу оставил свою мечту. Оглядывая сделанное, можно сказать, что усилия Чу не пропали втуне: Шварц говорит, что «неясно, возникла бы струнная теория без него. Она выросла из S-матричного подхода».

В Калтехе Гелл-Манн, несмотря на все перипетии, оставался могучим союзником. «Я был счастлив и гордился, что они работали у нас в Калтехе, — говорит он. — Было в этом что-то сокровенное.

Я нутром чуял. И поэтому держал у себя в Калтехе заповедник редких видов. Я много занимался природоохраной в странах третьего мира. Тем же я занялся и в Калтехе». В 1984-м Шварцу удался еще один прорыв, на сей раз — совместно с Майклом Грином (тот работал в Колледже королевы Марии в Лондоне). Они обнаружили, что в струнной теории некоторые нежелательные параметры, которые могут приводить к аномалиям, чудесным манером взаимно уничтожаются. Этот результат они представили тем же летом в виде шуточного скетча на семинаре в отеле «Джером» в Эспене. В финале постановки Шварца уносили со сцены люди в белых халатах, а он вопил, что вывел теорию всего на свете. Горький юмор скетча отражал его ожидания — что и на этот результат никто не обратит внимания и его все забудут.

Но в этот раз, не успели Шварц и Грин дописать статью по итогам работы, позвонил человек по имени Эдвард Виттен. Он узнал о достигнутых результатах от тех, кто был на семинаре. Шварц был в восторге: хоть кто-то заинтересовался его трудами. Но Виттен — не просто какой-то там уверовавший исследователь. Он был самым влиятельным физиком и математиком в мире. За несколько месяцев Виттен (в ту пору в Принстоне, а чуть погодя — в Калтехе, со Шварцем) и его коллеги добились нескольких крупных результатов — например, определения пространств Калаби-Яу как претендентов на звание тех самых свернутых измерений. Этого хватило, чтобы убедить сотни физиков начать работать над струнной теорией. Шварц наконец добился той самой вельможной санкции, в которой нуждался.

Внезапно Шварцем заинтересовались другие могучие университеты, пожелавшие заарканить новоиспеченного великого ученого. Гелл-Манн решительно взялся выбивать ему пожизненное профессорство. Даже в новых обстоятельствах это не было просто. Один чиновник сказал: «Мы не знаем, изобрел ли этот человек нарезной хлеб, но даже если так, люди все равно скажут, что он добился этого в Калтехе, так что незачем его тут держать». И все же через двенадцать с половиной лет Шварц все-таки получил профессорство. На несколько лет быстрее Калуцы.

Ныне статья Шварца и Грина именуется «первой революцией суперструн». Виттен говорит: «Без Джона Шварца струнная теория, скорее всего, просто сошла бы на нет, возможно, для того, чтобы ее переоткрыли в XXI веке». Но эстафетная палочка сменила руки. Пройдет десять лет, и Виттен возглавит, а потом и произведет свою революцию в струнной теории.

 

Глава 37. Теория, ранее известная как струнная

К началу 1990-х популярность струнной теории пригасла. За несколько лет до этого «Лос-Анджелес Таймс» даже предъявила публике позицию одного из критиков, предавшегося размышлениям о том, что теоретикам-струнникам, вероятно, должны «приплачивать университеты, а еще им надо разрешить развращать впечатлительных юных студентов». (В наше время, что утешительно, «Л. А. Таймс» в основном выбирает темы поближе к местным реалиям, например, как там дела у пары Уоррен Бейти — Аннетт Бенинг.) Восторги поутихли не без причины. Струнник Эндрю Строминджер сокрушался, что «есть кое-какие серьезные неприятности». Часть этих неприятностей сводилась к недостатку новых ошарашивающих предсказаний, выжимаемых из теории струн. Но возникло и другое затруднение — столь же досадное, что и стародавние: выходило, что струнных теорий — пять разных видов. Не пять разных кандидатов Калаби-Яу — те-то пять всех радовали, — а пять фундаментально разных теоретических структур. Перефразируя Строминджера, иметь пять разных уникальных теорий природы не эстетично. Неурожай продлился десять лет — еще одна обширная пустыня, которую Шварцу пришлось пересечь. Правда, на сей раз в большой компании искателей земли обетованной и с пророком во главе.

У каждого поколения физиков есть свои лидеры. В десятилетия до струнной теории ими были Гелл-Манн и Фейнман. Последние несколько десятков лет — Эдвард Виттен. Брайен Грин из Колумбийского университета говорит: «Если отследить интеллектуальные корни всего, над чем я когда-либо работал, они ведут к стопам Виттена». Сам я впервые услышал о Виттене в конце 1970-х — как о выпускнике-физике из Университета Брандейса, на несколько лет меня старше. Мне перепало несколько замечаний научных руководителей в духе «вы, конечно, голова, но не Эд Виттен». Вот интересно, думал я, они и женам своим говорят: «Ты, конечно, хороша, но вот моя давнишняя подружка была вообще ого-го»? Вообще-то, я себе такое легко мог представить. Но все-таки хотелось знать, что это за гений такой.

К моему разочарованию, выяснилось, что он по специальности историк, т. е. спец во вненаучной дисциплине из тех, что имели интеллектуальную глубину школьного курса с поправкой на объем домашнего чтения, по мнению нас, физиков по специальности. Хуже того: Виттен прослушал всего один курс по физике. Судя по всему, физика, в которой он столь безнадежно меня обскакал, была для этого Эйнштейна не более чем досужим развлечением.

Я с удовольствием выяснил, что Виттен работал на кампанию Макговерна в 1972-м, а это значило, что, хоть и выраженный антиниксоновец, он явно недоразвит в части «осмысленного расходования собственного времени». Ну и к тому же, раз он весь из себя гений, отчего ж тогда Макговерн не выиграл? Хотя нет, Макговерн победил в Массачусетсе — но только там. Может, все из-за Виттена? Несколько лет назад я выяснил: не из-за него. Пенсионера Макговерна добыл один журналист, которому не терпелось узнать мнение сенатора об «умнейшем человеке в мире», и Макговерн сообщил, что Виттена он не помнит. Но потом согласился с определением, добавив, что «Виттену хватило ума поддержать Макговерна на выборах-72, а я обо всех сужу по этому критерию».

После Брандейса Виттен оказался аспирантом-физиком в Принстоне. Поскольку физику ему раньше не преподавали, Виттена не могли принять на учебу, однако, судя по всему, у них существовала специальная программа приема для деток, которым суждено стать самыми умными людьми на свете. Когда же мы наконец познакомились, я сам был студентом-выпускником Беркли, где, прежде чем меня принять, уж точно хорошенько прочесали частым гребнем все мои оценки и иные навыки, полученные в процессе изучения реальных курсов физики.

Виттен оказался долговязым черноволосым парнем в очках, оправленных в черный пластик. Довольно самоуверенный, но в целом милый, он говорил так тихо, что приходилось щурить уши, чтобы разбирать его слова. (Обычно оно того стоило.) Посреди той самой лекции, где я его впервые увидел, он вдруг умолк — со всей очевидностью думал некие глубокие думы. Но молчал он так долго, что публика начала хлопать, как невежды на концертах Бетховена, что путают конец части произведения с его финалом. Виттен сказал нам, несколько раздражившись, что его симфония еще не доиграна.

Ныне Виттена часто сравнивают с Эйнштейном. На то, видимо, есть масса причин, однако главная, вероятно, — в самих сравнивающих, которые мало о каких физиках слыхали. Таково проклятие легендарного статуса Эйнштейна: он стал клише, и всякого норовят назвать Эйнштейном того-то или Эйнштейном сего-то. Вот что тебе светит, если ты — «кадиллак» среди физиков. Между Эйнштейном и Виттеном, да, есть некоторое поверхностное сходство. Оба евреи, оба провели много лет в Институте прогрессивных исследований, демонстрировали живой интерес к Израилю и увлекались миротворческими инициативами. Письма двенадцатилетнего Виттена против войны во Вьетнаме в редакцию местной газеты «Балтимор Сан» были опубликованы, а позднее Виттен состоял в миротворческих группах в Израиле.

Но если уж вам так необходимо их сравнивать, Виттен в его трудах куда больше похож на Гаусса, нежели на Эйнштейна. Никакой старый друг не объяснял Виттену современную геометрию — как и Гауссу. И, как Гаусс, он своей работой серьезно влияет на направление развития современной математики, в отличие от работ Эйнштейна. Есть и оборотная сторона: подход Виттена (и всех остальных) к струнной теории, а ныне — к М-теории, зиждется на математических прозрениях, а не на физических принципах, как некогда у Эйнштейна. Возможно, не произвольно, а из-за исторического стечения обстоятельств: на теорию струн когда-то наткнулись. Новый принцип физики в ее сути, подобие «счастливейшей мысли» для Виттена, если и есть, то еще не обнаружен.

В марте 1995 года Эдвард Виттен говорил о струнной теории на конференции в Университете Южной Калифорнии. Со времен суперструнной революции Шварца прошло одиннадцать лет, и для многих теория струн постепенно разваливалась. Речь Виттена все изменила. Он объяснил еще одно математическое чудо: все пять различных струнных теорий, по его утверждению, — лишь разные приблизительные формы одной и той же масштабной теории, ныне именуемой М-теорией. Физики в аудитории выпали в осадок. Нэйтен Сейберг из Университета Ратгерз, следующий докладчик, настолько впечатлился речью Виттена, что вымолвил: «Лучше мне податься в дальнобойщики».

Этот прорыв Виттена теперь называют второй революцией суперструн. Согласно М-теории, струны являются не фундаментальными частицами, а примерами более общих объектов — бран (сокращение от мембран). Браны — версии струн в измерениях высоких порядков, тогда как сама струна — одномерный объект. Мыльный пузырь, например, — 2-брана. Согласно М-теории, законы физики зависят от более сложных колебаний этих более сложных сущностей. И в М-теории есть одно дополнительное свернутое измерение — итого получается одиннадцать, а не десять измерений. Но самое странное в этой теории вот что: пространство и время в некотором фундаментальном смысле не существуют.

У М-теории есть, оказывается, такое свойство: то, что мы воспринимаем как местоположение и время, т. е. как координаты струны или браны, есть на самом деле математические наборы — матрицы. Лишь в приблизительном смысле — когда струны далеко разнесены в пространстве (хотя в житейском смысле все равно близко) — эти матрицы смахивают на координаты, поскольку все диагональные элементы набора становятся одинаковыми, а внедиагональные устремляются к нулю. Со времен Евклида это — самое глубинное изменение в понимании пространства.

Виттен говаривал, что «М» в названии М-теории означает «“мистерия” или “магия” или “матрица”, это мои любимые слова». Недавно он добавил к этой подборке слово «мутная» — и вот это, видимо, не самое любимое слово. М-теорию понять еще сложнее, чем струнную. Никто не знает, какие в ней возникнут уравнения, и еще меньше известно об их решениях. Вообще-то, про всю теорию мало что известно — помимо того, что она вроде бы существует, эта самая широкая теория, в которой пять видов теорий струн суть всего лишь пять вариантов аппроксимации. И все же идеи, порожденные М-теорией, уже привели к поразительнейшему намеку на то, что есть что-то в этой самой идее струн: к предсказанию, связанному с физикой черных дыр.

Черные дыры — одно из явлений, предсказанных общей теорией относительности. Их характерная особенность заключается в их черноте (для физиков это означает, что никакой свет или иное излучение не могут из них вырваться). В 1974 году Стивен Хокинг сказал: р-р-р-р, неправильный ответ! С учетом законов квантовой механики приходится заключить, что черные дыры — не вполне черные. А все оттого, что, по принципу неопределенности, пустое пространство не вполне пусто: оно заполнено па́рами частица — античастица, которые существуют лишь краткий миг, после чего самоуничтожаются в ничто. Согласно очень хитроумным вычислениям Хокинга, когда это происходит совсем рядом с черной дырой, та может всосать одного члена пары, а второго выкинуть в космос — и вот их-то можно наблюдать как излучение. Значит, черные дыры светятся. Это к тому же означает, что в них ненулевая температура, в точности так же, как свет от углей указывает на некоторое количество тепла. К сожалению, температура типичной черной дыры — меньше одной миллионной градуса, а это слишком мало, чтобы засекли астрономы. Но физиков понимание того, что у черных дыр есть хоть какая-то температура, привело к изумительному выводу. Если у черных дыр есть температура, в них есть кое-что под названием энтропия — более того, этой самой энтропии в них будет уйма: если записать ее численно, она займет больше одной строки в этой книге.

Энтропия — мера беспорядка системы. Если знать внутреннюю структуру системы, можно вычислить ее энтропию, подсчитав число возможных состояний, в которых она может находиться; чем их больше, тем выше энтропия. Например, если у Алексея в комнате беспорядок, у нее есть множество возможных состояний, в которых она может пребывать: тут — хомячки, там — гора грязной одежды, еще где-нибудь — старые комиксы, а также все эти объекты могут быть перемешаны, и тогда «состояние» у системы будет иное. Чем больше у него в комнате всякого барахла, тем больше возможных состояний (в отличие от распространенного убеждения, состояние высокой энтропии не имеет ничего общего с аккуратным или каким ни попадя размещением объектов внутри системы, а лишь с возможным числом этих размещений). Но если бы в его комнате было пусто, она могла бы находиться лишь в одном состоянии, поскольку ничто в ней нельзя поменять местами, и энтропия при этом равнялась бы нулю. До Хокинга черные дыры воспринимались как лишенные внутренней структуры, т. е. чем-то вроде пустой комнаты. Но теперь они скорее похожи на комнату Алексея. Если бы Хокинг спросил, я бы подтвердил: я всегда говорил, что комната Алексея — это черная дыра.

Физики лет двадцать ломали голову над результатами Хокинга. Сочетать отдельные теории относительности и квантовые теории — дело хитрое. Где же они, эти самые состояния внутри черной дыры, на которые указывает энтропия? Никто не понимал. И вот в 1996 году Эндрю Строминджер и Кумрун Вафа опубликовали шикарный расчет: применив соображения М-теории, они продемонстрировали, что можно создать (теоретически) черные дыры некоторых разновидностей из бран; для этих черных дыр разные состояния — это состояния бран, и их можно посчитать. Энтропия, вычисленная ими этим методом, согласовалась с предсказательными расчетами Хокинга, которые он получил совсем иным способом.

Этот результат стал поразительным свидетельством того, что М-теория делает что-то правильно, и все же остался лишь еще одним постсказанием. Теории же нужно, как настоятельно напоминают нам эти зануды-эксперименталисты, хоть какое-то опытное подтверждение из реального мира. Надежда на экспериментальное свидетельство М-теории жива — по двум причинам. Первая — возможное открытие в следующем десятилетии суперсимметричных частиц. Это может произойти в Большом адронном коллайдере в женевском ЦЕРНе. Вторая проверка на реальность — поиск отклонений от закона тяготения. Согласно Ньютону, а на этом уровне — также и Эйнштейну, два объекта лабораторных размеров должны притягиваться друг к другу с силой, пропорциональной обратному квадрату расстояния между ними. На половине дороги между ними их взаимное притяжение возрастает вчетверо. Однако, в зависимости от природы дополнительных измерений, в рамках М-теории допустимо, что при очень тесном сближении объектов сила их взаимного притяжения будет увеличиваться гораздо быстрее. И хотя физики проверили действие других сил вплоть до масштабов 10-17 см, поведение гравитационной силы пока изучено лишь до расстояний, больших 1 см. Исследователи из Стэнфордского университета и Колорадского университета, Боулдере, сейчас ставят эксперименты с гравитацией на малых расстояниях с применением «десктопных» технологий.

Шварц не волнуется. Он говорит: «Я верю, мы нашли уникальную математическую структуру, которая непротиворечиво сочетает квантовую механику с общей теорией относительности. Поэтому она почти наверняка правильна. И поэтому, хоть я и ожидаю открытия суперсимметрии, эту теорию я не оставлю, даже если суперсимметрии не обнаружится».

Природа развивается по своему внутреннему порядку. Математика являет его нам. Станет ли М-теория дивным учебником завтрашних студентов колледжей — или всего лишь примечанием к лекции по истории науки под названием «Тупики»? Орем ли Шварц и Декарт ли Виттен, или оба они вместе — Лоренц, городящий безнадежную механическую теорию из несуществующего эфира, нам неведомо. Юный Шварц знал лишь одно: такая красивая теория не может ни на что не сгодиться. Ныне целое поколение исследователей смотрит на природу и видит ее струны. И по-старому смотреть на мир уже вряд ли получится.