#i_012.jpg
#i_013.jpg
Обсерватория древних майя. Чичен Итца, Мексика. 900 год нашей эры.
Планковская Вселенная
Как родилась Вселенная? «Конечно же, в результате Большого Взрыва», — ответит сейчас подавляющее большинство людей. И действительно, о Большом Взрыве ежегодно публикуется огромное число статей и в научной и в научно-популярной печати. Но самое-то интересное заключается в том, что взрыва в обычном понимании этого слова не было!
Разберемся для начала, какой смысл вкладывают в слово «взрыв» физика и химия. Возьмем самый простой случай, хорошо известный и понятный всем, — взрыв бомбы. Как он происходит? Взрывчатое вещество за очень небольшой промежуток времени сгорает и превращается в горячий газ, который создает огромное давление внутри корпуса бомбы. Поскольку это давление не уравновешено давлением снаружи, корпус разлетается на куски, так как он не в состоянии выдержать внутреннее давление, происходит взрыв. Весь этот процесс длится тысячные доли секунды. Следовательно, взрывной процесс характеризуется в первую очередь высвобождением значительного количества энергии в небольшом объеме за малое время.
Справедливо ли применять слово «взрыв» к начальным стадиям расширения Вселенной? Другими словами, можно ли сказать, что огромное давление сжатой в точку Вселенной явилось причиной ее расширения (взрыв бомбы)?
Нет! При взрыве расширение происходит из-за разности между большим давлением продуктов взрыва и малым давлением окружающего их атмосферного воздуха. Но когда мы рассматриваем раннюю Вселенную, понятия «снаружи» и «внутри» теряют смысл, а давление в однородной Вселенной распределено равномерно. Между различными частями Вселенной нет разности давления, а значит, нет и силы, вызывающей расширение.
В чем же дело? Почему Вселенная начала расширяться? На этот вопрос сегодня нет общепринятого ответа.
Очень трудно говорить о тех временах, когда вся видимая сегодня Вселенная была величиной с маковое зернышко. Но предполагается, что она действительно миллиарды лет тому назад была именно таких размеров (и даже меньше) и действительно стала расширяться.
Сегодня космология еще не в состоянии ответить на ряд принципиальных вопросов. Среди них основные: что было до начала наблюдаемого расширения? Будет ли Вселенная вечно расширяться или опять сожмется в точку (как говорят физики, образуется ли снова сингулярность — состояние вещества с бесконечной плотностью)? Мы надеемся, что ответы на эти вопросы будут получены в близком будущем.
Но отсутствие ответов сейчас, сегодня, не мешает физикам рассматривать самые ранние стадии расширения Вселенной. Некоторые теории оперируют с временами 10–35 секунды от начала. Это, по выражению академика Я. Зельдовича, «очень-очень ранняя Вселенная». Есть теории, которые «заглядывают» в еще более ранние моменты времени. О них у нас тоже пойдет разговор. А термин «Большой Взрыв» сейчас общепринят, и мы его будем использовать. Тем более что скорости процессов, происходящих при «рождении» нашего Мира, в неизмеримое число раз превышают скорости любых известных сегодня взрывных процессов. Поэтому-то расширение Вселенной действительно можно уподобить «сверхвзрыву», Большому Взрыву.
Почему для нас так важны начальные этапы развития Вселенной, почему космологи пытаются проанализировать самые ранние моменты, заглянуть как можно глубже в прошлое нашего мира? Да потому, что никакая космологическая модель, никакая теория невозможна без достаточно полного понимания начальных этапов развития Вселенной — ведь именно тогда закладывалось ее будущее, все последующие стадии ее формирования. И эти стадии нельзя понять, не зная, какой была ранняя, горячая Вселенная. Чтобы представить себе развитие Вселенной, следует прежде всего постараться понять, что представляло собой вещество Вселенной, материя на разных этапах ее существования.
Важность постановки такой задачи очевидна. Ведь решения уравнений ОТО, полученные Фридманом, говорят о том, что Вселенная расширяется из точки, из сингулярности. Но решения эти, с другой стороны, ничего не говорят о состоянии и поведении вещества вблизи сингулярности, а для нас сейчас, когда мы начинаем рассматривать ранние стадии Вселенной, именно это и является самым главным.
Сегодня, миллиарды лет спустя после Большого Взрыва, во Вселенной есть наблюдатели-астрономы, и мы знаем «начинку пирога». Это звезды, планеты, галактики, кометы, скопления галактик и многое другое. Но проделаем мысленный эксперимент и начнем сжимать Вселенную. Температура и плотность начнут повышаться… Ясно, что на каком-то этапе сжатия и планеты и звезды просто-напросто перестанут существовать. При дальнейшем росте температуры и сжатия станут неустойчивыми атомы, а потом и их ядра.
До сих пор мы говорили лишь об ОТО, которая описывает процессы расширения и сжатия мира. Но совершенно ясно, что сейчас для рассказа о поведении вещества мы должны обратиться к другим физическим теориям.
Вопросы, рассматриваемые нами, исключительно сложны, а очень многие их аспекты еще ждут своего решения. Но именно эти задачи и являются на сегодня наиболее «горячими точками» современной физики и космологии. Какими же теоретическими «инструментами» пользуются современные ученые?
Самая красивая из физических теорий — ОТО представляет собой типичный пример классической теории. Что это значит? В уравнения ОТО не вводится никаких новых фундаментальных физических постоянных. В них присутствуют лишь скорость света и гравитационная постоянная Ньютона.
Другим примером классической теории является электродинамика, созданная более ста лет назад Д. Максвеллом. Всего 80 лет назад большинство физиков свято верило, что в природе существует лишь два вида фундаментальных взаимодействий — гравитация и электромагнетизм. Они имеют неограниченный радиус действия и могут быть не только измерены с помощью приборов, но хорошо известны «в быту»: если, например, кирпич упадет на голову, можно не сомневаться в том, что вы на практике столкнулись с гравитацией. Электромагнитные взаимодействия также хорошо знакомы каждому человеку, поскольку самые разнообразные физические, химические, биологические явления зависят от электромагнетизма.
Однако более 80 лет назад из микромира поступили тревожные сигналы о том, что классическая физика не в состоянии описать явления, происходящие в масштабах отдельных атомов. Хорошо известно, что согласно классической теории электромагнетизма электрон в атоме должен «упасть» в конце концов на атомное ядро из-за непрерывного излучения энергии. С этим и другими парадоксами оказалась в состоянии справиться лишь квантовая теория поля.
Нельзя не вспомнить о том, что великий Эйнштейн не принимал квантовой теории в ее современном виде, хотя именно он (и здесь мы опять сталкиваемся с парадоксами истории науки) наряду с Планком заложил фундамент квантовой физики. Кстати, Нобелевскую премию по физике Эйнштейн получил за создание теории фотоэффекта. А ведь фотоэффект по своей природе является типичным квантовым явлением. Эйнштейн работал над этим в 1905 году. Затем возникла квантовая механика, в частности появилось знаменитое соотношение неопределенностей Гейзенберга, налагающее ограничения на одновременное определение координаты и импульса частицы.
Суть квантовой теории (а именно она вызывала неприятие у Эйнштейна) состоит в том, что, располагая даже максимальной информацией о физической системе, квантомеханический подход определяет лишь вероятность того или иного события в микромире и не предсказывает точного поведения системы.
«Бог в кости не играет», — говорил Эйнштейн, отрицая вероятностный подход квантовой физики к описанию физических явлений. В течение последних лет своей жизни Эйнштейн пытался создать единую теорию поля, общую классическую теорию, классическую в том смысле, что физические явления в ней должны полностью описываться, если известны значения всех рассматриваемых физических переменных. Мы знаем, что на этом пути Эйнштейн потерпел неудачу. Но титаническая игра гения с природой навсегда останется в истории человеческой культуры как один из наиболее ярких и драматических моментов.
Однако вернемся к ОТО. Я уже говорил о том, что эффекты ОТО наиболее выпукло проявляются в сильных гравитационных полях. Так почему же мы заговорили о границах ее применимости? «Узкое место» здесь — сингулярность, начало расширения Вселенной.
Совершенно ясно, что если считать сингулярность точкой, математической абстракцией, то нечего вообще говорить ни о каких физических законах в этой точке. Но дело в том, что Вселенная материальна; грубо говоря, мы знаем, что она имеет вес. Именно поэтому реальное вещество, материя всегда будет занимать какой-то конечный, отличный от нуля объем.
Поскольку поведение Вселенной во времени описывается уравнениями ОТО, то вопрос о границах применимости этих уравнений на ранних стадиях Вселенной в условиях экстремально малых размеров и экстремально больших плотностей вполне правомочен. Пространство — время чудовищно искривлены, и, поскольку мы стремимся к сингулярности, речь идет уже не о маковом зернышке, а о гораздо меньших объемах. Не могут ли здесь играть роль квантовые эффекты?
Когда теоретики начали исследовать этот вопрос, то оказалось, что «ответ» на него был дан в конце прошлого века, то есть когда ОТО еще не была создана. «Ответ» был дан М. Планком, одним из творцов квантовой физики. Планк ввел свою знаменитую постоянную h (ħ = h /2π) в теорию излучения в 1899 году и тогда же, добавив к ней скорость света c и постоянную тяготения G, показал, что из этих констант можно составить величины любой размерности, например плотность, длину. Так, чтобы из h, с и G получить длину, необходимо извлечь квадратный корень из величины Għ/c3.Тогда получается так называемая планковская длина l n = = 10–33 см.
Планковское время t n = l n /c = 5,3 · 10–44 сек., а планковская плотность ρn = c5/G2ħ = 5 · 1093 г/см3.
Очень интересно отношение самого Планка к этим постоянным. Он, как, впрочем, и любой другой великий физик, считал, что цель физики — объяснение устройства мира. Планк глубоко верил, что наука не должна нести в себе отголоски индивидуального мышления, физические законы должны быть абсолютны во всей Вселенной.
«Эти единицы, — писал он, — сохраняют свое естественное значение до тех пор, пока справедливы законы тяготения, оба начала термодинамики и пока остается неизменной скорость распространения света в вакууме». И далее: «…мы получаем возможность установить единицы длины, массы, времени и температуры, которые не зависели бы от выбора тех или иных веществ и обязательно сохраняли бы свое значение для всех времен и для всех культур, в том числе и внеземных и нечеловеческих, и которые поэтому можно было бы ввести в качестве „естественных единиц измерений“».
Глубокие идеи Планка не потеряли своего значения и сегодня, спустя более 80 лет. Планковские константы сегодня считаются предельными в физике величинами. Внимательно посмотрите на них еще раз. Именно на планковской длине перестает «работать» ОТО. На этом масштабе плотность вещества чудовищна. Она неизмеримо превышает плотность атомного ядра. Эти величины очень трудно представить себе наглядно. Действительно, ядерная плотность равна примерно 1014 г/см3. Другими словами, один кубический сантиметр атомных ядер весил бы сто миллионов тонн. А планковская плотность вещества превышает ядерную на 80 порядков! Единица с 80 нулями!
И здесь в сверхсильных гравитационных полях начинают возникать квантовые эффекты. Отметим, что когда речь идет о квантовых эффектах в условиях сильной гравитации, то, быть может, сами понятия «пространство» и «время» теряют привычный для них смысл. Как хорошо сказано в книге Я. Зельдовича и И. Новикова «Строение и эволюция Вселенной»: «Насколько легко найти область, где важны квантовые явления, настолько же трудно выяснить, что происходит в этой области. Здесь становится трудно даже сформулировать проблему».
Действительно, задача о ранней, «планковской», Вселенной исключительно сложна. Мы просто не знаем, как ведет себя вещество, что оно собой представляет в этих бесконечно малых масштабах длин, сочетающихся с бесконечно большими плотностями и температурами.
Экспериментаторы «добрались» пока до длин порядка лишь 10–16 см. Это мир элементарных частиц, сверхвысоких энергий, и именно поэтому физика ранней Вселенной теснейшим образом смыкается с физикой микрокосмоса. К сожалению, как сказал лауреат Нобелевской премии по физике С. Вайнберг, «незнание микроскопической физики стоит как пелена, застилающая взор при взгляде на самое начало».
Остатки взрыва сверхновой. Снимок в рентгеновских лучах.
Космология оперирует с еще меньшими расстояниями и большими энергиями, чем те, что привычны для физики элементарных частиц. Ведь рассматривая самые ранние этапы, мы неизбежно приходим к какому-то моменту времени (порядка планковского), когда классическая ОТО неприменима. Здесь предстоит еще огромная работа. Как заметил в одной из своих статей академик Я. Зельдович, опасности безработицы в космологии не существует.
Посмотрим, что говорят о веществе ранней Вселенной самые общие принципы и уравнения современной физики, а потом поговорим немного об «очень-очень ранней» Вселенной, некоторых перспективах и трудностях в решении этой увлекательной задачи. При этом мы не сможем обойтись без знания современной классификации элементарных частиц. Именно о них сейчас и пойдет речь. Следует, правда, отметить, что понятие элементарности в последние годы сильно пошатнулось.
Микрофизика
Итак, два новых определения: адроны и лептоны. Адроны — сильновзаимодействующие частицы, образующие атомные ядра — протоны и нейтроны, а также нестабильные тяжелые частицы пи-мезоны, к-мезоны, лямбда-гипероны и другие. Лептоны не участвуют в сильных взаимодействиях и объединяют в один класс большинство легких частиц — нейтрино, мюоны и электроны; есть еще, разумеется, и безмассовые фотоны.
Чрезвычайно важно то обстоятельство, что адроны взаимодействуют друг с другом гораздо сильнее, чем лептоны. Химические связи между атомами в молекулах во много миллионов раз слабее, чем силы, удерживающие атомное ядро от распада. Ядерные силы внутри ядра намного, примерно в 100 раз, сильнее электрических сил отталкивания. Ведь протоны согласно закону Кулона должны были бы разлетаться друг от друга, так как они несут положительный заряд. Но, как только им удается сблизиться достаточно тесно (атомное ядро!), главную роль начинают играть так называемые сильные взаимодействия; именно они и стабилизируют структуру атомного ядра, свободно преодолевая взаимное отталкивание десятков протонов. Но при повышении температуры, ближе к началу мира, атомные ядра уже становятся неустойчивыми. Более того, при высоких температурах начинает проявляться неэлементарность адронов.
Согласно бурно развивающейся в последние годы кварковой теории все адроны состоят из «более» элементарных частиц — кварков. Если эта теория верна (а она получает сейчас убедительные доказательства в различных экспериментах), то при температуре около нескольких тысяч миллиардов градусов Кельвина адроны, по-видимому, уже не могут существовать, они разбиваются на составляющие их кварки, точно так же, как атомы при нескольких тысячах градусов распадаются на ядра и электроны, а ядра, в свою очередь, при миллиарде градусов — на протоны и нейтроны.
Кварки, вообще говоря, поразительные частицы, задающие и по сегодняшний день немало работы как теоретикам, так и экспериментаторам. Дело в том, что внутри адрона они ведут себя как каторжники, скованные цепями. Пока цепи не натянуты, кварки относительно свободны, но только относительно: стоит чуть увеличить расстояние между ними — и они оказываются прочносвязанными. Как принято говорить, свобода их асимптотическая.
Итак, все адроны состоят из кварков. И возникает естественный вопрос: где же предел элементарности частиц? Ведь сравнительно недавно круг элементарных частиц был ограничен нейтронами, протонами, электронами и фотонами. А сейчас, мало того, что одних адронов порядка сотни, оказалось, они неэлементарны, состоят из кварков, антикварков. Неужели в микромире работает принцип «русской матрешки»?
Мы опять не можем ответить на этот вопрос. Физике неизвестна сегодня модель праматерии. Как сказал член-корреспондент Академии наук СССР Л. Окунь, «ярмарочное обилие и разнообразие элементарных частиц» действительно наталкивает на мысль о существовании истинной элементарности. Ведь с эстетической стороны, а эстетичность, вообще говоря, почти всегда была одним из критериев правильности в теоретической физике, гораздо естественнее существование небольшого числа «истинно элементарных» частиц. Они уже имеют и названия — пракварки, метакварки, преоны, ришоны, глики, максимоны. Но… названия есть, а теории праматерии нет.
Подходы к этой общей теории, которая должна в конечном итоге связать микро- и макромиры, в центре внимания и физики элементарных частиц, и космологии. Почему?
Мы уже говорили о гравитационном и электромагнитном взаимодействии в физике. Но сегодня известно еще два типа взаимодействий. Это уже упоминавшееся сильное и так называемое слабое взаимодействия. Слабые силы взаимодействия названы так потому, что на масштабах длин порядка размеров ядер они слабее не только сильных (ядерных), но и электромагнитных. Тем не менее роль их в природе огромна. Не будь слабых взаимодействий, были бы невозможны процессы, лежащие в основе термоядерных реакций, происходящих в недрах Солнца. Другими словами, если бы не было слабых взаимодействий, погасло бы Солнце! Поистине мал золотник, да дорог!
Эти два типа взаимодействия обладают очень малым радиусом действия: сильное работает на расстоянии порядка 10–13 сантиметра, а радиус действия слабого по порядку величины составляет около 10–16 сантиметра.
Сейчас на повестке дня с особой остротой стоит проблема создания единой основополагающей теории, объединяющей все известные силы. Пока удалось объединить электромагнитные и слабые силы. Возникла модель так называемых электрослабых взаимодействий. На очереди — модели великого объединения, или, как их еще называют, гранд-модели. Совершенно ясно, что законченная гранд-теория должна с единых позиций объяснить действие всех сил в микромире.
Это очень многообещающее направление в физике. Гранд-модели предсказывают массу удивительных вещей и, в частности, распад протона. Сейчас экспериментаторы пытаются обнаружить это явление, осуществить, как считают многие физики, эксперимент века. В случае успеха Природа воздаст должное пытливости человеческого ума.
Физика микромира, так же как и физика макромира, имеет дело с огромными энергиями. Недаром в разных странах мира: в СССР, в США, Швейцарии, ФРГ — построены ускорители, на которых удается исследовать частицы с энергиями порядка сотен ГЭВ. Эта энергия соответствует температурам в миллион миллиардов градусов. Может ли современная экспериментальная физика подняться еще выше по шкале энергии?
Тридцать с лишним лет назад Э. Ферми выдвинул идею ускорителя-гиганта, опоясывающего весь земной шар. Такой ускоритель представлял бы собой расположенное в космосе огромное кольцо вокруг Земли с радиусом около 7 тысяч километров. Это дало бы возможность достигнуть энергий в 107–108 ГЭВ, или 1020–1021 K. Ясно, что постройку такого ускорителя нельзя назвать делом ближайшего будущего.
Попытки разработки гранд-моделей, где при еще более высоких энергиях объединяются и электрослабые, и сильные взаимодействия, требуют энергии порядка 1014–1016 ГЭВ (1026–1028 К!). Для получения таких энергий нужно было бы построить кольцевой ускоритель порядка размеров Солнечной системы. Это уже чересчур не только для физики обозримого будущего, но и для научной фантастики. Ведь пока диаметр самого большого кольцевого ускорителя — «всего» 2,2 километра.
При переходе к высоким энергиям порядка 1014 ГЭВ мир элементарных частиц должен стать в известном смысле проще. Ярмарочное обилие их должно «испариться» и число частиц существенно уменьшиться.
Здесь уместна следующая аналогия. Число минералов на Земле исчисляется несколькими тысячами. Но Давайте начнем увеличивать температуру Земли. Стоит нам достичь двух-трех тысяч градусов, когда плавятся самые тугоплавкие минералы, — и мы будем иметь достаточно гомогенную жидкость. Это будет расплав, не содержащий ни одного минерала. В нем будут присутствовать лишь элементы таблицы Менделеева, а их всего около сотни. Охладим его, и по мере охлаждения в нем начнут возникать множество самых различных типов минеральных зерен. Быть может, именно так, по мере перехода к неизмеримо более высоким температурам происходит некоторое «упрощение» системы элементарных частиц.
Но так ли на самом деле оптимистично выглядят перспективы теории элементарных частиц? Объединение электромагнитных и слабых взаимодействий — действительно триумф теоретической физики, причем триумф, увенчанный убедительным экспериментом. Мы знаем теперь, как ведет себя вещество и что оно собой представляет до энергий 100 ГЭВ. Но насколько справедлива экстраполяция на энергии 1014 ГЭВ? Ведь здесь разница в 12 порядков, в тысячу миллиардов раз?
Нельзя исключить того, что здесь мы можем столкнуться с неизвестными явлениями, с новой физикой. Большинство физиков не верит, что между энергиями в 102 ГЭВ и 1014 ГЭВ лежит «пустыня», что здесь не могут проявиться какие-то новые явления, и поэтому вопрос о том, какие частицы можно считать истинно элементарными, остается открытым.
Нам же важно сейчас отметить следующее. В нашем мысленном эксперименте мы начали сжимать Вселенную для того, чтобы посмотреть, что будет при этом с веществом. Мы дошли до энергии в сотни ГЭВ. Здесь есть эксперимент, здесь можно с уверенностью сказать, что физика дает хорошие прогнозы по интересующему нас вопросу. Теперь можно подвести некоторые итоги.
Этой энергии соответствует температура 1015 K. Ясно, что ни атомных ядер, ни протонов, ни нейтронов при такой температуре нет. Есть лишь частицы, претендующие на роль истинно элементарных: лептоны, фотоны да вырвавшиеся на свободу кварки. Весь этот кварко-лептонный суп находится в состоянии, близком к термодинамическому равновесию. Это означает, что концентрация частиц поддерживается постоянной, скорости их рождения и гибели равны.
Можно, конечно, пойти дальше и пытаться смотреть, что будет с веществом при более высоких энергиях. Теоретики выпустили огромное количество работ, посвященных этой теме. Но, во-первых, твердо установившейся теории здесь нет, во-вторых, когда мы приближаемся к планковскому порогу, мы волей-неволей должны рассматривать Вселенную, радиус кривизны которой меньше размеров элементарных частиц, с плотностью вещества, достигающей 1094 г/см3. Это, вообще говоря, terra incognita для современной физики, и вряд ли кто-либо возьмется сказать, что представляет собой сверхплотная Вселенная. Можно надеяться, однако, лишь на то, что в этих экстремальных условиях применимы понятия плотности энергии и давления. Мы чуть позднее в самых общих чертах поговорим об очень-очень ранней Вселенной, а пока попытаемся описать ее начиная с времен от 10–10 секунды после Большого Взрыва.
Здесь при температурах 1015 K и плотностях, больших, чем плотность атомных ядер, основную роль играют адроны, лептоны и фотоны. Их энергия очень велика, а поскольку их много, они дают основной вклад в плотность энергии и определяют динамику расширения Вселенной.
В самой Вселенной в это время непрерывно идут реакции рождения пар частиц и античастиц, например, электронов и позитронов при столкновении энергичных фотонов: γ + γ e+ + e–; происходят также реакции между электронами и позитронами с образованием нейтрино и антинейтрино: e+ + e– ν + ν–.
Для нас очень важно сейчас не забыть о кварках. Ведь именно кварки по мере остывания Вселенной образуют нейтроны и протоны; кроме этого, они участвуют в реакциях образования мезонов. Период свободной жизни для кварков кончается при энергиях 1 ГЭВ: они попадают в адронный «мешок» и навсегда становятся «невидимками», давая жизнь новым фундаментальным частицам.
Плотность упала до значений 1014 г/см3, прошла одна десятитысячная доля секунды после начала Большого Взрыва. Именно в эти моменты времени начинается так называемая адронная стадия эволюции Вселенной. Она продолжается недолго, чуть меньше секунды, но за этот короткий промежуток времени происходит очень много важных событий.
Температура еще достаточно высока, и в условиях обилия высокоэнергичных лептонов непрерывно идут реакции взаимных превращений нейтронов и протонов:
p + e – #i_016.png n + ν
p + ν – #i_016.png n + e +
При температуре больше 1011 K концентрации протонов и нейтронов примерно одинаковы. Но с понижением температуры концентрация протонов возрастает. Действительно, ведь масса протона меньше массы нейтрона, и поэтому в указанных выше реакциях образование протона при определенной температуре становится более выгодным энергетически. С дальнейшим понижением температуры эти реакции вообще прекращаются, и мы уже имеем дело с «замороженными» концентрациями протонов и нейтронов во Вселенной, когда Снейтр./Спрот. ≈ 0,15.
Здесь возникает естественный вопрос. Ведь во время адронной эры во Вселенной должны присутствовать как частицы, так и античастицы. А речь шла сейчас лишь о протонах. Где же антипротоны? Почему наша Вселенная несимметрична в зарядовом отношении? Почему в ней есть вещество и почти нет антивещества?
Вопрос этот очень сложный и, нужно сказать честно, не имеющий на сегодняшний день окончательного решения. Более того, некоторые ученые, например лауреат Нобелевской премии по физике X. Альвен, считают, что антивещество представлено во Вселенной на паритетных началах с обычным веществом. Большинство ученых находит, что X. Альвен не прав. Но в науке голосование не принято, и на поставленные вопросы надо пытаться давать исчерпывающий ответ.
Итак, если изначально число частиц и античастиц было одинаковым, то в принципе все они за какое-то время должны были бы в результате аннигиляции превратиться в фотоны, в свет, в нейтрино и антинейтрино. Но этого нет, и, по крайней мере, для нашей Галактики твердо установлено отсутствие звезд и планет из антивещества.
С другими участками Вселенной, которые можно наблюдать сегодня, дело посложнее. Ведь, наблюдая другие галактики, астрономы имеют дело лишь с квантами электромагнитного излучения, и поэтому, если бы какая-либо удаленная галактика состояла из антивещества, мы не могли бы узнать об этом даже в принципе, поскольку антивещество излучает фотоны так же, как и обычная материя. Это, кстати говоря, один из сильных аргументов Альвена и его немногочисленных сторонников.
Тем не менее гипотеза зарядовой асимметрии Вселенной имеет веские экспериментальные подтверждения. Дело в том, что обычное вещество во Вселенной присутствует заведомо. Если бы какие-то галактики состояли из антивещества, то в космосе должны были интенсивно проходить процессы аннигиляции электронов и позитронов, а также протонов и антипротонов. В результате в спектрах гамма-излучения этих галактик должен был бы наблюдаться избыток квантов с энергией ~ 0,5 МЭВ. Но подобный факт не удалось отметить в наблюдениях.
Вещество Вселенной все-таки состоит, по всей видимости, из протонов. Почему? Здесь мы должны вернуться снова в область высоких температур и объединения взаимодействий, когда могли идти экзотические реакции рождения кварков и антикварков.
Так вот, работами последних лет достаточно убедительно показано, что в этих реакциях кварков должно рождаться чуть больше, чем антикварков. Насколько? Ответ таков: на три миллиарда антикварков должно родиться 3 миллиарда и еще три кварка. Тогда 6 миллиардов кварков и антикварков проаннигилируют, а три оставшихся кварка «упадут» со временем в адронный «мешок» и образуют протон или нейтрон. Важно отметить, что в результате всех этих процессов во Вселенной на один протон приходится примерно миллиард фотонов и миллиард нейтрино.
Таким образом, вопрос о том, почему наша Вселенная состоит из вещества, а антивещество отсутствует, находит решение с использованием гранд-моделей.
Мы остановились на моменте времени в развитии Вселенной, когда установилось определенное отношение между нейтронами и протонами. Следующий важный процесс в расширяющейся горячей Вселенной — начало синтеза элементов.
До сих пор Вселенная представляла собой горячий котел, заполненный лишь частицами. С понижением температуры появляются условия для образования простейших атомных ядер. Прошло чуть больше ста секунд, температура упала до миллиарда градусов. Почему эта температура критична для нас? Собственно, не для нас, конечно, а для физики ранней Вселенной. Да просто дело в том, что энергия фотонов и лептонов уже недостаточна при этой температуре, чтобы развалить при ударе ядро атома.
Заметим, что субстрата для образования атомов водорода в ранней Вселенной более чем достаточно. Это протоны и электроны. А вот при миллиарде градусов начинается уже синтез ядер атома гелия. Этот синтез проходит в несколько этапов. Сначала протоны захватывают нейтроны и образуются ядра дейтерия: р + n → D + γ. Два ядра дейтерия, взаимодействуя между собой, могут образовать изотоп гелия гелий-3 и изотоп водорода — тритий:
D + D → 3 H + p
D + D → 3 He + n → 3 H + p .
Далее тритий, взаимодействуя с дейтерием, дает окончательно гелий-4:
3 H + D → 4 He + n .
В этих условиях, казалось бы, самое время «свариться» и другим элементам, более тяжелым, чем водород и гелий. К примеру, почему бы путем столкновений между теми же ядрами гелия или ядер гелия с нейтронами и протонами не получить новые элементы?
Но природа поставила здесь барьер, и барьер этот непреодолим: не существует стабильных изотопов с массой 5 или 8. Поэтому в гигантской водородной бомбе, которой была наша Вселенная миллиарды лет назад, синтезировались лишь легкие элементы — водород, гелий да немного лития. Разумеется, сегодня мы видим вокруг нас не только гелий и водород, но и массу других элементов. Но для образования этих элементов нужны другие условия, нежели те, что были в ранней Вселенной. В частности, нужна большая температура и плотность в течение более длительного времени. Когда в дальнейшем мы будем говорить о звездах, мы увидим, как синтезируются в природе более тяжелые элементы.
Процесс синтеза ядер легких элементов продолжался около трех минут после начала Большого Взрыва. С падением температуры синтез гелия прекратился, и теперь уже «заморозились», то есть остались неизменными, относительные концентрации гелия и водорода: ядра водорода составляли 70 процентов вещества Вселенной, ядра атомов гелия — 30.
Необходимо заметить, что отношение концентраций ядер гелия и водорода друг к другу сильно зависит от темпа расширения и, соответственно, от средней плотности вещества во Вселенной. Поэтому в какой-то мере это отношение может использоваться для проверки правильности той или иной космологической модели. Оценки содержания гелия в горячих звездах во внешней атмосфере Солнца, в солнечном ветре и т. д. дает достаточное основание для подтверждения правильности «стандартной» теории (дающей цифру в 30 процентов для гелия).
Кроме термоядерного синтеза легких элементов, в первые секунды происходил еще один очень важный и бурный процесс. Мы уже говорили о том, что в состав горячего вещества Вселенной входили лептоны — легкие частицы, и сейчас нам надо посмотреть, что происходило с электронами, позитронами и нейтрино по мере остывания гигантского первичного котла. При температурах выше примерно пяти миллиардов градусов электроны и позитроны присутствуют в раскаленной плазме в одинаковых концентрациях. Конечно, реакции аннигиляции, происходящие при столкновении электрона и позитрона, идут при любой температуре: e+ + e– → 2γ; e+ + e– → 2ν + ν–. Но при высокой температуре эти реакции компенсируются процессом рождения пар: γ + γ → e– + e+ или ν + ν– → e+ + e–.
С падением температуры реакции аннигиляции становятся «главными», так как энергии частиц для рождения пар уже не хватает.
Нейтрино исключительно слабо взаимодействуют с веществом, для них прозрачен даже наш земной шар. Поэтому примерно через 0,3 секунды после Большого Взрыва нейтрино начинают «игнорировать» все вещество Вселенной (включая, конечно, и электроны с позитронами). Их число уже не меняется. Говорят, что произошло отделение нейтрино от вещества. Этот процесс происходит при температуре больше десяти миллиардов градусов.
С понижением температуры продолжает играть роль реакция рождения электронов и позитронов из энергичных фотонов, но при пяти миллиардах градусов идет уже только реакция аннигиляции. Это приводит к тому, что излучение становится главной, основной частью Вселенной.
Реакции аннигиляции несколько подогревают наш мир, но конец взаимодействия лептонов, конец лептонной эры уже близок. Ее сменяет эра радиации, или, как ее еще называют, эра фотонной плазмы. Напомним, что число фотонов в миллиард раз превышает к этому моменту число выживших протонов.
Итак, бурная молодость Вселенной закончилась. Она была непродолжительной. Что значат несколько минут по сравнению с многими миллиардами лет?
Но именно эти несколько минут определили весь будущий облик нашего мира. Изменись хоть немного темп расширения Вселенной в эти первые сотни секунд, изменился бы и химический состав Вселенной. Например, если бы «замораживание» нейтронно-протонного состава произошло раньше, чем через одну секунду после Большого Взрыва, то бóльшая часть вещества Вселенной состояла бы не из водорода, а из гелия, и наверняка мы имели бы совершенно другой мир, чем тот, который перед нами сегодня.
Итак, когда прошли процессы аннигиляции, главную массу вещества Вселенной составляли фотоны, нейтрино и примесь высокотемпературной нейтральной плазмы, состоящей из протонов, ядер атомов гелия и электронов. Нейтрино, как мы уже говорили, с веществом не взаимодействует, а фотоны, наоборот, энергично рассеиваются на электронах, и поэтому вещество для них непрозрачно. Но с понижением температуры фотоны постепенно теряли свою энергию и в конце концов, когда «термометр» стал показывать примерно 4000 K, начались процессы рекомбинации электронов и ядер атомов гелия.
Энергии фотонов уже недостаточно, чтобы ионизировать атомы, и во Вселенной появляются сначала атомы гелия, а затем и водорода, который становится главным элементом мира.
Процесс рекомбинации начался, когда Вселенной было около 300 тысяч лет, и закончился еще через 700 тысяч лет. Этот период также очень важен для космологии. Фотоны, как мы знаем, взаимодействовали с высокотемпературной плазмой, и она была для них непрозрачной. Но, как только гелий и водород стали нейтральными, фотоны получили возможность распространяться свободно, произошло, как принято говорить в космологии, отделение вещества от излучения. С этого момента Вселенная стала прозрачной для фотонов, а они продолжали остывать по мере расширения Вселенной.
Как мы знаем по температуре реликтового излучения, «остыли» они довольно сильно, от 4000 K до 3 K, то есть температура уменьшилась за это время более чем в тысячу раз. Ну а Вселенная соответственно увеличила свои размеры примерно в тысячу раз.
Итак, мы остановились на моменте времени, когда Вселенная еще молода. Ей примерно миллион лет. Она заполнена фотонами, водородом, гелием и нейтрино. Правда, многие физики уверены в том, что есть еще целый зоопарк различных таинственных частиц, в частности гравитонов и монополей.
В принципе на этом можно было бы и закончить рассказ о детстве нашей Вселенной, о первых этапах ее эволюции, и перейти к таким интересным вопросам, как образование звезд и галактик. Но мне хотелось бы, быть может, в нарушение законов жанра научно-популярной литературы, снова коротко обсудить ранние этапы развития мира. Дело в том, что эта часть нашего рассказа, с одной стороны, была перенасыщена информацией, а с другой — эта информация носила довольно расплывчатый характер. И чтобы не сложилась ситуация, когда за деревьями не видно леса, попробуем взглянуть снова на главные моменты эволюции и на некоторые нерешенные вопросы.
Новые подходы
Итак, самое начало рождения, планковское время 10–43 секунды. Плотность вещества 1094 г/см3. Температура 1032 K.
В этом случае более удобно (и понятно) говорить о том, что Вселенная заполнена самыми различными видами излучения, полями чудовищной плотности. Частиц нет.
Итак, эта смесь различных типов излучений начинает расширяться. Почему? Неизвестно. Это первая фаза Большого Взрыва. Попытки описать поведение этих самых-самых ранних стадий Вселенной ограничены на сегодняшний день несовершенством физики. Многие физики полагают, что вот-вот будет создана «идеальная» физическая теория, позволяющая объяснить «все», в частности, такой вопрос: имеет ли время начало, что происходит в допланковскую эпоху?
На эти вопросы нельзя закрывать глаза. Ведь с чисто философской точки зрения планковские константы не должны ограничивать уровень нашего познания. Сейчас физики думают, что на расстояниях меньше 10–33 сантиметра континуум пространства-времени распадается, приобретает структуру, напоминающую мыльную пену, где каждый пузырь появляется за счет квантовых флуктуаций гравитационного поля. Я уже не говорю о том, что при гигантских энергиях, соответствующих планковским масштабам, многие частицы, считающиеся сейчас элементарными, например кварки, могут быть вовсе не элементарны. И перед физикой элементарных частиц, и перед космологией стоит, как Эверест, проблема создания единой теории объяснения мира.
Может показаться забавным тот факт, что эта теория уже имеет название — супергравитация. Название, бесспорно, красивое, но о предсказательной силе этой теории пока еще нечего говорить. Выдающийся физик современности С. Хокинг полагает, что к концу нашего столетия теоретическая физика будет закончена как наука, другими словами, реализуется мечта Эйнштейна о создании полной единой теории, описывающей мир. Бесспорно, бурное развитие науки дает известные основания для подобной точки зрения, но… Природа любит делать сюрпризы, и современная физика вряд ли от них застрахована.
Сегодняшняя физика берется объяснить все или почти все, что происходило во Вселенной, начиная с времен 0,01–1 секунды от Большого Взрыва. Этому в немалой степени способствует состояние термодинамического равновесия на самых ранних этапах жизни Вселенной. Огромные температуры обеспечивали это равновесие.
Почему равновесие так важно для последующей истории вещества? Почему мы можем не обращать внимания на то, что было в момент времени, скажем 10–20 секунды, а сразу «начать» с 10–2 секунды? Да по той простой причине, что если вещество находится в состоянии термодинамического равновесия, оно «не помнит» своей предыстории, ему, веществу, совершенно безразлично, каким путем его «довели» до состояния равновесия.
Простой пример. Вода в чашке на столе находится в равновесии с собственным паром при температуре, скажем, 20 °C. Но я могу получить эту воду самыми различными путями. Можно, например, нагревать кусок льда от температуры, близкой к абсолютному нулю, до комнатной, причем это можно делать в течение года или часа. Можно, наоборот, сконденсировать водяной пар из горячих вулканических источников. Можно развалить молекулы воды на атомы, получить гремучий газ, взорвать его и иметь в конце концов ту же чашку с водой. Молекулы воды памяти не имеют. Их поведение в чашке будет определяться только температурой и давлением в комнате.
То же самое и со Вселенной. Раз мы знаем, что она в равновесии в момент времени 0,1 секунды, нам, с точки зрения термодинамики, все равно, что с ней было до этого момента. Подтверждение удивительной эффективности методов теоретической физики в космологии мы находим в многочисленных наблюдательных данных. Здесь и красное смещение далеких галактик, и изотропность реликтового фона, и распространенность легких элементов. Но чем дальше мы пытаемся заглянуть в глубины времени, тем больше подводных камней возникает на нашем пути.
Пытливому уму человека мало одной сотой секунды, когда он может разобраться достаточно аккуратно с физическими процессами, происходящими в мире после его рождения. И сегодня появляются такие теории и модели мира, по сравнению с которыми бледнеют сюжеты самых смелых фантастических романов. Естественно, что эти модели создаются не на песке. Их появление стимулировано тем обстоятельством, что стандартная модель Фридмана сталкивается с существенными трудностями при попытках экстраполяции ее на раннюю эпоху.
Один пример. Почему Вселенная на больших масштабах столь однородна и изотропна? Реликтовое излучение в любой точке неба имеет с очень высокой точностью одинаковую температуру. Но это означает, что в далеком прошлом разные точки пространства, которые не могли ничего «знать» друг о друге, имели одинаковую температуру. Почему? Эта проблема имеет название проблемы горизонта, так как точки пространства, о которых мы говорили, не могли «видеть» друг друга, не могли обменяться сигналами, одна точка по отношению к другой находилась как бы за горизонтом.
Есть и другие трудности в стандартной модели. Для их преодоления недавно была разработана так называемая теория раздувающейся Вселенной, в рамках которой решается и проблема горизонта, и целый ряд других трудностей. Эта теория оперирует с такими удивительными понятиями, как «ложный вакуум», энергия которого в процессе раздувания мира переходит в обычную горячую плазму стандартной модели.
Но это еще не все. Согласно этой теории наблюдаемая Вселенная составляет ничтожную часть мира как целого. В мире может быть много «пузырьковых» вселенных, образовавшихся из полостей в ложном вакууме.
Фактически мы подходим здесь к идее, противоречащей на первый взгляд здравому смыслу, к идее рождения вселенных «из ничего». Эта идея, как пишет один из ее сторонников, кажется абсурдной всем, кроме теоретиков.
Модель раздувающейся Вселенной ставит очень трудные (сегодня, быть может, непреодолимые) задачи при «переводе» понятий, которыми она оперирует, на обычный, доступный каждому человеку язык. Так, например, академик Я. Зельдович использует вместо термина «ложный вакуум» термин «состояние», но суть дела от этого не меняется: во-первых, нелегко наглядно представить себе этот самый ложный вакуум, а во-вторых, если бы в модели раздувающейся Вселенной использовалось только это понятие, автору было бы, наверное, легче. Но когда даже в популярном изложении модели говорят о «доменах с переходом типа медленного скатывания», заранее предполагается знакомство читателя с разновидностями теорий великого объединения, квантовой хромодинамикой и т. д.
Поэтому, на мой взгляд, попытка «переложения» модели на обычный язык неизбежно будет связана с ее профанацией. Вот почему я сразу перешел к некоторым выводам из этой модели, которые, естественно, при такой манере изложения придется принять на веру.
Итак, мы упомянули о доменах. Это область пространства, содержащая нашу Вселенную. Модель раздувающейся Вселенной по-новому заставляет взглянуть на структуру нашего мира. Так, если на некотором этапе раздувания вся наблюдаемая Вселенная была размером с теннисный мяч, то вся область расширения (домен), в которой она умещалась, могла быть на 10–20 порядков больше. И таких доменов с разными вселенными могло быть много. Вывод состоит в том, что только малая часть пространства-времени мира в целом в ходе эволюции превращается во Вселенную.
Здесь мы вступаем в область довольно смелых спекуляций. Прежде чем совершить этот рискованный шаг, мне хотелось бы подчеркнуть, что на временах, больших, чем 10–30 секунды, темп расширения в модели раздувающейся Вселенной совпадает со стандартной фридмановской моделью. Само раздувание происходит в первые ничтожные доли секунды после «начала» и заканчивается примерно через 10–30 секунды. Главное, что отличает фридмановскую модель от модели раздувающейся Вселенной — геометрические факторы, о которых мы только что говорили.
Сценарий раздувающейся Вселенной имеет дело с картиной мира, в корне отличающейся от картины мира Фридмана, в которой между понятиями «мир» и «Вселенная» можно было поставить знак тождества. Вместо однородной и изотропной Вселенной мы получили мир предельно неоднородный и неизотропный, состоящий из множества огромных доменов размером 1050–10100 сантиметров. И лишь в одном из них словно дырка в куске хорошего швейцарского сыра сидит наша наблюдаемая Вселенная размером «всего лишь» в 1028 сантиметров.
Физические же параметры этой экзотической модели (температура, плотность энергии) через 10–30 секунды совпадают полностью с параметрами Вселенной Фридмана. Ну а теперь, если это короткое отступление успокоило читателя, поговорим немного о еще более рискованных вещах.
Я думаю, что вопрос о множественности вселенных — один из самых волнующих как с физической, так и с философской точки зрения. Этот вопрос очень глубокий и содержит в себе массу проблем. Из них главная, бесспорно, следующая. Если существует ансамбль вселенных, то каковы они? Похожи на нашу или нет? И чем, вообще говоря, определяется сходство или различие?
В декабре 1981 года в Таллине состоялся Международный симпозиум «Поиск разумной жизни во Вселенной». Большой интерес вызвал доклад И. Новикова, А. Полнарева и И. Розенталя «Численные значения фундаментальных постоянных и антропный принцип». В этой работе очень наглядно проявился новый (и очень модный) подход к вопросу, почему Вселенная именно такая, какой мы ее наблюдаем. Этот вопрос можно перефразировать следующим образом: почему значения фундаментальных физических констант имеют именно такие значения, которые наблюдаются в нашей Вселенной, а не какие-либо другие?
Сторонники антропного принципа дают достаточно простой ответ: «Вселенная такова, какой мы ее видим, потому, что в ней существуем мы». Этот залихватский ответ не может, разумеется, доставить чувства удовлетворения. Формулировка ответа сама по себе выглядит сомнительной. Действительно, более правильно было бы сказать: «Мы (наблюдатели) существуем потому, что Вселенная именно такая, какой мы ее видим».
Нельзя не согласиться с С. Хокингом, который говорит о том, что должно быть более глубокое объяснение устройства мира, чем то, которое предлагает нам антропный принцип. Это объяснение в первую очередь должно ответить на вопрос, который уже был поставлен выше. Почему скорость света имеет значение 300 тысяч км/сек, а не 500 тысяч км/сек? Почему заряд и масса элементарных частиц такие, а не какие-либо другие, и т. д.
Скажем сразу, что современная физика здесь бессильна. Мы можем говорить сейчас лишь о том, что было бы с Вселенной, если изменить численные значения физических констант. Это очень увлекательная проблема, и существенный вклад в ее решение внес советский физик И. Розенталь. Следуя сейчас, в частности, его идеям, можно обсудить возможный облик ансамбля вселенных с различными значениями физических «постоянных». Основная мысль здесь состоит в том, что даже небольшие их изменения приведут к радикальной перестройке структуры и свойств Вселенной.
Операция варьирования фундаментальных констант может показаться сначала и бессмысленной и неправомочной. Ведь недаром они называются фундаментальными, неизменными. Но… поскольку, с одной стороны, мы подошли к понятию ансамбля вселенных, а с другой стороны — сегодня нам неизвестно, в силу каких причин константы физики имеют именно те значения, которые они имеют, подобная операция выглядит достаточно логично.
Лишь в том случае, если в любой из возможных вселенных в силу каких-то пока неизвестных причин физические константы такие же, как и в нашем мире, ситуация становится тривиальной: в мегамире есть ансамбль одинаковых миров.
Разумеется, слово «тривиальной» использовано здесь в физическом смысле. С философских позиций реализация подобного случая не менее, а быть может, и более интересна, чем ансамбль вселенных с различными физическими константами. Вернемся, однако, непосредственно к предмету нашего обсуждения. Рассмотрим сначала, как будет выглядеть Вселенная, в которой масса электрона будет несколько больше, чем сейчас в нашей Вселенной.
Атом водорода в нашей Вселенной абсолютно стабилен. Он мог бы быть неустойчив при очень высоких температурах ~ 1010 K, когда энергетически разрешена реакция.
p + e – → n + ν
А при низких температурах эта реакция строго запрещена. Действительно, нейтрон тяжелей протона. В энергетических единицах (вспомним, что E = mc2) m n – m p ~ 1,3 МЭВ, а m e ~ 0,5 МЭВ. Мы видим, что масса электрона существенно меньше, чем разница масс нейтрона и протона. Поэтому указанная выше реакция коллапса атома водорода запрещена. Для того чтобы она «пошла», массу электрона нужно увеличить примерно в три раза.
С помощью квантовомеханических расчетов можно оценить время жизни нового атома водорода с более тяжелым электроном. В случае троекратного увеличения массы электрона время жизни модифицированного водорода будет всего около месяца; если увеличить массу электрона в 4 раза, то новый атом будет жить и того меньше — сутки.
Если мы вспомним, что в нашей Вселенной было 70 процентов водорода и 30 гелия, то сразу видно, что дело плохо. В такой Вселенной невозможна жизнь, поскольку в ней не было бы ни одного атома водорода, ни одной водородсодержащей молекулы. Все звезды и галактики в этой Вселенной состояли бы из одних нейтронов.
Вселенная без водорода получится также и в том случае, если слегка (на проценты) увеличить степень сильного взаимодействия. Тогда оказывается возможным существование стабильного ядра гелия-2:
p + p → 2 He + γ
Реакция проходила бы очень быстро, и водород выгорел бы в первые же минуты существования Вселенной. Опять мы получили бы Вселенную без водорода, а значит, и без жизни.
Вариации слабых взаимодействий также коренным образом повлияют на структуру мира. Если мы увеличим константу слабого взаимодействия всего в 10 раз, то время жизни нейтрона станет порядка 10 секунд вместо 10 минут в нашей Вселенной. Но 10 секунд — время весьма малое по сравнению с эпохой космического нуклеосинтеза, а в отсутствие нейтронов нуклеосинтез (образование элементов) просто не мог бы идти. В этом случае мы бы имели Вселенную почти без нейтронов, состоящую только из водорода, — довольно однообразная картина.
Вариации других физических постоянных также сильно искажают облик мира, как и в тех коротких примерах, которые мы сейчас рассмотрели. Константы в этих примерах менялись независимо друг от друга, индивидуально. А что, если попробовать изменить набор констант согласованно? В упоминавшемся уже докладе И. Новикова и других была поставлена именно такая задача. Оказалось, что есть два «острова устойчивости» для существования сложных стабильных структур, но один из них находится в планковской области, где масса каждого объекта порядка планковской массы. В таких вселенных жизнь вряд ли возможна. Наша Вселенная попадает в другую область устойчивости.
Вывод этой работы состоит в том, что могут быть вселенные с слегка другим набором констант, но тем не менее существования жизни в них исключить нельзя. Разумеется, о формах жизни в других вселенных можно строить сейчас лишь совершенно беспочвенные предположения.
Неортодоксальные взгляды
В заключение мне кажется необходимым вкратце остановиться на так называемых неортодоксальных точках зрения на эволюцию и происхождение нашего мира. Неортодоксальные позиции потому так и названы, что они не находятся в русле генерального направления современной космологии. Но наука тем и хороша, что к ней более, чем к любой другой отрасли человеческой деятельности, применимо выражение: «В спорах рождается истина». А споры по поводу происхождения, эволюции и структуры Вселенной происходят и по сей день.
Форма дискуссий не всегда имеет парламентский характер. Год назад в солидном научном журнале появилась статья X. Альвена — непререкаемого авторитета в области физики плазмы. Название статьи очень симптоматично: «Космология: миф или наука?» Альвену нельзя отказать в том, что он очень четко использует некоторые слабости стандартной модели, в том числе проблемы сингулярности и горизонта. Большинство современных космологов, согласных с моделью Большого Взрыва, он называет «верующими фанатиками» или «верующими Большого Взрыва».
Одно из основных положений, которое защищает Альвен, состоит в том, что Вселенная существенно неоднородна по своей структуре, она имеет клеточное строение. Одна клетка от другой отделяется плазменными стенками, во Вселенной в равных количествах присутствует материя и антиматерия. Вселенная вечна и бесконечна. Альвен делает и более радикальное предположение, отказываясь от ОТО и считая, что мир может быть вполне объяснен в терминах ньютоновской механики.
С идеями Альвена перекликается и космологическая модель Р. Омнеса, который также «предпочитает» зарядово-симметричную Вселенную. Проделав соответствующие теоретические оценки, Омнес сделал вывод об отталкивании нуклонов и антинуклонов при температуре порядка нескольких тысяч миллиардов градусов. При этой температуре горячее вещество превращается в эмульсию, смесь капель вещества и антивещества. Далее, с понижением температуры происходит их разделение в астрономических масштабах. Теория Омнеса вызывает возражения, которые основываются главным образом на наблюдательных астрономических данных. В то же время эта теория, как отмечает Я. Зельдович, «красива», а это, как мы уже говорили, один из важных критериев правильности.
Не один Альвен является приверженцем вечной и безграничной Вселенной. Крупные астрофизики Г. Голд, Г. Бонди и Ф. Хойл (один из наиболее известных астрофизиков XX века и автор ряда научно-фантастических романов) еще в 1948 году выдвинули модель так называемого «стационарного состояния». Эта модель описывает вечно расширяющуюся, безграничную Вселенную. Плотность ее имеет, как это следует из самого названия модели, постоянную величину. Как это может быть, если Вселенная расширяется? Ведь плотность вещества должна в этом случае падать.
Авторы модели стационарного состояния постулируют непрерывное рождение вещества. Если мы вспомним идею о рождении Вселенной из вакуума, то, быть может, рождение частиц, компенсирующих падение плотности из неизвестного с-поля, покажется и не столь удивительным. Рождение частиц происходит по всему пространству, и поэтому теорию стационарной Вселенной называют также теорией непрерывного творения материи.
Интересно, как авторы модели обходят вопрос о реликтовом излучении. Они предполагают (и это предположение в известной мере не является надуманным), что в межзвездном и межгалактическом пространстве могут находиться небольшие частицы графита размерами около 1 миллиметра. Они могут поглощать свет звезд, а затем переизлучать его как раз в форме реликтового фона.
Теория стационарной Вселенной не пользуется сейчас популярностью, поскольку многие данные наблюдательной астрономии свидетельствуют против нее. Но огромный научный авторитет Хойла, Бонди, Голда, их смелые идеи в значительной мере способствовали общему развитию космологии в процессе острейших споров вокруг их модели.
Создание новых моделей имеет под собой очевидную психологическую подоплеку. Теория Большого Взрыва неизбежно сталкивается с проблемой (тайной) сингулярности, камнем преткновения всей современной физики. Поэтому вполне понятно стремление тем или иным путем обойти эту трудность. Сингулярность как дамоклов меч продолжает угрожать космологии, и пока физика не разберется с этой проблемой, не будет стройной и законченной теории происхождения мира. Теорию Большого Взрыва нельзя считать неуязвимой, и поэтому, хотя на сегодняшний день она кажется наиболее правдоподобной, ей придется «держать удары» по слабым местам. А эти удары бесспорно будут наноситься.
Навязчивая идея стационарности мира порождает и другие попытки объяснения красного смещения — одной из основ моделей расширяющейся Вселенной. Очень популярна (среди неспециалистов) мысль о старении фотонов. Суть заключается в том, что кванты света могут терять энергию в пространстве, пока они дойдут до земных наблюдателей. За счет чего происходят подобные потери энергии? Здесь предлагается несколько механизмов. Во-первых, само старение. Но это предположение совершенно не укладывается в рамки современной физики. Во-вторых, рассеяние на пылинках. Но в этом случае красное смещение очевидным образом должно было бы зависеть от длины волны излучения.
Эксперименты решительно противоречат этой идее, демонстрируя равенство смещений для оптического и радиодиапазонов. Тем не менее идея, считающаяся надуманной и неверной, продолжает развиваться и в самое последнее время, лишний раз демонстрируя подсознательную тягу людей к стационарности и покою. Борьба идей в космологии, на мой взгляд, отчетливо показывает, что большая часть человечества по своей природе не приемлет катаклизмов.
В заключение этого краткого обзора «альтернативных» моделей подчеркнем, что, несмотря на некоторые (принципиальные!) нерешенные вопросы в современной космологии, не существует теории, более разработанной и лучше объясняющей эксперимент, наблюдательные данные, чем теория Большого Взрыва.
Будущее Вселенной
Занимаясь вопросом о прошлом нашего мира, мы познакомились с многими удивительными вещами. Сегодняшний мир, содержимое Вселенной, его свойства — предмет дальнейших бесед. Но в космологии есть еще один вопрос, на котором нельзя не остановиться, — будущее нашего мира. Ясно, что проблема эта, кроме всего прочего, имеет глубокий философский смысл.
В какой-то мере проблема дальнейшей судьбы Вселенной проще, чем проблема начала. Здесь возможны только два (в простейшем случае) варианта. Первый состоит в том, что Вселенная будет постоянно расширяться в течение неограниченного времени. Второй обрекает Вселенную на грандиозную катастрофу — «коллапс в огненной смерти, когда небо становится все горячее и горячее, пока оно наконец не обрушится на нас и не загонит нас в пространственно-временную сингулярность с бесконечной температурой» (Дайсон).
Во втором варианте опять на сцене появляется сингулярность, но на этот раз не порождающая, а уничтожающая наш мир. По крайней мере, в этом случае можно с уверенностью сказать, что жизнь во Вселенной (так, как мы ее понимаем и видим сегодня) исчезнет за миллионы лет до того, как мир сожмется в точку. Избежать этого, быть может, удастся, научившись путешествиям в другие вселенные или предотвращая процесс обратного сжатия, но рассуждения на эту тему сегодня еще преждевременны, человечеству угрожает гибель от термоядерной катастрофы в более обозримое время и от более низких температур, чем в сингулярности.
Чем определяется «выбор» вариантов? Мы уже говорили об этом: значением средней плотности вещества во Вселенной. Эта цифра, несмотря на большое число наблюдательных данных, многочисленные теоретические оценки, известна не с очень высокой точностью. Если учесть только массу галактик, а затем усреднить ее по объему Вселенной, то получится значение средней плотности ρчас = 3 · 10–31 г/см3. Но, кроме галактик, в космосе есть еще ионизированный газ, черные дыры, потухшие звезды и другие виды материи. Значение средней плотности галактик много меньше значений критической плотности (ρкр = 10–29 г/см3), при котором фаза расширения обязательно должна смениться фазой сжатия.
Однако в астрофизике существует так называемая проблема скрытой массы — трудно наблюдаемых форм вещества в космосе. Эта масса может находиться как в скоплениях галактик, так и в пространстве между скоплениями. Оценки скрытой массы поднимают значение средней плотности вещества Вселенной почти до ее критического значения. К самой серьезной переоценке ρср (плотности с учетом скрытой массы) привели результаты экспериментов, проведенных в Советском Союзе группой исследователей под руководством В. Любимова. Физика опять столкнулась с ситуацией, когда мир элементарных частиц снова во весь голос заявил о своем прямом воздействии на космологию.
В институте экспериментальной и теоретической физики долгое время изучалось поведение нейтрино, которые до последнего времени считались безмассовыми частицами. Но вот в 1980 году группа В. Любимова опубликовала поистине ошеломляющий результат. Масса покоя нейтрино оказалась отличной от нуля! Очень малой, но все-таки не нуль! Оценки дали значение массы нейтрино около 5 · 10–32 грамма. Нейтрино в 20 тысяч раз легче электрона и в 40 миллионов раз легче протона.
На первый взгляд это открытие важно лишь для физики элементарных частиц. Но только на первый взгляд. Все дело в том, что нейтрино очень много во Вселенной, не меньше, чем фотонов, а их несколько сот «штук» в одном кубическом сантиметре пространства. Сразу же возникает желание проделать элементарный расчет: умножить вес одного нейтрино на число их в кубическом сантиметре. Результат получается поразительным: ρнейтр. = 10–29 г/см3, то есть плотность нейтрино примерно равна критической. А тут еще надо учесть, что масса была определена лишь у одного типа нейтрино, а их как минимум четыре. Предполагается, что массы остальных типов нейтрино могут быть больше, чем масса электронного нейтрино, определенная физиками из ИТЭФ.
Если учесть все эти соображения, то средняя плотность материи во Вселенной заведомо больше критической, и, следовательно, расширение должно обязательно смениться сжатием. Чтобы этот вывод не звучал слишком категорично, сделаем оговорку, смысл которой состоит в том, что безусловно следует подождать подтверждения экспериментальных результатов группы Любимова. Если они будут подкреплены независимыми данными, то окажется, что мы живем в нейтринной Вселенной и очень многие ее свойства определяются присутствием в нашем мире этих частиц. Масса обычного вещества в этой Вселенной составляет лишь 3 процента от массы всех нейтрино.
Тем не менее имеющаяся все-таки на сегодняшний день неопределенность в значении средней плотности Вселенной дает нам моральное право рассмотреть альтернативный сценарий ее будущего.
Итак, пусть ρср < ρкр .
Что случится в этом случае с пространством и веществом? Будущую жизнь мира можно разделить на шесть основных этапов. Первый из них займет примерно 1014 лет. Почему?
Мы знаем из школьных курсов астрономии, что видимое вещество вселенных сосредоточено в основном в галактиках и звездах. Для простоты не будем говорить сейчас о пыли, газе и других формах вещества в космосе. О происхождении галактик и звезд, их дальнейшей судьбе у нас пойдет подробный разговор в следующих разделах книги, а сейчас мы постараемся «сжать» масштаб времени и посмотреть, что с ними будет через сто тысяч миллиардов лет.
Хорошо известно, что звезды светят за счет происходящих в них термоядерных реакций. Но для прохождения этих реакций необходимо топливо. Водород — главное горючее в термоядерных реакциях, а запасы его не беспредельны. Кроме того, чем массивнее звезда, тем быстрее она расходует ядерное горючее. К примеру, наше Солнце будет работать стабильно, как гигантский термоядерный реактор, еще примерно 10 миллиардов лет.
Затем наступает очередь выгорания других элементов, более тяжелых, чем водород, и в конце концов звезда умирает, перестает светить. Заметим, что у звезд разной массы этот процесс происходит по-разному, но, не вдаваясь сейчас в подробности, еще раз подчеркнем, что через 1014 лет на небе погаснут звезды.
Параллельно с этими грустными событиями звезды будут терять планеты из-за возмущений орбит при сближении с другими звездами. Это процесс довольно редкий, но, поскольку мы оперируем сейчас огромными промежутками времени, его нужно учитывать.
Мне, правда, не совсем понятно, почему процесс потери планет выделяется некоторыми астрофизиками в отдельную стадию. Во-первых, не все звезды имеют планеты. Во-вторых, масса планет в тысячи, а то и в миллионы раз меньше массы звезды. В-третьих, если звезда гаснет, то не все ли равно обитателям планет, где они находятся: рядом с мертвой звездой или в каком-либо другом месте космоса. Короче говоря, я не вижу смысла выделения потери планет звездами в отдельный этап, но, следуя традиции, замечу, что это займет промежуток времени примерно в 1017 лет.
Следующий этап в жизни Вселенной действительно грандиозен, и здесь снова центральную роль играет большая шкала времен, на которой уже необходимо учитывать тесные сближения звезд. При таких сближениях одна звезда может передать свою кинетическую энергию другой. В результате такого «обмена» возможен вылет одного из партнеров за пределы Галактики, в то время как другая звезда, потеряв часть своей энергии, приблизится к центру Галактики. Если каждую звезду уподобить молекуле газа, то процесс вылета аналогичен испарению, в связи с чем этот этап в жизни Вселенной был назван испарением галактик.
После «испарения» приблизительно 90 процентов массы Галактики гравитационное поле начнет «подгребать» к центру мертвые звезды и вещество с малой кинетической энергией. Дело кончится тем, что в результате может образоваться сверхмассивная черная дыра в центре Галактики. Этот период можно назвать периодом уборки Вселенной — все «лишнее» уходит в черные дыры.
Часы показывают 1018 лет. Далее на авансцену опять выступают законы микромира. Мы помним, что теории Великого объединения предсказывают нестабильность протона, его распад. Правда, возможное время этого распада очень велико: все протоны во Вселенной должны исчезнуть через 1030–1032 лет.
Если протон действительно нестабилен, то вещество звезд, не проглоченных сверхмассивными черными дырами в центрах галактик, будет слегка подогреваться при протонных распадах. Самые массивные мертвые звезды будут иметь температуру примерно 100 K, а менее массивные — всего около 3 K.
Итак, через 1031–1032 лет во Вселенной не останется протонов. Если на время забыть о существовании черных дыр, то вся Вселенная будет заполнена электрон-позитронным газом, нейтрино и фотонами. Их концентрация будет убывать по мере расширения Вселенной. Никаких особенных изменений не будет происходить еще примерно 10100 лет.
Заключительный, финальный аккорд в жизни нашего мира связан с квантовым испарением черных дыр. Более подробно мы будем об этом говорить позже, а сейчас напомним читателю, что в 1974 году появилась историческая работа С. Хокинга, в которой было показано, что гравитационная могила, черная дыра не вечна, она очень медленно «испаряется», теряя свою массу в виде квантов света. Но это будет происходить, когда космические часы покажут 10100 лет. Столь огромный срок трудно себе представить.
Неопределенность наших сегодняшних знаний о значении средней плотности не позволяет сделать точный выбор между двумя вариантами будущей судьбы нашего мира. Остается открытым и вопрос о том, что будет после возможного коллапса Вселенной, произойдут ли повторные Большие Взрывы с последующими повторными Большими Коллапсами?
На этом мы прервем краткое описание космологических проблем, связанных с происхождением и эволюцией нашего мира.
Мы говорили здесь об огромных масштабах расстояний в нашей Вселенной, о смерти звезд, о галактиках, упоминали о черных дырах. Но не было сказано ни слова о том, как люди научились исследовать объекты, находящиеся от Земли на расстояниях многих тысяч световых лет, какими средствами человечество в течение своей истории получало и накапливало сведения об этих объектах. Ведь только гигантский труд многих тысяч астрономов-наблюдателей позволяет, с одной стороны, понять свойства «внеземного» мира, а с другой — использовать данные наблюдательной астрономии для создания непротиворечивой космологической системы мира. И наконец, зачастую именно с помощью этих наблюдений утверждается или отрицается истинность сложнейших теоретических построений.