Было бы большим упрощением полагать, что описанная выше химическая эволюция, в ходе которой накапливались все более сложные органические соединения, непосредственно предшествовала клеточной эволюции, т. е. появлению жизни. На самом деле следует выделить предклеточный этап эволюции, в ходе которого формировались квазиживые комплексы.

В этих комплексах главным компонентом были полимерные молекулы, способные к воспроизводству путем авторепликации (Paul and Joyce, 2004). Известные нам автореплицирующиеся молекулы воспроизводятся не непосредственно, а через комплементарную (структурно дополнительную) реплику, т. к. комплементарные звенья взаимодействуют значительно более эффективно, чем идентичные (принцип комплементарного узнавания). При комплементарном синтезе к концу растущей цепи подключается мономер, несущий матричный элемент, комплементарный матричному элементу соответствующего звена родительской цепи, играющей роль полимерной матрицы. Новые цепи однозначно соответствуют родительским цепям, но не идентичны, а комплементарны им. Только при следующем раунде репликации, при котором в качестве матриц выступают комплементарные элементы дочерней цепи, воспроизводится комплементарная комплементарной, т. е. исходная последовательность звеньев, после чего цикл повторяется вновь и вновь. В современных клетках принцип комплементарного узнавания используется при репликации нуклеиновых кислот: молекул дезоксирибонуклеиновой кислоты (ДНК) и рибонуклеиновой кислоты (РНК) (Бреслер, 1963; Албертс и др., 1994). При этом автореплицирующимися являются молекулы ДНК, а все типы клеточной РНК синтезируются по ДНК (исключение составляют автореплицирующиеся РНК вирусов). Только у вирусов имеет также место обратный процесс: синтез ДНК по РНК. Матричными элементами в звеньях нуклеиновых кислот служат азотистые основания, принадлежащие классу гетероциклических соединений. За небольшими исключениями в современной живой природе используются две пары комплементарных друг другу оснований: гуанин — цитозин и аденин — урацил (в ДНК, как правило, вместо урацила используется тимин).

Однако представляется маловероятным, что ранними самовоспроизводящимися структурами были молекулы ДНК или РНК. В модельных экспериментах среди продуктов органических синтезов сахар рибоза встречается значительно реже других сахаров (Shapiro, 1984, 1988), и тем более редки нуклеозиды с “правильным” подключением к рибозе азотистого основания (в первом положении). С другой стороны, непосредственные объекты комлементарного узнавания, азотистые основания, вполне могли накапливаться в ходе органических синтезов в ранней атмосфере Земли. Уже в первых модельных экспериментах было показано, что аденин, а также другие пурины могут быть получены из циановодородной кислоты (HCN) (Oro, 1961; Ferris and Hagan, 1984; Borquez, 2005). Также присутствовавший в ранней атмосфере Земли цианоацетилен мог послужить исходным продуктом для образования пиримидинов цитозина и урацила (Miller 1986; Ferris and Hagan, 1984). Несмотря на то, что высказано сомнение в реальности пребиотического синтеза цитозина (Shapiro, 1999), многие авторы сходятся во мнении, что азотистые основания с самого начала входили в состав мономеров, из которых формировались цепные молекулы, обеспечивая авторепликацию этих молекул по принципу комплементарного узнавания. Последовательности азотистых оснований в автореплицирующихся молекулах, как и ныне, служили для записи и сохранения наследственной информации. Принято считать также, что звенья были ациклическими и ахиральными (не обладавшими оптической активностью) аналогами нуклеотидов. Однако нет единого мнения о возможной структуре скелетной части звеньев и, соответственно, о природе связей, объединяющих их в цепной молекуле. В настоящее время рассматриваются две основные концепции. Согласно одной из них, в ранних автореплицирующихся молекулах звенья соединялись, как и в нуклеиновых кислотах, фосфодиэфирными связями. Они могли быть сконструированы на основе гликоля, акролеина и других молекул, которые можно рассматривать как ациклические предшественники рибозы (Joyce and Schwartz, 1987; Schwartz, 1997; Zhang et al., 2005). Согласно другой концепции, звенья соединялись амидной связью подобно аминокислотам в белке. Мономерами в этом случае служили аминокислоты, у которых в качестве боковых групп были азотистые основания. Полимерные молекулы этого типа получили название пептид-нуклеиновых кислот (peptide nucleic acid, PNA). Их можно было бы также назвать “информационные пептиды”. Такие молекулы получены в лаборатории (Nielsen et al. 1991; Nelson et al., 2000; Fader and Trantrizos, 2002), что свидетельствует о реальности их синтеза в ходе химической эволюции. Матричный синтез цепи ПНК по комплементарной ПНК также осуществлен экспериментально. Более того, оказалось, что в качестве комплементарной матрицы при синтезе ПНК можно использовать цепь РНК и, наоборот, РНК может быть синтезирована по ПНК (Bohler et al. 1995). Последний факт представляется весьма существенным для эволюции. Он показывает, что при переходе по мере развития клеточных синтезов от простейших автореплицирующихся молекул к более совершенным структурам могла иметь место преемственность генетических свойств, информация о которых зашифрована в последовательности азотистых оснований. Аналогичными свойствами обладают также гликоль-нуклеиновые кислоты (Zhang et al., 2005). Мы не знаем, какой именно вариант структуры автореплицирующихся молекул был реализован при зарождении жизни. Возможно, параллельно функционировали несколько таких структур (Wu and Orgel, 1991). Главное, что упомянутые выше автореплицирующиеся структуры действительно могли возникнуть в ходе химической эволюции.

Независимо от того, какие автореплицирующиеся и иные структуры функционировали в предбиологическом мире, проблема катализа их синтеза сохраняет актуальность. Явление поверхностного катализа реакций полимеризации привлекло внимание исследователей как пока единственное научно правдоподобное объяснение добиологического образования белков и автореплицирующихся молекул. В качестве минералов-катализаторов особое внимание исследователей привлекли каолин (глины) (Cairns-Smith, 1985), пирит (FeS2) (Keller et al., 1994), сульфид железа (FeS) (Wachtershauser, 1988; Huber, 2003; Martin and Russell, 2003). Поверхность этих минералов несет слабый положительный заряд. Такой заряд оттягивает электроны сорбированных на поверхности молекул. Благодаря этому ослабевают внутримолекулярные связи и повышается реакционноспособность молекул (иными словами, как при любом катализе, понижается энергия активации химических реакций). Кроме того, молекулы, сорбированные на поверхности, могут блуждать по ней, как бы подыскивая партнеров по взаимодействию. Сорбированная на поверхности твердого тела вода находится в связанном состоянии, что снижает ее вовлеченность в химические процессы. Благодаря этому процессы конденсации должны проходить эффективнее, чем в водной среде. К таким процессам относятся образование пептидной и фосфоэфирной связей, т. е. синтез белков и автореплицирующихся молекул. Действительно, на взвешенных в водном растворе аминокислот частицах коллоидных комплексов сульфидов железа и никеля в присутствии окиси углерода (CO) были синтезированы пептиды (Huber and Wachtershauser 1998, 2006). Важно отметить, что процесс осуществлялся в относительно мягких условиях (при температуре около 100 °C и нейтральных значениях pH). Такие условия считаются типичными для Земли 4–3.9 млрд лет тому назад. Не исключено, что предшественниками при синтезе пептидов были не сами аминокислоты, а присутствовавшие в большем количестве модифицированные предшественники (T aillades, 1998).

Энергия, необходимая для образования пептидной связи, как и для других реакций, могла доставляться не только теплом, но также уже упоминавшимися другими источниками: УФ-излучением и электрическими разрядами. (Dickerson 1978). Под действием тех же источников синтезировались соединения, сами способные быть донорами энергии. Это могли быть неорганические пирофосфаты (Baltscheffsky and Baltscheffsky 1994), которые образуются, в частности, из вулканической магмы при распаде P4O10 (Yamagata at al. 1991), а также полифосфаты и органические макроэргические соединения (Kulaev, 1979; Westheimer, 1987).

Осуществление добиологических синтезов на поверхности минералов позволяло решить сразу несколько, как казалось не решаемых вне клетки, проблем: концентрирование реагентов в зоне реакции, катализ, сдвиг равновесия в сторону полимеризации. Еще одно важное качество осуществленных на поверхности синтезов: их продукты остаются на какое-то время в контакте с поверхностью и друг с другом. В формировавшихся на поверхности комплексах автореплицирующиеся молекулы (предшественники РНК и ДНК), пептиды и другие молекулы, в том числе способные запасать энергию, вступали во взаимодействия, воспринимаемые как зачаток метаболизма. Ключевым этапом раннего метаболизма могла стать организация взаимодействий, обеспечивших установление элементов обратной связи, когда определенный продукт способствует синтезу другого, а этот последний стимулирует образование первого. Особое значение имело установление такой связи между пептидами и автореплицирующимися молекулами. Пептиды, несмотря на небольшие размеры, уже могли играть роль катализатора. В частности, синтезированный в лаборатории дипептид гистидил-гистидин проявил способность катализировать как синтетические процессы, так и гидролиз (Shen et al., 1990). Поэтому предположение, что пептиды (белки) могли быть в числе самых ранних участников предбиологической эволюции и об участии пептидов в образовании автореплицирующихся молекул вполне оправдано, тем более, что аминокислоты, из которых формируются пептиды, могли быть образованы, как и азотистые основания, из HCN (Oro and Kamat, 1961; Oro and Guidry, 1961).

Другой элемент обратной связи — контроль образования пептида со стороны автореплицирующейся молекулы. Можно предположить, что аминокислотная последовательность пептида определялась прилегавшими друг к другу элементами автореплицирующейся молекулы, которые связывали и определенным образом ориентировали соответствовавшие им аминокислоты (применительно к РНК см. Раздел 3.2). В образовании связей между аминокислотами могли участвовать элементы тех же автореплицирующихся молекул. Это предположение основывается на недавно подтвержденных данных, свидетельствующих, что в современном мире, в котором, казалось бы, безраздельно господствуют ферменты белковой природы, роль фермента, осуществляющего в рибосоме присоединение очередной аминокислоты к концу растущей белковой цепи, выполняет элемент рибосомной РНК (Nissen et al. 2000). Эти экспериментальные данные, полученные на РНК, косвенно подтверждают предположение, что способностью контролировать аминокислотную последовательность и сам синтез пептидов могли обладать и более ранние, не дошедшие до нас, автореплицирующиеся молекулы.

В последние годы как модели ранней (неферментной) авторепликации нуклеиновых кислот рассматриваются различные матричные конструкции, химические катализаторы и т. д. В экспериментах по неферментной авторепликации нуклеиновых кислот, как и в биологических системах, используется принцип комплементарности. Экспериментально было установлено, что короткие фрагменты однонитевой ДНК могут ассоциировать с соответствующими им (гомологичными) участками биспиральной ДНК. В образовавшейся прерывной тройной спирали примыкающие друг к другу фрагменты могут быть воссоединены (легированы) с помощью N-цианимидазола. Аналогичным образом могут быть воссоединены фрагменты, находящиеся в составе прерывной биспирали (Li and Nicolaou, 1994; Sievers and von Kiedrovski, 1994; Luther et al., 1998). Отметим, однако, что от воссоединения фрагментов до реального синтеза комплементарной нити ДНК или другой автореплицирующейся молекулы из мономерных предшественников еще далеко. Тем не менее, механизм формирования протяженных цепных молекул путем скрепления коротких фрагментов мог быть полезным в добиологические времена и в ранних клетках при условии осуществления химического синтеза коротких фрагментов из мономеров (Sievers and von Kiedrovski, 1994; Luther et al., 2001). Сшивка фрагментов на матрицах позволяла ступенчато наращивать длину цепных молекул до размеров, позволявших молекулам выполнять их функции (в данном случае, информационные). Фактически, этот процесс можно рассматривать как самую раннюю и, естественно, примитивную форму генетической рекомбинации (Lehman, 2003). Механизм ступенчатого наращивания пептида путем соединения коротких цепочек на белковой же матрице также мог иметь место (Lee et al., 1996; Yao et al., 1998; Paul and Joyce, 2004). Образование примитивных клеток сделало автореплицирующиеся молекулы, а следовательно, и заключавшие их клетки предметами Дарвиновского отбора.

Идея о возможности неферментной авторепликации нуклеиновых кислот привела некоторых авторов к выводу о вторичности белков. Высказано предположение, что в РНК мире белков еще не было. Однако учитывая, что белки, как и нуклеиновые кислоты (скорее, аналоги нуклеиновых кислот), могли быть образованы в ходе химической эволюции, их участие в предбиологических и раннебиологических синтетических процессах представляется весьма вероятным.

Следует коснуться часто поднимаемого вопроса, каким образом и в какой степени в добиологические и раннебиологические времена при синтезе “биологических” полимеров, в первую очередь белков и нуклеиновых кислот, выполнялось правило единообразия оптических изомеров. Аминокислоты, составляющие белки, как и сахара, составляющие основу нуклеиновых кислот, обладают асимметрическим атомом углерода (все замещающие группы у этого атома разные), благодаря чему являются оптически активными (хиральными) веществами. Каждое из них присутствует в форме двух конформационных d- и l-изомеров (энантиомеров), вращающих плоскость поляризации света, соответственно, вправо и влево. Такие изомеры, будучи химически идентичны, не могут быть совмещены друг с другом подобно кистям правой и левой руки. Очевидно, что d- или l-изомеры не взаимозаменяемы в биологических полимерных молекулах (в том числе уже на этапе их синтеза), т. к. осуществление фермент-субстратной реакции и других форм межмолекулярных взаимодействий, требует точного соответствия позиций участвующих во взаимодействии групп. В клетке эта проблема решается, как правило, определенным образом: соответствующие ферментные системы синтезируют только l-изомеры (аминокислоты) или d-изомеры (сахар рибоза). Оговорка “как правило” не случайна, т. к. существуют и исключения. Известны не частые случаи, когда в определенной позиции пептида (например синтезируемого цианобактериями токсина) присутствует не l-, а d-изомер, синтез которого контролируют соответствующие ферментные системы. Такой пептид не кодируется непосредственно генетическим аппаратом клетки, и, соответственно, его синтез не осуществляется на рибосомах. В этих случаях кодируются образованные l-аминокислотами ферменты, которые обеспечивают синтез пептида с включенными в определенных позициях d-аминокислотами.

Принято считать, что при химических синтезах l- и d-формы аминокислот образуются в равных количествах (рацемическая смесь). В связи с этим возник вопрос, каким образом в предбиологических и ранних биологических системах при синтезе белка из рацемической смеси аминокислот отбирался только один оптический изомер. Современные данные вносят определенную ясность в эту проблему. Прежде всего, они не подтверждают предположение о строгой рацемичности присутствовавших на ранней Земле аминокислот. Установлено, что в космической органике, доставляемой, в частности, углистыми хондритами, некоторые аминокислоты в большей степени представлены l-энантиомерами (Bada, 1997; Pizzarello and Cronin 2004). Такую асимметрию связывают с круговой поляризацией (возможно, на кристалликах льда) космического ультрафиолетового излучения, являвшегося энергетическим компонентом при синтезе аминокислот как в атмосфере раннего Солнца, так и на Земле (Meierhenrich and Thiemann, 2004). Возможно, что незначительное преобладание l-аминокислот в “первичном бульоне” в период химической эволюции явилось причиной тому, что именно эта стереоформа была “выбрана” на Земле для конструирования клеточных белков. Не исключено, что в другой части Вселенной или даже нашей Галактики, где ультрафиолетовое излучение поляризовано в другом направлении, в смеси химически синтезированных аминокислот преобладают d-аминокислоты и, соответственно, клеточные белки образованы d-аминокислотами. По этой причине для нас тамошняя пища оказалась бы несъедобной.

Принципиально важный результат был получен Хитсом и Луизи (Hitz and Luisi, 2004). Авторы показали, что пептиды, полученные в водной среде из рацемата аминокислот, содержат значительное количество гомохиральных последовательностей (d- или l-). В той же работе продемонстрировано, что пептиды с гомохиральными последовательностями избирательно сорбируются на твердой поверхности. В случае даже незначительного преобладания в исходной смеси l-аминокислот (как, возможно, и на ранней Земле) среди гомохиральных пептидов в значительно большей степени преобладают пептиды, образованные l-звеньями (эффект усиления). Другие авторы (Saghatelian et al., 2001) показали, что специально сконструированный 32-звенный пептидный репликатор, используя рацемическую смесь пептидных фрагментов, осуществляет селективный процесс конденсации, в результате которого образуются гомохиральные продукты. Недавно было обнаружено, что аминокислота серин образует восьмичленные гомохиральные кластеры, которые могли формироваться и в пребиотические времена. Их взаимодействие с другими структурами также было стереоспецифичным (Nanita and Cooks, 2006).

Выше было отмечено, что процесс полимеризации мог происходить не в гомогенной среде, а при сорбции реагентов (в данном случае аминокислот) на твердой поверхности. Их взаимодействие с поверхностью ослабляет существующие связи, катализируя тем самым образование новых связей. Необходимый для осуществления химической реакции тесный контакт наращиваемого конца пептида с присоединяемой аминокислотой в условиях сорбции на твердой поверхности может быть обеспечен при определенной взаимной ориентации сорбированных реагентов, что может быть обеспечено их гомохиральностью. Имея в виду некоторое преобладание l-аминокислот в “первичном бульоне”, следует заключить, что хиральность большей части пептидов, синтезированных на твердой поверхности, должна была оказаться l-типа. Таким образом, существенное преобладание монохиральных пептидов (белков), сформированных из l-аминокислот, могло существовать уже на этапе химической эволюции. В клетках эта специфика закреплена ферментативным синтезом l-аминокислот. Нельзя исключить, что на ранних этапах клеточной эволюции, когда синтез пептидов стали контролировать автореплицирующиеся молекулы, отбор изоформ мог осуществляться при связывании и ориентировании аминокислот элементами этих молекул. Действительно, связывающие аминокислоты петлевые элементы РНК распознают не только саму аминокислоту, но и ее конформацию, связывая преимущественно l-аминокислоты (Geiger et al. 1996).

Таким образом, в своей совокупности идеи поверхностного катализа, удержания синтезированных молекул в состоянии сорбции, формирования из этих молекул ансамблей с зачатками самоорганизации позволяют представить, как мог осуществляться принципиально важный этап предклеточной эволюции, а также переход к ранним клеткам.