100 великих нобелевских лауреатов

Мусский Сергей Анатольевич

ПРЕМИЯ ПО ФИЗИКЕ

 

 

ВИЛЬГЕЛЬМ РЕНТГЕН

(1845- 1923)

Академик А.Ф. Иоффе сказал о немецком физике: «Рентген был большой и цельный человек в науке и в жизни. Вся его личность, его деятельность и научная методология принадлежат прошлому. Но только на фундаменте, созданном физиками XIX века и, в частности, Рентгеном, могла появиться современная физика. Рентгенов ток был толчком к электронной теории, рентгеновы лучи - к электронике и атомистике. На прочном фундаменте выросло новое здание. Если яркая окраска иных деталей этого здания часто и противоречила его вкусу, то все же фундамент, материал и методы для постройки дал нам Рентген…»

Вильгельм Конрад Рентген родился 27 марта 1845 года в Леннепе, небольшом городке близ Ремшейда в Пруссии, и был единственным ребенком в семье преуспевающего торговца текстильными товарами Фридриха Конрада Рентгена и Шарлотты Констанцы (в девичестве Фровейн) Рентген. В 1848 году семья переехала в голландский город Апельдорн - на родину родителей Шарлотты. Прогулки, совершаемые Вильгельмом в детские годы в густых лесах в окрестностях Апельдорна, на всю жизнь привили ему любовь к живой природе.

Рентген поступил в Утрехтскую техническую школу в 1862 году, но был исключен за то, что отказался назвать своего товарища, нарисовавшего непочтительную карикатуру на нелюбимого преподавателя. Не имея официального свидетельства об окончании среднего учебного заведения, он не мог поступить в высшее учебное заведение, но в качестве вольнослушателя прослушал несколько курсов в Утрехтском университете. Вильгельм в 1865 году был зачислен студентом в Федеральный технологический институт в Цюрихе, поскольку намеревался стать инженером-механиком, и в 1868 году получил диплом. Август Кундт, выдающийся немецкий ученый и профессор физики этого института, обратил внимание на блестящие способности Вильгельма и настоятельно посоветовал ему заняться физикой. Рентген последовал его совету. 22 июня 1869 года молодой ученый защитил докторскую диссертацию в Цюрихском университете, после чего был немедленно назначен Кундтом первым ассистентом в лаборатории.

Получив кафедру физики в Вюрцбургском университете (Бавария), Кундт взял с собой и своего ассистента. Переход в Вюрцбург стал для Рентгена началом «интеллектуальной одиссеи». В 1872 году он вместе с Кундтом перешел в Страсбургский университет и в 1874 году начал там свою деятельность в качестве преподавателя физики.

В 1872 году Рентген женился на Анне Берте Людвиг. Анне была дочерью владельца пансиона, где жил Вильгельм во время обучения в цюрихском Федеральном технологическом институте. Отец не одобрил выбора: он видел женой сына девушку из богатой семьи. Так как сын не подчинился его воле, то он лишил его материальной поддержки. Но, несмотря на постоянную нехватку денег, супруги жили душа в душу. Не имея собственных детей, супруги в 1881 году удочерили шестилетнюю Жозефину, дочь брата Рентгена.

В 1875 году Рентген стал полным (действительным) профессором физики Сельскохозяйственной академии в Гогенхейме (Германия), а в 1876 году вернулся в Страсбург, чтобы приступить там к чтению курса теоретической физики.

Экспериментальные исследования, проведенные Рентгеном в Страсбурге, касались разных областей физики, таких как теплопроводность кристаллов, пьезо- и пироэлектрические свойства, магнетизм и др., по словам его биографа Отто Глазера, снискали Рентгену репутацию «тонкого классического физика-экспериментатора». В 1879 году Рентген был назначен профессором физики Гессенского университета, в котором он оставался до 1888 года, отказавшись от предложений занять кафедру физики последовательно в университетах Йены и Утрехта. В 1888 году он возвратился в Вюрцбургский университет в качестве профессора физики и директора Физического института, где продолжил вести экспериментальные исследования широкого круга проблем, в т.ч. сжимаемости воды и электрических свойств кварца.

В 1894 году, когда Рентген был избран ректором университета, он приступил к экспериментальным исследованиям электрического разряда в вакууме.

Вечером 8 ноября 1895 года Рентген, как обычно, работал в своей лаборатории, занимаясь изучением катодных лучей. Около полуночи, почувствовав усталость, он собрался уходить. Окинув взглядом лабораторию, погасил свет и хотел было закрыть дверь, как вдруг заметил в темноте какое-то светящееся пятно. Оказывается, светился экран из синеродистого бария. Почему он светится? Солнце давно зашло, электрический свет не мог вызвать свечения, катодная трубка была выключена, да и вдобавок закрыта черным чехлом из картона. Рентген еще раз посмотрел на катодную трубку и упрекнул себя: оказывается, он забыл ее выключить. Нащупав рубильник, ученый выключил трубку. Исчезло и свечение экрана; включил трубку вновь - и вновь появилось свечение. Значит, свечение вызывает катодная трубка! Но каким образом? Ведь катодные лучи задерживаются чехлом, да и воздушный метровый промежуток между трубкой и экраном для них является броней. Так началось рождение открытия.

Оправившись от минутного изумления, Рентген начал изучать обнаруженное явление и новые лучи, названные им икс-лучами. Оставив футляр на трубке, чтобы катодные лучи были закрыты, он с экраном в руках начал двигаться по лаборатории. Оказывается, полтора-два метра для этих неизвестных лучей не преграда. Они легко проникают через книгу, стекло, станиоль… А когда рука ученого оказалась на пути неизвестных лучей, он увидел на экране силуэт ее костей! Фантастично и жутковато! Но это только минута, ибо следующим шагом Рентгена был шаг к шкафу, где лежали фотопластинки: надо увиденное закрепить на снимке. Так начался новый ночной эксперимент. Ученый обнаруживает, что лучи засвечивают пластинку, что они не расходятся сферически вокруг трубки, а имеют определенное направление…

Утром обессиленный Рентген ушел домой, чтобы немного передохнуть, а потом вновь начать работать с неизвестными лучами. Пятьдесят суток - дней и ночей - были принесены на алтарь небывалого по темпам и глубине исследования. Были забыты на это время семья, здоровье, ученики и студенты. Он никого не посвящал в свою работу до тех пор, пока не разобрался во всем сам. Первым человеком, кому Рентген продемонстрировал свое открытие, была его жена Берта. Именно снимок ее кисти, с обручальным кольцом на пальце, был приложен к статье Рентгена «О новом роде лучей», которую он 28 декабря 1895 года направил председателю Физико-медицинского общества университета. Статья была быстро выпущена в виде отдельной брошюры, и Рентген разослал ее ведущим физикам Европы.

Первое сообщение Рентгена о его исследованиях, опубликованное в местном научном журнале в конце 1895 года, вызвало огромный интерес и в научных кругах, и у широкой публики. «Вскоре мы обнаружили, - писал Рентген, - что все тела прозрачны для этих лучей, хотя и в весьма различной степени».

Вечером 6 января 1896 года из Лондона по телеграфу было передано сообщение: «Даже шум военной тревоги не в силах был бы отвлечь внимание от замечательного триумфа науки, весть о котором докатилась до нас из Вены. Сообщается, что профессор Вюрцбургского университета Роутген открыл свет, который проникает при фотографировании через дерево, мясо и большинство других органических веществ. Профессору удалось сфотографировать металлические гири в закрытой деревянной коробке, а также человеческую руку, причем видны лишь кости, в то время как мясо невидимо».

Казалось, не было газеты, которая бы не напечатала снимок кисти руки, принадлежащей Берте Рентген - жене профессора. А профессор Рентген, запершись у себя в лаборатории, продолжал усиленно изучать свойства открытых им лучей. Открытие рентгеновских лучей дало толчок новым исследованиям. Их изучение привело к новым открытиям, в частности, к открытию радиоактивности. С тех пор открытие немецкого физика навсегда вошло в арсенал медицины, дефектоскопии и др.

Открытие Рентгена вызвало огромный интерес в научном мире. Его опыты были повторены почти во всех лабораториях мира. В Москве их повторил П.Н. Лебедев. В Петербурге изобретатель радио А.С. Попов экспериментировал с икс-лучами, демонстрировал их на публичных лекциях, получая различные рентгенограммы. В Кембридже Д.Д. Томсон немедленно применил ионизирующее действие рентгеновских лучей для изучения прохождения электрического тока через газы. Его исследования привели к открытию электрона.

Рентген опубликовал еще две статьи об икс-лучах в 1896 и 1897 годах, но затем его интересы переместились в другие области.

Росла и слава Рентгена, хотя ученый относился к ней с полнейшим равнодушием. Ученый не стал брать патент на свое открытие, отказался от почетной, высокооплачиваемой должности члена академии наук, от кафедры физики в Берлинском университете, от дворянского звания. Вдобавок ко всему он умудрился восстановить против себя самого кайзера Германии Вильгельма II.

В 1899 году, вскоре после закрытия кафедры физики в Лейпцигском университете, Рентген стал профессором физики и директором Физического института при Мюнхенском университете. Находясь в Мюнхене, Рентген узнал о том, что он стал первым лауреатом Нобелевской премии 1901 года по физике «в знак признания необычайно важных заслуг перед наукой, выразившихся в открытии замечательных лучей, названных впоследствии в его честь».

Рассказывает Л.В. Бобров: «Это было в декабре 1901 года. Рентген узнал, что ему присуждена Нобелевская премия - первая за работы в области физики. Он не хотел ехать в шведскую столицу, однако его уговорили: таков, мол, порядок. Зато уж там, получив премию из рук самого кронпринца, он постарался поскорее стушеваться, так и не выступив перед многочисленной аудиторией, хотя двое других его коллег-лауреатов - профессор Вант-Гофф из Берлина и профессор Беринг из Галле - произнесли пространные речи, положив тем самым начало непреложной традиции. Потом, правда, на банкете во время торжественного акта в музыкальной академии Рентген был вынужден сказать несколько слов, но то была обычная официальная благодарность. Лишь по возвращении в Мюнхен, где его ждали цветы, растроганный Рентген произнес слова, шедшие от самого сердца. Он сказал, что не имеет намерения желать присутствующим того же, что выпало на его долю. Известность - это не так важно в конце концов. Ибо самая прекрасная и самая высокая радость, которую может познать каждый, над какими бы проблемами он ни работал, - это радость поиска, наслаждение достигнутым решением. И по сравнению с этим глубочайшим внутренним удовлетворением любое признание - ничто…»

При презентации лауреата К.Т. Одхнер, член Шведской королевской академии наук, сказал: «Нет сомнения в том, сколь большого успеха достигнет физическая наука, когда эта неведомая раньше форма энергии будет достаточно исследована». Затем Одхнер напомнил собравшимся о том, что рентгеновские лучи уже нашли многочисленные практические приложения в медицине.

Хотя самим Рентгеном и другими учеными много было сделано по изучению свойств открытых лучей, однако природа их долгое время оставалась неясной. Но вот в июне 1912 года в Мюнхенском университете, где с 1900 года работал Рентген, М. Лауэ, В. Фридрихом и П. Книппингом была открыта интерференция и дифракция рентгеновских лучей.

Рентгена раздражала внезапно свалившаяся на него известность, отрывавшая у него драгоценное время и мешавшая дальнейшим экспериментальным исследованиям. По этой причине он стал редко выступать с публикациями статей, хотя и не прекращал это делать полностью: за свою жизнь Рентген написал 58 статей. В 1921 году, когда ему было 76 лет, он опубликовал статью об электропроводности кристаллов.

Рентген ушел в отставку со своих постов в Мюнхене в 1920 году, вскоре после смерти жены, и умер 10 февраля 1923 года от рака.

 

ГЕНДРИК ЛОРЕНЦ

«Более правильное написание имени - Хендрик Лорентц (был Людвиг Лоренц - датский физик и современник Лорентца). - Прим. авт.»

(1853- 1928)

«Его блестящий ум указал нам путь от теории Максвелла к достижениям физики наших дней. Именно он заложил краеугольные камни этой физики, создал ее методы… Образ и труды его будут служить на благо и просвещение еще многих поколений», - сказал Эйнштейн над прахом Лоренца. Стиль работы Лоренца - брать глубоко и стремиться к полной завершенности - послужит, по словам Макса Планка, образцом и для будущих поколений. «Его труды не перестали быть захватывающе интересными… он оставил после себя огромное наследие - истинное завершение классической физики», - оценивал вклад Лоренца Луи де Бройль. Таким был и таким остается перед потомками Гендрик Лоренц - этот «великий классик теоретической физики».

Гендрик Антон Лоренц родился 18 июля 1853 года в голландском городе Арнеме. Шести лет он пошел в школу. В 1866 году, окончив школу лучшим учеником, Гендрик поступил в третий класс высшей гражданской школы, примерно соответствующей гимназии. Его любимыми предметами стали физика и математика, иностранные языки. Для изучения французского и немецкого языков Лоренц ходил в церкви и слушал на этих языках проповеди, хотя в бога не верил с детства.

В 1870 году он поступил в Лейденский университет. С большим интересом Гендрик слушал лекции университетских профессоров, хотя его судьбу как ученого, видимо, в большей мере определило чтение трудов Максвелла, очень трудных для понимания и названных им в связи с этим «интеллектуальными джунглями». Но ключ к ним, по словам Лоренца, ему помогли подобрать статьи Гельмгольца, Френеля и Фарадея. В 1871 году Гендрик с отличием сдал экзамены и получил степень магистра, но в 1872 году покинул Лейденский университет, чтобы самостоятельно готовить докторскую диссертацию. Он возвратился в Арнем и начал работать учителем вечерней школы. Работа ему очень нравится, и вскоре Лоренц стал хорошим педагогом. Дома он создал небольшую лабораторию, где продолжал усиленно изучать труды Максвелла и Френеля. «Мое восхищение и уважение переплелось с любовью и привязанностью; как велика была радость, которую я испытал, когда смог прочесть самого Френеля», - вспоминал Лоренц. Он становится ярым сторонником электромагнитной теории Максвелла: «Его "Трактат об электричестве и магнетизме" произвел на меня, пожалуй, одно из самых сильных впечатлений в жизни; толкование света как электромагнитного явления по своей смелости превзошло все, что я до сих пор знал».

В 1875 году Лоренц блестяще защитил докторскую диссертацию и в 1878 году становится профессором специально для него учрежденной кафедры теоретической физики (одной из первых в Европе) Лейденского университета. В 1881 году он был избран членом Королевской академии наук в Амстердаме. В том же году Лоренц женился на Алетте Катерине Кайзер, племяннице профессора астрономии Кайзера. У супругов Лоренц родилось четверо детей (один из них умер в младенческом возрасте).

Уже в докторской диссертации «Об отражении и преломлении лучей света» Лоренц пытался обосновать изменение в скорости распространения света в среде влиянием наэлектризованных частичек тела. Под действием световой волны заряды молекул приходят в колебательное движение и становятся источниками вторичных электромагнитных волн. Эти волны, интерферируя с первичными, и обусловливают преломление и отражение света. Здесь уже намечены те идеи, которые приведут к созданию электронной теории дисперсии света.

В следующей статье - «О соотношении между скоростью распространения света и плотностью и составом среды», опубликованной в 1878 году, Лоренц вывел знаменитое соотношение между показателем преломления и плотностью среды.

Как пишет М. Планк: «Если диэлектрическая постоянная прозрачного тела зависит от поляризуемости его молекул, то она всегда должна быть больше, чем у свободного эфира, что согласуется с действительностью. Указанное выше затруднение для теории Максвелла - то, что показатель преломления тела, определяемый его диэлектрической постоянной, изменяется с длиной волны, в лоренцовой теории устраняется, благодаря тому, что, согласно Лоренцу, диэлектрическая постоянная дает только показатель преломления для бесконечно длинных волн. Для волн конечной длины влияние проходящей через тело электромагнитной волны на движение содержащихся в теле, колеблющихся возле своих положений равновесия электронов существенно меняется с длиной волны и обусловливает, таким образом, явления нормальной и аномальной дисперсии в соответствии с тем, насколько частота волны отклоняется от собственной частоты электронов. И для зависимости показателя преломления от объемной плотности тела Лоренц смог вывести удовлетворительно согласующуюся с экспериментальными данным формулу, исходя из оценки числа поляризованных молекул в единице объема.

По случайному совпадению ту же формулу одновременно нашел его почти однофамилец, датский физик Людвиг Валентин Лоренц, и поэтому формула названа двумя именами: формула Лоренца-Лоренца».

В 1892 году Лоренц выступил с большой работой «Электромагнитная теория Максвелла и ее приложение к движущимся телам». В этой работе очерчены основные контуры электронной теории. Мир состоит из вещества и эфира, причем Лоренц называет веществом «все то, что может принимать участие в электрических токах, электрических смещениях и электромагнитных движениях». «Все весомые тела состоят из множества положительно и отрицательно заряженных частиц, и электрические явления порождаются смещением этих частиц».

Лоренц получил уравнение для определения силы, с которой электрическое поле действует на движущийся заряд. Лоренц сделал фундаментальное предположение - эфир в движении вещества участия не принимает (гипотеза неподвижного эфира). (Это предположение прямо противоположно гипотезе Герца о полностью увлекаемом движущимися телами эфире.)

В заметке 1892 года «Относительное движение Земли и эфира» ученый описывает единственный, по его мнению, способ согласовать результат опыта с теорией Френеля, т.е. с теорией неподвижного эфира. Этот способ состоит в предположении о сокращении размеров тел в направлении их движения (сокращение Лоренца-Фитцджеральда).

В 1895 году вышла фундаментальная работа Лоренца «Опыт теории электрических и оптических явлений в движущихся телах». В этой работе Лоренц дал систематическое изложение своей электронной теории. Правда, слово «электрон» в ней еще не встречается, хотя элементарное количество электричества было уже названо этим именем. Ученый просто говорит о заряженных положительно или отрицательно частичках материи - ионах и свою теорию соответственно называет «ионной теорией». «Я принимаю, - пишет Лоренц, - что во всех телах находятся маленькие заряженные электричеством материальные частицы, и что все электрические процессы основаны на конфигурации и движении этих "ионов"». Лоренц указывает, что такое представление общепринято для явлений в электролитах и что последние исследования электрических разрядов показывают, что «в электропроводности газов мы имеем дело с конвекцией ионов».

Другое предположение Лоренца заключается в том, что эфир не принимает участия в движении этих частиц и, следовательно, материальных тел, он неподвижен. Как отмечает М. Планк: «Наиболее характерны для лоренцовой теории покоящегося светового эфира вытекающие из нее уравнения распространения света в движущихся телах. Здесь эта теория на деле показала свое превосходство над теорией Максвелла-Герца, так как она непосредственно дает согласующееся с опытом выражение для френелевского коэффициента и так как она вообще в состоянии правильно учесть все эффекты, вызываемые движением тел, по крайней мере, пока отношение скорости тела к скорости света входит в формулу по существу только в первой степени».

Лоренц стал развивать идеи, изложенные им в «Опыте теории электрических и оптических явлений в движущихся телах», совершенствуя и углубляя свою теорию. В 1899 году он выступил со статьей «Упрощенная теория электрических и оптических явлений в движущихся телах», в которой упростил теорию, данную им в «Опыте».

В 1900 году на Международном конгрессе физиков в Париже Лоренц выступил с докладом о магнитооптических явлениях. Его друзьями стали Больцман, Вин, Пуанкаре, Рентген, Планк и другие знаменитые физики.

В 1902 году Лоренц и его ученик Питер Зееман удостоены Нобелевской премии «в знак признания выдающегося вклада, который они внесли своими исследованиями влияния магнетизма на излучения».

«Наиболее значительным вкладом в дальнейшее развитие электромагнитной теории света мы обязаны профессору Лоренцу, - заявил на церемонии вручения премии Я. Теель из Шведской королевской академии наук. - Если теория Максвелла свободна от каких бы то ни было допущений атомистического характера, то Лоренц начинает с гипотезы о том, что вещество состоит из микроскопических частиц, называемых электронами, которые являются носителями вполне определенных зарядов».

В своей речи при вручении премии ученый сказал: «…Мы надеемся, что электронная гипотеза, поскольку она принята в различных разделах физики, ведет к общей теории, которая охватит многие области физики и химии. Возможно, что на этом длинном пути сама она полностью перестроится».

В 1904 году он выступил с основополагающей статьей «Электромагнитные явления в системе, движущейся со скоростью, меньшей скорости света». Лоренц вывел формулы, связывающие между собой пространственные координаты и моменты времени в двух различных инерциальных системах отчета (преобразования Лоренца). Ученому удалось получить формулу зависимости массы электрона от скорости.

В 1912 году, переиздавая эту работу, в примечаниях он признал, что ему не удалось полностью совместить свою теорию с принципом относительности. «С этим обстоятельством, - писал Лоренц, - связана беспомощность некоторых дальнейших рассуждений в этой работе».

В 1911 году в Брюсселе состоялся I Международный Сольвеевский конгресс физиков, посвященный проблеме «Излучение и кванты». В его работе участвовали двадцать три физика, председательствовал Лоренц. «Нас не покидает чувство, что мы находимся в тупике; старые теории оказываются все менее способными проникнуть в тьму, окружающую нас со всех сторон», - сказал он во вступительном слове. Он ставит перед физиками задачу: создать новую механику: «Мы будем очень счастливы, если нам удастся хоть немного приблизиться к той будущей механике, о которой идет речь».

В 1912 году Лоренц ушел на должность экстраординарного профессора кафедры и предложил своим преемником жившего тогда в России физика Пауля Эренфеста. В 1913 году Лоренц занял должность директора физического кабинета Тейлоровского музея в Харлеме.

М. Планк вспоминал: «Те из нас, кому выпадала удача в последние годы, по тому или иному поводу, встречаться с Лоренцом, отчетливо представляют себе, вспоминая прошлое, его облик: невысокую, но пропорциональную фигуру, выразительный, выступающий вперед лоб, светлые глаза, которые ясно говорили об остроте проницательного ума и вместе с тем излучали мягкий, покоряющий свет чистой, сердечной доброты, приветливость в сочетании с чувством собственного достоинства, отличавшую его обхождение и беседу, его необычайно разносторонние интересы и его поразительную память на большое и малое, его отзывчивый и симпатичный юмор и, наконец, как главное, внушавшую уважение просветленную гармоничность всего его существа - правдивое отображение его отношения к своей науке и к своим спутникам жизни».

Обширные знания и опыт ученого, охватывавшие все области физики, в сочетании с его умением обходиться с людьми и решать деловые вопросы, делали его наиболее желанным посредником при научных дискуссиях во время физических конференций и съездов. На каждом международном физическом конгрессе последних лет Лоренц заранее предназначался в почетные президенты. Так было и на V, последнем для него, Сольвеевском конгрессе по проблеме «Электроны, фотоны и квантовая механика» в 1927 году. А 4 февраля 1928 года Лоренца не стало.

 

АНРИ БЕККЕРЕЛЬ

(1852- 1908)

Антуан Анри Беккерель родился 15 декабря 1852 года в семье потомственных ученых. Его отец Александр Эдмонд Беккерель был профессором физики и руководителем Национального музея естественной истории. Как и дед Анри, он работал в области фосфоресценции и одновременно занимался вопросами фотографии.

Поскольку мальчик рос в семье крупных физиков, то атмосфера научного поиска не могла не оказать влияния на формирование его интеллекта. В скромном домике была настоящая физическая лаборатория. Сюда часто приходил Анри и с большим интересом и восхищением следил за опытами отца.

Когда мальчик подрос, его определили в лицей Луи Леграна. По окончании лицея, в 1872 году Анри поступил в Политехническую школу. Здесь он начал самостоятельные научные исследования.

Закончив школу, Анри поступил в Институт путей сообщения, где три года работал инженером. Неудачно сложилась его личная жизнь. Беккерель женился на Люси Жамен, дочери профессора-физика, но Люси вскоре умерла, оставив его с сыном Жаном. Анри с трудом пережил этот тяжелый удар. Но жизнь брала свое, и он возвратился к научной работе.

Беккерелю принадлежат многочисленные труды в самых разнообразных областях физики - оптики, электричества, магнетизма, фотохимии, метеорологии, электрохимии, фосфоресценции. Однако наиболее значительные работы ученого связаны в основном с двумя большими разделами физики - магнитооптикой и фосфоресценцией.

В раннем периоде ученый уделял основное внимание магнитооптике. Свой первый трактат о действии магнитного поля на электрическую искру в «Журналь де физик» Беккерель опубликовал еще в 1875 году. Она сразу привлекла к себе внимание коллег. В 1878-1880 годах молодой ученый показал, что газы обладают такой же способностью вращения плоскости поляризации, как жидкости и твердые вещества.

В 1878 году, после смерти деда, Анри стал ассистентом в Музее естественной истории и работал под руководством своего отца. В этот период молодой ученый начал изучать магнитные свойства различных веществ. Он опубликовал интересные данные по никелю и кобальту, в которых показывает, что покрытое никелем железо проявляет магнитные свойства только после нагревания до красного каления.

Из сравнения магнитных свойств кислорода и озона Беккерель пришел к выводу, что последний обладает более ярко выраженными магнитными свойствами, чем кислород.

Вместе с отцом Анри провел многочисленные опыты по измерению температуры магмы.

15 марта 1888 года Беккерель представил в Сорбонну свою докторскую диссертацию. Комиссия Сорбонны с удовлетворением отметила, что это настоящий зрелый ученый. Пожалуй, лучше всего молодого ученого охарактеризовал его друг и коллега Анри Деландр: «Это был интуитив, Анри превосходно чувствовал явление». Эти свойства и позволили Беккерелю стать чрезвычайно точным экспериментатором.

27 мая 1889 года ученого избрали в Академию наук, и он занимает должность непременного секретаря физического отделения.

В 1892 году Беккерель стал профессором Национального музея естественной истории. Кончилось и его более чем четырнадцатилетнее вдовство, он женился на мадемуазель Лорье. Супруги оставили старую квартиру в здании Музея и переехали на бульвар Сен-Жермен. В 1895 году Беккерель стал профессором Политехнической школы.

А еще через год открытие рентгеновских лучей взбудоражило мысль ученых, уже было решивших, что здание физики построено и в природе больше нет ничего не известного человеку. Среди них был и Беккерель.

В своем докладе на конгрессе ученый указывал на то, что маловероятно, чтобы рентгеновские лучи могли существовать в природе только в тех сложных условиях, в каких они получаются в опытах Рентгена.

Беккерель, близко знакомый с исследованиями своего отца по люминесценции, обратил внимание на тот факт, что катодные лучи в опытах Рентгена вызывали при ударе одновременно и люминесценцию стекла, и невидимые X-лучи. Это привело его к идее, что всякая люминесценция сопровождается одновременно испусканием рентгеновских лучей. Эту идею впервые высказал А. Пуанкаре.

Несколько дней Беккерель обдумывал намеченный им эксперимент, затем выбрал двойную сернокислую соль урана и калия, спрессованную в небольшую «лепешку», положил соль на фотопластинку, спрятанную от света в черную бумагу, и выставил пластинку с солью на солнце. Под влиянием солнечных лучей двойная соль стала ярко светиться, но на защищенную фотопластинку это свечение не могло попасть. Беккерель едва дождался момента, когда фотопластинку можно было достать из проявителя. На пластинке явственно проступало изображение «лепешки». Неужели все верно, и соль в ответ на облучение солнечными лучами испускает не только свет, но и рентгеновские лучи?

Беккерель проверил себя еще и еще раз. 26 февраля 1896 года настали пасмурные дни, и Беккерель с сожалением прячет приготовленную к эксперименту фотопластинку с солью в стол. Между «лепешкой» соли и фотопластинкой на этот раз он положил маленький медный крестик, чтобы проверить, пройдут ли сквозь него рентгеновские лучи.

Вероятно, немногие открытия в науке обязаны своим происхождением плохой погоде. Если бы конец февраля 1896 года в Париже был солнечный, не было бы обнаружено одно из самых важных научных явлений, разгадка которого привела к перевороту в современной физике.

1 марта 1896 года Беккерель, так и не дождавшись появления солнца на небе, вынул из ящика ту самую фотопластинку, на которой несколько дней пролежали крестик и соль, и на всякий случай проявил ее. Каково же было его удивление, когда он увидел на проявленной фотопластинке четкое изображение и крестика, и лепешки с солью! Значит, солнце и флуоресценция здесь ни при чем?

Как первоклассный исследователь, Беккерель не поколебался подвергнуть серьезной ревизии свою теорию и начал исследовать действие солей урана на пластинку в темноте. Так обнаружилось, и это Беккерель доказал последовательными опытами, что уран и его соединение непрерывно излучают лучи, действующие на фотографическую пластинку и, как показал Беккерель, способные также разряжать электроскоп, т.е. создавать ионизацию.

Это открытие вызвало сенсацию. Особенно поражала способность урана излучать спонтанно, без всякого внешнего воздействия. Рамзай рассказывал, что когда осенью 1896 года он вместе с лордом Кельвином (В. Томсоном) и Д. Стоксом посетил лабораторию Беккереля, то «эти знаменитые физики недоумевали, откуда мог бы взяться неисчерпаемый запас энергии в солях урана. Лорд Кельвин склонялся к предположению, что уран служит своего рода западней, которая улавливает ничем другим не обнаруживаемую лучистую энергию, доходящую до нас через пространство, и превращает ее в такую форму, в виде которой она делается способной производить химические действия».

Первое в мире сообщение о существовании радиоактивности было сделано Беккерелем на заседании Парижской академии наук 24 февраля 1896 года. Открытие явления радиоактивности Беккерелем можно отнести к числу наиболее выдающихся открытий современной науки. Именно благодаря ему человек смог значительно углубить свои познания в области структуры и свойств материи, понять закономерности многих процессов во Вселенной, решить проблему овладения ядерной энергией. Учение о радиоактивности оказало колоссальное влияние на развитие науки, причем за сравнительно небольшой промежуток времени.

Изучая свойства новых лучей, Беккерель попытался объяснить их природу. Однако он не мог прийти к четким выводам и долгое время придерживался ошибочной точки зрения, согласно которой радиоактивность, возможно, является формой длительной фосфоресценции.

Вскоре в исследование нового явления включились другие ученые, и, прежде всего, супруги Пьер и Мария Кюри. Вместе с ними в 1903 году Беккерель получил Нобелевскую премию. Супруги Кюри не смогли в то время приехать в Стокгольм: здоровье их было слишком слабым, и Анри Беккерель один присутствовал на этой церемонии.

Рассказывает К.А. Капустинская:

«Музыка, множество цветов около бюста Нобеля создавало необыкновенно праздничную обстановку. Шведский король Оскар собственноручно вручил премию Анри Беккерелю, а премию Марии и Пьеру Кюри их представителю - министру Франции.

Французский ученый встретил в Стокгольме чрезвычайно радушный прием. На следующий день после вручения премии король Оскар дал в честь лауреатов Франции завтрак. Профессор Хассельберг, член Нобелевского комитета физиков, попросил Беккереля прочитать лекцию. Это был настоящий экспромт. Беккерель выступал у маленького рабочего столика, принесенного из соседнего кабинета. Слушателей становилось все больше и больше, и, в конце концов, они окружили Беккереля тесным кольцом. Все старались не пропустить ни одного слова ученого, лучше понять его мысли. Беккерель вспоминал впоследствии, как взволновал его этот живой интерес к радиоактивности. Он высоко ценил близость и научные контакты, которые непосредственно устанавливались между учеными во время таких встреч».

В своей речи 11 декабря 1903 года «О новом свойстве материи, называемом радиоактивностью» ученый подвел своеобразный итог своим работам по радиоактивности. Он сумел нарисовать отчетливую картину состояния достижений в новой отрасли физики:

«В итоге вполне определенными на сегодняшний день радиоактивными веществами можно считать уран, торий, радий, полоний; к ним можно прибавить актиний, хотя об этом веществе опубликовано еще очень мало данных. Нужно отнестись с осторожностью к различным другим веществам, полученным г-ном Гизелем, а также к продуктам висмута или активного теллурия, полученного г-ном Марквальдом при помощи электролиза.

Уран испускает бета-лучи и гамма-лучи; он не выделяет эманации в воздух, но активация, которую он производит в растворах, может быть приписана действию некоторой эманации.

Торий и радий испускают альфа, бета и гамма-лучи и эманацию, активирующую газы.

Полоний не выделяет бета-лучей. Он испускает альфа и гамма-лучи, но теряет со временем свою активность.

Актиний, по-видимому, имеет замечательную активирующую способность.

Наряду с ураном и торием один только радий обладает признаками, позволяющими рассматривать его как простое тело, свойства которого близки к свойствам бария, хотя и отличны от них. Следует, однако, заметить, что это вещество не содержится даже в виде следов в обычных рудах бария, а встречается лишь в урановой руде, где сопутствует барию. Этот факт имеет, может быть, особое значение, которое выяснится для нас впоследствии».

По возвращении из Стокгольма ученый снова с увлечением принимается за свои исследования. Беккерель кажется полным сил и строит новые творческие планы, и лишь близкие знают, что усталость дает о себе знать все чаще и чаще.

29 июня 1908 года состоялось годичное собрание Академии наук, где ученого абсолютным большинством голосов избирают непременным секретарем физического отделения, а 25 августа 1908 года Анри Беккерель неожиданно умер.

Кончина Анри Беккереля не прервала существование этой славной династии - дело отца продолжил сын Жан.

 

МАРИЯ КЮРИ-СКЛОДОВСКАЯ

(1867- 1934)

 

ПЬЕР КЮРИ

(1859- 1906)

Профессор В.В. Алпатов пишет: «Пьер и Мария могут считаться примером того бескорыстного служения науке, той беззаветной преданности своему призванию, о котором писал наш великий физиолог академик И.П. Павлов в письме к советской молодежи. Эта преданность науке привела к тому, что жизнь обоих поколений Кюри была в прямом смысле принесена ей в жертву. Мария Кюри, ее дочь Ирен и зять Фредерик Жолио-Кюри умерли от лучевой болезни, возникшей в результате многолетней работы с радиоактивными веществами…»

Пьер Кюри родился 15 мая 1859 года в Париже. Он был вторым сыном в семье врача Эжена Кюри. Мальчик не посещал школу: его учителями стали отец и брат. С четырнадцати лет его обучал отличный преподаватель - господин Базилль.

О выдающихся способностях Пьера ярко свидетельствуют его попытки представить и обосновать «кубические детерминанты», а также найти общие способы решения всех видов уравнений на основе симметрии.

В шестнадцать лет Пьер сдал экзамен на аттестат зрелости, а затем без проблем поступил в Сорбонну и стал изучать физику. Спустя примерно три года он смог уже получить первую ученую степень - лиценциата. После этого Пьер был назначен препаратором на естественнонаучный факультет университета и в течение пяти лет проводил лабораторные работы по физике со студентами. Он занимается научными исследованиями вместе с братом Жаком, тоже лиценциатом и препаратором в Сорбонне.

С двадцати лет Пьер вместе с братом начал исследование кристаллов. Вскоре молодые ученые заявляют о своем открытии очень важного явления - пьезоэлектричества, а экспериментальная работа привела их к изобретению нового прибора - кварцевого пьезометра, используемого для преобразования электрической энергии в механическую, и наоборот. Эта аппаратура очень помогла впоследствии Пьеру при исследовании радиоактивности. За совместные исследования, которые продолжались до 1883 года, когда Пьер был избран руководителем научной работы в Парижской «Ecole de physique», оба брата были удостоены премии Планте. В 1883 году Жака назначили профессором в Монпелье и братья расстались.

Пьер вел практические научные работы студентов в Парижской школе физики и химии. Хотя это и отнимало у него много времени, ученый продолжал свои теоретические работы по физике кристаллов.

В 1893- 1895 годах Кюри завершил исследования принципа симметрии в кристаллах, которому он дал определение, ныне ставшее классическим: «Если определенные причины обусловливают появление определенных результатов, элементы симметрии причин должны повторяться и в результатах. Если определенное состояние проявляет определенную диссимметрию, то значит эта диссимметрия может быть найдена также в причинах, вызвавших это состояние. В обратном смысле эти два положения не оправдываются по крайней мере практически, так как полученные результаты могут быть симметричнее, чем причины». Принцип симметрии Кюри распространил на все физические явления и руководствовался при этом идеей детерминизма.

Одновременно Пьер завершил обширные, ныне широко известные исследования свойств парамагнитных и ферромагнитных веществ, начатые им в 1891 году. За эти работы Кюри в 1895 году был удостоен звания доктора наук на естественнонаучном факультете университета в Париже, и в том же году он стал профессором в «Ecole de physique».

Кюри был уже известным ученым, когда он в 1894 году встретился с Марией Склодовской. Она вспоминала: «Когда я вошла, Пьер Кюри стоял в пролете стеклянной двери, выходившей на балкон. Он мне показался очень молодым, хотя ему исполнилось в то время тридцать пять лет. Меня поразило в нем выражение ясных глаз и чуть заметная непринужденность в осанке высокой фигуры. Его медленная, обдуманная речь, его простота, серьезная и вместе с тем юная улыбка располагали к полному доверию. Между нами завязался разговор, быстро перешедший в дружескую беседу: он занимался такими научными вопросами, относительно которых мне было очень интересно знать его мнение».

Мария Склодовска родилась 7 ноября 1867 года в Варшаве. Она была младшей из пяти детей в семье Владислава и Брониславы Склодовских. Мария воспитывалась в семье, где занятия наукой пользовались уважением. Ее отец преподавал физику в гимназии, а мать, пока не заболела туберкулезом, была директором гимназии. Мать Марии умерла, когда ей было одиннадцать лет.

Девочка блестяще училась и в начальной, и в средней школе. Еще в юном возрасте она ощутила притягательную силу науки и работала лаборантом в химической лаборатории своего двоюродного брата. Великий русский химик Д.И. Менделеев, создатель периодической таблицы химических элементов, был другом ее отца. Увидев девочку за работой в лаборатории, он предсказал ей великое будущее, если она продолжит свои занятия химией. Выросшая при русском правлении, Мария принимала активное участие в движении молодых интеллектуалов и антиклерикальных польских националистов. Хотя большую часть своей жизни Мария провела во Франции, она навсегда сохранила преданность делу борьбы за польскую независимость.

На пути к осуществлению мечты Марии о высшем образовании стояли два препятствия: бедность семьи и запрет на прием женщин в Варшавский университет. Со своей сестрой Броней они разработали план: Мария в течение пяти лет будет работать гувернанткой, чтобы дать возможность сестре окончить медицинский институт, после чего Броня должна взять на себя расходы на высшее образование сестры. Броня получила медицинское образование в Париже и, став врачом, пригласила к себе сестру. Покинув Польшу в 1891 году, Мария поступила на факультет естественных наук Парижского университета (Сорбонны). В 1893 году, окончив курс первой, Мария получила степень лиценциата по физике Сорбонны (эквивалентную степени магистра). Через год она стала лиценциатом по математике. Но на этот раз Мария была второй в своем классе.

К моменту встречи с Пьером Кюри в 1894 году Мария занималась исследованием намагниченности стали. Сблизившись сначала на почве увлечения физикой, Мария и Пьер через год стали супругами. Это произошло вскоре после того, как Пьер защитил докторскую диссертацию - 25 июля 1895 года.

«Наше первое жилище, - вспоминает сама Мария, - небольшая, крайне скромная квартира из трех комнат была на улице Гласьер, недалеко от Школы физики. Основное ее достоинство составлял вид на громадный сад. Мебель, - самая необходимая, - состояла из вещей, принадлежавших нашим родителям. Прислуга нам была не по средствам. На меня почти целиком легли заботы о домашнем хозяйстве, но я и так уже привыкла к этому за время студенческой жизни.

Оклад профессора Пьера Кюри составлял шесть тысяч франков в год, и мы не хотели, чтобы он, по крайней мере, на первое время, брал дополнительную работу. Что касается меня, начала готовиться к конкурсному экзамену, необходимому, чтобы занять место в женской школе, и добилась этого в 1896 году.

Наша жизнь была полностью отдана научной работе, и наши дни проходили в лаборатории, где Шютценберже позволил мне работать вместе с мужем.

Мы жили очень дружно, наши интересы во всем совпадали: теоретическая работа, исследования в лаборатории, подготовка к лекциям или к экзаменам. За одиннадцать лет нашей совместной жизни мы почти никогда не разлучались, и поэтому наша переписка за эти годы занимает лишь немного строк. Дни отдыха и каникулы посвящались прогулкам пешком или на велосипедах либо в деревне в окрестностях Парижа, либо на побережье моря или в горах».

Первая их дочь Ирен родилась в сентябре 1897 года. Через три месяца Кюри завершила свое исследование по магнетизму и с начала 1898 года перешла к экспериментам над веществами, которые подобны соединениям урана и испускают открытые недавно Беккерелем лучи.

12 апреля 1898 года в «Докладах Академии наук» появляется сообщение: «Мария Склодовская-Кюри заявляет о том, что в минералах с окисью урана, вероятно, содержится новый химический элемент, обладающий высокой радиоактивностью».

«…Два урановых минерала: уранинит (окисел урана) и хальколит (фосфат меди и уранила) - значительно активнее, чем сам уран. Этот крайне знаменательный факт вызывает мысль о том, что в данных минералах может содержаться элемент гораздо более активный, чем уран…»

Пьер Кюри с горячим участием следил за успешными опытами своей жены. Не вмешиваясь в самую работу, он часто помогает Марии советами и замечаниями. Учитывая поразительный характер уже достигнутого, Пьер Кюри решает оставить временно свою работу над кристаллами и принять участие в стараниях Марии обнаружить новый элемент.

В июле 1898 года ученые объявили об открытии такого элемента, который назвали полонием - в честь Польши - родины Марии. А в декабре того же года они отправили для Академии наук сообщение, где говорится о существовании в составе уранинита второго радиоактивного химического элемента.

«…В силу различных, только что изложенных оснований мы склонны считать, что новое радиоактивное вещество содержит новый элемент, который мы предлагаем назвать радием.

Новое радиоактивное вещество, несомненно, содержит также примесь бария, и в очень большом количестве, но, даже несмотря на это, обладает значительной радиоактивностью.

Радиоактивность же самого радия должна быть огромной».

Поскольку Кюри не выделили ни один из этих элементов, они не могли представить химикам решающего доказательства их существования. И супруги Кюри приступили к весьма нелегкой задаче - экстрагированию двух новых элементов из урановой смоляной обманки. Чтобы экстрагировать их в измеримых количествах, исследователям необходимо было переработать огромные количества руды. В течение последующих четырех лет Кюри работали в примитивных и вредных для здоровья условиях.

«У нас не было ни денег, ни лаборатории, ни помощи, чтобы хорошо выполнить эту важную и трудную задачу, - запишет она позже. - Требовалось создать нечто из ничего, и если Казимеж Длусский когда-то назвал мои студенческие годы "героическими годами жизни моей свояченицы", то я могу сказать без преувеличения, что этот период был для меня и моего мужа героической эпохой в нашей совместной жизни.

…Но как раз в этом дрянном, старом сарае протекли лучшие и счастливейшие годы нашей жизни, всецело посвященные работе. Нередко я готовила какую-нибудь пищу тут же, чтобы не прерывать ход особо важной операции. Иногда весь день я перемешивала кипящую массу железным шкворнем длиной почти в мой рост. Вечером я валилась с ног от усталости».

В этот трудный, но увлекательный период жалованья Пьера не хватало, чтобы содержать семью. Несмотря на то что интенсивные исследования и маленький ребенок занимали почти все ее время, Мария в 1900 году начала преподавать физику в Севре, в учебном заведении, готовившем учителей средней школы. Овдовевший отец Пьера переехал к Кюри и помогал присматривать за Ирен.

В сентябре 1902 года Кюри объявили о том, что им удалось выделить одну десятую грамма хлорида радия из нескольких тонн урановой смоляной обманки. Выделить полоний им не удалось. «Выделить полоний не удалось в силу чрезвычайно малого содержания его в руде. (Прим. ред.)» Анализируя соединение, Мария установила, что атомная масса радия равна 225. Соль радия испускала голубоватое свечение и тепло. Это фантастическое вещество привлекло внимание всего мира. Признание и награды за его открытие пришли к супругам Кюри почти сразу.

Завершив исследования, Мария наконец написала свою докторскую диссертацию. Работа называлась «Исследования радиоактивных веществ» и была представлена Сорбонне в июне 1903 года. По мнению комитета, присудившего Кюри научную степень, ее работа явилась величайшим вкладом, когда-либо внесенным в науку докторской диссертацией.

В декабре 1903 года Шведская королевская академия наук присудила Нобелевскую премию по физике Беккерелю и супругам Кюри. Мария и Пьер Кюри получили половину награды «в знак признания… их совместных исследований явлений радиации, открытых профессором Анри Беккерелем». Кюри стала первой женщиной, удостоенной Нобелевской премии. И Мария, и Пьер Кюри были больны и не смогли приехать в Стокгольм на церемонию вручения премии. Они получили ее летом следующего года.

Мария писала в письме своему брату Юзефу 11 декабря 1903 года:

«Нам присудили половину Нобелевской премии. Точно не знаю, сколько это будет, но думаю, что около семидесяти тысяч франков. Для нас это большая сумма. Не знаю, когда мы получим эти деньги, возможно, лишь когда мы сами поедем в Стокгольм. Мы обязаны сделать там доклад в течение шести месяцев, считая с 10 декабря. На торжественное заседание мы не поехали, так как устроить это было очень сложно. Я не чувствовала себя достаточно крепкой для такого длительного путешествия (48 часов без пересадки, а с пересадкой дольше) в такое суровое время года, да еще в холодную страну, и не имея возможности пробыть там дольше трех-четырех дней. Мы не могли бы без больших неудобств прервать наши лекции на долгое время. Вероятно, поедем туда на пасху и лишь тогда получим деньги.

Нас завалили письмами, и нет отбоя от журналистов и фотографов. Хочется провалиться сквозь землю, чтобы иметь покой. Мы получили предложение из Америки прочесть там несколько докладов о наших работах. Они нас спрашивают, сколько мы желаем получить за это. Каковы бы ни были их условия, мы склонны отказаться. Нам стоило большого труда избежать банкетов, предполагавшихся в нашу честь. Мы отчаянно сопротивлялись этому, и люди, наконец, поняли, что с нами ничего не поделаешь. Моя Ирен здорова. Ходит в школу довольно далеко от дома. В Париже очень трудно найти хорошую школу для маленьких детей. Целую всех Вас нежно и умоляю не забывать меня».

С получением премии Пьер смог передать преподавание в Школе физики П. Ланжевену, своему бывшему ученику. Кроме того, он пригласил препаратора для своей работы.

Кроме всего прочего супруги Кюри отметили действие радия на человеческий организм (как и Беккерель, они получили ожоги, прежде чем поняли опасность обращения с радиоактивными веществами) и высказали предположение, что радий может быть использован для лечения опухолей. Терапевтическое значение радия было признано почти сразу, и цены на радиевые источники резко поднялись. Однако Кюри отказались патентовать экстракционный процесс и использовать результаты своих исследований в любых коммерческих целях. По их мнению, извлечение коммерческих выгод не соответствовало духу науки, идее свободного доступа к знанию.

В октябре 1904 года Пьер был назначен профессором физики в Сорбонне, а месяц спустя Мария стала официально именоваться заведующей его лабораторией. В декабре у них родилась вторая дочь, Ева, которая впоследствии стала пианисткой и биографом своей матери.

Мария черпала силы в признании ее научных достижений, любимой работе, любви и поддержке Пьера. Как она сама признавалась: «Я обрела в браке все, о чем могла мечтать в момент заключения нашего союза, и даже больше того». Но 19 апреля 1906 года Пьер, переходя улицу в Париже, поскользнулся и попал под экипаж. Колесо телеги раздавило ему голову, смерть наступила мгновенно. Лишившись ближайшего друга и товарища по работе, Мария ушла в себя. Однако она нашла в себе силы продолжать работу. В мае, после того как Мария отказалась от пенсии, назначенной министерством общественного образования, факультетский совет Сорбонны назначил ее на кафедру физики, которую прежде возглавлял ее муж. Когда через шесть месяцев Кюри прочитала свою первую лекцию, она стала первой женщиной-преподавателем Сорбонны.

В лаборатории Кюри сосредоточила свои усилия на выделении чистого металлического радия, а не его соединений. В 1910 году ей удалось в сотрудничестве с А. Дебирном получить это вещество и тем самым завершить цикл исследований, начатый двенадцать лет назад. Она убедительно доказала, что радий является химическим элементом. Кюри разработала метод измерения радиоактивных эманаций и приготовила для Международного бюро мер и весов первый международный эталон радия - чистый образец хлорида радия, с которым надлежало сравнивать все остальные источники.

В конце 1910 года по настоянию многих ученых кандидатура Кюри была выдвинута на выборах в одно из наиболее престижных научных обществ - Французскую академию наук. Пьер Кюри был избран в нее лишь за год до своей смерти. За всю историю Французской академии наук ни одна женщина не была ее членом, поэтому выдвижение кандидатуры Кюри привело к жестокой схватке между сторонниками и противниками этого шага. После нескольких месяцев оскорбительной полемики в январе 1911 года кандидатура Кюри была отвергнута на выборах большинством в один голос.

Через несколько месяцев Шведская королевская академия наук присудила Кюри Нобелевскую премию по химии «за выдающиеся заслуги в развитии химии: открытие элементов радия и полония, выделение радия и изучение природы и соединений этого замечательного элемента». Кюри стала первым дважды лауреатом Нобелевской премии. Представляя нового лауреата, Э.В. Дальгрен отметил, что «исследование радия привело в последние годы к рождению новой области науки - радиологии, уже завладевшей собственными институтами и журналами».

Мария взяла в Швецию старшую дочь Ирен. Девочка присутствовала на торжественном заседании. (Спустя двадцать четыре года она в том же зале получит ту же премию.)

Делая публичный доклад, Мария посвящает все выпавшие на ее долю почести Пьеру Кюри. «Прежде чем излагать тему моего доклада, я хочу напомнить, что открытие радия и полония было сделано Пьером Кюри вместе со мною. Пьеру Кюри наука обязана целым рядом основополагающих работ в области радиоактивности, выполненных им самим, или сообща со мной, или же в сотрудничестве со своими учениками. Химическая работа, имевшая целью выделить радий в виде чистой соли и охарактеризовать его как элемент, была сделана обычно мной, но тесно связана с нашим совместным творчеством. Мне думается, я точно истолкую мысль Академии наук, если скажу, что дарование мне высокого отличия определяется этим совместным творчеством и, следовательно, является почетной данью памяти Пьера Кюри».

Мария затратила немало труда, чтобы добиться достойной лаборатории для развития новой науки о радиоактивности. Незадолго до начала Первой мировой войны Парижский университет и Пастеровский институт учредили Радиевый институт для исследований радиоактивности. Кюри была назначена директором отделения фундаментальных исследований и медицинского применения радиоактивности. Во время войны она обучала военных медиков применению радиологии, например обнаружению с помощью рентгеновских лучей шрапнели в теле раненого. В прифронтовой зоне Кюри помогала создавать радиологические установки, снабжать пункты первой помощи переносными рентгеновскими аппаратами. Накопленный опыт она обобщила в монографии «Радиология и война» в 1920 году.

После войны Кюри возвратилась в Радиевый институт. В последние годы своей жизни она руководила работами студентов и активно способствовала применению радиологии в медицине. Она написала биографию Пьера Кюри, которая была опубликована в 1923 году. Периодически Кюри совершала поездки в Польшу, которая в конце войны обрела независимость. Там она консультировала польских исследователей. В 1921 году вместе с дочерьми Кюри посетила Соединенные Штаты, чтобы принять в дар один грамм радия для продолжения опытов. Во время своего второго визита в США (1929 год) она получила пожертвование, на которое приобрела еще грамм радия для терапевтического использования в одном из варшавских госпиталей. Но вследствие многолетней работы с радием ее здоровье стало заметно ухудшаться.

Мария Кюри скончалась 4 июля 1934 года от лейкемии в небольшой больнице местечка Санселлемоз во французских Альпах.

 

ДЖОЗЕФ ТОМСОН

(1856- 1940)

Английский физик Джозеф Джон Томсон вошел в историю науки как человек, открывший электрон. Однажды он сказал: «Открытия обязаны остроте и силе наблюдательности, интуиции, непоколебимому энтузиазму до окончательного разрешения всех противоречий, сопутствующих пионерской работе».

Его сын писал, что «вряд ли существовал человек, с которым Томсон не сумел бы найти общего языка, или темы, по которой бы он не высказывал новые или хотя бы своеобразные взгляды».

Позднее сам Джозеф Томсон вспоминал:

«Я родился в Четеме, пригороде Манчестера, 18 декабря 1856 года. И время, и место были весьма удачны, ибо это был один из самых интересных периодов мировой истории. Монархии падали одна за другой, их сменяли республики, а иной раз - диктатуры. Открытия и изобретения производили все большие изменения в жизни общества.

Когда я был маленьким мальчиком, в нашем городе не было ни велосипедов, ни автомобилей, ни аэропланов, ни электрического освещения, ни телефонов, ни радио, ни граммофона, ни электротехники, ни рентгеновских снимков, ни кино, ни микробов - по крайней мере, доктора их не находили…»

Его отец, торговец книгами, очень любил читать об изобретениях и открытиях. Его мечтой было выучить сына на инженера.

В четырнадцать лет Джозеф поступил в Оуэнс-колледж. Здесь Томсон получил университетское образование. Его учили такие замечательные педагоги-ученые, как физик Б. Стюарт, химик Г. Роскоу, математик Т. Баркер, физик и инженер О. Рейнольдс.

Лекции Стюарта по элементарной физике Томсон считал «притягательными и ясными», а его лекции о законах сохранения энергии заставили юношу задуматься о том, нельзя ли все различные виды энергии свести к одной - кинетической. Раздумья вылились в статью, опубликованную в «Трудах Королевского общества».

Отец не успел порадоваться успехам сына: он умер в 1872 году. Семья осталась практически без средств к существованию. В 1876-1880 годах Джозеф учился в Кембриджском университете в знаменитом колледже Святой Троицы (Тринити-колледж). К счастью, талантливому юноше помог стипендиальный фонд, установивший Джозефу денежное довольствие.

В январе 1880 года Томсон успешно выдержал заключительные экзамены и начал работать в Кавендишской лаборатории «Кавендишская лаборатория Кембриджского университета названа по имени Генри Кавендиша (1731-1860), английского химика и физика. (Прим. ред.)». В том же году появилась статья, посвященная электромагнитной теории света. В следующем году появились две работы, из которых одна положила начало электромагнитной теории массы. Статья называлась «Об электрических и магнитных эффектах, производимых движением наэлектризованных тел». В этой статье выражена та мысль, что «эфир вне заряженного тела является носителем всей массы, импульса и энергии». С увеличением скорости изменяется характер поля, в силу чего вся эта «полевая» масса возрастает, оставаясь все время пропорциональной энергии.

С 1883 года Томсон читал лекции в Тринити-колледже по электричеству и магнетизму и динамике твердого тела. Лекции Томсона высоко ценились его студентами. Один из его учеников, Х. Невалл, отмечал: «Его лекции были ценны как в математическом отношении, так и в области экспериментальной физики. Быстрота и точность, с которой он оперировал математическими знаками, была поразительной». Знаменитый Нильс Бор писал: «Дж.Дж. Томсон поистине большой человек! Я невероятно много почерпнул из его лекций…»

Научные успехи Томсона были высоко оценены директором лаборатории Кавендиша - Рэлеем. Уходя в 1884 году с поста директора, он, не колеблясь, рекомендовал своим преемником Томсона. Для самого Джозефа его назначение было неожиданностью.

С 1884 по 1919 год (когда его сменил на посту директора лаборатории Резерфорд) Томсон руководил лабораторией Кавендиша. За это время она превратилась в крупный мировой научный центр, в международную школу физиков. Многие ученики Томсона стали крупными учеными. Завершая в конце жизни книгу своих воспоминаний, Томсон перечислял среди своих бывших докторантов 27 членов Королевского общества, 80 профессоров, успешно работающих в 13 странах. Пятеро его учеников - Ч. Баркла, Г. Брэгг, Ч. Вильсон, Э. Резерфорд, О. Ричардсон - стали нобелевскими лауреатами.

В ноябре 1889 года Томсон познакомился с милой и изящной Розой-Элизабет Пэйджет, которая присутствовала на его демонстрационных опытах. Он посылал ей «пылкие записочки»: «Дорогая мисс Пэйджет, кажется, мне удалось найти для вас интересную тему, над которой вы могли бы успешно работать. Если вы сможете прийти в лабораторию после четырех, я объясню вам эту идею и покажу необходимые приборы. Искренне ваш Дж.Дж. Томсон».

2 января 1890 года они поженились. Иногда супруги давали открытые для широкой публики «визиты в лабораторию», где Роза-Элизабет руководила опытами в вечернем платье.

Сразу после избрания главой Кавендишской лаборатории Томсон приступил к исследованиям прохождения электрического тока через газы. В книге «Размышления и воспоминания» он писал, что не знал такого времени, когда бы не занимался газовым разрядом.

Вначале он совместно с Трелфоллом ставит эксперименты по изучению проводимости в азоте и озоне. Результаты этих исследований были опубликованы в 1886 году в «Трудах Королевского общества». В 1887 году он опубликовал работу «О диссоциации некоторых газов электрическим разрядом». Томсон изучал влияние давления и температуры на разряд, определял скорость распространения разряда, экспериментировал с сильно нагретыми газами, изучал сопротивление электролитов переменному току высокой частоты, исследовал безэлектродный разряд и разряд через перегретый пар.

В 1894 году Томсон приступил к исследованию катодных лучей. В трубке, сконструированной ученым, катодные лучи послушно притягивались к положительно заряженной пластинке и явно отталкивались от отрицательной. То есть вели себя так, как и полагалось потоку быстролетящих крошечных корпускул, заряженных отрицательным электричеством. Превосходный результат! Он мог, безусловно, положить конец всем спорам о природе катодных лучей. Но Томсон не считал свое исследование законченным. Определив природу лучей качественно, он хотел дать точное количественное определение и составляющим их корпускулам.

Томсон сразу стал использовать открытия Рентгена и Беккереля в своих исследованиях, и, как он вспоминал, эти открытия позволили производить многие эксперименты, которые до этого были невыполнимы. Вначале Томсон изучал действие рентгеновских лучей на разряд в газе. «К моему великому восторгу, - писал Томсон о рентгеновских лучах, - они делали газ проводником тока, даже если электрическая сила, приложенная к газу, была чрезвычайно мала… X-лучи, казалось, превращали газ в газообразный электролит».

«Вскоре из этих опытов были получены важные результаты, - пишет С.П. Кудрявцев. - Во-первых, Томсон обнаружил, что после прекращения действия лучей проводимость в газе еще сохранялась какое-то время и прекращалась после фильтрования газа через стекловату. Во-вторых, было выяснено, что для фильтрования не обязательно использовать стекловату, вполне достаточно подвергнуть газ действию электрических сил. В-третьих, было найдено нарастание силы тока при малых напряжениях в согласии с законом Ома, при больших напряжениях - отклонение от закона Ома и при некотором большом напряжении - наличие тока насыщения.

Из опытов также следовало, что после прекращения действия лучей в газе еще остаются заряженные частицы, которые и являются носителем тока. О том, что эти частицы отрицательно и положительно заряжены, говорил тот факт, что электрические силы прекращали остаточную проводимость, т.е. отрицательно заряженные частицы осаждались на положительном электроде, а положительные - на отрицательном».

Окрыленный первым успехом, он сконструировал новую трубку: катод, ускоряющие электроды в виде колечек и пластинки, на которые можно было подавать отклоняющее напряжение. На стенку, противоположную катоду, он нанес тонкий слой вещества, способного светиться под ударами налетающих частиц. (Получился предок электронно-лучевых трубок, так хорошо знакомых нам в век телевизоров.)

Цель опыта Томсона заключалась в том, чтобы отклонить пучок корпускул электрическим полем и компенсировать это отклонение полем магнитным. Выводы, к которым он пришел в результате эксперимента, были поразительны. Во-первых, оказалось, что частицы летят в трубке с огромными скоростями, близкими к световым. А во-вторых, электрический заряд, приходившийся на единицу массы корпускул, был фантастически большим. Что же это были за частицы: неизвестные атомы, несущие на себе огромные электрические заряды, или крохотные частицы с ничтожной массой, но зато и с меньшим зарядом?

Далее он обнаружил, что отношение удельного заряда к единице массы есть величина постоянная, не зависящая ни от скорости частиц, ни от материала катода, ни от природы газа, в котором происходит разряд. Такая независимость настораживала. Похоже, что корпускулы были какими-то универсальными частицами вещества, составными частями атомов…

Томсон писал, что «постоянство значения - для ионов, составляющих катодные лучи, есть поразительный контраст изменчивости соответствующих величин для ионов, которые несут ток в электролитах… Когда мы рассматриваем электрический заряд, несомый ионом в катодных лучах, мы, принимая, что он равен по модулю заряду, несомому водородным ионом при электролизе, заключаем, что масса водородного иона должна быть в 770 раз больше массы иона в катодных лучах; следовательно, носитель отрицательного электричества в этих лучах должен быть очень малым по сравнению с массой водородного атома».

Этот результат ошеломил Томсона, и он стал его тщательно изучать, улучшил методику эксперимента с целью получения более точных значений массы частиц, испускаемых металлами под действием ультрафиолетового света, для частиц, испускаемых нагретыми металлами, и находит его таким же, как и для катодных частиц.

После долгих размышлений Томсон приходит к следующим заключениям:

1) «…атомы не неделимы, отрицательно заряженные частицы могут вылетать из них под действием электрических сил, удара быстро движущихся атомов, ультрафиолетового света или тепла»;

2) «…все эти частицы одинаковой массы и несут одинаковый заряд отрицательного электричества от любого рода атомов, и они являются составной частью всех атомов»;

3) «…масса этих частиц меньше однотысячной массы атома водорода».

29 апреля 1897 года в помещении, где уже более двухсот лет происходили заседания Лондонского королевского общества, состоялось выступление Томсона. Оно было встречено восторгом присутствующих. Еще бы! Атомы, наипервейшие кирпичики материи, перестали быть элементарными круглыми зернами, непроницаемыми и неделимыми, частицами без всякого внутреннего строения… Если из них могли вылетать отрицательно заряженные корпускулы, значит, и представлять собой атомы должны были какую-то сложную систему. Систему, состоящую из чего-то заряженного положительным электричеством и из отрицательно заряженных корпускул - электронов.

Название, некогда предложенное Стонеем для обозначения величины наименьшего электрического заряда - электрон, стало именем неделимого «атома электричества».

В 1904 году Томсон же и представил новую модель атома. Она представляла собой также равномерно заряженную положительным электричеством сферу, внутри которой вращались отрицательно заряженные корпускулы, число и расположение которых зависело от природы атома. Ученому не удалось решить общую задачу устойчивого расположения корпускул внутри сферы, и он остановился на частном случае, когда корпускулы лежат в одной плоскости, проходящей через центр сферы.

Томсон научил физиков управлять электронами, и в этом его основная заслуга. Развитие метода Томсона составляет основу электронной оптики, электронных ламп, современных ускорителей заряженных частиц.

В 1906 году Томсону за его исследование прохождения электричества через газы была присуждена Нобелевская премия по физике.

Томсон разработал и методы изучения положительно заряженных частиц. Вышедшая в 1913 году его монография «Лучи положительного электричества» положила начало масс-спектроскопии.

В лаборатории Томсона начались первые измерения элементарного заряда из наблюдения движения заряженного облака в электрическом поле. Этот метод был в дальнейшем усовершенствован Милликеном и привел к его ставшим классическими измерениям заряда электрона.

Всем сердцем Томсон был привязан к Кембриджу. Лишь несколько раз он выезжал за границу. Когда разразилась Первая мировая война, Томсон вошел в состав правительственной комиссии, занимавшейся организацией научных исследований, важных для морского флота. В частности, ученые Кембриджа решали задачу обнаружения подводных лодок.

В 1918 году Томсон получил высокий пост президента Тринити-колледжа. Через год он передал руководство Кавендишской лабораторией своему выдающемуся ученику Резерфорду, но с лабораторией не порывал до конца жизни. Он оставил здесь небольшую комнату, где и работал со своими учениками.

Умер Томсон 30 августа 1940 года.

 

МАКС ФОН ЛАУЭ

(1879- 1960)

Творчество Лауэ связано с важнейшими проблемами физики, решение которых обусловило коренную перестройку науки. Он был глубоким теоретиком и первоклассным экспериментатором. Ученый заложил основы одного из могущественных средств исследования вещества - рентгеноструктурного анализа.

Макс Теодор Феликс фон Лауэ родился 9 октября 1879 года в Пфаффендорфе. Его отца, Юлиуса Лауэ, чиновника ведомства военных судов, часто переводили с места на место. Поэтому мальчик сменил несколько школ, прежде чем окончил протестантскую гимназию в Страсбурге.

Мать, Минна Лауэ, была настоящим другом сына и всегда разделяла его интересы. Именно она привела двенадцатилетнего мальчика в берлинское общество «Урания», некий аналог нашего общества «Знание».

В 1898 году в Страсбурге Макс закончил гимназию и через несколько дней поступил на военную службу. Но при этом он в 1898-1999 годах посещал лекции по физике в Страсбургском, а с 1899 года в Геттингенском университетах. Тогда-то и стало ясно Лауэ, что его призвание - теоретическая физика. В этом выборе свою роль сыграли Фойгт, Гильберт, а также опубликованные лекции Г. Кирхгофа. Зимой 1901/02 года Лауэ учился в Мюнхенском университете, а летом 1902 года переехал в Берлин, где посещал лекции Планка по теоретической оптике и термодинамике.

Под его руководством в июле 1903 года Макс с блеском защитил докторскую диссертацию, посвященную интерференции света на плоскопараллельных пластинках. Тогда же определилась и область научных интересов молодого ученого - физическая оптика. Совместная работа с Планком со временем переросла в крепкую дружбу.

Лауэ решил продолжить образование в Геттингене. Здесь в 1904 году Макс сдал экзамен на право преподавания в высшей школе.

Осенью 1905 года Планк предложил Лауэ место ассистента в Институте теоретической физики. За три года работы здесь молодой ученый внес существенный вклад в теорию излучения. Он доказал обратимый характер такого разделения пучка: полная энтропия когерентных лучей равна энтропии первоначального пучка, из которых они образовались.

К теории относительности Эйнштейна Лауэ отнесся достаточно осторожно. Однако через пять лет в 1910 году он дал первое обобщенное изложение этой теории, написав монографию о теории относительности. Его книга сыграла большую роль в укреплении новых представлений о пространстве и времени, о законах движения материи, совершающегося со скоростями, сравнимыми со скоростью света.

В 1909 году Лауэ перешел в Мюнхенский университет.

В 1910 году он вступил в брак с Магдаленой Деган, у них родились сын и дочь.

В последующие годы Лауэ был тесно связан с группой ученых во главе с Зоммерфельдом. Основные интересы этой группы касались области теоретической оптики и вопросов, связанных с таинственной природой тогда малоисследованных X-лучей.

Как говорит сам Лауэ про то время: «Я жил в атмосфере, насыщенной вопросами о природе рентгеновских лучей». Лауэ был сторонником волновой природы рентгеновских лучей и выдвинул мысль об их интерференции в пространственной решетке кристаллов. Идея соединить два масштаба - длину волны рентгеновских лучей и межатомное расстояние в кристалле возникла во время беседы с Эвальдом. У Лауэ родилась идея эксперимента интерференции рентгеновских лучей, которую он предложил Фридриху и Книппингу.

В опытах Лауэ, Фридриха и Книппинга «белое» рентгеновское излучение проходило через кристалл и давало интерференционные максимумы, соответствующие определенным длинам волн. В установке Фридриха и Книппинга лучи, выходящие из антикатода рентгеновской трубки, проходя через систему диафрагм, выделяли узкий пучок диаметром около 1 миллиметра. Этот пучок пронизывал укрепленный на гониометре «Гониометр - прибор для измерения угла между плоскими гранями. Используется в кристаллографии. (Прим. ред.)» кристалл. В опытах использовались кристаллы цинковой обманки, каменной соли и свинцового блеска. Опыты блестяще подтвердили гипотезу Лауэ.

У.Г. и У.Л. Брэгги в книге «Рентгеновские лучи и строение кристаллов» дали следующую характеристику работы Лауэ: «У Лауэ явилась мысль воспользоваться упорядоченным расположением атомов или молекул в кристалле в качестве "решетки", пригодной для исследования рентгеновских лучей. Расстояния между атомами или молекулами по своему порядку величины оказываются подходящими для этой цели. Решение задачи о дифракции волн в этом случае не так просто, как для плоской, обыкновенной решетки, так как правильность расположения атомов в кристалле распространяется на три направления вместо одного. Лауэ, однако, с успехом справился с математической стороной задачи. Он показал, что при прохождении через кристаллы пучка рентгеновских лучей должен образоваться ряд пучков, отклоненных вследствие дифракции от направления первоначального пучка по законам, которые Лауэ определил теоретически. Фотографическая пластинка, помещенная за кристаллом перпендикулярно первоначальному пучку, после проявления должна обнаружить резкое пятно в том месте, где ее встретит первоначальный пучок, прошедший через кристалл без изменения направления, и вокруг этого пятна целый ряд других пятен в местах встречи отклоненных пучков с пластиной. Соответствующий опыт был произведен Фридрихом и Книппингом весной 1912 года и блистательно подтвердил идею Лауэ».

Результат исследования был впервые опубликован в «Мюнхенских известиях» за 1912 год. Статья «Интерференционные явления в рентгеновских лучах» состояла из двух частей - теоретической и экспериментальной. Теоретическая часть была написана Лауэ, экспериментальная - Фридрихом и Книппингом. Лауэ рассчитал теоретически появление интерференционных максимумов при прохождении рентгеновского луча через кристалл. Свой расчет ученый закончил рассмотрением вопроса, в какой мере эти опыты подтверждают волновую природу рентгеновских лучей. «Что выходящее из кристалла излучение носит волновой характер, вполне доказано разностью интерференционных максимумов, которые легко понять как интерференционные явления, но едва ли оно может быть понято на основе корпускулярных представлений…»

В течение всей своей жизни Лауэ неоднократно возвращался к работам по интерференции в кристаллах. Им была написана и переиздана много раз книга «Рентгеновские лучи и явления интерференции», написано также много статей.

За открытие дифракции рентгеновских лучей Лауэ в том же 1914 году был удостоен Нобелевской премии. В докладе Нобелевского комитета были такие слова: «В результате открытия Лауэ было неопровержимо установлено, что рентгеновское излучение представляет собой световые волны очень малой длины. Кроме того, оно привело к наиболее важным открытиям в области кристаллографии. Открытие Лауэ позволяет определить положение атомов в кристаллах и получить много полезных сведений».

Эйнштейн охарактеризовал открытие Макса фон Лауэ как одно из самых красивых в физике. Эта замечательная работа положила начало новой области физической науки - рентгеновской кристаллографии.

С ее помощью отец и сын Брэгги изучили структуру многих кристаллов, Д. Ходжкин применила ее для выяснения строения пенициллина, а Д. Кендрю и М. Перуц использовали для анализа белка. Все ученые получили в свое время Нобелевские премии.

В 1914 году Лауэ стал профессором в университете во Франкфурте-на-Майне. В 1917 году Лауэ занял пост заместителя директора Физического института кайзера Вильгельма в Берлине, сочетая административную работу с чтением лекций. В 1930 году Лауэ избирают иностранным членом АН СССР.

«Хорошо известны работы Лауэ по теории сверхпроводимости, - пишет Л.Н. Колотова. - Так, в 1931-1932 годах было известно, что достаточно сильное магнитное поле разрушает сверхпроводимость. Лауэ высказал мысль, что сверхпроводящая проволока сама усиливает поле и именно так, что у ее поверхности появляется значительно большее напряжение поля, чем на некотором отдалении от нее. Предположение о том, что для разрушения сверхпроводимости фактически всегда требуется одинаковая напряженность и что можно брать и другие формы тел - шары сверхпроводящие, было доложено в 1932 году при получении медали Планка. Опыты де Гааза подтвердили это предположение. Позже Лауэ занимался гидродинамикой сверхпроводимости и вместе с братьями Лондонами, которые были его учениками, в 1947 году создал феноменологическую теорию сверхпроводимости, которая вместе с термодинамикой двухфазной системы в существенных чертах описывает все наблюдаемые явления в сверхпроводящих веществах».

В 1933 году после прихода к власти нацистов в Германии, Эйнштейна смещают с поста директора Физического института. Лауэ сравнил травлю великого ученого с преследованием инквизицией Галилея. Его смелость не была наказана. Слишком высок был авторитет Лауэ. Он продолжал заниматься преподавательской и исследовательской работой.

В 1946 году Лауэ возглавил Институт Макса Планка, так стал называться Институт кайзера Вильгельма. Через год была издана книга Лауэ «История физики». Начиная с 1951 года и до конца жизни Лауэ был директором Института физической химии в Берлин-Далеме.

Макс Лауэ - один из 18 геттингенских физиков, подписавших в 1958 году декларацию-протест против атомного вооружения Западной Германии.

В жизни Лауэ слыл заядлым альпинистом и умелым яхтсменом Но главным его увлечением были автомобили и мотоциклы.

Любовь к скорости и стала причиной его смерти. 8 апреля 1960 года по пути в лабораторию он наехал на своей машине на мотоциклиста, который получил водительские права за два дня до этого. Мотоциклист погиб на месте, а автомобиль Лауэ перевернулся. 24 апреля 1960 года ученый скончался от полученных травм.

 

МАКС ПЛАНК

(1858- 1947)

Выдающийся французский математик А. Пуанкаре писал: «Квантовая теория Планка есть, без всякого сомнения, самая большая и самая глубокая революция, которую натуральная философия претерпела со времен Ньютона».

Макс Карл Эрнст Людвиг Планк родился 23 апреля 1858 года в прусском городе Киле, в семье профессора гражданского права Иоганна Юлиуса Вильгельма фон Планка и Эммы (в девичестве Патциг) Планк.

В 1867 году семья переехала в Мюнхен. Планк потом вспоминал: «В обществе моих родителей и сестер я счастливо провел юные годы». В Королевской Максимилиановской классической гимназии Макс учился хорошо. Рано выявились и его яркие математические способности: в средних и старших классах стало обыкновением, что он заменял заболевших учителей математики. Планк вспоминал уроки Германа Мюллера, «общительного, проницательного, остроумного человека, умевшего на ярких примерах объяснять смысл тех физических законов, о которых он нам, ученикам, говорил».

По окончании гимназии в 1874 году он в течение трех лет изучал математику и физику в Мюнхенском и год - в Берлинском университетах. Физику преподавал профессор Ф. фон Жолли. О нем, как и о других, Планк говорил потом, что он у них многому научился и хранил о них благодарную память, «однако в научном отношении они были, в сущности, людьми ограниченными». Макс решил завершать образование в Берлинском университете. Хотя здесь он занимался у таких корифеев науки, как Гельмгольц и Кирхгоф, но и здесь он не получил полного удовлетворения: его огорчало, что лекции корифеи читали плохо, особенно Гельмгольц. Гораздо больше он получил от знакомства с публикациями этих выдающихся физиков. Они способствовали тому, что научные интересы Планка надолго сосредоточивались на термодинамике.

Ученую степень доктора Планк получил в 1879 году, защитив в Мюнхенском университете диссертацию «О втором законе механической теории тепла» - втором начале термодинамики, утверждающем, что ни один непрерывный самоподдерживающийся процесс не может переносить тепло от более холодного тела к более теплому. Через год он защитил диссертацию «Равновесное состояние изотропных тел при различных температурах», которая принесла ему должность младшего ассистента физического факультета Мюнхенского университета.

Как вспоминал ученый: «Будучи приват-доцентом в Мюнхене в течение многих лет, я напрасно ждал приглашения в профессуру, на что, конечно, шансов было мало, так как теоретическая физика тогда еще не служила отдельным предметом. Тем более настоятельной была потребность так или иначе выдвинуться в научном мире.

С этим намерением я решил разработать проблему о сущности энергии, поставленную Геттингенским философским факультетом на соискание премии за 1887 год. Еще до окончания этой работы, весной 1885 года, меня пригласили в качестве экстраординарного профессора теоретической физики в Кильский университет. Это казалось мне спасением; день, когда министериал «Министериалы - в Средние века в Западной Европе, - служащие люди короля. Буквально - должность. (Прим. ред.)» директор Альтгоф пригласил меня к себе в отель "Мариенбад" и более подробно сообщил мне условия, я считал самым счастливым в моей жизни. Хотя в доме родителей я и вел беззаботную жизнь, я все же стремился к самостоятельности…

Вскоре я переехал в Киль; моя геттингенская работа была там вскоре закончена и увенчалась второй премией».

В 1888 году Планк стал адъюнкт-профессором Берлинского университета и директором Института теоретической физики (пост директора был создан специально для него).

К тому времени Планк опубликовал ряд работ по термодинамике. Особую известность получила созданная им теория химического равновесия ненасыщенных растворов.

В 1896 году Планк заинтересовался измерениями, производившимися в Государственном физико-техническом институте в Берлине. Экспериментальная работа по изучению спектрального распределения излучения «черного тела», выполненная здесь, привлекла внимание ученого к проблеме теплового излучения.

К тому времени существовало две формулы для описания излучения «черного тела»: одна для коротковолновой части спектра (формула Вина), другая для длинноволновой (формула Рэлея). Задача состояла в том, чтобы состыковать их.

«Ультрафиолетовой катастрофой» назвали исследователи расхождение теории излучения с экспериментом. Расхождение, которое никак не удавалось устранить. Современник «ультрафиолетовой катастрофы», физик Лоренц, грустно заметил: «Уравнения классической физики оказались неспособными объяснить, почему угасающая печь не испускает желтых лучей наряду с излучением больших длин волн…»

«Сшить» формулы Вина и Рэлея и вывести формулу, совершенно точно описывающую спектр излучения черного тела, удалось Планку.

Вот как пишет об этом сам ученый:

«Именно в ту пору все выдающиеся физики обратились, как с экспериментальной, так и теоретической стороны, к проблеме распределения энергии в нормальном спектре. Однако ее они искали в направлении представления интенсивности излучения в ее зависимости от температуры, тогда как я подозревал более глубокую связь в зависимости энтропии от энергии. Так как значение энтропии тогда еще не нашло подобающего ему признания, то я нисколько не волновался за используемый мною метод и мог свободно и основательно проводить свои расчеты, не опасаясь вмешательства или опережения с чьей-либо стороны.

Так как для необратимости обмена энергии между осциллятором и возбужденным им излучением имеет особое значение вторая производная его энтропии по его энергии, то я вычислил значение этой величины для случая, стоявшего тогда в центре всех интересов виновского распределения энергии, и нашел замечательный результат, что для этого случая обратная величина такого значения, которую я здесь обозначил K, пропорциональна энергии. Эта связь так ошеломляюще проста, что я долгое время признавал ее совершенно общей и трудился над ее теоретическим обоснованием. Однако шаткость такого понимания скоро обнаружилась перед результатами новых измерений. Именно в то время, как для малых значений энергии, или для коротких волн, закон Вина отлично подтвердился также и впоследствии, для больших значений энергии, или для больших волн, установили сперва Люммер и Прингсгейм заметное отклонение, а проведенные Рубенсом и Ф. Курлбаумом совершенные измерения с плавиковым шпатом и калийной солью обнаружили совершенно иное, однако опять-таки простое отношение, что величина K пропорциональна не энергии, а квадрату энергии при переходе к большим значениям энергии и длин волн.

Так прямыми опытами были установлены для функции две простые границы: для малых энергий пропорциональность (первой степени) энергии, для больших - квадрату энергии. Понятно, что так же как любой принцип распределения энергии дает определенное значение K, так и всякое выражение приводит к определенному закону распределения энергии, и речь идет теперь о том, чтобы найти такое выражение, которое давало бы установленное измерениями распределение энергии. Но теперь ничего не было естественнее, как составить для общего случая величину в виде суммы двух членов: одного первой степени, а другого второй степени энергии, так что для малых энергий будет решающим первый член, для больших - второй; вместе с тем была найдена новая формула излучения, которую я предложил на заседании Берлинского физического общества 19 октября 1900 года и рекомендовал для исследования.

…Последующими измерениями формула излучения также подтверждалась, а именно, тем точнее, чем к более тонким методам измерения переходили. Однако формула измерения, если предполагать ее абсолютно точную истинность, была сама по себе только счастливо угаданным законом, имеющим только формальное значение».

Планк установил, что свет должен испускаться и поглощаться порциями, причем энергия каждой такой порции равна частоте колебания умноженной на специальную константу, получившую название постоянной Планка.

Ученый сообщает, как упорно пытался он ввести квант действия в систему классической теории: «Но эта величина [постоянная h] оказалась строптивой и сопротивлялась всем подобного рода попыткам. До тех пор пока ее можно считать бесконечно малой, т.е. при больших энергиях и более продолжительных периодах, все было в полном порядке. Но в общем случае то там, то здесь возникала зияющая трещина, которая становилась тем более заметной, чем более быстрые колебания рассматривались. Провал всех попыток перекинуть мост через эту пропасть не оставил вскоре никаких сомнений в том, что квант действия играет фундаментальную роль в атомной физике и что с его появлением началась новая эпоха в физической науке, ибо в нем заложено нечто, до того времени неслыханное, что призвано радикально преобразить наше физическое мышление, построенное на понятии непрерывности всех причинных связей с того времени, как Лейбниц и Ньютон создали исчисление бесконечно малых».

В. Гейзенберг так передает широко известную легенду о раздумьях Планка: «Его сын Эрвин Планк вспоминал об этом времени, что он гулял со своим отцом в Грюневальде, что Планк в течение всей прогулки возбужденно и волнуясь рассказывал о результате своих исследований. Он говорил ему примерно так: "Или то, чем я занимаюсь теперь, есть совершенная бессмыслица, или речь идет, может быть, о самом большом открытии в физике со времен Ньютона"»

14 декабря 1900 года Планк на заседании Немецкого физического общества выступил со своим историческим докладом «К теории распределения энергии излучения нормального спектра». Он доложил о своей гипотезе и новой формуле излучения. Введенная Планком гипотеза ознаменовала рождение квантовой теории, совершившей подлинную революцию в физике. Классическая физика в противоположность современной физике ныне означает «физика до Планка».

Новая теория включала в себя, помимо постоянной Планка, и другие фундаментальные величины, такие как скорость света и число, известное под названием постоянной Больцмана. В 1901 году, опираясь на экспериментальные данные по излучению черного тела, Планк вычислил значение постоянной Больцмана и, используя другую известную информацию, получил число Авогадро (число атомов в одном моле элемента). Исходя из числа Авогадро, Планк сумел с высочайшей точностью найти электрический заряд электрона.

Позиции квантовой теории укрепились в 1905 году, когда Альберт Эйнштейн воспользовался понятием фотона - кванта электромагнитного излучения. Еще через два года Эйнштейн еще более упрочил положение квантовой теории, воспользовавшись понятием кванта для объяснения загадочных расхождений между теорией и экспериментальными измерениями удельной теплоемкости тел. Еще одно подтверждение теории Планка поступило в 1913 году от Бора, применившего квантовую теорию к строению атома.

В 1919 году Планк был удостоен Нобелевской премии по физике за 1918 год «в знак признания его заслуг в деле развития физики благодаря открытию квантов энергии». Как заявил А.Г. Экстранд, член Шведской королевской академии наук на церемонии вручения премии, «теория излучения Планка - самая яркая из путеводных звезд современного физического исследования, и пройдет, насколько можно судить, еще немало времени, прежде чем иссякнут сокровища, которые были добыты его гением». В нобелевской лекции, прочитанной в 1920 году, Планк подвел итог своей работы и признал, что «введение кванта еще не привело к созданию подлинной квантовой теории».

К числу других его достижений относится, в частности, предложенный им вывод уравнения Фоккера-Планка, описывающего поведение системы частиц под действием небольших случайных импульсов.

В 1928 году в возрасте семидесяти лет Планк вышел в обязательную формальную отставку, но не порвал связей с Обществом фундаментальных наук кайзера Вильгельма, президентом которого он стал в 1930 году. И на пороге восьмого десятилетия он продолжал исследовательскую деятельность.

После прихода в 1933 году Гитлера к власти Планк не раз публично выступал в защиту еврейских ученых, изгнанных со своих постов и вынужденных эмигрировать. В дальнейшем Планк стал более сдержанным и хранил молчание, хотя нацисты, несомненно, знали о его взглядах. Как патриот, любящий родину, он мог только молиться о том, чтобы германская нация вновь обрела нормальную жизнь. Он продолжал служить в различных германских ученых обществах, в надежде сохранить хоть какую-то малость немецкой науки и просвещения от полного уничтожения.

Планк жил в предместье Берлина - Грюневальд. В его доме, расположенном по соседству с чудесным лесом, было просторно, уютно, на всем лежала печать благородной простоты. Огромная, любовно и вдумчиво подобранная библиотека. Музыкальная комната, где хозяин угощал своей изысканной игрой больших и небольших знаменитостей.

Его первая жена, урожденная Мария Мерк, с которой он вступил в брак в 1885 году, родила ему двух сыновей и двух дочерей-близнецов. С ней Планк счастливо прожил более двадцати лет. В 1909 году она умерла. Это был удар, от которого ученый долго не мог оправиться.

Двумя годами позже он женился на своей племяннице Марге фон Хесслин, от которой у него также родился сын. Но с той поры несчастья преследовали Планка. Во время Первой мировой войны погиб под Верденом один из его сыновей, а в последующие годы обе его дочери умерли при родах. Второй сын от первого брака был казнен в 1944 году за участие в неудавшемся заговоре против Гитлера. Дом и личная библиотека ученого погибли во время воздушного налета на Берлин.

Силы Планка были подорваны, все больше страданий причинял артрит позвоночника. Некоторое время ученый находился в университетской клинике, а затем переехал к одной из своих племянниц.

Скончался Планк в Геттингене 4 октября 1947 года, за шесть месяцев до своего девяностолетия. На его могильной плите выбиты только имя и фамилия и численное значение постоянной Планка.

В честь его восьмидесятилетия одна из малых планет была названа Планкианой, а после окончания Второй мировой войны Общество фундаментальных наук кайзера Вильгельма было переименовано в Общество Макса Планка.

 

АЛЬБЕРТ ЭЙНШТЕЙН

(1879- 1955)

Альберт Эйнштейн родился 14 марта 1879 года в маленьком австрийском городке Ульме. Когда мальчику исполнился один год, его родители Герман и Паулина Эйнштейн перебрались в Мюнхен. Герман вошел в дело младшего брата Якоба и стал совладельцем фирмы по производству и починке электроприборов. Дела шли хорошо, и семья жила в роскошной двухэтажной вилле.

В семь лет Альберта отправили в муниципальную школу. Его сестра вспоминает, что он считался всего лишь «умеренно способным», так как очень медленно усваивал и переваривал новую информацию: «Его математических талантов в то время еще не замечали; он не блистал даже по арифметике, то есть мог ошибиться в вычислениях и делал их не слишком быстро, хотя обладал логическими способностями и упорством».

Но уже в семь лет он начинает подавать надежды. В августе 1886 года Паулина писала своей матери, бабушке Эйнштейна, что он снова получил лучший в классе аттестат. Высказывание Паулины о том, что ее маленький Альберт будет знаменитым профессором, стало неотъемлемой частью семейного предания.

Годы своего обучения в Луитпольд-гимназиум, куда его отдали в возрасте девяти с половиной лет, Эйнштейн вспоминал с горечью: «Я был готов стерпеть любое наказание, лишь бы не учить на память бессвязный вздор», - вспоминает он позже.

Закончив шесть классов, он до осени 1895 года жил в Милане и учился самостоятельно. Осенью 1895 года он приехал в Швейцарию, чтобы поступить в Высшее техническое училище в Цюрихе, политехникум - так называлось кратко это учебное заведение. Но прежде чем поступить сюда, ему пришлось окончить последний класс кантональной школы в Аарау.

В октябре 1896 года Эйнштейна, наконец, приняли в политехникум на учительский факультет. Обучение в Аарау - самый счастливый период в жизни Эйнштейна, он описывает городок как «незабываемый оазис в том оазисе, каким Швейцария является для Европы». Профессор Винтелер, подобно отцу Эйнштейна, оказался очень добрым, легким и простым в общении человеком.

В первый год обучения в политехникуме Эйнштейн усердно работал в физической лаборатории, «увлеченный непосредственным соприкосновением с опытом». Кроме интереса к теоретической физике, в студенческие годы Эйнштейн интересовался геологией, историей культуры, экономикой, литературоведением. И продолжал заниматься самообразованием… На его столе появляются труды Гельмгольца, Герца и даже Дарвина.

Летом 1900 года Альберт окончил политехникум со средними оценками и получил диплом учителя физики и математики, а в 1901 году - швейцарское гражданство. В швейцарскую армию Эйнштейна не взяли, так как у него нашли плоскостопие и расширение вен.

С момента окончания политехникума в 1900 году и до весны 1902 года Альберт не мог найти постоянной работы. Дела шли хуже и хуже. Он как-то сказал, что, видимо, ему вскоре придется ходить со скрипкой по улицам, чтобы заработать на кусок хлеба. В эти тяжелые годы Эйнштейн написал статью «Следствия теории капиллярности», она была опубликована в 1901 году в берлинских «Анналах физики». В статье велись рассуждения о силах притяжения между атомами жидкостей.

Наконец, по рекомендации своего друга математика М. Гроссмана Эйнштейн был зачислен на должность эксперта третьего класса с годовым жалованием 3500 франков в федеральное бюро патентов в Берне. Там он проработал семь с лишним лет - с июля 1902 по октябрь 1909 года. Необременительная работа и простой уклад жизни позволили Эйнштейну именно в эти годы стать крупнейшим физиком-теоретиком. После работы у него оставалось достаточно много времени для того, чтобы заниматься собственными исследованиями.

Через полгода после получения работы в патентном бюро Альберт Эйнштейн женился на Милеве Марич. Он поселился с ней в Берне. Эйнштейны снимали верхний этаж в доме бакалейщика. В мае 1904 года в семье появился первенец, названный Гансом-Альбертом.

В 1904 году он закончил и послал в журнал «Анналы физики» статьи, посвященные изучению вопросов статистической механики и молекулярной теории теплоты. В 1905 году эти статьи были напечатаны. Как выразился известный физик Луи де Бройль, эти работы были словно сверкающие ракеты, осветившие мрак ночи, открывшие нам нескончаемые и неизвестные просторы Вселенной.

Ученый смог объяснить броуновское движение молекул и сделал вывод о том, что можно вычислить массу и число молекул, находящихся в данном объеме. Через несколько лет это открытие повторил французский физик Ж. Перрон, получивший за него Нобелевскую премию.

Во второй работе предлагалось объяснение фотоэффекта. «Эксперименты показали, что лучи света, падая на поверхность некоторых металлов, выбивают оттуда электроны, - пишут в своей книге об ученом П. Картер и Р. Хайфильд. - Удивительным казалось то, что скорость, с которой электроны отрываются от поверхности, зависит не от степени освещенности, а от цвета лучей. Например, под воздействием ярчайшего красного света электроны вылетали с меньшей скоростью, чем под воздействием тусклого голубого. Этот факт не поддавался никаким объяснениям, пока Эйнштейн не выдвинул гипотезу, что луч света переносит энергию в виде мельчайших частиц, которые он назвал квантами световой энергии. Когда интенсивность освещения увеличивалась, на поверхность металла падало больше квантов и, соответственно, с нее выбивалось больше электронов. Но скорость, с которой они отрывались от поверхности, увеличивалась только тогда, когда становились больше сами кванты энергии, то есть когда частота светового излучения повышалась, и оно по цвету становилось ближе к голубой части спектра. По словам Эйнштейна, существует нижний порог частоты излучения, то есть нижняя граница величины квантов, которые способны выбить электроны с поверхности металла. Если величина квантов будет меньше этого порогового числа, электроны вообще не смогут оторваться от поверхности металла…

Он поставил науку перед лицом знаменитого парадокса: свет обладал и волновыми, и корпускулярными свойствами. Именно за эту работу Эйнштейн с опозданием получил Нобелевскую премию в 1922 году, но упомянутое противоречие продолжало мучить его всю жизнь. Уже в конце жизни он написал Бессо, что так и не имеет четкого представления о том, что такое квант света. "В наши дни каждый студент думает, что ему это понятно, - писал Эйнштейн. - Но он ошибается"».

Третья и самая замечательная работа Альберта, была посвящена созданию специальной теории относительности. Ученый пришел к выводу, что ни один материальный объект не может двигаться быстрее света. На основании этого он пришел к заключению, что масса тела зависит от скорости его движения и представляет собой «замороженную энергию», с которой связана известной формулой - масса умноженная на квадрат скорости света.

После публикации этих статей к Эйнштейну пришло всеобщее признание. Весной 1909 года Эйнштейн был назначен экстраординарным профессором теоретической физики Цюрихского университета.

28 июля 1910 года у Эйнштейнов родился второй сын Эдуард. В начале 1911 года ученого пригласили занять самостоятельную кафедру в немецком университете в Праге. А летом следующего года Эйнштейн возвратился в Цюрих и занял место профессора в политехникуме, в том самом, где он сидел на студенческой скамье.

В голове ученого родилась новая теория. 25 июня 1913 года писал Маху: «В эти дни Вы, наверное, уже получили мою новую работу об относительности и гравитации, которая, наконец, была окончена после бесконечных усилий и мучительных сомнений. В будущем году во время солнечного затмения должно выясниться, искривляются ли световые лучи вблизи Солнца, другими словами, действительно ли подтверждается основное фундаментальное предположение об эквивалентности ускорения системы отсчета, с одной стороны, и полем тяготения, с другой. Если да, то тем самым будут блестяще подтверждены - вопреки несправедливой критике Планка - Ваши гениальные исследования по основам механики. Потому что отсюда с необходимостью следует, что причиной инерции является особого рода взаимодействие тел - вполне в духе Ваших рассуждений об опыте Ньютона с ведром».

В 1914 году Эйнштейна пригласили в Германию на должность профессора Берлинского университета и одновременно директора Физического института кайзера Вильгельма. В том же году разразилась Первая мировая война, но как швейцарский гражданин Эйнштейн не принял в ней участия.

В 1915 году в Берлине ученый завершил свой шедевр - общую теорию относительности. В ней было не только обобщение специальной теории относительности, но излагалась и новая теория тяготения. Эйнштейн предположил, что все тела не притягивают друг друга, как считалось со времен Исаака Ньютона, а искривляют окружающее пространство и время. Это было настолько революционное представление, что многие ученые сочли вывод Эйнштейна шарлатанством.

Среди прочих явлений предсказывалось отклонение световых лучей в гравитационном поле, что и подтвердили английские ученые во время солнечного затмения в 1919 году. Когда было официально объявлено о подтверждении, Эйнштейн за одну ночь стал знаменит на весь мир.

В 1918 году, через несколько недель после подписания перемирия, Эйнштейн поехал в Швейцарию. Во время своего визита он расторгнул брак с Милевой Марич.

«При разводе наиболее щекотливой проблемой было улаживание финансовых вопросов… С учетом всех "нерегулярных и непредвиденных" выплат Милеве и детям, Эйнштейну, по его словам, грозила опасность растратить все свои сбережения и не иметь возможности обеспечить будущее своих детей, - пишут П. Картер и Р. Хайфилд. - Козырем Эйнштейна стала Нобелевская премия по физике. Если жена не будет чинить препятствий к разводу, деньги, вручаемые нобелевскому лауреату, отойдут к ней и полностью обеспечат и ее будущее, и будущее детей. Если нет, она не получит ничего сверх 6000 швейцарских франков в год - суммы, которую Эйнштейн считал разумным и возможным ей выделить. Предлагая Милеве нобелевские деньги, Эйнштейн вовсе не хотел, как считают многие, отметить ее вклад в создание теории относительности - он просто хотел получить развод удобным для себя способом. Денежный эквивалент премии, выплачиваемый в шведских кронах, соответствовал сумме в 180000 швейцарских франков, причем эта валюта была устойчива, в отличие от падавшей немецкой марки, которую Эйнштейн использовал для предыдущих выплат. Но оставалась одна проблема: Эйнштейн еще не получил Нобелевской премии…

Эйнштейн настолько в себя верил, что уже в 1918 году не сомневался, что станет обладателем Нобелевской премии. Милева подобных сомнений тоже не испытывала - и ее вера в Эйнштейна оставалась неколебимой. Начиная с 1910 года, когда ученый был впервые выдвинут на Нобелевскую премию, его имя только два раза не фигурировало в списках кандидатов, однако, когда обсуждались условия развода, ни Эйнштейн, ни Милева не могли поручиться, что он действительно станет обладателем нобелевских денег. Но оба полагали, что это только вопрос времени. Пока же оно не пришло, Эйнштейн обязался регулярно выплачивать Милеве определенные суммы».

После развода со своей первой женой он продолжал заботиться о ней и о своих сыновьях, старший из которых уже оканчивал гимназию в Цюрихе. Когда в ноябре 1922 года Эйнштейну была присуждена Нобелевская премия, он передал сыновьям всю полученную сумму. И в то же время он постоянно заботился о двух дочерях своей второй жены Эльзы. Эльза была двоюродной сестрой Альберта по материнской линии и троюродной - по отцовской.

П. Картер и Р. Хайфилд пишут: «Нобелевский комитет отличался консервативностью и не хотел присуждать премию за теорию относительности: она все еще оставалась спорной и не была достаточно подтверждена экспериментальными данными. Эйнштейн стал Нобелевским лауреатом очень нескоро, только в 1922 году. Ему досталась премия, оставшаяся неврученной в 1921 году, и получил он ее не за теорию относительности. По иронии судьбы он получил ее за открытие законов фотоэлектрического эффекта, то есть за теорию, выводы из которой, позднее сделанные другими учеными, вызывали у него раздражение всю оставшуюся жизнь».

2 июня 1919 года Эльза и Альберт Эйнштейн поженились. Еще раньше дочери Эльзы официально приняли фамилию Эйнштейн. Альберт Эйнштейн переехал в квартиру новой жены. В 1920 году Эйнштейн писал Бессо, что «находится в хорошей форме и прекрасном настроении».

Несмотря на то что Эйнштейн был признан одним из крупнейших физиков мира, в Германии он подвергался преследованиям из-за своих антимилитаристских взглядов и революционных физических теорий. В Германии ученый прожил до 1933 года. Там он постепенно стал мишенью для ненависти. После прихода к власти Гитлера Эйнштейн покинул страну и переехал в США, где начал работать в институте фундаментальных физических исследований в Принстоне.

Второго августа 1939 года Эйнштейн обратился с письмом к президенту США Франклину Рузвельту о предупреждении возможности использования атомного оружия фашистской Германией. Он писал о том, что исследования по расщеплению урана могут привести к созданию оружия огромной разрушительной силы.

Позднее ученый жалел об этом письме. Эйнштейн выступал с осуждением американской «атомной дипломатии», заключавшейся в монополии США в области атомного оружия. Он критиковал правительство Соединенных Штатов за то, что оно пыталось шантажировать другие страны.

Незадолго до смерти Эйнштейн стал одним из инициаторов воззвания крупнейших ученых мира, обращенного к правительствам всех стран, с предупреждением об опасности применения водородной бомбы. Это воззвание стало началом движения, объединившего виднейших ученых в борьбе за мир, которое получило название Пагуошского. После смерти Эйнштейна его возглавил крупнейший английский философ и физик Б. Рассел.

18 апреля 1955 года в 1 час 25 минут Эйнштейн умер. Речей не было, прах ученого был предан огню в крематории Юинг-Симтери, пепел развеяли по ветру.

 

НИЛЬС БОР

(1885- 1962)

Как метко сказал советский ученый П.Л. Капица: «Во всей мировой науке в наши дни не было человека с таким влиянием на естествознание, как Бор. Из всех теоретических троп тропа Бора была самой значительной».

Датский физик Нильс Хенрик Давид Бор родился 7 октября 1885 года в Копенгагене и был вторым из трех детей Кристиана Бора и Эллен (в девичестве Адлер) Бор. Его отец был известным профессором физиологии в Копенгагенском университете. Мать происходила из еврейской семьи, хорошо известной в банковских, политических и интеллектуальных кругах.

Как вспоминал позднее ученый: «Я рос в семье с глубокими духовными интересами, где обычными были научные дискуссии; да и для моего отца вряд ли существовало строгое различие между его собственной научной работой и его живым интересом ко всем проблемам человеческой жизни».

Сначала Нильс учился в Гаммельхольмской грамматической школе в Копенгагене. Он хорошо успевал по всем школьным предметам, особенно по физике и математике. Бор и его брат Харальд, который стал известным математиком, в школьные годы были заядлыми футболистами. И в дальнейшем настольный теннис, парусный спорт, лыжи были постоянными спутниками жизни ученого.

Окончив школу в 1903 году, Нильс поступил на естественнонаучный факультет Копенгагенского университета. Здесь его успехи были столь велики, что уже на втором году обучения профессор мог использовать его в качестве помощника.

За экспериментальное исследование поверхностного натяжения воды, которое он провел в 1907 году в лаборатории своего отца на основе работ Рэлея, студент Бор был награжден золотой медалью Копенгагенской Академии наук. Это исследование осталось, собственно, его единственной большой экспериментальной работой. Обладая ярко выраженными склонностями и к экспериментальной физике Бор принадлежал к тем физикам-теоретикам, которые экспериментировали только в годы своей юности.

В 1907 году Бор стал бакалавром. Степень магистра он получил в Копенгагенском университете в 1909 году. Его докторская диссертация по теории электронов в металлах считалась мастерским теоретическим исследованием. Среди прочего в ней вскрывалась неспособность классической электродинамики объяснить магнитные явления в металлах. Это исследование помогло Бору понять на ранней стадии своей научной деятельности, что классическая теория не может полностью описать поведение электронов.

В 1911 году Бор получил докторскую степень, а также специальную стипендию для годичной стажировки в Кембридже у самого Дж.Дж. Томсона, наиболее признанного среди физиков того времени. Правда, к тому времени Томсон начал заниматься уже другими темами и проявил мало интереса к диссертации Бора и содержащимся там выводам.

От Томсона Нильс в начале 1912 года отправился в Манчестер к Эрнсту Резерфорду. Там он занимался вначале теоретическим исследованием торможения альфа- и бета-частиц, а затем приступил к изучению структуры атомов.

Еще в 1910 году Нильс встретил Маргарет Нерлунд, дочь аптекаря. В 1911 году состоялась их помолвка. Летом 1912 года Бор вернулся в Копенгаген и стал ассистент-профессором Копенгагенского университета. 1 августа этого же года, через четыре дня после возвращения Бора из своей первой короткой учебной поездки к Резерфорду, он женился на Маргарет. Свадебное путешествие привело их в Англию, где после недельного пребывания в Кембридже молодая пара посетила Резерфорда. Нильс Бор оставил ему свою работу о торможении альфа-частиц, начатую незадолго до возвращения домой.

Брак Нильса и Маргарет принес им обоим настоящее счастье - они так много значили друг для друга. Один из их сыновей позднее писал: «Нельзя не отметить, какую роль в нашей семье играла мать. Ее мнение было для отца решающим, его жизнь была ее жизнью. В любом событии - маленьком или большом - она принимала участие и, разумеется, была ближайшим советником отца, когда нужно было принять какое-либо решение».

Исходя из резерфордовской модели атома, Бор, вернувшись в Копенгаген, в начале 1913 года развил новый взгляд на строение атома водорода. При содействии Резерфорда его работа «О строении атомов и молекул» была опубликована в «Философикал мэгэзин». В этой работе Бор творчески объединил идеи Резерфорда, Планка и Эйнштейна.

Бор понял, что существует противоречие между представлениями Резерфорда о строении атома, с одной стороны, и положениями классической электродинамики, а также определенными экспериментальными данными - с другой. На примере атома водорода Бор констатировал, что излучение электрона, движущегося вокруг ядра, не представляет непрерывного спектра и, значит, не описывается законами классической электродинамики. По этим законам электроны вследствие своего ускоряющегося движения непрерывно теряли бы электромагнитную энергию и должны были бы, в конце концов, упасть на ядро.

Для устранения этого противоречия Бор предпочел опереться на данные эксперимента, а не на положения классической науки, которая не могла здесь предложить никакого объяснения. Бор ввел постулаты, основанные на квантовой теории Планка. Благодаря этому ученому удалось составить более правильный взгляд на строение атомных оболочек по сравнению с представлениями Резерфорда. В соответствии с постулатами Бора, электрон в свободном атоме водорода может вращаться вокруг ядра не по произвольной траектории, а по такому пути, который не связан с излучением энергии. Образование линейчатого спектра водорода объясняется тем, что электрон, поглощая фотон, переходит на более высокую орбиту. При потере энергии, согласно Бору, электрон вновь переходит на более низкую орбиту. Эта теория объясняла также потерю электронов при образовании положительных ионов.

Десять лет спустя Планк говорил, что смелость теории атомного механизма Бора и полнота его разрыва с укоренившимися и якобы надежными воззрениями не имеет себе равных в истории физической науки. Теория Бора блестяще согласовалась с фактами, что как раз и является важнейшей задачей теории. Наряду с несомненным дарованием в «искусстве синтеза» он обнаружил также отчетливое понимание действительности.

Ставшая всемирно известной модель атома Бора построена на двух требованиях - «квантовых условиях».

Первое: электроны в атоме вращаются под влиянием кулоновских сил по известным свободным от излучения «квантовым орбитам», соответствующим определенным энергетическим уровням. Движение электронов при этом определяется константой Планка и последовательностью целых чисел.

Второе: электроны совершают внезапные скачкообразные переходы, «квантовые скачки», между своими свободными от излучения орбитами. Частота колебаний испускаемого при этом света регулируется также квантом действия.

Немедленно оценив важность работы Бора, Резерфорд предложил ему ставку лектора в Манчестерском университете - пост, который Бор занимал с 1914 по 1916 год. В 1916 году он занял пост профессора, созданный для него в Копенгагенском университете, где он продолжал работать над строением атома. В 1920 году Бор основал Институт теоретической физики в Копенгагене. За исключением периода Второй мировой войны, когда ученого не было в Дании, он руководил этим институтом до конца своей жизни.

В 1922 году Бор был награжден Нобелевской премией по физике «за заслуги в исследовании строения атомов и испускаемого ими излучения». При презентации лауреата С. Аррениус, член Шведской королевской академии наук, отметил, что открытия Бора «подвели его к теоретическим идеям, которые существенно отличаются от тех, какие лежали в основе классических постулатов Джеймса Клерка Максвелла». Аррениус добавил, что заложенные Бором принципы «обещают обильные плоды в будущих исследованиях».

В двадцатые годы ученый сделал решающий вклад в то, что позднее было названо копенгагенской интерпретацией квантовой механики. В основе этой интерпретации лежит положение о том, что мы вынуждены выражать закономерности в микропроцессах понятиями макрофизики, справедливыми лишь до некоторых границ, определяемых соотношениями Гейзенберга. Бор сформулировал два из фундаментальных принципов, определивших развитие квантовой механики: принцип соответствия и принцип дополнительности.

Принцип соответствия утверждает, что квантово-механическое описание макроскопического мира должно соответствовать его описанию в рамках классической механики. Или, как пишет Бор, «как бы далеко ни выходили явления за рамки классического физического объяснения, все опытные данные должны описываться при помощи классических понятий».

Принцип дополнительности является общим законом квантовой механики. В наиболее общем виде Бор сформулировал его следующим образом: «Любое данное использование одних классических понятий исключает одновременное использование других классических понятий, которые при ином подходе столь же необходимы для объяснения явлений».

Приняв сосуществование двух очевидно противоречащих друг другу интерпретаций, мы вынуждены обходиться без визуальных моделей - такова мысль, выраженная Бором в его нобелевской лекции. Имея дело с миром атома, сказал он, «мы должны быть скромными в наших запросах и довольствоваться концепциями, которые являются формальными в том смысле, что в них отсутствует столь привычная нам визуальная картина».

В тридцатые годы Бор вплотную приступил к изучению свойств ядра. В 1936 году он создал капельную модель ядра, введя в ядерную физику термодинамические понятия. После открытия цепной реакции ученый продолжал совершенствовать теорию деления ядер и эффектов, связанных с этим процессом. Большое значение для развития квантовой электродинамики имели его работы по излучению.

В конце сентября 1943 года ученый узнал, что нацисты готовятся перевезти его в Германию. Следующей же ночью на лодке датские антифашисты переправили его в Швецию, чтобы спасти от лап гестапо.

Из Швеции ученый направился на самолете в Англию, откуда затем вместе со своим сыном Оге вылетел в США. «И этот полет имел свои опасности, - сообщал Д. Франк. - Череп Бора был слишком велик для дужек, с помощью которых в этих самолетах прижимали к ушам необходимые для связи микрофоны. Поэтому он не слышал требования пилота надеть кислородную маску и потерял сознание. Он пришел в себя лишь после того, как Оге Бор указал пилоту на его состояние и тот перевел самолет в нижние слои атмосферы».

В США Бор под вымышленной фамилией Бейкер участвовал как советник-сотрудник в Лос-Аламосе в изготовлении американской атомной бомбы. Когда стало ясно, что гитлеровская Германия уже не в состоянии овладеть атомным оружием, Бор употребил все свое влияние для того, чтобы воспрепятствовать применению американских атомных бомб. С этой целью он лично беседовал с президентом Рузвельтом.

После войны Бор вернулся в Институт теоретической физики, который расширился под его руководством. Он помогал основать ЦЕРН (Европейский центр ядерных исследований) и играл активную роль в его научной программе в пятидесятые годы. Он также принял участие в основании Нордического института теоретической атомной физики (Нордита) в Копенгагене - объединенного научного центра Скандинавских государств. В эти годы ученый продолжал выступать в прессе за мирное использование ядерной энергии и предупреждал об опасности ядерного оружия. В 1950 году он послал открытое письмо в ООН, повторив свой призыв военных лет к «открытому миру» и международному контролю над вооружениями.

Достигнув возраста обязательной отставки, Бор ушел с поста профессора Копенгагенского университета, но оставался главой Института теоретической физики. В последние годы своей жизни он продолжал вносить свой вклад в развитие квантовой физики и проявлял большой интерес к новой области молекулярной биологии.

Бор умер 18 ноября 1962 года в своем доме в Копенгагене в результате сердечного приступа. В некрологе советские ученые, в частности, писали: «В лице Нильса Бора люди потеряли гениального ученого и мыслителя, борца за мир и взаимопонимание между народами, друга всего человечества».

В честь великого ученого советские ученые назвали 105-й химический элемент нильсборием (Ns).

 

ЛУИ ДЕ БРОЙЛЬ

(1892- 1987)

Нобелевский лауреат 1929 года, Луи де Бройль внес в современную физику идею о волновых свойствах микрочастиц. А. Эйнштейн писал: «Де Бройль был первым, кто осознал тесную физическую и формальную взаимосвязь между квантовыми состояниями материи и явлениями резонанса еще в те времена, когда волновая природа материи не была открыта экспериментально».

Луи Виктор Пьер Раймон де Бройль родился 15 августа 1892 года в Дьеппе. Он был младшим из троих детей Виктора де Бройля, представителя одного из самых знатных аристократических семейств Франции. Мальчик получил блестящее домашнее воспитание и образование. В юности он увлекался историей и литературой. Поэтому после окончания престижного лицея Жансон де Сайн Луи поступил на факультет искусств и литературы Парижского университета.

В 1910 году де Бройль по окончании университета получил степень бакалавра истории. Однако его не удовлетворяли чисто описательные методы, господствовавшие в то время в гуманитарных науках. Луи читал книги великого французского математика А. Пуанкаре, искавшего подходы к теории относительности, и физика увлекла его.

Сказалось и влияние старшего брата, известного физика, исследователя рентгеновских лучей Мориса де Бройля. Брат, участник I Сольвеевского конгресса по физике в 1911 году, рассказал ему об актуальных проблемах современной физики. Ознакомившись с материалами конгресса, посвященного вопросам квантовой теории, он решил «посвятить все свои силы выяснению истинной природы введенных за десять лет до этого в теоретическую физику Максом Планком таинственных квантов, глубокий смысл которых еще мало кто понимал».

Всего за три года он прошел университетский курс физики на факультете естественных наук и в 1913 году получил вторую ученую степень.

В том же году Луи призвали на военную службу и направили во французский инженерный корпус. Всю Первую мировую войну де Бройль прослужил на станции беспроволочного телеграфа при Эйфелевой башне. Лишь в 1920 году он в частной лаборатории своего брата возобновил исследования. Результаты его первых теоретических изысканий по квантовой теории излучения «абсолютно черного тела» были опубликованы в 1922 году.

Увлечение историей не прошло для ученого бесследно. Во многих своих исследованиях де Бройль исходил непосредственно из исторических соображений. Идея о волновой природе материи также возникла у него в конечном счете в результате размышлений над историей оптики: «Новая динамика свободной материальной точки относится к прежней динамике (включая динамику Эйнштейна) так же, как волновая оптика относится к геометрической. Размышления покажут, что предлагаемый синтез представляется логическим венцом совместного развития динамики и оптики со времени XVII века».

Так в 1923 году он в трех небольших статьях выдвинул и обосновал гипотезу об универсальности дуализма в микромире, т.е. распространил идею Эйнштейна о двойственной природе света на вещество - поначалу на электрон, предсказав возможность его дифракции.

«В первой статье "Волны и кванты" де Бройль рассматривает движение свободной частицы и связывает ее с волной определенной длины, - пишет Г. Голин. - На основе выдвинутой гипотезы он обосновывает казавшийся загадочным принцип отбора стационарных орбит в атоме Бора-Зоммерфельда, рассматривая поведение электронов на стационарных орбитах как результат явления резонанса фазовой волны на длине замкнутой траектории, и делает вывод, что стационарными орбитами являются те, на которых целое число раз укладывается длина волны, связанной с равномерно вращающимся электроном. Во второй статье "Кванты света, дифракция и интерференция" де Бройль строит теорию интерференции и дифракции света исходя из существования фотонов. В статье "Кванты, кинетическая теория газов и принцип Ферма" он на основе своей идеи дуализма выводит формулу Планка для "излучения абсолютно черного тела" и устанавливает соответствие между принципом наименьшего действия Мопертюи, примененным к движению частицы, и принципом Ферма, примененным к распространению связанной с частицей волны».

В следующем году ученый обобщил и развил свои идеи в диссертации «Исследования по квантовой теории», которую успешно защитил в Сорбонне. Ученый писал о необходимости использовать волновые и корпускулярные представления не только в соответствии с учением Эйнштейна в теории света, но также и в теории материи. «При этом следует полагать, - объяснял он позднее в своей прекрасной и сегодня заслуживающей внимания книге «Свет и материя», - что каждая корпускула сопровождается определенной волной и каждая волна связана с движением одной или многих корпускул».

Вследствие этого понятие «корпускула» и понятие «волна» должны применяться одновременно: к излучению так же, как и к веществу, к материи. «Электрон, - считал де Бройль, - не может более рассматриваться как простая крупинка электричества; с ним следует связать волну». Отношение между энергией движущихся частиц и частотой колебания волнового движения передается константой Планка. Она вместе с величиной движения определяет и длину волны. Как одному кванту света соответствует одна световая волна, так и частице материи должна, по мнению Луи де Бройля, соответствовать волна материи.

Эта смелая мысль о всеобщем «дуализме» частицы и волны позволила построить теорию, с помощью которой можно было охватить свойства материи и света в их единстве. Кванты света становились при этом особым моментом всеобщего строения микромира.

П. Ланжевен обратил внимание Эйнштейна на статью де Бройля «Исследования по квантовой теории». В письме к Борну Эйнштейн писал: «Прочтите ее! Хотя и кажется, что ее писал сумасшедший, написана она солидно».

Многие физики, однако, с недоверием отнеслись к гипотезе де Бройля. Среди них был и Э. Шрёдингер. Но в итоге он увлекся идеей французского ученого и попытался обосновать ее математически. В результате в 1926 году Шрёдингер вывел знаменитое уравнение, положенное в основу волновой механики.

О том, насколько революционизирующе подействовало на старшее поколение физиков представление о волнах материи, свидетельствует речь, с которой в 1938 году выступил М. Планк на чествовании Луи де Бройля. Планк говорил: «Еще в 1924 году г-н Луи де Бройль изложил свои новые идеи об аналогии между движущейся материальной частицей определенной энергии и волной определенной частоты. Тогда эти идеи были настолько новы, что никто не хотел верить в их правильность, и я сам познакомился с ними только три года спустя, прослушав доклад, прочитанный профессором Крамерсом в Лейдене перед аудиторией физиков, среди которых был и наш выдающийся ученый Лоренц… Смелость этой идеи была так велика, что я сам, сказать по справедливости, только покачал головой, и я очень хорошо помню, как г-н Лоренц доверительно сказал мне тогда: "Эти молодые люди считают, что отбрасывать в сторону старые понятия в физике чрезвычайно легко!" Речь шла при этом о волнах Бройля, о соотношении неопределенностей Гейзенберга - все это для нас, стариков, было чем-то очень трудным для понимания. И вот развитие неизбежно оставило позади эти сомнения. Осенью того же 1927 года я лично познакомился с г-ном де Бройлем на 5-м Сольвеевском конгрессе в Брюсселе и был восхищен его скромностью и образованностью».

Уже в ближайшем будущем гипотеза де Бройля получила надежное экспериментальное подтверждение, а созданная на ее основе волновая механика стала широко применяться в ядерной физике, химии, биологии и технике.

В 1929 году де Бройль был удостоен Нобелевской премии по физике «за открытие волновой природы электронов». В речи, которой представили лауреата на церемонии вручения премии, были такие слова: «Де Бройль открыл совершенно новый аспект природы материи, о котором ранее никто не подозревал. Блестящая догадка де Бройля разрешила давний спор, установив, что не существует двух миров, один - света и волн, другой - материи и корпускул. Есть только один общий мир».

В свою очередь, в нобелевском докладе ученый сказал, что его интерес к теоретической физике пробудил тот факт, «что структура материи и структура излучений становились все таинственней, по мере того как физику все более и более завоевывало странное понятие "квант", введенное Планком в 1900 году при исследовании черного излучения». Движущей причиной научно-исследовательской работы служит, по его мнению, также и та «святая любознательность», которую Эйнштейн рассматривал как первоисточник всех естественнонаучных и технических достижений. Луи де Бройль считал справедливым требование, предъявляемое к естествоиспытателю Шрёдингером: он должен «быть способным удивляться и быть помешанным на догадках».

В 1928 году де Бройль занял пост профессора Парижского университета, который занимал до 1962 года. Блестящий лектор и педагог, глубоко интересовавшийся вопросами физического образования на всех уровнях от средней школы до аспирантуры, выдвинул ряд глубоких идей по модернизации современного обучения.

У себя на родине ученый пользовался заслуженным авторитетом и признанием. С 1942 по 1975 год он был непременным секретарем Французской академии наук. Луи де Бройль удостоен многих почетных научных званий и степеней ряда стран. С 1958 года он является иностранным членом Академии наук СССР. Выдающегося французского физика до преклонного возраста интересовали самые современные проблемы науки: теория элементарных частиц, атомная энергия, кибернетика. В свободное время он любил читать и играть в шахматы.

Иногда ученый выступал с биографическими работами о физиках прошлого. Так, гениальному французскому естествоиспытателю Амперу посвящена блестящая научная биография, написанная с законным чувством национальной гордости. В нашей стране были опубликованы книги де Бройля «По тропам науки» и «Революция в физике». Эти интересные произведения написаны простым и ясным языком. Не случайно де Бройля избрали почетным президентом Французской ассоциации писателей-ученых.

Умер Луи де Бройль 19 марта 1987 года.

 

ВЕРНЕР ГЕЙЗЕНБЕРГ

(1901- 1976)

Гейзенберг был одним из самых молодых ученых, получивших Нобелевскую премию. Как сказал Н. Бор: «В этот период развития физической науки, который можно сравнить с чудесным приключением, Вернеру Гейзенбергу принадлежит выдающаяся роль».

У Гейзенберга было необыкновенно развитое чувство интуиции. Сам ученый об этом говорил так: «Я должен начинать не с детального изучения вопроса, а сначала прислушаться… к подсознательному чувству, которое, как правило, подсказывает мне правильный путь».

Вернер Карл Гейзенберг родился 5 декабря 1901 года в немецком городе Вюрцбурге. Его отец Август Гейзенберг, профессор Мюнхенского университета, был известным языковедом-византологом. Матерью мальчика была урожденная Анна Виклейн.

В сентябре 1911 года Вернера отдали в престижную мюнхенскую гимназию, где мальчик увлекся математикой и быстро усвоил дифференциальное и интегральное исчисление.

В 1920 году Гейзенберг поступил в Мюнхенский университет. Здесь Вернер учился у А. Зоммерфельда и В. Вина. Окончив университет, молодой ученый был назначен ассистентом профессора Макса Борна в Геттингенском университете.

В 1923 году в Мюнхене Гейзенберг защитил докторскую диссертацию по проблеме турбулентности, в которой были разработаны приближенные методы нелинейной теории. Через год Вернер отправляется в полугодовую командировку в Копенгаген в качестве стипендиата-исследователя. Состояние атомной физики напоминало в это время какое-то нагромождение гипотез. В. Паули писал тогда: «Физика теперь снова зашла в тупик, во всяком случае, она для меня слишком трудна, и я предпочел бы быть комиком в кино или кем-нибудь вроде этого и не слышать ничего о физике».

Свои первые работы Гейзенберг посвящает принципу соответствия, пытаясь найти для него математическую основу и превратить его из эмпирического правила в научный метод исследования внутриатомных процессов.

Перелом наступил весной 1925 года, когда Гейзенберг уже покинул Копенгаген и работал ассистентом Борна в Геттингене. 29 июля 1925 года немецкий ученый опубликовал свое первое фундаментальное исследование по квантовой теории - статью «О квантовомеханическом толковании кинематических и механических связей». В ней он попытался выработать необходимые основы атомной механики, которая строилась бы исключительно на связях между принципиально наблюдаемыми величинами без применения моделей.

Гейзенберг завершил статью довольно осторожно: «Можно ли метод определения квантовотеоретических данных на основе соотношений между наблюдаемыми величинами, подобный предложенному здесь, уже считать в принципе удовлетворительным, или же этот метод все еще представляет собой слишком грубый подход к физической, с самого начала явно очень сложной проблеме квантовотеоретической механики, - это станет ясным только после глубокого математического исследования метода, примененного здесь лишь очень поверхностно».

Вместе со своим учеником П. Йорданом Борн разработал математические основы матричной механики. В их совместной статье «О квантовой механике», опубликованной 27 сентября 1925 года, идеи Гейзенберга были развиты «до систематической теории квантовой механики».

По словам Борна, Гейзенберг отказался от «представлений об электронных орбитах с определенными радиусами и периодами обращения, потому что эти величины не могли быть наблюдаемы». Таким образом, он рассек «гордиев узел при помощи философского принципа и заменил догадки математическим правилом». Это достижение Гейзенберга можно сравнить с подвигом Эйнштейна, упразднившего в 1905 году понятие абсолютной одновременности.

«Выяснилось, что атомную модель Бора не следует понимать буквально, как это было вначале, - пишет Ф. Гернек. - Она была применима только для одноэлектронной системы атома водорода и не могла быть безоговорочно перенесена на атомную систему со многими электронами. Процессы в атоме не могли быть наглядно представлены в виде механических моделей по аналогии с событиями в макромире. Нельзя было схематически применять законы небесной механики для объяснения внутриатомных связей. Даже понятия пространства и времени в существующей форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений».

Бесстрашие мышления, необходимое для разрешения новых физических проблем, метко охарактеризовал сам Гейзенберг: «На каждом существенно новом этапе познания нам всегда следует подражать Колумбу, который отважился оставить известный ему мир в почти безумной надежде найти землю за морем».

Надо сказать, что матричная механика появилась весьма кстати. Идеи Гейзенберга подхватили другие физики, и скоро, по выражению Бора, его теория приобрела «вид, который по своей логической завершенности и общности мог конкурировать с классической механикой».

В 1926- 1927 годах Гейзенберг вновь в Копенгагене, где в качестве доцента теоретической физики с успехом читает лекции студентам. В то же время молодой немецкий физик ведет с Бором страстные споры о толковании квантовых явлений.

«Я вспоминаю, - писал позднее Гейзенберг, - о многочисленных дискуссиях с Бором, которые длились до поздней ночи и которые мы заканчивали почти в полном отчаянии. И если я после таких дискуссий один отправлялся на короткую прогулку в соседний парк, то повторял снова и снова вопрос о том, может ли природа действительно быть такой абсурдной, какой она кажется нам в этих атомных экспериментах».

Результаты этих размышлений были сформулированы в 1927 году как «соотношение неопределенностей» Гейзенберга и «принцип дополнительности» Бора.

Естественное состояние «обоюдной неопределенности», как говорил Бор, которое сопутствует каждому квантовомеханическому измерению, было математически отображено Гейзенбергом как «соотношение неточностей» или «соотношение неопределенностей». Это открытие принадлежит к величайшим достижениям теоретической физики.

В своей книге «Физика атомного ядра» Гейзенберг так охарактеризовал открытый им закон природы: «Никогда нельзя одновременно точно знать оба параметра, решающим образом определяющие движение такой мельчайшей частицы: ее место и ее скорость. Никогда нельзя одновременно знать, где она находится, как быстро и в каком направлении движется. Если ставят эксперимент, который точно показывает, где она находится в данный момент, то движение нарушается в такой степени, что частицу после этого даже нельзя снова найти. И наоборот, при точном измерении скорости картина места полностью смазывается».

Гейзенберговское соотношение неопределенностей есть выражение невозможности наблюдать мир атома, не разрушая его. Любая попытка дать четкую картину микрофизических состояний должна поэтому опираться или на корпускулярное, или на волновое толкование.

С 1927 года Гейзенберг работает в качестве профессора Лейпцигского университета. В этот период он независимо и вслед за советским физиком Д.Д. Иваненко предложил протонно-нейтронную модель ядра, детально обосновав эту гипотезу на основе квантовой механики. Со своей теорией ядра он выступил на Сольвеевском конгрессе 1933 года.

В 1933 году одновременно со Шрёдингером и Дираком его работы получили высшее признание - Нобелевскую премию. Гейзенберг получает высокую награду за создание квантовой механики и, в частности, за ее приложение к открытию аллотропических форм водорода (так называемого орто- и параводорода).

Во времена гитлеровского фашизма ученый неоднократно подвергался политическим нападкам. Так, летом 1937 года физик Штарк, задававший тон национал-социалистской политике в отношении науки, назвал в одной из своих статей Гейзенберга «Осецким от физики», «белым евреем», и потребовал соответствующих мер.

Гейзенберг никогда не был членом нацистской партии, однако он занимал высокие академические должности. С 1941 по 1945 год он был директором института физики кайзера Вильгельма и профессором Берлинского университета.

Сам ученый о своей работе во время Второй мировой войны говорил: «После открытия расщепления ядра Отто Ганом в 1938 году следствием войны оказалось то, что я вместе с моими сотрудниками должен был заниматься конструированием атомных реакторов. Несмотря на то что вначале я был далек от такой задачи, мой интерес в высшей степени возбудила открытая атомной физикой возможность получения огромных атомных источников энергии. Я считаю, что немецким физикам очень повезло в том, что ход войны и действия правительства исключали любую серьезную попытку изготовления атомного оружия и тем самым избавляли физиков от тяжелой ответственности за подобное деяние».

В 1945 году Гейзенберг вместе с другими немецкими физиками был перевезен в Англию и содержался там под арестом в течение нескольких месяцев. В 1946 году Гейзенберг вернулся в Германию. Он становится директором Физического института и профессором Геттингенского университета. С 1958 года ученый являлся директором Физического университета, а также профессором Мюнхенского университета.

Его последние работы были посвящены, прежде всего, изучению элементарных частиц. Во время празднования столетия со дня рождения Планка в апреле 1958 года Гейзенберг предложил вниманию научной общественности свою новую теорию элементарных частиц. Он выдвинул «мировую формулу», которая должна была включать в себя также и элементарные частицы гравитации. Наряду со скоростью света с и планковской константой h им была введена новая естественная константа - «наименьшая длина». Немало его работ посвящено философским проблемам физики, в частности, теории познания, где он стоял на позиции идеализма.

Ученый входил в группу ученых, подписавших весной 1957 года Геттингенское обращение, он поддерживал также и другие заявления, направленные на уменьшение напряженности и на сохранение мира. Он неоднократно подчеркивал высокую ответственность именно физиков-атомщиков в деле предотвращения мировой войны.

Умер Гейзенберг в своем доме в Мюнхене 1 февраля 1976 года от рака.

 

ПОЛЬ ДИРАК

(1902- 1984)

Английский физик Поль Адриен Морис Дирак родился 8 августа 1902 года в Бристоле, в семье уроженца Швейцарии Чарлза Адриена Ладислава Дирака и англичанки Флоренс Ханны (Холтен) Дирак. В семье Дираков кроме Поля было еще двое детей - Реджинальд и Беатрис.

Отец преподавал в коммерческом училище Merchant Venturers (MV). Он определил в свое учебное заведение и сына. Ученый позднее так рассказывал об этом:

«MV была великолепной школой естественных наук и современных языков. В ней не было ни латинского, ни греческого, чему я был очень рад, ибо я совсем не воспринимал древние культуры. Я был очень счастлив, что могу посещать эту школу. В MV я учился с 1914 по 1918 год, как раз во время Первой мировой войны. Многие парни покинули школу ради служения нации. В результате старшие классы совсем опустели. Чтобы заполнить пробел, стали продвигать младших в той степени, в какой они могли справиться с более сложной работой. Мне это было очень выгодно: я быстро "проскочил" младшие классы и в очень раннем возрасте познакомился с основами математики, физики, химии на вполне высоком уровне. Математику я учил по книгам, которые, как правило, содержали больше, чем знал класс. Быстрое продвижение вперед способствовало дальнейшим моим успехам. Но это мешало моему участию в спортивных играх, происходивших по средам во второй половине дня. Я играл в футбол и крикет; остальные участники игр были старше и сильнее меня, и мне не сопутствовала удача… Однако в школе ценили мою преданность науке».

Затем Поль учился в коммерческом училище в Бристоле. Потом с 1918 по 1921 год он изучал электротехнику в Бристольском университете и окончил его со степенью бакалавра наук. После этого Поль прошел еще и двухлетний курс прикладной математики в том же университете.

Среди его учителей на математическом факультете в Бристоле был математик Петер Фрезер. Он привил Дираку понимание красоты математики и ее логической стройности, в частности, красоты геометрии и ее проективной реализации.

В 1923 году, получив небольшую стипендию, Дирак смог стать аспирантом в Кембридже. Через полгода он напечатал свои первые две работы по статистической механике.

Затем Дирак поступил в аспирантуру по математике колледжа Св. Иоанна в Кембридже и в 1926 году защитил докторскую диссертацию. В следующем году Дирак стал членом научного совета того же колледжа.

«Фаулер вовлек меня в совсем новое поле деятельности, познакомив с атомом Резерфорда, Бора и Зоммерфельда, - вспоминает Дирак. - Прежде я ничего не слышал о теории Бора. У меня как бы открылись глаза. Казалось совершенно непостижимым, что уравнения классической электродинамики можно применять к атому. Я всегда считал атомы некими совершенно гипотетическими объектами, а здесь, в Кембридже, физики работали с уравнениями, которые на самом деле описывали строение атома.

Я очень быстро попал в самый центр проблем, связанных с изучением атомов. Самой сложной была задача о том, почему электронные орбиты стабильны. Почему электроны попросту не падают на ядро, как это следует из классической механики?

Со всей настойчивостью я принялся размышлять над этими проблемами, занимаясь одновременно и другими вопросами математики».

Дирак начал изучать уравнения Гейзенберга и Шрёдингера, как только те были опубликованы в 1925 году, высказав при этом несколько полезных замечаний. Одним из недостатков квантовой механики было то, что она была разработана лишь применительно к частицам, обладающим малой скоростью (по сравнению со скоростью света), а это позволяло пренебречь эффектами, рассматриваемыми теорией относительности Эйнштейна. Эффекты теории относительности, такие как увеличение массы частицы с возрастанием скорости, становятся существенными, только когда скорости начинают приближаться к скорости света.

На Сольвеевском конгрессе в октябре 1927 года к Дираку подошел Бор. Вот как вспоминает об этом сам Дирак: «Бор подошел ко мне и спросил: "Над чем сейчас работаете?" Я ответил: "Пытаюсь получить релятивистскую теорию электрона". Бор тогда сказал: "Но ведь Клейн уже решил эту проблему». Я был несколько обескуражен. Я стал объяснять ему, что решение задачи Клейна, основанное на уравнении Клейна-Гордона, неудовлетворительно, так как его нельзя согласовать с моей общей физической интерпретацией квантовой механики. Однако я так и не смог объяснить что-либо Бору, так как наш разговор был прерван началом лекции и вопрос повис в воздухе».

Дирак был недоволен. Он стремился получить уравнения для одного электрона, а не для системы частиц с разными зарядами. Он добился своего, но решение его удивило: «Я обнаружил из этого уравнения, что электрон обладает спином, равным 1/2, и магнитным моментом и что значения спина и магнитного момента согласуются с экспериментальными. Полученный результат был совершенно неожиданным… Я считал, что простейшее решение получится для частицы без спина, а уже затем нужно будет ввести спин…»

В поисках выхода Дирак предложил странную идею. Он предположил, что все электроны Вселенной занимают уровни с отрицательной энергией, согласно принципу Паули, образуя ненаблюдаемый фон. Наблюдаемы только электроны с положительной энергией. «Электроны распределены по всему миру с большой плотностью в каждой точке. Совершенная пустота есть та область, где все состояния с отрицательной энергией заняты».

«…Здесь скрывалась серьезная трудность, - пишет далее Дирак. - В то время были известны электроны, несущие отрицательный заряд, и протоны, несущие положительный заряд, и все были абсолютно уверены, что кроме электрона и протона других элементарных частиц в природе нет. Правда, Резерфорд иногда рассматривал возможность существования третьей частицы - нейтрона. Но это предположение гипотетического нейтрона не имело никаких оснований. Резерфорд просто говорил о том, как был бы полезен нейтрон для экспериментаторов в качестве идеального снаряда для стрельбы по атомным ядрам: полет нейтрона не возмущался бы внешними электронами. Но никто не верил в реальность нейтрона. Всем казалось очевидным, что поскольку есть два сорта электрических зарядов, должна быть и два сорта частиц для их переноса. Никто не шел дальше».

Теория Дирака была встречена скептически. Вызвал недоверие гипотетический фон электронов, кроме того, теория Дирака, по его словам, «была очень симметрична по отношению к электронам и протонам».

Но протон отличается от электрона не только знаком заряда, но и массой. Открытие позитрона, частицы действительно симметричной электрону, заставило по-новому оценить теорию Дирака, которая по существу предсказывала существование позитрона и других античастиц.

«Согласно теории Дирака, - писал Ф. Жолио-Кюри, - положительный электрон при столкновении со свободным или слабо связанным отрицательным электроном может исчезать, образуя два фотона, испускаемых в противоположных направлениях».

Существует и обратный процесс - «материализация» фотонов, когда «фотоны с достаточно большой энергией при столкновении с тяжелыми ядрами могут создавать положительные электроны… Фотон, взаимодействуя с ядром, может создать два электрона с противоположными зарядами».

Выведенное английским ученым и опубликованное в 1928 году уравнение называется теперь уравнением Дирака. Оно позволило достичь согласия с экспериментальными данными. В частности, спин, бывший ранее гипотезой, подтверждался уравнением Дирака. Это было триумфом его теории. Кроме того, уравнение Дирака позволило предсказать магнитные свойства электрона (магнитный момент).

Дираку же принадлежит теоретическое предсказание возможности рождения электрон-антиэлектронной пары из фотона достаточно большой энергии. Предсказанный Дираком антиэлектрон был открыт в 1932 году К.Д. Андерсоном и назван позитроном. Позднее подтвердилось и предположение Дирака о возможности рождения пары. Впоследствии Дирак выдвинул гипотезу о том, что и другие частицы, такие как протон, также должны иметь свои аналоги из антиматерии, но для описания таких пар частиц и античастиц потребовалась бы более сложная теория. Существование антипротона было подтверждено экспериментально в 1955 году Оуэном Чемберленом. В настоящее время известны и многие другие античастицы.

Уравнение Дирака позволило внести ясность в проблему рассеяния рентгеновского излучения веществом. Рентгеновское излучение сначала ведет себя как волна, затем взаимодействует с электроном как частица (фотон) и после столкновения вновь подобна волне. Теория Дирака дает подробно количественное описание такого взаимодействия.

Позднее Дирак открыл статистическое распределение энергии в системе электронов, известное теперь под названием статистики Ферми-Дирака. Эта работа имела большое значение для теоретического осмысления электрических свойств металлов и полупроводников.

Дирак предсказал также существование магнитных монополей - изолированных положительных или отрицательных магнитных частиц, подобных положительно или отрицательно заряженным электрическим частицам.

Дирак высказал предположение и о том, что природные физические константы, например гравитационная постоянная, могут оказаться не постоянными в точном смысле слов, а медленно изменяться со временем. Ослабление гравитации, если оно вообще существует, происходит настолько медленно, что обнаружить его чрезвычайно трудно, и поэтому оно остается гипотетическим.

Дирак и Шрёдингер получили Нобелевскую премию по физике 1933 года «за открытие новых продуктивных форм атомной теории». В своей нобелевской лекции Дирак сказал, что, хотя с общефилософской точки зрения число различных типов элементарных частиц должно быть минимально, из экспериментальных данных известно, что число различных типов гораздо больше, более того, оно обнаруживает в последние годы весьма тревожную тенденцию к увеличению.

В заключение лекции лауреат указал на вытекающую из симметрии между положительными и отрицательными электрическими зарядами возможность существования «звезд… состоящих главным образом из позитронов и антипротонов. Возможно, одна половина звезд принадлежит к одному типу, а другая - к другому. Эти два типа звезд должны были бы обладать одинаковыми спектрами, и различить их методами современной астрономии было бы невозможно».

С 1932 года и до ухода в отставку в 1968 году он был профессором физики в Кембридже.

В 1937 году Дирак женился на Маргит Вигнер, сестре физика Юджина П. Вигнера. У них было две дочери.

Обычно принято считать Дирака молчаливым и не очень общительным человеком. Так оно и было. Он предпочитал работать в одиночку, и непосредственных учеников у него было мало. Но наряду с этим в нем уживалась способность к искренней и глубокой дружбе. Двух своих чуть ли не самых близких друзей нашел Дирак в Советском Союзе. Это были Петр Капица и Игорь Тамм.

До войны он часто посещал Москву. Поездки в нашу страну были для него радостным событием. Но в 1945 году, когда Академия наук СССР праздновала свое 220-летие, Дирака не выпустили из Англии, сославшись на его участие в военных работах.

О Дираке ходило много историй. Так, в одной из поездок в Дубну его спросили, какой у него любимый детектив (он сказал, что читает сейчас Агату Кристи). Ответ был такой: «Детектив не может быть любимым, он должен удивлять».

Мехра рассказывал, что ему пришлось завтракать вместе с Дираком в колледже Св. Джона. Мехра начал разговор с замечания, что сегодня очень ветрено. Дирак молча встал из-за стола и пошел к выходу. Мехра испуганно стал соображать, чем он обидел маэстро. Но Дирак подошел к двери, приоткрыл ее и спокойно вернулся к столу. Сев, он сказал: «Да».

Последние годы жизни Дирака были спокойными. В 1969 году он ушел из Кембриджского университета по возрасту - администрация не сделала для него исключения из правил. Ученый уехал во Флориду, где работал в центре теоретической физики и в университете штата до конца своей жизни.

Во Флориде он сохраняет свою старую привязанность к долгим прогулкам в одиночестве. Но силы постепенно иссякли, прогулки сократились, а 20 октября 1984 года в Таллахасси наступает конец.

 

ЭРВИН ШРЁДИНГЕР

(1887- 1961)

Эрвин Рудольф Йозеф Александр Шрёдингер родился 12 августа 1887 года в Вене, в семье владельца мелкого предприятия по производству клеенки. Его отец, Рудольф Шрёдингер, был разносторонне развитым человеком, обладавшим склонностью к естественным наукам: он много внимания уделял сыну, очень рано проявившему исключительные способности.

Его первым учителем был отец, о котором впоследствии ученый отзывался как о «друге, учителе и не ведающем усталости собеседнике». В 1898 году Шрёдингер поступил в Академическую гимназию. Несмотря на раннее увлечение физикой и математикой, он одинаково хорошо успевал по всем наукам, любил древние языки, классическую немецкую и зарубежную поэзию, блестяще изучил английский язык. В гимназические годы у Шрёдингера возникла любовь к театру.

В 1906 году Эрвин поступил в Венский университет, где его учителями были теоретик Фридрих Газенерль и экспериментатор Франц Экснер. Позже в своей нобелевской речи Шрёдингер отметил большое влияние, которое на него оказали лекции Газенерля, погибшего во цвете лет во время Первой мировой войны. А во вступительной речи при избрании его в Прусскую академию наук Шрёдингер с благодарностью вспомнил, что только после занятий с Экснером он понял «что значит измерять».

По- видимому, разносторонний талант Шрёдингера проявлялся еще в университетские годы. Тогда же он увлекся путешествиями и альпинизмом и был страстным театралом, хотя довольно холодно относился к музыке.

В 1910 году Шрёдингер окончил университет со степенью доктора философии. В том же году увидела свет и его первая статья: «О прохождении электричества по поверхности изолятора при влажном воздухе». В том же году он стал ассистентом Экснера во 2-м физическом институте при Венском университете. В этой должности он пребывал вплоть до начала Первой мировой войны. В 1913 году Шрёдингер и К.В.Ф. Кольрауш получили премию Хайтингера Императорской академии наук за экспериментальные исследования радия.

Во время Первой мировой войны Шрёдингер служил офицером-артиллеристом в захолустном гарнизоне, расположенном в горах, вдали от линии фронта. Продуктивно используя свободное время, он изучал общую теорию относительности Эйнштейна. По окончании войны он возвратился во 2-й физический институт в Вене, где продолжает свои исследования по общей теории относительности, статистической механике (занимался изучением систем, состоящих из очень большого числа взаимодействующих объектов, например молекул газа) и дифракции рентгеновского излучения. Тогда же Шрёдингер проводит обширные экспериментальные и теоретические исследования по теории цвета.

В 1920 году Шрёдингер вступил в брак с Аннемарией Бертель; детей у супругов не было.

В том же году ученый отправился в Германию, где стал ассистентом Макса Вина в Йенском университете. Эрвин быстро прошел все ступени немецкой научной иерархии: приват-доцента (Йена), экстраординарного профессора (Штутгарт) и ординарного профессора (Бреслау). Его научные интересы тогда еще не определились. Наиболее интересная работа этого времени - большая статья в трех частях «Основные принципы теории метрики цветов в дневном свете» - своеобразная попытка математизации проблемы цветного зрения, некое «хобби», к которому Шрёдингер возвращался иногда и в последующие годы. В учении о цветах он нашел, по его собственным словам, своеобразное убежище от той неудовлетворенности, которую испытывал при знакомстве с атомной физикой этого времени.

Решающим в его жизни стал 1921 год, когда он принял кафедру в Цюрихском университете. Тогда же он всерьез заинтересовался проблемами атомной физики и теплового излучения, которые получили развитие в трудах Эйнштейна и Бора. Первыми работами Шрёдингера в той новой области были «Попытка модельной трактовки термов резкой и побочной серии» и «Изотопия и парадокс Гиббса» (1921). Наиболее интересной из ранних работ была статья «Принцип Допплера и боровское условие частот» (1922).

Шесть лет, проведенных в Цюрихе, были очень плодотворными. Именно здесь Шрёдингер создал свою ставшую эпохальной волновую механику атома.

Квантовая теория родилась в 1900 году, когда Планк предложил теоретический вывод о соотношении между температурой тела и испускаемым этим телом излучением, вывод, который долгое время ускользал от других ученых. Затем к этой теории «приложили руку» Эйнштейн, Бор, Резерфорд.

Новая существенная особенность квантовой теории проявилась в 1924 году, когда де Бройль выдвинул радикальную гипотезу о волновом характере материи: если электромагнитные волны, например свет, иногда ведут себя как частицы, то частицы, например электрон при определенных обстоятельствах, могут вести себя как волны.

Задачу создания волновой теории движения микрочастиц взялся разрешить Шрёдингер. Об исходных позициях своей теории он писал: «Прежде всего нельзя не упомянуть, что основным исходным толчком, приведшим к появлению приведенных здесь рассуждений, была диссертация де Бройля, содержащая много глубоких идей… Главное, что позаимствовано из теории де Бройля, в которой говорится о прямолинейно распространяющейся волне, заключается в том, что мы рассматриваем, если использовать волновую трактовку, стоячие собственные колебания».

Шрёдингер предпринял попытку применить волновое описание электронов к построению последовательной квантовой теории, не связанной с неадекватной моделью атома Бора. В известном смысле он намеревался сблизить квантовую теорию с классической физикой, которая накопила немало примеров математического описания волн. Первая попытка, предпринятая Шрёдингером в 1925 году, закончилась неудачей. Скорости электронов в его теории были близки к скорости света, что требовало включения в нее специальной теории относительности Эйнштейна и учета предсказываемого ею значительного увеличения массы электрона при очень больших скоростях. Одной из причин постигшей ученого неудачи было то, что он не учел наличия специфического свойства электрона, известного ныне под названием спина (вращение электрона вокруг собственной оси наподобие волчка), о котором в то время было мало известно. Следующую попытку ученый предпринял в 1926 году. Скорости электронов на этот раз были выбраны им настолько малыми, что необходимость в привлечении теории относительности отпадала сама собой. Вторая попытка увенчалась получением волнового уравнения Шрёдингера, дающего математическое описание материи в терминах волновой функции. Шрёдингер назвал свою теорию волновой механикой. Решения волнового уравнения находились в согласии с экспериментальными наблюдениями и оказали глубокое влияние на последующее развитие квантовой теории.

Шрёдингер опубликовал результаты в серии статей «Квантование как задача собственных значений» в престижном журнале «Annalen der Physik» весной 1926 года. Работа вызвала всеобщий восторг. Теоретик вскоре получил письмо от своего кумира Эйнштейна, где были такие слова: «Замысел Вашей работы свидетельствует о подлинной гениальности».

Незадолго до того Гейзенберг, Борн и Йордан опубликовали другой вариант квантовой теории, получивший название матричной механики, которая описывала квантовые явления с помощью таблиц наблюдаемых величин.

Шрёдингер показал, что волновая механика и матричная механика математически эквивалентны. Известные ныне под общим названием квантовой механики, эти две теории дали долгожданную общую основу описания квантовых явлений. Многие физики отдавали предпочтение волновой механике, поскольку ее математический аппарат был им более знаком, а ее понятия казались более «физическими»; операции же над матрицами - более громоздкими.

В 1927 году Шрёдингер по приглашению Планка стал его преемником на кафедре теоретической физики Берлинского университета. Здесь он особенно близко сошелся, несмотря на разницу лет, с Эйнштейном и Планком, с которыми проводил многие часы вне службы. В 1929 году Шрёдингер был избран членом Прусской академии наук.

Вскоре после того как Гейзенберг и Шрёдингер разработали квантовую механику, Дирак предложил более общую теорию, в которой присутствовали элементы специальной теории относительности.

В 1933 году ученый оставил кафедру теоретической физики Берлинского университета, после прихода к власти нацистов, в знак протеста против преследования инакомыслящих и, в частности, против нападения на улице на одного из его ассистентов, еврея по национальности. Из Германии Шрёдингер отправился в качестве приглашенного профессора в Оксфорд, куда вскоре после его прибытия пришла весть о присуждении ему Нобелевской премии.

Шрёдингер и Дирак были удостоены Нобелевской премии по физике «за открытие новых продуктивных форм атомной теории». На церемонии презентации Ханс Плейель, член Шведской королевской академии наук, воздал должное Шрёдингеру за «создание новой системы механики, которая справедлива для движения внутри атомов и молекул». По словам Плейеля, волновая механика дает не только «решение ряда проблем в атомной физике, но и простой и удобный метод исследования свойств атомов и молекул и стала мощным стимулом развития физики».

Осенью 1936 года Шрёдингер вернулся в Австрию и стал профессором университета в Граце. Но нацизм и здесь его настиг. После захвата Австрии немцами он как нежелательный элемент был отстранен от должности. Не дожидаясь более жестких мер, Шрёдингер бежал в Италию, затем через Швейцарию - в Англию. После недолгого пребывания в Оксфорде он принял приглашение премьер-министра Ирландии, математика по образованию, де Валера возглавить исследования по теоретической физике во вновь созданном Институте высших исследований в Дублине. Семнадцать лет он прожил здесь, занимаясь исследованиями по волновой механике, статистике, статистической термодинамике, теории поля и особенно по общей теории относительности.

Как пишет А.М. Френк: «Живя в Ирландии, Шрёдингер не переставал совершать пешие и велосипедные прогулки, любил заниматься лепкой, и, по свидетельству его сотрудников, вылепленные им небольшие статуэтки свидетельствовали о недюжинном таланте и вкусе. По-прежнему сохранилась у него и любовь к поэзии: в 1949 году он даже издал в ФРГ небольшой томик своих стихотворений, в который входили и переводы с английского. Вообще его интересы были необычайно широки. Новые открытия в области генетики произвели на него столь большое впечатление, что он откликнулся книгой "Что такое жизнь?", в которой обсуждал соотношение между проблемами живой материи и физикой. Плодом старого увлечения классикой стала другая книга - "Природа и древние греки". Шрёдингер много писал по методологическим проблемам физики, популяризировал последние достижения своей науки. Такие его работы, как "Теория науки и человек", "Индетерминизм и свободная воля", "Строение Вселенной и строение материи", "Что такое элементарная частица?" и др. с интересом читаются до сих пор».

После войны австрийское правительство пыталось склонить Шрёдингера вернуться в Австрию, но он отказывался, пока страна была оккупирована советскими войсками. В 1956 году он принял специально организованную для него кафедру теоретической физики Венского университета. Это был последний пост, который он занимал в своей жизни. К тому времени его здоровье сильно ухудшилось.

4 января 1961 года после продолжительной болезни создатель волновой механики скончался. Похоронен он, согласно его завещанию, около Вены, в маленькой деревне Аплаче, которую очень любил.

 

ЭНРИКО ФЕРМИ

(1901- 1954)

Энрико Ферми родился 29 сентября 1901 года в Риме. Он был младшим из трех детей железнодорожного служащего Альберто Ферми и урожденной Иды де Гаттис, учительницы. Несмотря на то что мать была моложе мужа на 14 лет, она обладала в семье большим авторитетом.

Еще в детстве Энрико обнаружил большие способности к математике и физике. Э. Персико, ставший позднее известным физиком, вспоминает:

«Когда я впервые встретился с Ферми, ему было 14 лет. Я с удивлением обнаружил, что мой новый товарищ не только "силен в науке", как говорилось на школьном жаргоне, но и обладает совершенно иной формой ума, чем знакомые мне мальчики, которых я считал умными ребятами и хорошими учениками…

Вспоминая чувство удивления и восхищения, которое интеллект Энрико возбуждал во мне, почти его сверстнике, я задаюсь вопросом: приходило ли мне когда-либо в голову по отношению к нему слово "гений"?… Блистательность интеллекта Энрико была слишком непривычной для меня, чтобы я мог найти для нее верное определение».

Выдающиеся познания Энрико, приобретенные в основном в результате самообразования, позволили ему поступить осенью 1918 года одновременно в Высшую Нормальную школу Пизы и на физико-математический факультет старинного Пизанского университета. В 1934 году Ферми, уже будучи знаменитым ученым, говорил: «Когда я поступил в университет, классическую физику и теорию относительности я знал почти так же, как и теперь».

Большую часть времени Ферми отводил на изучение предметов, выбранных им самим. Он писал Персико в феврале 1919 года: «Сейчас, поскольку для занятий в школе мне почти что ничего не надо делать, а я располагаю множеством книг, то я пытаюсь расширить свои знания математической физики и постараюсь сделать то же самое в области чистой математики, так как чем дальше я продвигаюсь, тем больше убеждаюсь, что для меня необходимы обе эти науки. Кроме того, изучая одну из них, изучаешь и другую тоже, и я из книг по физике несомненно почерпнул больше математики, чем из математических книг».

В 1921 году Ферми опубликовал первые работы в области электродинамики и теории относительности. Однако темой его дипломной стало экспериментальное исследование по оптике рентгеновских лучей.

В июле 1922 года Ферми получил университетский диплом, и, конечно, «cum laude» (с похвалой). Приблизительно тогда же и с той же оценкой им была защищена дипломная работа в Высшей Нормальной школе.

Несмотря на огромный авторитет в Пизанском университете, Энрико там работы не предложили. Он вернулся в Рим, где, по протекции директора Физического института Римского университета сенатора Корбино, молодой талантливый ученый получил временную должность преподавателя математики в Римском университете.

В 1923 году он поехал командировку в Германию, в Геттинген, к Максу Борну. У Борна Ферми встретился с такими блестящими молодыми физиками-теоретиками, как Паули, Гейзенберг и Йордан. Но, как это ни странно, много лет спустя Ферми вспоминал об этом времени без особой радости. Геттингенские профессора ходили, по выражению физика, с видом всеведения, и им не приходило в голову, что они могли бы приободрить молодого итальянца.

По возвращении в Италию Ферми с января 1925 года до осени 1926 года работал во Флорентийском университете. Здесь он получил свою первую ученую степень «свободного доцента» и - что самое главное - создал свою знаменитую работу по квантовой статистике. В декабре 1926 года он занял должность профессора вновь учрежденной кафедры теоретической физики в Римском университете. Здесь он организовал коллектив молодых физиков: Разетти, Амальди, Сегре, Понтекорво и других, составивших итальянскую школу современной физики.

Когда в Римском университете в 1927 году была учреждена первая кафедра теоретической физики, Ферми, успевший обрести международный авторитет, был избран ее главой.

В 1928 году Ферми вступил в брак с Лаурой Капон, принадлежавшей к известной в Риме еврейской семье. У супругов Ферми родились сын и дочь.

Здесь, в столице Италии, Ферми сплотил вокруг себя несколько выдающихся ученых и основал первую в стране школу современной физики. В международных научных кругах ее стали называть группой Ферми. Через два года ученый был назначен Бенито Муссолини на почетную должность члена вновь созданной Королевской академии Италии.

Вспоминает Э. Сегре, один из членов группы Ферми:

«Между 1930 и 1934 годами физики римской группы посетили ряд заграничных лабораторий с целью овладения экспериментальными методиками, неизвестными в то время в Италии… После бурного столкновения различных мнений было решено - главным образом, под влиянием Ферми, - что лаборатория должна заняться ядерной физикой…

Случай для перехода к действительно новому направлению в ядерной физике представился в 1934 году, когда И. Кюри и Ф. Жолио открыли искусственную радиоактивность. Ферми сразу же увидел, что перед этим направлением могут открыться огромные возможности, если для бомбардировки ядер использовать нейтроны…

Опыты с нейтронами начались в 1934 году. Ферми решил проверить на опыте свою идею о том, что нейтроны способны быть мощными снарядами для осуществления ядерных превращений. Собственными руками он сделал из алюминия несколько примитивных счетчиков Гейгера-Мюллера, которые выглядели безобразно, но для поставленной цели служили исправно; затем он приступил к облучению нейтронами (от радон-бериллиевого источника) всех элементов в порядке возрастания атомного веса. Первый его источник был совсем слабый - всего 50 милликюри. В течение нескольких дней опыты не приносили успеха, но Ферми был человеком систематичным. Он начал с водорода, затем последовали литий, бериллий, бор, углерод, азот, кислород - и все безуспешно. Наконец, однако, он добился успеха, получив ожидаемый результат на фторе.

Это произошло 25 марта 1934 года, и в "Ricerca Scientifica" было сразу послано письмо с сообщением об этом результате…»

В первом сообщении, датированном 25 марта 1934 года, Ферми сообщил, что, бомбардируя алюминий и фтор, получил изотопы натрия и азота, испускающие электроны (а не позитроны, как у Жолио-Кюри). Метод нейтронной бомбардировки оказался очень эффективным, и Ферми писал, что эта высокая эффективность в осуществлении расщепления «вполне компенсирует слабость существующих нейтронных источников по сравнению с источниками альфа-частиц и протонов». Ему удалось этим методом активизировать 47 из 68 изученных элементов.

Воодушевленный успехом, он в сотрудничестве с Ф. Разетти и О. д'Агостино предпринял нейтронную бомбардировку тяжелых элементов: тория и урана. «Опыты показали, что оба элемента, предварительно очищенные от обычных активных примесей, могут сильно активизироваться при бомбардировке нейтронами».

22 октября 1934 года Ферми сделал фундаментальное открытие. Сначала в очередном эксперименте между источником нейтронов и активируемым серебряным цилиндром помещался свинцовый клин. Бруно Понтекорво, помогавший Ферми в нейтронных экспериментах, рассказывает: «Утром 22 октября 1934 года Ферми решил измерить радиоактивность серебряного цилиндра, "пропуская" нейтроны от источника не через свинцовый, а через парафиновый клин тех же размеров, который он сам быстро изготовил. Результат был ясным: парафиновый "поглотитель" не уменьшал активности, а определенно (хотя и мало) увеличивал ее. Ферми вызвал всех нас и сказал: "Это происходит, вероятно, из-за водорода в парафине; если немного парафина дает заметный эффект, посмотрим, как будет действовать большое его количество". Опыт был сразу же выполнен сначала с парафином, а затем с водой. Результаты были потрясающими: активность серебра в сотни раз превысила ту, с которой мы имели дело ранее! Ферми прекратил шум и волнение сотрудников знаменитой фразой, которую, как говорят, он повторил через 8 лет при пуске первого реактора: "Пошли обедать".

Итак, был обнаружен эффект Ферми (замедление нейтронов), открывший новую главу ядерной физики, а также новую область техники, как мы говорим сегодня, - атомную технику.

Я столь подробно рассказал об открытии медленных нейтронов потому, что здесь очень существенными были как случайные обстоятельства, так и глубина и интуиция великого ума. Когда мы спросили Ферми, почему он поставил парафиновый, а не свинцовый клин, он улыбнулся и насмешливо произнес: "С. I. F." (Con Intuito Fenomenale). По-русски это звучало бы примерно как ПФИ (по феноменальной интуиции)…»

Помимо замечательных экспериментальных результатов в том же году Ферми достиг замечательных теоретических достижений. Уже в декабрьском номере 1933 года в итальянском научном журнале были опубликованы его предварительные соображения о бета-распаде. В начале 1934 года была опубликована его классическая статья «К теории бета-лучей». Авторское резюме статьи гласит: «Предлагается количественная теория бета-распада, основанная на существовании нейтрино: при этом испускание электронов и нейтрино рассматривается по аналогии с эмиссией светового кванта возбужденным атомом в теории излучения. Выведены формулы из времени жизни ядра и для формы непрерывного спектра бета-лучей, полученные формулы сравниваются с экспериментом».

Ферми в этой теории дал жизнь гипотезе нейтрино и протонно-нейтронной модели ядра, приняв также гипотезу изотонического спина, предложенную Гейзенбергом для этой модели. Опираясь на высказанные Ферми идеи, Хидеки Юкава предсказал в 1935 году существование новой элементарной частицы, известной ныне под названием пи-мезона, или пиона.

Комментируя теорию Ферми, Ф. Разетти писал: «Построенная им на этой основе теория оказалась способной выдержать почти без изменения два с половиной десятилетия революционного развития ядерной физики. Можно было бы заметить, что физическая теория редко рождается в столь окончательной форме».

Между тем в Италии все большую силу набирала фашистская диктатура Муссолини. Группа Ферми в Римском университете начала распадаться. После принятия итальянским правительством в сентябре 1938 года антисемитских гражданских законов Ферми и его жена, еврейка по национальности, решили эмигрировать в США. Приняв приглашение Колумбийского университета занять должность профессора физики, Ферми информировал итальянские власти о том, что он уезжает в Америку на полгода.

В 1938 году Ферми была присуждена Нобелевская премия по физике. В решении Нобелевского комитета говорилось, что премия присуждена Ферми «за доказательства существования новых радиоактивных элементов, полученных при облучении нейтронами, и связанное с этим открытие ядерных реакций, вызываемых медленными нейтронами». «Наряду с выдающимися открытиями Ферми всеобщее признание получили его искусство экспериментатора, поразительная изобретательность и интуиция… позволившая пролить новый свет на структуру ядра и открыть новые горизонты для будущего развития атомных исследований», - заявил, представляя лауреата, Ханс Плейель из Шведской королевской академии наук.

Во время церемонии вручения премии, состоявшейся в декабре 1938 года в Стокгольме, Ферми обменялся рукопожатием с королем Швеции, вместо того чтобы приветствовать того фашистским салютом, за что подвергся нападкам в итальянской печати. Сразу же после торжеств Ферми отправился за океан. По прибытии в Соединенные Штаты Ферми, как и всем эмигрантам того времени, пришлось пройти тест на проверку умственных способностей. Нобелевского лауреата попросили сложить 15 и 27 и разделить 29 на 2.

Будучи в США, Ферми принял активное участие в создании атомной бомбы. Более того, он был одним из инициаторов ее изготовления. В 1942 году, когда в США был создан «Манхэттенский проект» для работ по созданию атомной бомбы, ответственность за исследование цепной реакции и получение плутония была возложена на Ферми, имевшего с юридической точки зрения статус «иностранца - подданного враждебной державы». На следующий год исследования были перенесены из Колумбийского в Чикагский университет, в котором Ферми как председатель подсекции теоретических аспектов Уранового комитета руководил созданием первого в мире ядерного реактора.

В конце войны Ферми вернулся в Чикагский университет, чтобы занять пост профессора физики и стать сотрудником вновь созданного при Чикагском университете Института ядерных исследований. После завершения в 1945 году в Чикаго строительства циклотрона (ускорителя частиц) Ферми начал эксперименты по изучению взаимодействия между, незадолго до того открытыми, пи-мезонами и нейтронами. Итальянскому ученому принадлежит также теоретическое объяснение происхождения космических лучей и источника их высокой энергии.

Человек выдающегося интеллекта и безграничной энергии, Ферми увлекался альпинизмом, зимними видами спорта и теннисом. Он умер от рака желудка у себя дома, в Чикаго, вскоре после того как ему исполнилось пятьдесят три года - 28 ноября 1954 года. На следующий год в честь него новый, сотый, элемент был назван фермием.

 

ВОЛЬФГАНГ ПАУЛИ

(1900- 1958)

Нильс Бор: «Прогресс физики в нашем столетии характеризуется не только расширением круга познания, но главным образом и построением новых теоретических основ для анализа и синтеза экспериментальных данных. Вольфганг Паули… внес в этот прогресс огромный вклад не только собственными выдающимися работами, но и тем вдохновением и воодушевлением, которые мы все от него получали».

Макс Борн: «Паули… общепризнан как наиболее критичный, логически и математически требовательный среди ученых, которые внесли вклад в квантовую механику».

Вольфганг Эрнест Паули родился 25 апреля 1900 года в Вене, в семье известного профессора фармакологии Вольфганга Йозефа Паули. Очень рано заметив исключительные математические способности сына, отец всячески стремился их развить. Мать, Берта Паули, журналистка по профессии, старалась воспитать у него любовь к музыке.

Они оба преуспели в своих стремлениях. Паули-гимназист прекрасно разбирался в астрономии, любил находить ошибки в читаемых им научно-фантастических романах, например у Жюля Верна. Исключительные математические способности у мальчика обнаружились рано. Быстро освоив школьный курс, он изучил высшую математику. Еще в школе он познакомился и с трудами Эйнштейна и проникся его идеями.

Восемнадцатилетний юноша, только что закончивший с отличием гимназию, отослал в немецкий журнал «Physikalische Zeitschrift» свою первую оригинальную статью об энергии гравитационного поля, которая и была опубликована в 1919 году.

В Мюнхенском университете он стал одним из любимых учеников Зоммерфельда, который поручил ему, студенту 2-го курса, написать обзор по теории относительности для физического тома математической энциклопедии. Этот том увидел свет в 1921 году и сразу сделал имя Паули известным среди физиков.

Сам Эйнштейн дал восторженную оценку этой статьи Паули: «Тот, кто будет читать эту зрелую и тщательно продуманную работу, вряд ли поверит, что ее автору всего двадцать один год. Неизвестно, чему следует удивляться больше: глубокому психологическому пониманию хода развития идей, безупречности математических выводов, глубокому проникновению в физическую сущность явлений, способности ясно и систематически излагать предмет, эрудиции, полноте изложения, уверенности критика».

С 1921 по 1928 год Паули работал в Геттингене у Борна, в Гамбурге, Копенгагене у Бора и снова в Гамбурге. В школе Зоммерфельда Паули рано заинтересовался атомной физикой. Первая его статья относится к 1920 году и была посвящена исследованию диамагнетизма одноатомных газов. Для диамагнитной восприимчивости Паули получил формулу, сохранившуюся и в квантовой механике.

Но главной темой своего исследования Паули избрал аномальный эффект Зеемана - расщепление спектральных линий в магнитном поле. В те годы эта проблема стала средоточием всех трудностей старой квантовой теории. Это очень образно выразил как-то сам Паули. Когда в Копенгагене его спросили, почему он выглядит таким удрученным, последовал ответ: «Как может выглядеть счастливым человек, если он думает об аномальном эффекте Зеемана?»

Именно Паули сделал решающий шаг, сформировав свой знаменитый «принцип запрета». Впервые принцип Паули был сформулирован в статье «О связи между заполнением групп электронов в атоме и сложной структурой спектров», опубликованной в 1925 году. Этот принцип Паули открыл на основании обобщения громадного эмпирического материала, накопившегося в атомной спектроскопии многоэлектронных элементов (щелочных металлов и инертных газов).

Согласно ему в атоме не может существовать более одного электрона с заданными значениями четырех квантовых чисел, характеризующих энергетический уровень.

Другими словами, если уровень занят одним электроном, то второй уже на этом уровне располагаться не может. Надежда Паули, что в будущем удастся вывести гениально угаданный им принцип из более фундаментальных положений, оправдалась. В квантовой механике принцип Паули можно вывести из принципа тождественности частиц для систем, описываемых антисимметричными волновыми функциями. Сам Паули показал в 1940 году, что эти системы состоят из частиц с полуцелым спином, т.е. частиц, подчиняющихся статистике Ферми-Дирака.

Принцип Паули был последним выдающимся достижением доквантовомеханической теории атома. Он стимулировал создание квантовой статистики Ферми и сделал возможным объяснение периодической таблицы Менделеева.

В 1926 году, упростив выкладки Ферми, Паули установил связь между вырождением электронного газа и парамагнетизмом.

«Сразу же после появления матричной механики Гейзенберга возникла задача рассчитать с помощью нового математического аппарата спектр водородоподобных атомов, - пишет А.М. Франк. - Самому Гейзенбергу это не удавалось, и тогда этим занялся Паули. В период, когда техника матричного исчисления только осваивалась физиками, работа оказалась довольно трудной. Но Паули с ней быстро справился, и не только получил правильные значения для энергетических уровней, но и сумел учесть влияние на спектр электрических и магнитных полей. По словам Гейзенберга, его переписка с Паули, критические замечания и вопросы последнего сыграли огромную роль и в установлении принципа неопределенности. На V Сольвеевском конгрессе (Брюссель, 1927) Паули решительно поддержал ту интерпретацию квантовой механики, которая была предложена Бором, а в последующие годы был одним из основателей применения теоретико-групповых методов в квантовой механике».

Начиная с 1928 года Паули занимал кафедру теоретической физики Высшей технической школы в Цюрихе, став преемником Минковского и Эйнштейна.

К 1929 году построение основ квантовой механики и разработка ее математического толкования были закончены. И Паули с Гейзенбергом взялись за совершенно новую задачу - приложение новых методов квантования к электромагнитному полю. Их пионерская работа положила начало новой по существу науке, а разработанный ими метод широко применялся на протяжении всех последующих лет. Паули и дальше живо интересовался развитием квантовой электродинамики и стимулировал работы в этом направлении.

В начале тридцатых годов Паули, занявшись ядерной физикой и физикой элементарных частиц, сразу же высказал две фундаментальные идеи. Первая относилась к хорошо ему известной области спектроскопии. В докладе на VI Сольвеевском конгрессе (1930) он высказал мысль, что подобно тому как наличие спина электрона объясняет тонкую структуру спектральных линий, так вновь тогда открытая сверхтонкая структура обусловлена взаимодействием орбитального момента электронов с магнитным моментом ядра. В качестве примера Паули детально рассчитал сверхтонкую структуру линий гелия.

Вторая идея еще больше прославила имя Паули. Еще в 1931 году в письме к друзьям, а затем во время дискуссии на VII Сольвеевском конгрессе в 1933 году Паули высказал предположение, что помимо электрона при бета-распаде испускается еще одна частица, которая уносит часть энергии. Эта частица (хотя она и электрически нейтральна) - не гамма-квант и обладает очень высокой проникающей способностью. После открытия в 1932 году Дж. Чедвиком нейтрона эту гипотетическую частицу стали называть нейтрино.

В последующие годы Паули занимался главным образом квантовой теорией поля, едиными теориями поля, мезонной теорией ядерных сил, теорией элементарных частиц, опубликовал по этим вопросам около 30 статей и несколько книг.

Во время Второй мировой войны он работает в Принстоне, в Институте высших исследований, где в то время трудились Эйнштейн и Бор. В 1945 году «за открытие принципа запрета, который называют также принципом Паули» теоретику была присуждена Нобелевская премия по физике.

После войны Паули снова работает в Цюрихе на посту профессора Федерального технологического института. В 1946 году ученый принял швейцарское гражданство.

В последний период своей деятельности Паули интересовался физикой высоких энергий. Он близко сходится с великим психоаналитиком К. Юнгом.

Пытливый ум Паули охватывал очень разные области деятельности. Его многосторонность, широчайшая эрудиция проявились в целом ряде исследований по истории физики, философским вопросам современного естествознания, психологии научного творчества.

Барбара Клайн в своей книге «В поисках» пишет: «Внешне он очень напоминал Будду, но Будду, в глазах которого светился ум. В научных спорах Паули был бесподобен. Для него никакого значения не имело правильное решение проблем, если доказательство не получалось лаконичным, полным и логически безупречным. Его научные труды… являлись продуктом энергичного длительного процесса мышления, во время которого доказательство оттачивалось снова и снова, пока не начинало удовлетворять его придирчивым требованиям… Он подвергал сомнению абсолютно все. Он был безжалостен, бесчувствен, язвителен, но очень часто - полезен. Бор и Гейзенберг очень ценили критические замечания Паули, хотя они часто бывали весьма болезненными для самолюбия. Их восхищала неистовая честность ученого. Бор сравнивал Паули со скалой в разбушевавшемся море…»

Зимой 1958 года великий физик заболел, и 15 декабря его не стало.

 

МАКС БОРН

(1882- 1970)

Борн был один из тех, кто стоял у истоков квантовой механики. Вот слова основателя кибернетики Н. Винера: «Главную роль в создании и первоначальном развитии квантовой механики в Геттингене сыграли Макс Борн и Гейзенберг. Макс Борн был гораздо старше Гейзенберга, но, хотя в основе новой теории, несомненно, лежали его идеи, честь создания квантовой механики как самостоятельного раздела науки принадлежит его более молодому коллеге… Это был самый скромный ученый, которого я знал».

Макс Борн родился 11 декабря 1882 года в Бреслау (ныне Вроцлав, Польша). Он был старшим из двух детей. Его отец, Густав Борн, известный эмбриолог, заведовал кафедрой в Бреславском университете. Мать, Маргарет Кауфман, происходила из семьи предпринимателя, работавшего в текстильной промышленности. Она умерла, когда мальчику было всего лишь четыре года. Четыре года спустя отец повторно женился на Берте Липштейн, которая родила ему сына.

«Я учился в обычной немецкой гимназии, в которой основными предметами были латынь, греческий и математика, - вспоминал Борн. - Я не был особенно увлечен ни одним из них, но вспоминаю, что наслаждался, читая Гомера, и до сих пор помню наизусть первые строки "Одиссеи". Машке, преподававший математику в старших классах, был не только блестящим учителем, но вдумчивым экспериментатором и очень добрым человеком. Он преподавал также физику и химию, и я был заражен его энтузиазмом.

Незадолго до смерти отец посоветовал мне не спешить с выбором специальности, а посещать в университете лекции по различным предметам и лишь после этого, через год, принять решение. Поэтому я прослушал не только курсы математики и прочих точных наук, но также философии, истории искусств и по другим предметам.

В те времена немецкие студенты кочевали по университетским городам, проводя лето в каком-нибудь маленьком университете, чтобы насладиться природой и спортом, а зиму - в больших городах с их театрами, концертами и собраниями. Так, я провел одно лето в Гейдельберге, чудесном и веселом городе, расположенном на реке Неккар, а другое - в Цюрихе, вблизи Альп. Гейдельберг мало что дал мне в научном отношении, но там я встретил Джеймса Франка, который стал моим ближайшим другом, а в последующие годы - коллегой по физическому факультету в Геттингене. В Цюрихе я впервые соприкоснулся с первоклассным математиком Гурвицем, чьи лекции по эллиптическим функциям открыли мне дух современного анализа».

В 1904 году Борн поступил в Геттингенский университет, где занимался под руководством известных математиков - Д. Гильберта и Ф. Клейна, а также Г. Минковского. Гильберт, оценив интеллектуальные способности Борна, сделал его своим ассистентом в 1905 году. Макс, кроме того, изучал в Геттингене астрономию. Ко времени получения степени доктора в 1907 году за диссертацию по теории устойчивости упругих тел его интересы переместились в область электродинамики и теории относительности.

По окончании университета Борн был призван на год на военную службу в кавалерийский полк в Берлине, но вскоре, спустя несколько месяцев, был демобилизован из-за астмы. Этот краткий опыт воинской службы укрепил в нем неприязнь к войне и милитаризму, которая сохранилась у него на всю жизнь.

Следующие шесть месяцев Борн занимался в Кембриджском университете: «Чтобы глубже изучить фундаментальные проблемы физики, я отправился в Англию, в Кембридж. Там я в качестве аспиранта посещал экспериментальные занятия и лекции в колледже Гонвилля и Кайуса. Я обнаружил, что лекции Лармора по электромагнитной теории практически ничего не добавили к тому, чему я научился у Минковского. Но лекционные демонстрации Дж.Дж. Томсона были великолепны и впечатляющи. Однако наиболее ценным для меня в то время было, несомненно, общение с людьми: доброта и гостеприимство англичан, жизнь среди студентов, великолепие колледжей и страны».

Вернувшись в Бреслау, Борн через некоторое время приступил к теоретической работе по теории относительности. Объединив идеи Эйнштейна с математическим подходом Минковского, Борн открыл новый упрощенный метод вычисления массы электрона. Оценив эту работу, Минковский пригласил Борна вернуться в Геттинген и стать его ассистентом. Однако Борн проработал с ним всего лишь несколько недель вследствие внезапной кончины Минковского, последовавшей в начале 1909 года.

Осенью 1909 года молодой ученый получил право преподавания теоретической физики. В Геттингене он начал исследования свойства кристаллов в зависимости от расположения атомов. Вместе с Т. фон Карманом Борн разработал точную теорию зависимости теплоемкости кристаллов от температуры - теорию, которая до сих пор лежит в основе изучения кристаллов. Кристаллическая структура оставалась главной областью исследований Борна вплоть до середины двадцатых годов.

Летом 1912 года Борн побывал в США, где читал лекции по теории относительности, а также работал в лаборатории Майкельсона.

Вернувшись в Европу, в 1913 году Борн женился на Хедвиге Еренберг, дочери геттингенского профессора права. У них были сын, который стал главой фармакологического факультета в Кембридже, и две дочери.

В своей автобиографии он пишет: «Как раз к тому моменту, когда разразилась война 1914 года, я получил профессуру в Берлине, чтобы облегчить Планку бремя его преподавательской деятельности. Мы прибыли в Берлин весной 1915 года. Я начал читать лекции, но очень скоро должен был прервать их, так как был призван в армию. После непродолжительной службы в авиации (по радиосвязи) я был, по просьбе нашего друга Ладенбурга, переведен в артиллерийское исследовательское ведомство. Там я был прикреплен к отделу, который занимался определением местоположения орудий по измерению моментов регистрации звуковых сигналов в разных местах наблюдения».

Именно во время войны началась его дружба с Эйнштейном. Кроме физики этих двух людей объединяла любовь к музыке, и они с удовольствием исполняли вместе сонаты - Эйнштейн на скрипке, а Борн на фортепиано.

После войны Борн продолжал исследования по теории кристаллов, работая вместе с Ф. Габером над установлением связи между физическими свойствами кристаллов и химической энергией составляющих их компонент. В результате усилий двух ученых был создан так называемый цикл Борна-Габера.

В 1919 году Борн занял место профессора физики Франкфуртского университета. Вернувшись через два года в Геттинген, Борн стал директором университетского Физического института. Под руководством Борна Физический институт стал ведущим центром теоретической физики и математики.

Вначале в Геттингене Борн продолжил свои исследования по теории кристаллов, но… «Мои основные интересы вскоре обратились к квантовой теории, - пишет Борн. - В лице своих первых двух ассистентов - Вольфганга Паули и Вернера Гейзенберга - я имел энергичнейших и исключительно квалифицированных сотрудников, каких только можно себе представить. Мы начали, конечно, с теории электронных орбит Бора, но сконцентрировали внимание на слабых сторонах этой теории, когда она не находилась в согласии с экспериментальными данными. Так мы начали исследования новой "квантовой механики". Прежде всего, мы попытались заменить дифференциальные операции конечно-разностными, содержащими постоянную Планка; мой ученик П. Йордан и я получили весьма обнадеживающие результаты, относящиеся к радиационной формуле и другим вопросам. Затем в 1925 году Гейзенберг порадовал нас новой идеей: исходя из того принципа, что нельзя пользоваться ненаблюдаемыми величинами (такими, как размеры и частоты электронных орбит), он ввел некое символическое исчисление и получил ряд многообещающих результатов, относящихся к простым системам (линейный и нелинейный осцилляторы). После представления его работы к печати я думал о гейзенберговском формализме и обнаружил, что он идентичен матричному исчислению, хорошо известному математикам. В сотрудничестве с П. Йорданом нами были установлены простейшие свойства "матричной механики", затем мы втроем систематически развили эту теорию. Ее результаты были настолько удовлетворительными, что не оставалось сомнений в ее правильности».

Зимой 1925/26 года Борн был приглашен в качестве лектора в Массачусетский технологический институт. В 1926 году Шрёдингер развил волновую механику, содержащую формулировки, альтернативные квантовой механике, которая, в свою очередь, как он показал, была эквивалентна формулировкам матричной механики.

«Следовало найти путь к объединению частиц и волн. Я видел связующее звено в идее вероятности», - писал ученый.

Применяя принципы волновой механики и матричной механики в теории атомного рассеяния, Борн сделал вывод, что квадрат волновой функции, вычисленный в некоторой точке пространства, выражает вероятность того, что соответствующая частица находится именно в этом месте. По этой причине, утверждал он, квантовая механика дает лишь вероятностное описание положения частицы. Борновское описание рассеяния частиц, которое стало известным как борновское приближение, оказалось крайне важным для вычислений в физике высоких энергий. Вскоре после опубликования борновского приближения Гейзенберг обнародовал свой знаменитый принцип неопределенности, который утверждает, что нельзя одновременно определить точное положение и импульс частицы. Снова здесь возможно лишь статистическое предсказание.

Статистическая интерпретация квантовой механики развивалась дальше Борном, Гейзенбергом и Бором, и позднее стала известна как копенгагенская интерпретация.

В 1928 году вместе с большой группой европейских ученых Борн посетил Советский Союз. К тому времени стали сказываться запредельные нагрузки ученого. Он вынужден был провести год в санатории. Борн говорил, что с тех пор ему уже никогда не удавалось в полной мере восстановить свою былую трудоспособность. Но, тем не менее, тогда же он написал великолепный учебник по оптике.

В 1932 году Борн стал деканом научного факультета в Геттингене. Однако уже в мае 1933 года, после прихода к власти Гитлера, ученого отстранили от работы. Покинув Германию, он принял приглашение приехать в Кембридж в качестве лектора фонда Стокса. Там Борн получил степень «магистра искусств» и право преподавания в колледжах Кайуса и Св. Джона. В Кембридже он занимался (совместно с Л. Инфельдом) нелинейной электродинамикой - модификацией электромагнитной теории Максвелла, поставив перед собой задачу исключить трудности, связанные с бесконечной собственной энергией электрона.

Проведя три года в Кембридже, Борн затем в течение шести месяцев работал в Индийском физическом институте в Бангалоре.

Как вспоминает ученый: «После нашего возвращения в Кембридж я получил письмо от П. Капицы с предложением хорошего места в Москве; это предложение мы серьезно обсуждали. Но немного позднее мой друг - Чарлз Галтон Дарвин, профессор натурфилософии в Эдинбурге (это понятие в Шотландии соответствует физике), написал мне, что покидает университет, чтобы возглавить колледж в Кембридже, и переслал мне предложение от университета стать его преемником.

Мы отправились в Шотландию и прожили там 17 лет - даже дольше, чем в Геттингене. Мы полюбили чудесный старый город, страну, самих шотландцев, и были там счастливы».

В университете Борн преподавал и проводил исследования. Он совершил много всевозможных поездок на конференции и в университеты в Англии и за ее пределами - конгрессы в Париже, Бордо, Советском Союзе. Один семестр он преподавал в Египте.

У Борна было много учеников. Достаточно перечислить имена Гейзенберга, Дирака, Паули, Ферми, Блеккета, Винера, Гейтлера, Вейскопфа, Оппенгеймера, Теллера. У Борна работали крупные советские ученые Фок, Френкель, Богуславский и Румер.

В 1953 году Борн ушел в отставку, став почетным профессором в отставке в Эдинбурге. «В конце 1953 года я достиг предельного возраста, мы решили вернуться на родину. Мы выбрали небольшой курорт Бад-Пирмонт в очаровательной сельской местности неподалеку от Геттингена, но все же на достаточном расстоянии от него, чтобы быть вдали от шумной толпы».

Здесь Борн продолжал свою научную работу, готовил новые издания своих публикаций, писал и выступал с лекциями о социальной ответственности ученых, особенно в связи с применением ядерного оружия.

Хотя некоторые студенты и коллеги Борна уже успели получить Нобелевскую премию за работы по квантовой теории, вклад самого Борна не был столь высоко оценен до 1954 года, когда он был награжден Нобелевской премией по физике «за фундаментальные исследования по квантовой механике, особенно за его статистическую интерпретацию волновой функции». Он разделил премию с Вальтером Боте, который был награжден за экспериментальную работу по элементарным частицам.

В нобелевской лекции Борн описал истоки квантовой механики и ее статистической интерпретации, задавшись вопросом: «Можем ли мы нечто, с чем нельзя ассоциировать привычным образом понятия "положение" и "движение", называть предметом или частицей?» И следующим образом заключил: «Ответ на этот вопрос принадлежит уже не физике, а философии».

Хотя Борна больше всего помнят в связи с его работами в области квантовой механики, его исследования и труды сыграли важную роль во всех тех областях, которых они касались. «Мне никогда не нравилось быть узким специалистом, - написал он в своей автобиографии. - Я не слишком подошел бы к современной манере проводить научные исследования большими группами специалистов. Философское основание науки - вот что всегда интересовало меня больше, чем конкретные результаты».

В 1955 году Борн стал одним из авторов заявления, осуждающего дальнейшую разработку и использование ядерного оружия. Еще через два года он вошел в число ведущих восемнадцати западногерманских физиков, поклявшихся не принимать участия в разработке и производстве ядерного оружия.

Борн умер в геттингенском госпитале 5 января 1970 года.

 

ДЖОН БАРДИН

(1908- 1991)

Джон Бардин родился 23 мая 1908 года в городе Мэдисон (штат Висконсин). Его отец, Чарлз Р. Бардин, был профессором анатомии и деканом медицинской школы при Висконсинском университете. Мать Элси (в девичестве Хармер) Бардин умерла в 1920 году. После этого отец женился на Рут Хеймс. У Джона было два брата, сестра и сводная сестра.

Успешно окончив начальную школу в Мэдисоне, Джон поступил в университетскую среднюю школу. Следующим шагом в его образовании стала учеба в мэдисонской центральной средней школе, где он учился до 1923 года.

По окончании школы Джон поступил в Висконсинский университет, и в 1928 году Бардин получил степень бакалавра по электротехнике. В качестве непрофилирующих дисциплин он изучал в университете физику и математику. Через год Джон получил степень магистра по электротехнике за исследование в области прикладной геофизики и излучению антенн. Еще будучи студентом старших курсов, он получил опыт практической работы в инженерном отделе «Вестерн электрик компани».

В 1930 году вместе с одним из своих руководителей, геофизиком Л.Д. Питерсом, отправляется в Питсбург (штат Пенсильвания). Работая в компании «Галф ризерч», они разработали новую методику, позволявшую, анализируя карты гравитационной и магнитной напряженностей, определять вероятное расположение нефтяных месторождений.

В 1933 году Бардин поступил в Принстонский университет. Здесь он изучал математику и физику под руководством Ю.П. Вигнера. Молодой ученый сосредоточил свои интересы в области применения квантовой теории в физике твердого тела. В 1936 году Бардин получил докторскую степень за диссертацию.

В 1935 году, еще работая над диссертацией, ученый принял предложение стать на год после защиты временным научным сотрудником Гарвардского университета. В таковом качестве он и оставался до 1938 года. В Гарварде Бардин работал с Д.Х. Ван Флеком и П.У. Бриджменом над проблемами электрической проводимости в металлах. Далее Бардин занял должность ассистента-профессора в Миннесотском университете, где он продолжил свои исследования поведения электронов в металлах.

В 1938 году Бардин женился на Джейн Максвелл. Джейн родила ему двух сыновей и дочь.

Во время Второй мировой войны Бардин занимается вопросами обороны. В военно-морской артиллерийской лаборатории в Вашингтоне он изучал магнитные поля кораблей с целью их защиты от торпед и мин.

В 1945 году ученый начал работать в компании «Белл». Здесь совместно с У. Шокли и У. Браттейном он проводил опыты по созданию на основе германия и кремния полупроводниковых приборов.

В 1947 году Бардин и Браттейн создали первые биполярные работающие транзисторы. Ими были описаны механизмы дырочной и электронной проводимости, введены понятия коллектор, эмиттер и база и предложены схемы включения транзисторов «с общим эмиттером», «с общим коллектором» и «с общей базой». Благодаря малым размерам, технологичности, экономичности и дешевизне, транзисторы быстро вытеснили электронные лампы (за исключением устройств большой мощности и СВЧ). Попытка создать тогда же униполярный транзистор (работы Шокли) не увенчалась успехом (они были созданы позднее).

«За исследования полупроводников и открытие транзисторного эффекта» в 1956 году Бардин, Шокли и Браттейн получили Нобелевскую премию. «Транзистор во многом превосходит радиолампы», - отметил Э.Г. Рудберг, член Шведской королевской академии наук, при презентации лауреатов. Указав, что транзисторы значительно меньше электронных ламп и в отличие от последних не нуждаются в электрическом токе для накала нити, Рудберг добавил, что «для акустических приборов, вычислительных машин, телефонных станций и многого другого требуется именно такое устройство».

В 1951 году Бардин покинул телефонную компанию «Белл» и занял одновременно два поста в Иллинойском университете: профессора электротехники и профессора физики. Ученый решил вернуться к проблеме сверхпроводимости и свойств материи при сверхнизких температурах, которой занимался, будучи еще аспирантом.

К 1950 году несколько американских физиков обнаружили, что различные изотопы одного и того же металла становятся сверхпроводящими при различных температурах и что критическая температура обратно пропорциональна атомной массе.

Вот, что рассказывается в книге «Лауреаты Нобелевской премии»:

«Бардин знал, что единственное влияние различных атомных масс на свойства твердого тела проявляется в различиях при распространении колебаний внутри тела. Поэтому он предположил, что в сверхпроводимости металла участвует взаимодействие между подвижными электронами и колебаниями атомов металла и что в результате этого взаимодействия создается связь электронов друг с другом.

К исследованиям Бардина позднее присоединились два его студента по Иллинойскому университету - Л.Н. Купер, который вел исследовательскую работу после защиты докторской диссертации, и Дж.Р. Шриффер, аспирант. В 1956 году Купер показал, что электрон (который несет отрицательный заряд), движущийся сквозь регулярную структуру (решетку) металлического кристалла, притягивает ближайшие положительно заряженные ионы, слегка деформируя решетку и создавая кратковременное увеличение концентрации положительного заряда. Эта концентрация положительного заряда, в свою очередь, притягивает второй электрон, и два электрона образуют пару, связанную друг с другом благодаря искажению кристаллической решетки. Таким путем многие электроны в металле объединяются по два, образуя куперовские пары.

Бардин и Шриффер попытались с помощью концепции Купера объяснить поведение обширной популяции свободных электронов в сверхпроводящем металле, но их постигла неудача. Когда Бардин в 1956 году отправился в Стокгольм получать Нобелевскую премию, Шриффер уже готов был признать поражение, но напутствие Бардина запало ему в душу, и ему удалось-таки развить статистические методы, необходимые для решения данной проблемы.

После этого Бардину, Куперу и Шрифферу удалось показать, что куперовские пары, взаимодействуя между собой, заставляют многие свободные электроны в сверхпроводнике двигаться в унисон, единым потоком. Как и догадывался Ф. Лондон, сверхпроводящие электроны образуют единое квантовое состояние, охватывающее все металлическое тело. Критическая температура, при которой возникает сверхпроводимость, определяет ту степень уменьшения температурных колебаний, когда влияние куперовских пар на координацию движения свободных электронов становится доминирующим. Поскольку возникновение сопротивления при отклонении даже одного электрона от общего потока с необходимостью повлияет на другие электроны, участвующие в сверхпроводимости, и тем самым нарушит единство квантового состояния, такое возмущение весьма мало вероятно. Поэтому сверхпроводящие электроны перемещаются коллективно, без потери энергии.

Достижение Бардина, Купера и Шриффера было названо одним из наиболее важных в теоретической физике с момента создания квантовой теории. В 1958 году они с помощью своей теории предсказали сверхтекучесть (отсутствие вязкости и поверхностного натяжения) у жидкого гелия-3 (изотоп гелия, ядро которого содержит два протона и один нейтрон) вблизи абсолютного нуля, что и подтвердилось экспериментально в 1962 году. Сверхтекучесть наблюдалась ранее у гелия-4 (наиболее распространенный изотоп с одним дополнительным нейтроном), и считалось, что она невозможна у изотопов с нечетным числом ядерных частиц».

В 1959 году Бардин начал работать в Центре фундаментальных исследований Иллинойского университета, продолжая свои изыскания в области физики твердого тела и физики низких температур.

В 1965 году Бардин был удостоен Национальной медали «За научные достижения» Национального научного фонда, а в 1971 году - почетной медали Института инженеров по электротехнике и электронике.

В 1972 году Бардин вместе с Купером и Шриффером вновь получил Нобелевскую премию по физике «за совместное создание теории сверхпроводимости, обычно называемой БКШ-теорией». С. Лундквист, член Шведской королевской академии наук, при презентации лауреатов отметил полноту объяснения ими сверхпроводимости и добавил: «Ваша теория предсказала новые эффекты и весьма стимулировала дальнейшие разработки в теоретических и экспериментальных исследованиях». Он также указал на то, что «дальнейшее развитие… подтвердило огромное значение и ценность идей, заложенных в этой фундаментальной работе в 1957 году».

БКШ- теория привела к созданию материалов, позволяющих сконструировать исключительно мощные и экономичные электромагниты небольших размеров. Такие электромагниты используются при ядерном синтезе, в ускорителях частиц высокой энергии, в поездах на магнитной подушке над рельсами, в биологических и физических исследованиях и при конструировании компактных мощных электрических генераторов.

В 1975 году он стал почетным профессором в отставке. В 1977 году ученый получил президентскую медаль Свободы правительства Соединенных Штатов. В течение многих лет он был соиздателем журнала «Physical Review». Бардин - член американской Национальной академии наук и Американской академии наук и искусств, а также Американского физического общества.

В последние годы жизни ученый много путешествовал и играл в гольф. Умер Бардин 30 января 1991 года.

 

ПАВЕЛ АЛЕКСЕЕВИЧ ЧЕРЕНКОВ

(1904- 1990)

Павел Алексеевич Черенков родился 28 июля 1904 года в селе Новая Чигла Воронежской области в семье крестьянина. По окончании средней школы Павел поступает в Воронежский государственный университет, который окончил в 1928 году. После этого Черенков поступил вначале на подготовительное, а затем в 1932 году на основное отделение Физического (тогда Физико-математического) института Академии наук СССР.

В 1930 году Черенков женился на Марии Путинцевой, дочери профессора русской литературы. У них было двое детей.

Начало научной деятельности Черенкова относится к 1932 году, когда он под руководством С.И. Вавилова приступил к изучению люминесценции растворов ураниловых солей под действием гамма-лучей.

Поначалу в полном соответствии с законом Вавилова-Стокса у Черенкова огромные гамма-кванты источника излучения преобразовались в малые кванты видимого света, то есть люминесцировали.

«Интересно, - рассуждал ученый, - как она изменится, если увеличить концентрацию? А если, наоборот, разбавить раствор водою? Важна, конечно, не общая картина, а точно выраженный физический закон».

До поры до времени никаких сюрпризов: меньше растворено солей - меньше люминесценция.

Далее рассказывает В.Р. Келер:

«Наконец в растворе остаются лишь следы уранила. Теперь уж, разумеется, никакого свечения быть не может.

Но что это?! Черенков не верит своим глазам. Уранила осталась гомеопатическая доза, а свечение продолжается. Правда, очень слабое, но продолжается. В чем дело?

Черенков выливает жидкость, тщательно промывает сосуд и наливает в него дистиллированную воду. А это что такое? Чистая вода светится так же, как и слабый раствор. Но ведь до сих пор все были уверены, что дистиллированная вода неспособна к люминесценции.

Вавилов советует аспиранту попробовать поставить вместо стеклянного сосуд из другого материала. Черенков берет платиновый тигель и наливает в него чистейшую воду. Под дном сосуда помещается ампула со ста четырьмя миллиграммами радия. Гамма-лучи вырываются из крошечного отверстия ампулы и, пробивая платиновое дно и слой жидкости, попадают в объектив прибора, нацеленного сверху на содержимое тигля.

Снова приспособление к темноте, снова наблюдение, и… опять непонятное свечение.

– Это не люминесценция, - твердо говорит Сергей Иванович. - Это что-то другое. Какое-то новое, неизвестное пока науке оптическое явление.

Вскоре всем становится ясно, что в опытах Черенкова имеют место два свечения. Одно из них - люминесценция. Оно, однако, наблюдается лишь в концентрированных растворах. В дистиллированной воде под влиянием гамма-облучения мерцание вызывается иной причиной…

А как поведут себя другие жидкости? Может быть, дело не в воде?

Аспирант наполняет тигель по очереди различными спиртами, толуолом, другими веществами. Всего он испытывает шестнадцать чистейших жидкостей. И слабое свечение наблюдается всегда. Поразительное дело! Оно оказывается очень близким по интенсивности для всех материалов. Четыреххлористый углерод светится всех сильнее, изобутановый спирт - всех слабее, но разница их свечений не превышает 25 процентов.

Черенков пытается погасить свечение особыми веществами, считающимися сильнейшими гасителями обычной люминесценции. Он добавляет к жидкости азотнокислое серебро, йодистый калий, анилин… Эффекта (гасительного) никакого: свечение продолжается. Что делать?

По совету руководителя он нагревает жидкость. На люминесценцию это всегда влияет сильно: она ослабевает и даже прекращается совсем. Но в данном случае яркость свечения не меняется ничуть. Выходит, здесь действительно какое-то особое, доныне неизвестное явление? Какое же?»

В 1934 году в «Докладах Академии наук СССР» появляются первые два сообщения о новом виде излучения: Черенкова, излагающего подробно результаты экспериментов, и Вавилова, пытающегося их объяснить.

Таинственное свечение можно было видеть только в пределах узкого конуса, ось которого совпадала с направлением гамма-излучения. Учтя это обстоятельство, молодой ученый поместил свой прибор в сильное магнитное поле. И тут же убедился, что поле отклоняет узкий конус свечения в сторону. Но это возможно лишь для электрически заряженных частиц, например электронов. Чтобы окончательно убедиться в этом, Черенков использовал другой вид излучения - бета-лучи, представляющих собою поток быстрых электронов. Он облучил ими те же жидкости, что и раньше, и получил такой же световой эффект, как при гамма-облучении.

Так было выяснено, что загадочное оптическое явление возникает только там, где налицо движение быстрых электронов.

Объяснение механизма преобразования движения электронов в движение фотонов необычного свечения дали в 1937 году советские физики Франк и Тамм. Электроны летят быстрее, чем распространяется свет в данной среде, и в результате возникает необычное явление: порожденные электронами электромагнитные волны отстают от своих родителей и вызывают свечение.

Вскоре появилась крылатая фраза: «Греки слышали голоса звезд, а в черенковском свечении слышны голоса электронов. Это поющие электроны».

В 1935 году Черенков окончил аспирантуру и защитил кандидатскую диссертацию, после чего получил должность старшего научного сотрудника Физического института им. Лебедева АН СССР (ФИАН).

Он продолжал исследовать открытое им свечение. В 1936 году он установил характерное свойство нового вида излучения - своеобразную пространственную асимметрию («черенковский конус»).

После появления количественной теории явления, разработанной Таммом и Франком, Черенков в серии тонких экспериментов подтверждает ее во всех деталях. Фундаментальные работы Черенкова по исследованию открытого им излучения заряженных частиц, движущихся со сверхсветовой скоростью, явились значительным вкладом в мировую науку и признаны классическими.

«Помимо принципиального научного значения, излучения Черенкова имеют и большую практическую ценность, - пишет И.М. Дунская. - Исключительно важна его роль в физике высоких энергий. При движении быстрой частицы в среде возникает направленная световая вспышка, которую регистрируют с помощью фотоумножителя. Такие счетчики используются как для обнаружения быстрых заряженных частиц, так и для определения их свойств: направления движения, величины заряда, скорости и т.д. Счетчики Черенкова, благодаря характерным особенностям излучения, существенно расширяют возможности эксперимента и позволяют выполнить эксперименты, невозможные при использовании обычных люминесцентных счетчиков. В частности, черенковское излучение было использовано в опытах по обнаружению антипротона. Оно позволяет также наблюдать наиболее быстрые частицы космических лучей».

За работы по открытию и изучению этого явления Черенкову совместно с Вавиловым, Таммом и Франком сначала в 1946 году присудили Государственную премию, а в 1958 году (уже после смерти Вавилова) Черенков, Тамм и Франк были удостоены звания Лауреатов Нобелевской премии по физике.

В послевоенные годы Черенков некоторое время занимался исследованиями космических лучей, а также принимал руководящее участие в разработке и сооружении ускорителей легких частиц. Так, в январе 1948 года под его руководством осуществлен запуск первого в СССР бетатрона. Одновременно Черенков принимает участие в работах по проектированию и сооружению синхротрона ФИАН на 250 МэВ, за что в 1951 году получил Государственную премию. Вскоре после запуска синхротрона ученый принял руководство над всеми работами по его усовершенствованию, что позволило развернуть работы по изучению электромагнитных взаимодействий в области фотонов больших энергий. В возглавляемой Черенковым лаборатории фотомезонных процессов удалось получить целый ряд интереснейших результатов по изучению процессов фоторасщепления гелия, фотообразования пи-мезонов, фоторасщепления некоторых легких ядер методом наведенной активности.

В середине пятидесятых годов Черенков, совместно с И.В. Чувило, экспериментально исследовал фотоделение ядер тяжелых элементов. Затем под руководством Павла Алексеевича был успешно разработан новый метод накопления и получения встречных электрон-позитронных пучков. В 1963-1965 годах проводились детальные исследования этого метода, а в начале 1966 года принципиальная возможность его была проверена экспериментально на 280 МэВ синхротроне ФИАН. Таким образом, впервые в практике физического эксперимента были получены встречные пучки электронов и позитронов.

«Работы по накоплению и получению встречных пучков в ускорителях имеют первостепенное значение для физики высоких энергий, - отмечает И.М. Дунская. - Использование этого метода позволяет перевести действующие ускорители в режим накопления и тем самым на основе уже имеющейся экспериментальной базы перейти к исследованиям взаимодействий в области высоких и сверхвысоких энергий. Этот метод был впоследствии использован для получения встречных пучков на крупнейшем электронном ускорителе в Кембридже (США)».

В 1964 году Павла Алексеевича избрали членом-корреспондентом Академии наук СССР, а в 1970 году - действительным членом Академии наук СССР.

В 1977 году за цикл работ по исследованию расщепления легких ядер гамма-квантами высоких энергий методом камер Вильсона, действующих в мощных пучках электронных ускорителей, Черенков удостоен Государственной премии СССР.

Кроме научной деятельности Черенков вел большую педагогическую работу, сначала с 1948 года в должности профессора Московского энергетического института, а с 1951 года и Московского инженерно-физического института. Он дал путевку в жизнь большому числу исследователей.

 

ИГОРЬ ЕВГЕНЬЕВИЧ ТАММ

(1895- 1971)

Игорь Евгеньевич родился 8 июля 1895 года во Владивостоке в семье Евгения Тамма, инженера-строителя, и Ольги (урожденной Давыдовой) Тамм. Евгений Федорович работал на строительстве Транссибирской железной дороги.

С 1898 года и до окончания гимназии в 1913 году Игорь жил с родителями в Елизаветграде (сейчас Кировоград, Украина).

Затем он уехал учиться в Эдинбургский университет, где провел год. Здесь Игорь зачитывался «нелегальщиной», штудировал Маркса и участвовал в политических митингах… В начале лета 1914 года Игорь вернулся домой и поступил на физико-математический факультет Московского университета.

Но вскоре грянула Первая мировая война, и весной 1915 года Тамм пошел добровольцем - «братом милосердия». С удовлетворением отмечал он в письме, что даже под обстрелом «вполне можно держать себя в руках». Через несколько месяцев он вернулся в университет и в 1918 году получил диплом.

Во время февральской революции Тамм с головой окунулся в политическую деятельность. Он выступал на многочисленных антивоенных митингах и как оратор имел успех. Печатал и распространял антивоенную литературу. Наконец он был избран делегатом от Елизаветграда на Первый Всероссийский съезд советов рабочих и солдатских депутатов в Петрограде. Он принадлежал к фракции меньшевиков-интернационалистов и настойчиво продолжал антивоенную борьбу.

В сентябре 1917 года Тамм женился на Наталии Васильевне Шуйской. Игорь и Наташа познакомились еще летом 1911 года. Наташа происходила из семьи весьма богатых и достаточно просвещенных помещиков, владевших рядом имений в Херсонской губернии. По окончании гимназии она уехала в Москву и поступила на Высшие женские курсы.

Тамм разрывался между политикой и наукой, но, однако, выбирал последнюю… В 1919 году Игорь начал свою деятельность как преподаватель физики сначала в Крымском университете в Симферополе, а позднее в Одесском политехническом институте.

В 1921 году в семье Таммов родилась дочь Ирина, ставшая позднее ученым-химиком, специалистом по взрывчатым веществам. Еще через пять лет родился сын Евгений - будущий физик-экспериментатор и альпинист.

Переехав в Москву в 1922 году, Тамм в течение трех лет преподавал в Коммунистическом университете им. Свердлова. С 1923 года он работал на факультете теоретической физики Второго Московского университета и занимал там с 1927 по 1929 год должность профессора. В 1924 году Тамм одновременно начал читать лекции в МГУ.

«К зиме 1925-1926 года, - писала дочь ученого Ирина, - папа стал тяготиться преподаванием в Свердловском университете. Ему было трудно решиться уйти со сносно оплачиваемой работы в "чистую науку" (в МГУ). Вопрос этот, я знаю, обсуждался дома: как существовать на мизерную зарплату? Мама предложила продать свой каракулевый сак - этих денег хватило на целый год Впоследствии мама относила одну за другой свои фамильные золотые вещи в торгсин и ломбард (откуда их, конечно, уже не выкупали)».

Первые научные исследования Тамм в начале двадцатых годов проводил под руководством Л.И. Мандельштама, профессора Одесского политехнического института, выдающегося советского ученого, внесшего вклад во многие разделы физики. Тамм занимался электродинамикой анизотропных твердых тел (т.е. таких, которые обладают самыми различными физическими свойствами и характеристиками) и оптическими свойствами кристаллов.

Обратившись к квантовой механике, в 1930 году Тамм объяснил акустические колебания и рассеяние света в твердых средах. В его работе впервые была высказана идея о квантах звуковых волн (позднее названных «фононами»), оказавшаяся весьма плодотворной во многих других разделах физики твердого тела.

В 1930 году Тамм стал профессором и заведующим кафедрой теоретической физики МГУ. Там он в 1933 году получил степень доктора физико-математических наук, тогда же стал членом-корреспондентом Академии наук СССР. Когда Академия в 1934 году переехала из Ленинграда в Москву, Тамм стал заведующим сектором теоретической физики академического Института им. П.Н. Лебедева, и этот пост он занимал до конца жизни.

Тамм сделал два значительных открытия в квантовой теории металлов, популярной в начале тридцатых годов. Вместе со студентом С. Шубиным он сумел объяснить фотоэлектрическую эмиссию электронов из металла, т.е. эмиссию, вызванную световым облучением. Второе открытие - установление, что электроны вблизи поверхности кристалла могут находиться в особых энергетических состояниях, позднее названных таммовскими поверхностными уровнями, что в дальнейшем сыграло важную роль при изучении поверхностных эффектов и контактных свойств металлов и полупроводников.

Одновременно он начал проводить теоретические исследования в области атомного ядра. Изучив экспериментальные данные, Тамм и С. Альтшуллер предсказали, что нейтрон, несмотря на отсутствие у него заряда, обладает отрицательным магнитным моментом (физическая величина, связанная, помимо прочего, с зарядом и спином). Их гипотеза, к настоящему времени подтвердившаяся, в то время расценивалась многими физиками-теоретиками как ошибочная. В 1934 году Тамм попытался объяснить с помощью своей так называемой бета-теории природу сил, удерживающих вместе частицы ядра. Согласно этой теории, распад ядер, вызванный испусканием бета-частиц (высокоскоростных электронов), приводит к появлению особого рода сил между любыми двумя нуклонами (протонами и нейтронами). Используя работу Ферми по бета-распаду, Тамм исследовал, какие ядерные силы могли бы возникнуть при обмене электронно-нейтринными парами между любыми двумя нуклонами, если такой эффект имеет место. Он обнаружил, что бета-силы на самом деле существуют, но слишком слабы, чтобы выполнять роль «ядерного клея». Год спустя японский физик Х. Юкава постулировал существование частиц, названных мезонами, процесс обмена которыми (а не электронами и нейтрино, как предполагал Тамм) обеспечивает устойчивость ядра.

В 1936- 1937 годах Тамм и Франк предложили теорию, объяснявшую природу излучения, которое обнаружил Павел Черенков, наблюдая преломляющие среды, подверженные воздействию гамма-излучения. Хотя Черенков описал данное излучение и показал, что это не люминесценция, он не смог объяснить его происхождение.

Академик А.Н Крылов писал П.Л. Капице в 1943 году:

«Черенков произвел множество трудных опытов и нашел ряд закономерностей в явлении, отмеченном Вавиловым. Результаты своих экспериментальных исследований Черенков изложил в своей докторской диссертации.

Одновременно Тамм и Франк стали изучать вопрос, поставленный Вавиловым, теоретически, и Тамм создал полную теорию описанного явления. Уже было известно, что в жидкости электрон может двигаться со скоростью V, которая больше скорости света C в этой жидкости. Тамм исследовал математически, - каково же будет электромагнитное поле такого "сверхскоростного электрона". Путем глубокого и сложного математического анализа Тамм обнаружил, что при движении электрона надо различать два случая, именно: если V«C, и если V»C […]. В первом случае равномерно движущийся электрон не излучает, во втором возникает свечение внутри некоторого конуса.

По математической теории, развитой Таммом, замеченное Вавиловым явление получило полное объяснение и было проверено, как уже сказано, экспериментально Черенковым и затем более мощными радиоактивными препаратами в США.

Тамм глубоким и искусным математическим анализом создал полную теорию излучения "сверхскоростным" электроном в диспергирующей жидкости. Замеченное Вавиловым явление получило полное объяснение и стало доступным предвычислению, результаты которого сходятся во всех деталях с наблюдением.

Аналогия с Леверье полная, только Леверье вычислил движение Нептуна, который в 60 раз больше Земли, а Тамм движение электрона, который в миллионы раз меньше пылинки».

Тридцатые годы - время «большой чистки». «Тогда Игорь Евгеньевич Тамм лишился трех очень близких ему людей: младшего брата, друга, приобретенного еще в школьные годы, и любимого ученика, - пишет Г.Е. Горелик. - Почему его самого не объявили "врагом народа", понять трудно, но в хаосе Великого Террора таких непонятных вещей много. Ясно только, что тогда звание члена-корреспондента Академии наук не защищало, а ядерная физика еще не стала стратегической профессией».

Теоретический отдел института, созданный и руководимый Таммом, был ликвидирован, а все его сотрудники распределены по другим лабораториям. Но научный семинар теоретиков продолжал еженедельно работать под руководством Тамма, научные контакты полностью сохранялись, а впоследствии, после возвращения института из эвакуации в 1943 году, как-то незаметно прежний Теоретический отдел был восстановлен. Такое вялое реагирование дирекции института было возможно, конечно, только потому, что директором был С.И. Вавилов.

С 1946 года Тамма привлекли к рассмотрению некоторых вопросов атомного проекта. Когда возникла задача создания еще более страшного оружия - водородной бомбы, Игорю Евгеньевичу было предложено организовать в Теоретическом отделе группу для изучения вопроса.

Тамм собрал группу из молодых учеников-сотрудников, в которую вошли, в частности, В.Л. Гинзбург и А.Д. Сахаров, уже через два месяца выдвинувшие две важнейшие оригинальные и изящные идеи, которые и позволили создать такую бомбу менее чем за пять лет. В 1950 году Тамм и Сахаров переехали в сверхсекретный город-институт, известный теперь всем как Арзамас-16.

Работа над реализацией основных идей была необычайно напряженной и трудной. В Арзамасе-16 Игорь Евгеньевич сыграл огромную роль и своими собственными исследованиями, и как руководитель коллектива теоретиков. Он даже был одним из участников реального испытания первого «изделия» летом 1953 года.

Затем, вернувшись в Москву на прежнее место, он продолжил свою работу над фундаментальными проблемами теории частиц и квантовых полей вместе со своими молодыми сотрудниками.

Он предложил приближенный квантово-механический метод для описания взаимодействия элементарных частиц, скорости которых близки к скорости света. Развитый далее американским химиком С.М. Данковым и известный как метод Тамма-Данкова, он широко используется в теоретических исследованиях взаимодействия типа «нуклон-нуклон» и «нуклон-мезон». Тамм также разработал каскадную теорию потоков космических лучей.

В 1950 году Тамм и Сахаров предложили метод удержания газового разряда с помощью мощных магнитных полей - принцип, который до сих пор лежит у советских физиков в основе желаемого достижения контролируемой термоядерной реакции (ядерного синтеза). В пятидесятые и шестидесятые годы Тамм продолжал разрабатывать новые теории в области элементарных частиц и пытался преодолеть некоторые фундаментальные трудности существующих теорий.

В 1958 году Тамму, Франку и Черенкову была присуждена Нобелевская премия по физике «за открытие и истолкование эффекта Черенкова». При презентации лауреатов Манне Сигбан, член Шведской королевской академии наук, напомнил, что, хотя Черенков «установил общие свойства вновь открытого излучения, математическое описание данного явления отсутствовало». Работа Тамма и Франка, сказал он далее, дала «объяснение… которое, помимо простоты и ясности, удовлетворяло еще и строгим математическим требованиям».

Для Игоря Евгеньевича Нобелевская премия оказалась совершенно неожиданной. Физик Е. Фейнберг, много лет работавший с Таммом, вспоминал: «Услышав о решении Нобелевского комитета, я бросился к Игорю Евгеньевичу в кабинет и стал возбужденно поздравлять его. Спокойно и даже несколько медленнее, чем обычно, расхаживая по комнате с заложенными за спину руками, он серьезно ответил: "Да, конечно, это очень приятно. Я рад… Очень рад… Но, знаете, к этому примешивается и некоторое огорчение…"» Догадаться было нетрудно: «Потому что премия присуждена не за ту работу, которую вы сами считаете лучшей своей работой - не за бета-силы. Высшим проявлением его чувства собственного достоинства или гордости (можно назвать это как угодно) была одна особенность его научной работы: он всегда выбирал важнейшие, по его мнению, в данное время направления исследований, хотя обычно они и бывали труднейшими. Не знаю, сформулировал ли он такой принцип для себя сознательно или это было неизбежным свойством его характера борца, стремлением сделать почти невозможное, прыгнуть выше головы».

Тамм рассказывал в Политехническом институте о торжественной церемонии вручения премии:

«Дело происходит следующим образом: 10 декабря лауреатов утром ведут в концерт-холл. Там предварительно проделывается весь церемониал. Церемониал заключается в том, что лауреаты стоят за кулисами, зал наполняется и, когда пришла королевская семья и король, - играют фанфары, впереди идут чиновники, разукрашенные лентами и орденами, потом в строгом порядке следуют лауреаты и возле каждого - шведский академик. Доходят до ковра, каждый до определенного цветочка на ковре, затем делают поклон и садятся, причем это единственный случай, когда все стоят - и король, и королевская фамилия, а лауреаты сидят, причем в строгом порядке: на первом месте физики, потом химики, затем биологи, а у физиков сначала экспериментаторы и т.д. В строго установленном порядке. Затем выходит Карл Зибган.

Затем по каждой специальности произносится речь представителем Академии наук, который излагает достоинства и важность работ, сделанных лауреатом. Потом они в определенном порядке спускаются по ступенькам, и король вручает лауреатам очень тщательно, изящно сделанные дипломы, причем для каждой специальности художник дает новый рисунок на дипломе, имеющий отношение к данному открытию, в частности, в моем случае это было фиолетово-синее свечение неизвестно чего. Затем вручается большая золотая медаль. Это первая торжественная церемония. После того как закончилось вручение премий физикам, оркестр играет определенные вещи Баха, когда вручаются премии химикам, играют Бетховена, и так по каждой специальности - своя музыка».

Последний отрезок жизни был невеселым для Тамма-ученого. Его работа шла вразрез с «генеральной линией» науки и не пользовалась признанием. В середине шестидесятых годов к нему подкралась тяжелая неизлечимая болезнь - боковой амиотрофический склероз, приведший к параличу дыхательных мышц, в результате чего ему пришлось перейти к принудительному дыханию с помощью специальной машины.

Для лечения Игоря Евгеньевича были использованы все мыслимые возможности. Однако его болезнь была абсолютно необратимой. И 12 апреля 1971 года наступила трагическая развязка…

 

ИЛЬЯ МИХАЙЛОВИЧ ФРАНК

(1908- 1990)

Франк Илья Михайлович родился 23 октября 1908 года в Петербурге в семье интеллигентов. Он был младшим из двух сыновей Михаила Людвиговича Франка и Елизаветы Михайловны Франк (Грациановской). Старший брат Глеб стал позднее известным специалистом по биофизике. Семья жила на скромный преподавательский заработок отца. Только после революции он стал профессором. Мать окончила сестринские курсы, а затем Женский медицинский институт. После революции много лет работала врачом, главным образом как специалист по костному туберкулезу. «Что касается меня, - писал в своей автобиографии Илья Михайлович, - то я в детстве много болел и не очень регулярно учился в школе. Увлекался биологией и охотно самостоятельно занимался математикой, чему способствовали помощь отца и книги, которые он мне дарил. В 20-е годы наша семья жила в Крыму, и я учился в Ялте. Школа почему-то была преобразована в Ялтинский промышленно-экономический техникум. По окончании первого курса техникума (что эквивалентно 8 классам средней школы) я в 1925 году переехал к отцу в Симферополь, где он был профессором в Крымском (Таврическом) университете, временно преобразованном в педагогический институт. В 1925/26 учебном году, не поступая в Педагогический институт, слушал там лекции, работал в учебной физической лаборатории и математическом кружке, и даже сделал первые шаги в самостоятельной научной работе по геометрии. Единственная опубликованная работа по математике была выполнена тогда и напечатана в 1928 году».

Окончив среднюю школу, Илья поступил в 1926 году в Московский государственный университет на физико-математический факультет. Со второго курса он начал работать в лаборатории С.И. Вавилова, которого считал своим учителем. Под руководством Вавилова Франк выполнил свою первую работу - по люминесценции.

После окончания МГУ в 1930 году несколько лет работал в Государственном оптическом институте в Ленинграде в лаборатории А.Н. Теренина. Здесь Франк выполнял оригинальные исследования по физической оптике и фотохимическим реакциям, за которые ему в 1934 году присвоили степень доктора физико-математических наук.

В 1934 году по предложению С.И. Вавилова Франк перешел на работу в Физический институт им. П.Н. Лебедева АН СССР (ФИАН). Здесь он работал по 1970 год в должности старшего научного сотрудника, заведующего отделом, заведующего лабораторией атомного ядра.

«С самого начала, еще в 1934 году, заинтересовался работой П.А. Черенкова по свечению чистых жидкостей под действием гамма-лучей, в дальнейшем получившей название "эффект Черенкова", - писал Франк в автобиографии. - Вместе с С.И. Вавиловым принимал участие в обсуждении хода этих исследований. Внес определенный вклад в понимание результатов, особенно в вопрос о направленности излучения. Совместно с И.Е. Таммом в 1937 году объяснил это новое явление как излучение электрона при движении в среде со сверхсветовой скоростью и развил его теорию».

Природа этого свечения, открытого Черенковым, оставалась загадочной, пока Франк и Тамм в (ставшей классической) работе 1937 года не дали новому эффекту исчерпывающее объяснение как излучению электронов, движущихся в среде со сверхсветовой скоростью (излучение сверхсветового электрона). Эта работа стимулировала многочисленные исследования явления как в СССР, так и за рубежом. После того как была установлена возможность практического использования эффекта для обнаружения и изучения свойств быстрых заряженных частиц, значимость открытия и объяснения его природы возросла еще больше.

Вот фрагмент характеристики, данной академиком Вавиловым своему ученику 2 июля 1938 года:

«Живейшее участие принял И.М. Франк в осуществлении и объяснении опытов П.А. Черенкова по новому виду свечения, сопровождающего распространение гамма-лучей в жидких и твердых средах. В частности, И.М. Франку принадлежит блестящая догадка о том, что перед нами совершенно новое явление, специфическое для распространения электронов, движущихся со скоростью больше фазовой скорости света в плотной среде. Эта идея получила полное и вполне строгое развитие в теоретической работе И.Е. Тамма и И.М. Франка. Используя свои глубокие знания в области физической оптики, И.М. Франк принял участие в работах Стратосферной комиссии АН СССР по наблюдению свечения ночного неба, совместно с Н.А. Добротиным и П.А. Черенковым. Эта работа привела к открытию нового эффекта резкой вариации интенсивности ночного свечения неба в течение ночи. Под руководством И.М. Франка впервые на Эльбрусе удалось произвести наблюдения космических лучей камерой Вильсона.

В целом И.М. Франк является исключительным по своей эрудиции, экспериментальному искусству, глубокой физической интуиции представителем молодой советской физики».

Как пишет И.М. Дунская: «Подобно тому, как для всей физики эффект Черенкова-Вавилова стал отправным пунктом развития целой области науки, так и для Франка объяснение этого эффекта явилось началом продолжающегося по сей день активного интереса по все возрастающей проблеме влияния оптических свойств среды на излучение движущегося источника. Эффект Черенкова-Вавилова в простейшем случае (изотропная среда и т.д.) был лишь первым из относящихся сюда вопросов. В названном эффекте им исследовались и получены ценные результаты при изучении явления интерференции (1944), длительности вспышки (1956), излучения для мультиполей (1952), излучения в оптических анизотропных средах (1960), а также исследования эффекта Допплера в преломляющих средах (1942), при сверхсветовой скорости (1947) и другие проблемы…»

В 1940 году Франк начал читать лекции на возглавляемой им кафедре ядерной физики Московского государственного университета. Эту работу прервала война. С ее началом вместе с Физическим институтом ученый был эвакуирован в Казань, где находился до 1943 года. В конце войны и первые послевоенные годы Франк сосредоточился на исследованиях по физике реакторов, проводившихся в тесном контакте с И.В. Курчатовым.

За работы по физике реакторов и работы по исследованию ядерных реакций легчайших ядер, также выполнявшихся по специальному заданию правительства, он был награжден орденами и Государственной (Сталинской) премией 1953 года. В 1946 году Франка избрали членом-корреспондентом Академии наук СССР.

С исследований по физике реакторов началась специализация Франка в области нейтронной физики. Одним из плодотворных направлений работ, развернутых ученым в ФИАНе, явились исследования по физике медленных нейтронов.

«Результаты исследования не только подтвердили преимущества импульсного метода, но и привели к открытию нового явления - диффузного охлаждения нейтронов, которому Франк дал теоретическое объяснение, - пишет И.М. Дунская. - Работы по импульсному методу были доложены на Женевской конференции по мирному использованию атомной энергии в 1955 году. В настоящее время импульсный метод изучения распространения нейтронов стал общепринятым; он широко применяется при исследовании свойств жидких и твердых сред в геологической разведке и в реакторной физике. Работы по физике медленных нейтронов получили дальнейшее развитие в созданной под руководством Франка лаборатории нейтронной физики ОИЯИ в Дубне, где сооружена уникальная установка для получения нейтронов - импульсный реактор на быстрых нейтронах. Реактор был запущен в 1960 году, работы, проводимые на нем, ведутся, главным образом, по нейтронно-спектроскопическому исследованию атомных ядер и изучению жидкостей твердых сред».

В 1958 году Франк вместе с Таммом и Черенковым был удостоен Нобелевской премии «за открытие и объяснение эффекта Черенкова».

В своей нобелевской лекции Франк указывал, что эффект Черенкова «имеет многочисленные приложения в физике частиц высокой энергии». «Выяснилась также связь между этим явлением и другими проблемами, - добавил он, - как, например, связь с физикой плазмы, астрофизикой, проблемой генерирования радиоволн и проблемой ускорения частиц».

В 1957 и 1960 годах Франк был председателем оргкомитета Всесоюзной конференции по ядерным реакциям при малых и средних энергиях. С 1963 года был членом Бюро Отделения ядерной физики АН СССР. В 1968 году его избрали академиком Академии наук СССР. Еще через два года Илья Михайлович перешел в Объединенный институт ядерных исследований.

Ученый был дважды женат. В 1937 году он женился на Элле Абрамовне Бейлихис, историке по образованию, которая умерла в 1960 году. В 1941 году у них родился сын Александр, ставший позднее старшим научным сотрудником Института атомной энергии им. Курчатова.

В 1966 году Илья Михайлович женился вторично, на Марине Михайловне Губерт (по первому мужу Назаровой) - враче, пульмонологе по специальности.

Незадолго до смерти (ученый умер 22 июня 1990 года) в своей автобиографии в 1988 году Илья Михайлович писал:

«Продолжаю работы в области нейтронной физики и теоретические исследования по электродинамике. В частности, подготовил к печати монографию, суммирующую ряд полученных ранее результатов. В Академии наук состою членом нескольких экспертных комиссий (по присуждению премии им. М.В. Ломоносова, медали им. С.И. Вавилова, медали им. И.В. Курчатова). С 1974 года и позже - председатель оргкомитета международных школ по нейтронной физике, ставших традиционными (1978, 1982, 1986). Принимал участие во многих международных конференциях как в СССР, так и за рубежом, в том числе и нескольких Пагуошских. Неоднократно избирался представителем СССР в Комиссию по ядерной физике. В последние годы руковожу Научным советом по физике ядра АН СССР. Совет совместно с Московским университетом раз в два года проводит всесоюзные конференции по физике ядра.

Имею правительственные награды: три ордена Ленина (1952, 1953, 1975), орден Октябрьской Революции (1978), два ордена Трудового Красного Знамени (1948, 1968), орден "Знак Почета" (1945), а также медали, в том числе "За доблестный труд в Великой Отечественной войне 1941-1945 гг." и "В ознаменование столетия со дня рождения В.И. Ленина".

Имею также почетные звания и награды социалистических стран: иностранный член Академии наук ГДР, доктор honoris causa Лодзинского университета в Польше и Карпова университета в Праге, член Физического общества Болгарии. Награжден орденом "Кирилла и Мефодия" (Болгария), "Красного Знамени" (Корея), орденом "Дружбы" (Вьетнам), "Полярной Звезды" (Монголия), а также медалями».

 

ЛЕВ ДАВИДОВИЧ ЛАНДАУ

(1908- 1968)

Один из соавторов Ландау, академик В.Л. Гинзбург, вспоминал: «Талант Ландау так ярок, техника так отточена, что, казалось бы, он мог сделать еще больше, решить еще более трудные проблемы. Как-то, к слову пришлось, и я сказал это Льву Давидовичу, но он, словно и раньше думал об этом, очень четко ответил: "Нет, это неверно, я сделал что мог"».

Лев Давидович Ландау родился 22 января 1908 года в семье Давида и Любови Ландау в Баку. Его отец был известным инженером-нефтяником, работавшим на местных нефтепромыслах, а мать - врачом. Она занималась физиологическими исследованиями. Старшая сестра Ландау стала инженером-химиком.

В двенадцать лет Лев изучил дифференциальное и интегральное исчисление. Среднюю школу он окончил, когда ему было всего тринадцать лет. Родители сочли, что он слишком молод для высшего учебного заведения, и послали его на год в Бакинский экономический техникум, причем сразу на два факультета - физико-математический и химический.

В шестнадцать лет Лев переехал в Ленинград и поступил на физическое отделение Ленинградского университета.

«Здесь мне пришлось сделать выбор: я стал заниматься физикой, о чем до сих пор не жалею», - говорил позднее ученый.

«Первый ленинградский период» жизни Ландау длился около пяти лет - до его полуторагодичной командировки за границу.

К девятнадцати годам Ландау успел опубликовать четыре научные работы. В одной из них впервые использовалась матрица плотности - ныне широко применяемое математическое выражение для описания квантовых энергетических состояний.

Режим и образ жизни студентов были весьма вольными: «На лекции в университет ходил два раза в неделю, чтобы встретиться с друзьями и посмотреть, что там делают. Но самостоятельно я занимался очень много. Так много, что по ночам мне начинали сниться формулы».

«Чистый теоретик» прорезался в Ландау очень рано, а вот эксперимент ему не давался. Товарищи его разводили руками, не представляя, как помочь. Потом сообща отправились к декану и говорят:

– Что делать? Есть у нас такой гениальный юноша, но сдать третью лабораторную никак не может.

– Пусть он тогда вместо этого сдаст два математических курса за математический факультет, - решил декан.

Не прошло и двух недель, как оба курса были сданы. По окончании университета в 1927 году Ландау поступил в аспирантуру Ленинградского физико-технического института, где он работал над магнитной теорией электрона и квантовой электродинамикой.

Лев входил в компанию молодых физиков-теоретиков, где тон задавали кроме него Гамов и Иваненко, потом к ним присоединился Бронштейн. Они себя называли «джаз-бандой». Вот тогда-то Ландау и стал «Дау». Так звали его все сколько-нибудь близкие ему люди, в том числе и его ученики.

С 1929 по 1931 год Ландау находился в научной командировке в Германии, Швейцарии, Англии, Нидерландах и Дании. Там он встречался с основоположниками новой тогда квантовой механики, в том числе с Гейзенбергом и Паули. Большую часть срока Ландау провел в Копенгагене у Нильса Бора. С тех лет навсегда, до конца жизни, сохранилась его дружба с Бором и любовь к Бору.

Находясь за границей, Ландау провел важные исследования магнитных свойств свободных электронов и совместно с Р.Ф. Пайерлсом - по релятивистской квантовой механике. Эти работы выдвинули его в число ведущих физиков-теоретиков. Он научился обращаться со сложными теоретическими системами, и это умение пригодилось ему впоследствии, когда он приступил к исследованиям по физике низких температур.

В 1931 году Ландау возвратился в Ленинград, но вскоре переехал в Харьков, бывший тогда столицей Украины. Там Ландау стал руководителем теоретического отдела Украинского физико-технического института. Одновременно он заведовал кафедрами теоретической физики в Харьковском инженерно-механическом институте и в Харьковском университете. Академия наук СССР присудила ему в 1934 году ученую степень доктора физико-математических наук без защиты диссертации, а в следующем году он получил звание профессора. В Харькове Ландау опубликовал работы на такие различные темы, как происхождение энергии звезд, дисперсия звука, передача энергии при столкновениях, рассеяние света, магнитные свойства материалов, сверхпроводимость, фазовые переходы веществ из одной формы в другую и движение потоков электрически заряженных частиц. Это создало ему репутацию необычайно разностороннего теоретика.

Необычайно широкий диапазон его исследований, охватывающих почти все области теоретической физики, привлек в Харьков многих высокоодаренных студентов и молодых ученых, в том числе Евгения Лифшица, ставшего не только ближайшим сотрудником Ландау, но и его другом. Выросшая вокруг Ландау школа превратила Харьков в ведущий центр советской теоретической физики.

В помощь своим ученикам Ландау в 1935 году создал исчерпывающий курс теоретической физики, опубликованный им и Лифшицем в виде серии учебников, содержание которых авторы пересматривали и обновляли в течение последующих двадцати лет. Эти учебники, переведенные на многие языки, во всем мире заслуженно считаются классическими.

Но жил Ландау и его товарищи не одной работой. В свободное время они играли в теннис, сочиняли песенки, ставили спектакли, устраивали костюмированные вечера, вообще всячески веселились. Ландау познакомился с Конкордией Дробанцевой, абсолютная красота которой покорила его с первого взгляда, и он влюбился в нее. В 1937 году, спустя несколько лет, Кора Дробанцева, инженер-технолог кондитерской фабрики, переехала в Москву и стала женой Ландау. В 1946 году у них родился сын Игорь, работавший впоследствии физиком-экспериментатором в том же Институте физических проблем, в котором так много сделал его отец.

В 1937 году Ландау по приглашению Капицы возглавил отдел теоретической физики во вновь созданном Институте физических проблем в Москве. Но на следующий год Ландау был арестован по ложному обвинению в шпионаже в пользу Германии.

Ученый вспоминал: «По нелепому доносу я был арестован. Меня обвиняли в том, что я немецкий шпион. Год я провел в тюрьме, и было ясно, что даже еще на полгода меня не хватит: я просто умирал. Капица поехал в Кремль и заявил, что он требует моего освобождения, а в противном случае будет вынужден оставить институт. Меня освободили. Вряд ли надо говорить, что для подобного поступка в те годы требовались немалое мужество, большая человечность и кристальная честность».

Как пишет М.И. Каганов: «Внешняя сторона жизни Ландау после ареста вполне благополучна, если исключить то, что Ландау был "невыездным": его лишили возможности свободного общения с иностранными коллегами, он не участвовал в международных конференциях, если они проходили не на территории СССР. Как стало известно в последние годы, на протяжении многих лет за Ландау велось негласное наблюдение (в частности, его разговоры с сотрудниками и друзьями прослушивались)».

Одной из наиболее замечательных работ Ландау является созданная им в 1941 году теория сверхтекучести гелия-2. Явление сверхтекучести гелия было открыто в 1937 году Капицей, который обнаружил, что ниже 2,18°K жидкий гелий переходит в новую модификацию, названную гелием-2, и обладает рядом удивительных особенностей.

Как писал академик А.А. Абрикосов: «Теория Л.Д. Ландау сразу дала полную картину всех известных к тому времени свойств гелия-2 и предсказала ряд совершенно новых явлений. В основе этой теории лежит представление о возбужденном состоянии квантовой системы как совокупности квазичастиц с определенным энергетическим спектром. Сперва Ландау предполагал, что спектр состоит из двух ветвей: "фононов" - с линейной зависимостью энергии от импульса и "ротонов" - с квадратичной зависимостью. При этом считалось, что фотонный спектр отделен от основного состояния энергетической щелью. Впоследствии (1947) Ландау пришел к выводу, что в действительности имеется лишь одна ветвь энергетического спектра.

С помощью энергетического спектра была найдена температурная зависимость теплоемкости гелия-2, которая оказалась в прекрасном согласии с экспериментом. Ландау показал далее, как из свойств спектра следует сверхтекучесть. Оказалось, что при скоростях, меньших некоторой критической, гелий свободно протекает по капилляру и появление в нем новых возбуждений энергетически невыгодно.

Изучая движение гелия при температурах выше 0°K, Ландау пришел к выводу, что гелий совершает два движения: нормальное и сверхтекучее, с каждым из которых связана своя эффективная масса. Ландау нашел основные уравнения гидродинамики такой жидкости и пришел к выводу, что в ряде задач гелий-2 эквивалентен смеси двух жидкостей: нормальной (вязкой) и сверхтекучей (идеальной), движущихся с различными скоростями, но без взаимного трения. Была вычислена эффективная плотность нормальной жидкости как функция температуры.

Наличие двух типов движения гелия-2 позволило объяснить большую теплопередачу. Основным механизмом теплопередачи в гелии-2 являются конвективные потоки нормальной и сверхтекучей жидкостей. Получил объяснение и термомеханический эффект. Он является следствием осмотического давления раствора нормальной жидкости в сверхтекучей, причем капилляр играет роль полупроницаемой перегородки.

Изучая распространение звука в гелии-2, Ландау пришел к выводу о существовании в гелии, помимо обычного звука, колебаний другого типа, названных им вторым звуком. Исследование показало, что в противоположность обычному звуку, который представляет собой в основном колебания давления, во втором звуке основными являются колебания температуры. В обычном звуке нормальная и сверхтекучая жидкости движутся как целое. Во втором звуке они движутся в противофазе, причем так, что полный поток вещества равен нулю. Скорость второго звука меньше, чем скорость первого, и обращается в нуль в точке перехода. В работе Ландау была найдена температурная зависимость этой скорости, которая впоследствии стала средством определения параметров спектра возбуждений в гелии-2».

Летом 1941 года институт эвакуировался в Казань. Там, как и остальные сотрудники, Ландау отдавал силы, прежде всего, оборонным заданиям.

По возвращении в Москву Ландау с 1943 по 1947 год преподавал на кафедре физики низких температур МГУ, а с 1947 по 1950 год - на кафедре общей физики МФТИ. В связи с работой над книгой «Механика сплошных сред», изданной в 1944 году, он в этот период интенсивно занимался проблемами гидродинамики, в частности, разрывами и турбулентностью. В 1946 году Лев Давидович создал теорию колебаний электронной плазмы.

Ландау был привлечен к участию в разработке атомного оружия, но после смерти Сталина он отказался от работ по секретной тематике.

Из многочисленных научных работ 1949-1953 годов ученого следует отметить работы по различным вопросам электродинамики, новую феноменологическую теорию сверхпроводимости и, наконец, очень важную для физики космических лучей теорию множественного рождения частиц при столкновениях быстрых частиц. В 1954 году Лев Давидович занимался изучением принципиальных вопросов квантовой теории поля. В итоге этой работы он совместно с И.Я. Померанчуком в 1955 году получил очень существенный результат о принципиальной несостоятельности квантовой теории поля в вопросе о природе элементарных взаимодействий.

В 1955 году Ландау вернулся в МГУ, где в качестве профессора кафедры теоретической физики читал различные курсы теоретической физики.

В 1956- 1958 годах Лев Давидович создал общую теорию так называемой Ферми-жидкости, к которой относятся жидкий гелий-3 и электроны в металлах. В 1959 году на Международной конференции по физике высоких энергий в Киеве он выдвинул новые принципы построения теории элементарных частиц.

Интенсивность напряженной и плодотворной работы Ландау нисколько не ослабевала до самого рокового дня 7 января 1962 года. В этот день в 10 часов 30 минут на шоссе из Москвы в Дубну легковая машина, в которой ехал Лев Давидович, столкнулась со встречным грузовиком. Ученый получил множественные тяжелейшие травмы. В течение шести недель он оставался без сознания и почти три месяца не узнавал даже своих близких.

В сентябре Ландау перевели в больницу Академии наук. Здесь академика застало известие о присуждению ему двух больших наград: Ленинской премия за цикл книг по теоретической физике и Нобелевской премия по физике за 1962 год. 1 ноября Лев Давидович получил телеграмму: «Москва, Академия наук, профессору Льву Ландау. 1 ноября 1962 года. Королевская академия наук Швеции сегодня решила присудить Вам Нобелевскую премию по физике за пионерские работы в области теории конденсированных сред, особенности жидкого гелия. Подробности письмом. Эрик Рудберг, постоянный секретарь».

Утром 2 ноября в больницу приехал посол Швеции в Советском Союзе Р. Сульман. Он поздравил Ландау с премией. Иностранным корреспондентам ученый сказал: «Присуждение премии рассматриваю как еще одно всеобщее признание великого вклада советского народа в мировой прогресс. - И неожиданно улыбнувшись, добавил: - Передайте на страницах ваших изданий благодарность моему учителю Нильсу Бору. Я многим ему обязан и сегодня вспоминаю о нем с особой благодарностью». Многочисленные друзья и коллеги Ландау поздравили его с получением премии: Бор, Гейзенберг, Ланге, Ли, Янг, Шенберг.

«Это была большая радость - услышать минувшей ночью по радио и прочитать сегодня утром в "Таймс" известно о присуждении Вам Нобелевской премии. Пожалуйста, примите мои искренние поздравления с этой почетной, столь заслуженной наградой. Без Ваших работ, охватывающих многие различные направления науки, физика не была бы тем, что она есть сейчас, и Ваши коллеги во всем мире благодарны Вам за то, что Вы всегда вдохновляли нас. Курт Мендельсон».

«Только что узнал из газет, что Вы получили Нобелевскую премию по физике. Разрешите поздравить Вас от всего сердца. Хотя я никогда не работал над теми проблемами, которыми занимались Вы, я издалека наблюдал за Вашей работой с огромным восхищением. Надеюсь встретить Вас на одном из ежегодных собраний нобелевских лауреатов в Линдау, которые всегда очень интересны. Макс Борн».

Ландау прожил еще шесть лет, но слишком тяжела была травма. Жестокие боли долго и почти постоянно мучили Ландау. К занятиям наукой он вернуться уже не смог.

Ландау сказал перед смертью: «Я неплохо прожил жизнь. Мне всегда все удавалось». Лев Давидович умер 1 апреля 1968 года.

 

АЛЕКСАНДР МИХАЙЛОВИЧ ПРОХОРОВ

(1916- 2002)

 

НИКОЛАЙ ГЕННАДИЕВИЧ БАСОВ

(1922- 2001)

Александр Михайлович Прохоров родился 11 июля 1916 года в Атертоне (Австралия) в семье беглых ссыльных Михаила и Марии. В 1911 году они бежали из Сибири в Австралию. После революции и гражданской войны семья Прохорова возвратилась на родину в 1923 году, где через некоторое время поселилась в Ленинграде.

В 1934 году в северной столице Александр окончил с золотой медалью среднюю школу. После чего он поступил на физический факультет Ленинградского государственного университета (ЛГУ). И университет Александр также оканчивает в 1939 году с отличием. Диплом с отличием давал право немедленного поступления в аспирантуру, и Прохоров сразу же этим воспользовался, став аспирантом Физического института АН СССР им. П.Н. Лебедева в Москве. Здесь молодой ученый занялся исследованием процессов распространения радиоволн вдоль земной поверхности. Им был предложен оригинальный способ изучения ионосферы с помощью радиоинтерференционного метода.

В 1941 году Прохоров женился на Галине Алексеевне Шелепиной, географе по специальности, и у них родился сын.

С самого начала Отечественной войны Прохоров в рядах действующей армии. Воевал в пехоте, в разведке, отмечен боевыми наградами, был дважды ранен. Демобилизовавшись в 1944 году, после второго тяжелого ранения, он возвратился к прерванной войной научной работе в ФИАНе. Прохоров занялся актуальными в то время исследованиями по теории нелинейных колебаний. Эти работы и легли в основу его кандидатской диссертации. За создание теории стабилизации частоты лампового генератора в 1948 году ему была присуждена премия имени академика Л.И. Мандельштама.

В 1947 году в ФИАНе был пущен синхротрон - устройство, в котором заряженные частицы двигаются по расширяющимся циклическим орбитам. С помощью синхротрона в 1948 году Александр Михайлович начинает исследование природы и характера электромагнитного излучения, испускаемого в циклических ускорителях заряженных частиц. В очень короткий срок ему удается провести большую серию успешных экспериментов по изучению когерентных свойств магнито-тормозного излучения релятивистских электронов, движущихся в однородном магнитном поле в синхротроне - синхротронного излучения.

В результате проведенных исследований Прохоров доказал, что синхротронное излучение может быть использовано в качестве источника когерентного излучения в сантиметровом диапазоне длин волн, определил основные характеристики и уровень мощности источника, предложил метод определения размеров электронных сгустков.

Эта классическая работа открыла целое направление исследований. Ее результаты были оформлены в виде докторской диссертации, успешно защищенной Александром Михайловичем в 1951 году. В 1950 году Прохоров начал работы в совершенно новом направлении физики - радиоспектроскопии.

В спектроскопии тогда осваивался новый диапазон длин волн - сантиметровых и миллиметровых. В этот диапазон попадали вращательные и некоторые колебательные спектры молекул. Это открывало совершенно новые возможности в исследовании фундаментальных вопросов строения молекул. Богатый экспериментальный и теоретический опыт Прохорова в области теорий колебаний, радиотехники и радиофизики как нельзя лучше подходил для освоения этой новой области.

При поддержке академика Д.В. Скобельцына в минимально возможные сроки вместе с группой молодых сотрудников лаборатории колебаний Прохоров создал отечественную школу радиоспектроскопии, быстро завоевавшую передовые позиции в мировой науке. Одним из этих молодых сотрудников был выпускник Московского инженерно-физического института Николай Геннадьевич Басов.

Басов родился 14 декабря 1922 года в городе Усмань Воронежской губернии, в семье Геннадия Федоровича Басова, впоследствии профессора Воронежского университета.

Окончание школы Басовым совпало с началом Великой Отечественной войны. В 1941 году Николая призвали в армию. Он был направлен в Куйбышевскую военно-медицинскую академию. Через год его перевели в Киевское военно-медицинское училище.

Начиная с 1943 года Николай в действующей армии. Впоследствии он вспоминал: «Случай у меня такой был. Значит, копают землянки солдаты. Работа тяжелая, и у одного солдатика случился аппендицит. Его надо резать, я всего один раз видел, как профессор удалял аппендикс, я ему чуть-чуть ассистировал, подавал разные инструменты. Я поставил четырех солдат, которые держали простыню сверху - с наката землянки сыпались грязь и песок. Дал полстакана спирта вместо наркоза и сделал операцию!… Кстати, этот паренек жив до сих пор».

В 1946 году Николай поступил в Московский инженерно-физический институт, известный своей великолепной школой теоретической физики. По окончании института в 1950 году он поступил в его аспирантуру на кафедру теоретической физики. В том же году Басов женился на Ксении Тихоновне Назаровой, физике из МИФИ. У них родились два сына.

С 1949 года Николай Геннадиевич работает в Физическом институте АН СССР. Его первая должность - инженер лаборатории колебаний, возглавляемой академиком М.А. Леонтовичем. Затем он стал младшим научным сотрудником той же лаборатории. В те годы группа молодых физиков под руководством Прохорова начала исследования на новом научном направлении - молекулярной спектроскопии. Тогда же началось плодотворное содружество Басова и Прохорова, приведшее к основополагающим работам в области квантовой электроники.

Прохоров вспоминал: «Для нас все начиналось с радиоспектроскопии молекул, которой я сам активно занимался в ФИАНе с 1951 года. Николай Басов стал в то время одним из первых и ближайших моих сотрудников. С ним меня связывают около десяти лет напряженной и плодотворной совместной работы, закончившейся созданием в Лаборатории колебаний ФИАНа молекулярного генератора на пучке молекул аммиака».

В 1952 году Прохоров и Басов выступили с первыми результатами теоретического анализа эффектов усиления и генерации электромагнитного излучения квантовыми системами, в дальнейшем ими была исследована физика этих процессов.

Разработав целый ряд радиоспектроскопов нового типа, лаборатория Прохорова начала получать очень богатую спектроскопическую информацию по разделению структур, дипольных моментов и силовых постоянных молекул, моментов ядер и т.д.

Анализируя предельную точность микроволновых молекулярных стандартов частоты, которая определяется в первую очередь шириной молекулярной линии поглощения, Прохоров и Басов предложили использовать эффект резкого сужения линии в молекулярных пучках.

«Однако переход к молекулярным пучкам, - пишут И.Г. Бебих и В.С. Семенова, - решая проблему ширины линии, создавал новую трудность - резко снижалась интенсивность линии поглощения из-за низкой общей плотности молекул в пучке. Сигнал поглощения есть результат индуцированных переходов между двумя энергетическими состояниями молекул с поглощением кванта при переходе с нижнего уровня на верхний (индуцированное, вынужденное поглощение) и с испусканием кванта при переходе с верхнего уровня вниз (индуцированное, вынужденное излучение). Следовательно, он пропорционален разности заселенностей нижнего и верхнего энергетических уровней изучаемого квантового перехода молекул. Для двух уровней, отстоящих на энергетическом расстоянии, равном кванту СВЧ-излучения, эта разность населенностей составляет лишь малую часть от общей плотности частиц в силу термического заселения уровней в равновесном состоянии при обычных температурах согласно распределению Больцмана. Тогда-то и была предложена идея о том, что, изменяя искусственно населенности уровней в молекулярном пучке, т.е. создавая неравновесные условия (или как бы свою "температуру", определяющую населенность этих уровней), можно существенно изменить интенсивность линии поглощения. Если резко снизить число молекул на верхнем рабочем уровне, отсортировывая из пучка такие частицы, например, с помощью неоднородного электрического поля, то интенсивность линии поглощения возрастает. В пучке как бы создана сверхнизкая температура. Если же таким способом убрать молекулы с нижнего рабочего уровня, то в системе будет наблюдаться усиление за счет индуцированного излучения. Если усиление превышает потери, то система самовозбуждается на частоте, которая определяется по-прежнему частотой данного квантового перехода молекулы. В молекулярном же пучке будет осуществлена инверсия населенностей, т.е. создана как бы отрицательная температура. Так возникла идея молекулярного генератора, изложенная в хорошо известном цикле классических совместных работ А.М. Прохорова и Н.Г. Басова 1952-1955 годов.

Отсюда начала свое развитие квантовая электроника - одна из самых плодотворных и наиболее быстро развившихся областей современной науки и техники.

По существу, главный, принципиальный шаг в создании квантовых генераторов состоял в том, чтобы приготовить неравновесную излучающую квантовую систему с инверсией населенностей (с отрицательной температурой) и поместить ее в колебательную систему с положительной обратной связью - объемный резонатор. Его могли и должны были сделать ученые, объединившие в себе опыт изучения квантовомеханических систем и радиофизическую культуру. Дальнейшее распространение этих принципов на оптический и другие диапазоны было неизбежно».

Принципиальным было предложение Прохорова и Басова о новом методе получения инверсии населенностей в трехуровневых (и более сложных) системах с помощью насыщения одного из переходов под действием мощного вспомогательного излучения. Это так называемый метод трех уровней, получивший позднее также название метода оптической накачки.

Именно он позволил в 1958 году Фабри-Перо сформировать реальную научную основу для освоения других диапазонов. Этим успешно воспользовался в 1960 году Т. Мэйман при создании первого лазера на рубине.

Еще в период работы над молекулярными генераторами Басов пришел к идее о возможности распространения принципов и методов квантовой радиофизики на оптический диапазон частот. Начиная с 1957 года он занимался поиском путей создания оптических квантовых генераторов - лазеров.

В 1959 году Басовым совместно с Б.М. Вулом и Ю.М. Поповым была подготовлена работа «Квантово-механические полупроводниковые генераторы и усилители электромагнитных колебаний». В ней предлагалось использовать для создания лазера инверсную заселенность в полупроводниках, получаемую в импульсном электрическом поле.

Независимо от Басова и по той же тематике работал и американский физик Чарлз Хард Таунс в Колумбийском университете. Он назвал свое творение мазером. Таунс предложил заполнить резонансную полость возбужденными молекулами аммиака. Это дало невероятное усиление микроволн с частотой в 24000 мегагерц.

В 1964 году Басов, Прохоров и Таунс стали лауреатами Нобелевской премии, которой они были удостоены за фундаментальные исследования в области квантовой электроники, приведшие к созданию мазеров и лазеров.

Таунс писал в своей статье «Космические мазеры и лазеры»: «Н.Г. Басов и А.М. Прохоров в СССР и автор этих строк в США были первыми, кто предпринял серьезные попытки разработать устройство для получения усиления при вынужденном излучении, т.е. создать приборы, в наше время получившие наименование мазеров и лазеров. Их идеи и разработки в области квантовой электроники сыграли решающую роль в развитии этой области как в науке, так и в технике. Однако как выяснилось в дальнейшем, обнаружить эти явления можно было и вне Земли, поскольку они имели место на космических объектах в течение миллионов и миллионов лет».

На этом плодотворная совместная работа Басова и Прохорова не закончилась. Они разработали лазеры различных типов, включая мощные короткоимпульсные и многоканальные. Басов не только занимался фундаментальными исследованиями в области генераторов и усилителей, но и теоретически обосновывал использование лазерной техники в термоядерном синтезе.

Среди научных трудов Басова есть посвященные оптическим свойствам полупроводников и сверхпроводимости, молекулярной плазме и синхротронному излучению, космическим лучам, пульсирующим нейтронам и даже проблемам общей теории относительности.

С 1978 по 1990 год Басов был председателем правления Всесоюзного общества «Знание». В 1977 году он был удостоен Золотой медали им. А. Вольта. В 1989 году Басов получил Государственную премию СССР, а еще через год - Золотую медаль им. М.В. Ломоносова.

Прохоров в 1957 году стал профессором МГУ.

Александр Михайлович - один из основоположников целого ряда направлений современной науки и техники, таких как лазерная физика, радиоспектроскопия, квантовая электроника, волоконная оптика, лазерная техника и технология, прикладное использование лазеров в медицине, биологии, промышленности, связи.

С момента образования Института общей физики РАН он был бессменным директором и родоначальником одной из крупнейших в России научных школ. Прохорова избрали президентом Академии естественных наук.

В 1982 году Александр Михайлович создал и возглавил Международный журнал «Лазерная физика». В течение более чем тридцати лет он был главным редактором Большой Советской (ныне Российской) энциклопедии. С 1997 года Александр Михайлович руководил многонациональным проектом «Балтийская Кремниевая Долина».

Н.Г. Басов умер 1 июля 2001 года, А.М. Прохоров - 8 января 2002 года. Всю жизнь они были рядом, и их могилы тоже рядом - в Москве на Новодевичьем кладбище.

 

МАРРИ ГЕЛЛ-МАНН

(1929)

Марри Гелл-Манн родился 15 сентября 1929 года в Нью-Йорке и был младшим сыном эмигрантов из Австрии Артура и Полин (Райхштайн) Гелл-Манн. В возрасте пятнадцати лет Марри поступил в Йельский университет и окончил его в 1948 году с дипломом бакалавра наук. Последующие годы он провел в аспирантуре Массачусетсского технологического института. Здесь в 1951 году Гелл-Манн получил докторскую степень по физике. После годичного пребывания в Принстонском институте фундаментальных исследований (штат Нью-Джерси) Гелл-Манн начал работать в Чикагском университете с Энрико Ферми, сначала преподавателем (1952-1953), затем ассистент-профессором (1953-1954) и адъюнкт-профессором (1954-1955).

Основная область научных интересов молодого ученого - физика элементарных частиц - в пятидесятые годы находилась в стадии формирования. Основными средствами экспериментальных исследований в этом отделе физики были ускорители, «выстреливавшие» пучок частиц в неподвижную мишень: при столкновении налетающих частиц с мишенью рождались новые частицы. С помощью ускорителей экспериментаторам удалось получить несколько новых типов элементарных частиц, помимо уже известных протонов, нейтронов и электронов. Физики-теоретики пытались найти некоторую схему, которая позволила бы классифицировать все новые частицы.

Учеными были обнаружены частицы с необычным (странным) поведением. Скорость рождения таких частиц в результате некоторых столкновений свидетельствовала о том, что их поведение определяется сильным взаимодействием, для которого характерно быстродействие. Сильное, слабое, электромагнитное и гравитационное взаимодействия образуют четыре вида взаимодействия, лежащих в основе всех явлений. Вместе с тем странные частицы распадались необычно долго, что было бы невозможно, если бы их поведение определялось сильным взаимодействием. Скорость распада «странных» частиц, по-видимому, указывала на то, что этот процесс определяется гораздо более слабым взаимодействием. На решении этой труднейшей задачи и сосредоточил свое внимание Гелл-Манн. Исходным пунктом своих построений он избрал понятие, известное под названием зарядовой независимости. Суть его состоит в определенной группировке частиц, подчеркивающей их сходство. Например, несмотря на то что протон и нейтрон отличаются электрическим зарядом (протон имеет заряд +1, нейтрон - 0), во всех остальных отношениях они тождественны. Следовательно, их можно считать двумя разновидностями одного и того же типа частиц, называемых нуклонами, имеющих средний заряд, или центр заряда, равный 1/2. Принято говорить, что протон и нейтрон образуют дублет. Другие частицы также могут быть включены в аналогичные дублеты или в группы из трех частиц, называемые триплетами, или в «группы», состоящие всего лишь из одной частицы, - синглеты. Общее название группы, состоящей из любого числа частиц, - мультиплет.

Все попытки сгруппировать «странные» частицы аналогичным образом не увенчались успехом. Разрабатывая свою схему их группировки, Гелл-Манн обнаружил, что средний заряд их мультиплетов отличается от среднего заряда нуклонов. Он пришел к выводу, что это отличие может быть фундаментальным свойством «странных» частиц, и предложил ввести новое квантовое свойство, названное «странностью». По причинам алгебраического характера странность частицы равна удвоенной разности между средним зарядом мультиплета и средним зарядом нуклонов + 1/2. Гелл-Манн показал, что «странность» сохраняется во всех реакциях, в которых участвует сильное взаимодействие. Иначе говоря, суммарная «странность» всех частиц до сильного взаимодействия должна быть абсолютно равна суммарной «странности» всех частиц после взаимодействия.

Сохранение «странности» объясняет, почему распад таких частиц не может определяться сильным взаимодействием. При столкновении некоторых других, не «странных», частиц «странные» частицы рождаются парами. При этом «странность» одной частицы компенсирует «странность» другой. Например, если одна частица в паре имеет «странность» +1, то «странность» другой равна -1. Именно поэтому суммарная странность не странных частиц как до, так и после столкновения равна 0. После рождения «странные» частицы разлетаются. Изолированная «странная» частица не может распадаться вследствие сильного взаимодействия, если продуктами ее распада должны быть частицы с нулевой «странностью», так как такой распад нарушал бы сохранение «странности». Гелл-Манн показал, что электромагнитное взаимодействие (характерное время действия которого заключено между временами сильного и слабого взаимодействий) также сохраняет «странность». Таким образом, странные частицы, родившись, выживают вплоть до распада, определяемого слабым взаимодействием, которое не сохраняет «странность». Свои идеи ученый опубликовал в 1953 году.

В 1955 году Гелл-Манн женился на Дж. Маргарет Доу, которая была археологом. У них родились сын и дочь.

В 1955 году Гелл-Манн стал адъюнкт-профессором факультета Калифорнийского технологического института; в следующем году он стал полным профессором, а в 1967 году занял почетный профессорский пост, учрежденный в память Роберта Э. Милликена.

В 1961 году Гелл-Манн обнаружил, что система мультиплетов, предложенная им для описания «странных» частиц, может быть включена в гораздо более общую теоретическую схему, позволившую ему сгруппировать все сильно взаимодействующие частицы в «семейства». Свою схему ученый назвал восьмеричным путем (по аналогии с восемью атрибутами праведного жития в буддизме), так как некоторые частицы были сгруппированы в семейства, насчитывающие по восемь членов. Предложенная им схема классификации частиц известна также под названием восьмеричной симметрии. Вскоре независимо от Гелл-Манна аналогичную классификацию частиц предложил израильский физик Ювал Нееман.

Восьмеричный путь американского ученого часто сравнивают с периодической системой химических элементов Менделеева, в которой химические элементы с аналогичными свойствами сгруппированы в семейства. Как и Менделеев, который оставил в периодической таблице некоторые пустые клетки, предсказав свойства неизвестных еще элементов, Гелл-Манн оставил вакантные места в некоторых семействах частиц, предположив, какие частицы с правильным набором свойств должны заполнить «пустоты». Его теория получила частичное подтверждение в 1964 году, после открытия одной из таких частиц.

В 1963 году, находясь в качестве приглашенного профессора в Массачусетсском технологическом институте, Гелл-Манн обнаружил, что детальная структура восьмеричного пути может быть объяснена, если предположить, что каждая частица, участвующая в сильном взаимодействии, состоит из триплета частиц с зарядом, составляющим дробную часть электрического заряда протона. К такому же открытию пришел и американский физик Джордж Цвейг, работавший в Европейском центре ядерных исследований. Гелл-Манн назвал частицы с дробным зарядом кварками, заимствовав это слово из романа Джеймса Джойса «Поминки по Финнегану» («Три кварка для мистера Марка!»). Кварки могут иметь заряд +2/3 или -1/3. Существуют также антикварки с зарядами -2/3 или +1/3. Нейтрон, не имеющий электрического заряда, состоит из одного кварка с зарядом +2/3 и двух кварков с зарядом -1/3. Протон, обладающий зарядом +1, состоит из двух кварков с зарядами +2/3 и одного кварка с зарядом -1/3. Кварки с одним и тем же зарядом могут отличаться другими свойствами, т.е. существуют несколько типов кварков с одним и тем же зарядом. Различные комбинации кварков позволяют описывать все сильно взаимодействующие частицы.

В 1969 году ученый был удостоен Нобелевской премии по физике «за открытия, связанные с классификацией элементарных частиц и их взаимодействий». Выступая на церемонии вручения премии, Ивар Валлер из Шведской королевской академии наук отметил, что Гелл-Манн «на протяжении более чем десятилетия считается ведущим ученым в области теории элементарных частиц». По мнению Валлера, методы, предложенные им, «принадлежат к числу наиболее мощных средств дальнейших исследований по физике элементарных частиц».

Среди других вкладов Гелл-Манна в теоретическую физику следует отметить предложенное им совместно с Ричардом П. Фейнманом понятие «токов» слабых взаимодействий и последующее развитие «алгебры токов».

Гелл- Манн любит наблюдать за птицами и бывать в местах, не тронутых цивилизацией. В 1969 году ученый помог организовать программу исследования окружающей среды, финансируемую Национальной академией наук США. Интересуется он и исторической лингвистикой.

Гелл- Манн состоит членом Американской академии наук и искусств, а также иностранным членом Лондонского королевского общества. За свои заслуги пред наукой он удостоен премии Дэнни Хейнемана Американского физического общества (1959), премии по физике Эрнеста Орландо Лоуренса Комиссии по атомной энергии Соединенных Штатов (1966), медали Франклина Франклиновского института (1967) и медали Джона Дж. Карта Национальной академии наук США (1968).

 

ПЕТР ЛЕОНИДОВИЧ КАПИЦА

(1894- 1984)

От низких температур вблизи абсолютного нуля до чрезвычайно высоких температур, необходимых для синтеза атомных ядер, - таков огромный диапазон неутомимой многолетней работы академика Капицы.

Петр Леонидович Капица родился 9 июля 1894 года в Кронштадте в семье военного инженера, генерала Леонида Петровича Капицы, строителя кронштадтских укреплений. Мать - Ольга Иеронимовна, урожденная Стебницкая, филолог, специалист в области детской литературы и фольклора, оставила заметный след в истории русской культуры.

В 1905 году Петр начал учебу в гимназии, но через год из-за неуспеваемости (ему плохо давалась латынь) покидает ее и продолжает учебу в Кронштадтском реальном училище, которое окончил с отличием в 1912 году. Однако на физико-математический факультет Петербургского университета «реалистов» не брали, поэтому Капица поступает на электромеханический факультет Петербургского политехнического института (ППИ). Уже на первых курсах на него обратил внимание А.Ф. Иоффе, преподававший в институте физику. Он привлек Капицу к исследованиям в своей лаборатории.

В 1914 году Петр уехал на летние каникулы в Шотландию для изучения английского языка. В августе начинается Первая мировая война и вернуться в Петроград ему удается лишь в ноябре.

В январе 1915 года он добровольно отправляется на Западный фронт водителем санитарного автомобиля в составе санитарного отряда Союза городов. До мая того же года Петр на польском фронте перевозил раненых на грузовике.

В 1916 году после демобилизации из армии Капица вернулся в институт. Иоффе привлек его к экспериментальной работе в физической лаборатории, руководимой им, а также к участию в своем семинаре - одном из первых физических семинаров в России. В том же году в «Журнале русского физико-химического общества» появилась первая статья Капицы.

В 1916- м Капица женился на Надежде Кирилловне Черносвитовой, дочери К.К. Черносвитова, члена ЦК партии кадетов.

В 1918 году в невероятно трудных условиях Иоффе основал в Петрограде один из первых в России научно-исследовательских физических институтов. Капица был одним из первых сотрудников этого института, сыгравшего очень важную роль в развитии советской экспериментальной, теоретической и технической физики. Закончив в том же году Политехнический институт, Петр был оставлен в нем в должности преподавателя физико-механического факультета.

В сложной послереволюционной ситуации Иоффе всеми силами стремился сохранить семинар и своих учеников - молодых физиков, среди которых был и Капица. Он настаивал на том, что Капице необходимо отправиться за границу, но революционное правительство не давало на это разрешения, пока в дело не вмешался Максим Горький, самый влиятельный в ту пору русский писатель. Наконец Капице позволили выехать в Англию. Незадолго до этого Петр во время эпидемии гриппа - «испанки» в течение месяца потерял отца, сына, жену и новорожденную дочь.

22 мая 1921 года молодой ученый прибыл в Англию в качестве члена комиссии Российской академии наук, направленной в страны Западной Европы для восстановления научных связей, нарушенных войной и революцией. 22 июля Капица начал работать в Кавендишской лаборатории, руководитель которой, Резерфорд, согласился принять его на краткосрочную стажировку. Экспериментальное мастерство и инженерная хватка молодого русского физика сразу производят на Резерфорда сильное впечатление.

О своей работе ученый писал так: «Сперва выполнил работы по альфа- и бета-излучению, затем разработал метод получения сильных магнитных полей и в последние годы, занявшись низкими температурами, разработал метод получения жидкого гелия с помощью поршневого детандера».

Темой его докторской диссертации, которую он защитил в Кембридже в 1922 году, было «Прохождение альфа-частиц через вещество и методы получения магнитных полей».

Научный авторитет Капицы быстро рос. В 1923 году он стал доктором наук и получил престижную стипендию Максвелла. В 1924 году русского ученого назначили заместителем директора Кавендишской лаборатории по магнитным исследованиям, а через год он стал членом Тринити-колледжа.

В 1925 году в Париже академик Алексей Николаевич Крылов познакомил Капицу со своей дочерью Анной, которая жила тогда с матерью в столице Франции. В 1927 году Анна Алексеевна стала женой Капицы. После женитьбы Капица купил небольшой участок земли на Хантингтон-Роуд, где построил дом по своему плану. Здесь родились его сыновья Сергей и Андрей. Оба они впоследствии стали учеными.

Для исследования процессов радиоактивного распада и превращения ядер требовались сильные магнитные поля. Капица выдвинул идею проводить исследования в импульсных магнитных полях, разработал оригинальные методы и установки для получения таких полей. На своей установке Петр Леонидович получил рекордные по тому времени магнитные поля - в 6-7 тысяч раз превосходившие все прежние. Создание небывалых дотоле магнитных полей надолго сделало его, по выражению Ландау, «магнитным чемпионом мира».

Изучая свойства металлов в сильных магнитных полях, Капица пришел к необходимости проведения исследований в условиях возможно более низких (гелиевых) температур.

Именно с физикой и техникой низких температур связаны наиболее яркие достижения ученого. Но проводил исследования по этой теме ученый уже в СССР.

Советские официальные лица неоднократно обращались к нему с просьбой остаться на постоянное жительство в СССР. Петр Леонидович относился с интересом к таким предложениям, но выставлял определенные условия, в частности, свободу поездок на Запад, из-за чего решение вопроса откладывалось.

В конце лета 1934 года Капица вместе с женой в очередной раз приехали в Советский Союз, но, когда супруги приготовились вернуться в Англию, оказалось, что их выездные визы аннулированы. Позднее жене было разрешено вернуться в Англию к детям, и вскоре Анна Алексеевна присоединилась к мужу в Москве, а вслед за ней приехали и дети. Резерфорд и другие друзья Капицы обращались к советскому правительству с просьбой разрешить ему выезд для продолжения работы в Англии, но тщетно.

В 1935 году Капице предложили стать директором вновь созданного Института физических проблем Академии наук СССР. Петр Леонидович поставил условием покупку оборудования, с которым он работал в Англии. В конце концов, Резерфорд, смирившись с потерей своего выдающегося сотрудника, позволил советским властям купить оборудование лаборатории Капицы.

Дав согласие, Петр Леонидович с семьей поселился тут же, на территории института, в особняке из нескольких комнат. Возвращение Капицы на родину совпало со сталинскими чистками. Петр Леонидович, обладавший необычайно высоким авторитетом, смело отстаивал свои взгляды даже в это тяжелое время. Он знал, что в стране все решает высшее руководство. С этим руководством он и стал вести прямой и откровенный разговор. С 1934 по 1983 год ученый написал более 300 писем «в Кремль» (Сталину - 50, Молотову - 71, Маленкову - 63, Хрущеву - 26). Благодаря его вмешательству, от гибели в тюрьмах и лагерях в годы сталинского террора были спасены многие ученые.

В 1972 году, когда властями был инициирован вопрос об исключении из Академии наук Андрея Дмитриевича Сахарова, против этого выступил один только Капица. Он сказал: «Аналогичный позорный прецедент уже был. В 1933 году фашисты исключили из Берлинской академии наук Альберта Эйнштейна».

Но каковы бы ни были условия жизни, Петр Леонидович никогда не прекращал научную работу. На установке, доставленной в Москву из Кавендишской лаборатории, Капица продолжал исследования в области сверхсильных магнитных полей. В опытах участвовали его кембриджские сотрудники, прибывшие на время в Москву, - механик Пирсон и лаборант Лауэрман. Эти работы заняли несколько лет. Капица считал их очень важными.

Ученый усовершенствовал небольшую турбину, очень эффективно сжижавшую воздух. В созданной им оригинальной установке не требуется предварительное охлаждение гелия: газообразный гелий охлаждается, адиабатически расширяясь в специальном детандере. Теперь в разных странах создаются практически только такие гелиевые установки.

Экспериментальные научные исследования Капицы в области физики низких температур ознаменовались фундаментальным открытием. В процессе изучения свойств жидкого гелия в 1937 году им было открыто явление сверхтекучести. Ранее было известно уникальное свойство гелия, который переходит в жидкое состояние при температуре 4,2°K, оставаясь жидким при более низких температурах вплоть до абсолютного нуля. Было также известно, что при температуре 2,19°K скачкообразно меняется теплоемкость жидкого гелия (точнее, изотопа гелия с атомным весом 4). В чрезвычайно изящных экспериментах, наблюдая протекание жидкого гелия через капилляры и узкие щели (шириной до полумикрона), Капица показал, что у этой жидкости при температурах ниже 2,19°K полностью отсутствует вязкость.

В работах 1937-1941 годах были обнаружены и изучены другие аномальные явления в жидком гелии, в частности, распространение тепла в нем. Было показано, что в интервале температур от 4,2 до 2,19°K гелий ведет себя как обычная жидкость, а при температуре ниже 2,19°K в его поведении проявляются аномалии. Петр Леонидович приходит к выводу о сосуществовании в таком гелии двух жидкостей - нормальной и аномальной (сверхтекучей), которые могут двигаться как бы сквозь друг друга.

Эти и другие совершенно необычные свойства жидкого гелия оказалось возможным объяснить только в рамках квантовотеоретических представлений. Экспериментальные работы Капицы стали основой развития нового направления - физики квантовых жидкостей.

После начала войны Институт физических проблем эвакуировался в Казань. По прибытии на место его разместили в помещениях Казанского университета. В тяжелое время Капица создал самую мощную в мире турбинную установку для получения в больших масштабах необходимого промышленности жидкого кислорода.

В 1945 году в Советском Союзе активизировались работы по созданию ядерного оружия. Отказ Капицы участвовать в создании атомной бомбы привел к его отставке и отстранению от научной работы. Капица был смещен с поста директора института и в течение восьми лет находился под домашним арестом. Он был лишен возможности общаться со своими коллегами из других научно-исследовательских институтов. У себя на даче Петр Леонидович оборудовал небольшую лабораторию и продолжал заниматься исследованиями.

Здесь он заложил основы нового направления - электроники больших мощностей, ставшей первым шагом на пути овладения термоядерной энергией. Но продолжить полномасштабные работы в этой области ученый смог лишь после того, как вернулся в свой институт в 1955 году. Там он и занялся исследованием высокотемпературной плазмы. Сделанные Капицей открытия легли в основу разработки схемы термоядерного реактора непрерывного действия.

Послевоенные научные работы Капицы охватывают самые различные области физики, включая гидродинамику тонких слоев жидкости и природу шаровой молнии, но основные его интересы сосредоточиваются на микроволновых генераторах и изучении различных свойств плазмы.

В 1965 году, впервые после более чем тридцатилетнего перерыва, Капица получил разрешение на выезд из Советского Союза в Данию для получения Международной золотой медали Нильса Бора. Там он посетил научные лаборатории и выступил с лекцией по физике высоких энергий. В 1969 году ученый вместе с женой впервые совершил поездку в Соединенные Штаты.

17 октября 1978 года Шведская академия наук направила из Стокгольма Петру Леонидовичу Капице телеграмму о присуждении ему Нобелевской премии по физике за фундаментальные исследования в области физики низких температур. Эту весть Капица получил в подмосковном санатории «Барвиха», где он отдыхал с женой. Среди вопросов, заданных академику журналистами, был и такой: какое свое научное достижение он считает самым значительным? Капица сказал, что для ученого всегда наиболее важна та работа, которой он занимается в данный момент. «У меня такая работа относится к термоядерному синтезу», - добавил он.

Стокгольмская лекция Капицы была необычной уже потому, что вопреки уставу Нобелевского фонда не была посвящена отмеченным Нобелевской премией работам. Лекция называлась «Плазма и управляемая термоядерная реакция».

Капица объяснил причину допущенной вольности. Он сказал: «Выбор темы для нобелевской лекции представлял для меня некоторую трудность. Обычно эта лекция связана с работами, за которые присуждена премия. В моем случае эта премия связана с моими исследованиями в области низких температур, вблизи температуры сжижения гелия, т.е. нескольких градусов выше абсолютного нуля. По воле судеб случилось так, что от этих работ я отошел уже более 30 лет назад, и, хотя в руководимом мною институте продолжают заниматься низкими температурами, я сам занялся изучением явлений, происходящих в плазме при тех исключительно высоких температурах, которые необходимы для осуществления термоядерной реакции. Эти работы привели нас к интересным результатам, открывающим новые перспективы, и я думаю, что лекция на эту тему представляет больший интерес, чем уже забытые мною работы в области низких температур. К тому же, как говорят французы, les extremes se touchent (крайности сходятся). Хорошо известно, что в данное время управляемая термоядерная реакция представляет большой практический интерес, так как этот процесс мог бы наиболее эффективно решить проблему надвигающегося глобального энергетического кризиса, связанного с истощением запасов сырья, используемого теперь как источник энергии».

Умер Капица 8 апреля 1984 года, немного не дожив до девяноста лет.

 

ЖОРЕС ИВАНОВИЧ АЛФЁРОВ

(1930)

«Едва ли не каждый житель планеты ежедневно и повседневно пользуется научными разработками Жореса Ивановича, - отмечает М. Зубов. - Во всех мобильных телефонах есть гетероструктурные полупроводники, созданные Алфёровым. Вся оптиковолоконная связь работает на его полупроводниках и "лазере Алфёрова". Без "лазера Алфёрова" были бы невозможны проигрыватели компакт-дисков и дисководы современных компьютеров. Открытия Жореса Ивановича используются и в фарах автомобилей, и в светофорах, и в оборудовании супермаркетов - декодерах товарных ярлыков…

Сама личность Жореса Ивановича разрушает миф о том, что всю электронику придумали в Америке или Японии - где угодно, только не у нас. Да, сейчас эти страны нас намного опередили. Но все началось с открытий ленинградского ученого, которые он сделал в 1962-1974 годах и которые привели к качественным изменениям в развитии всей электронной техники. Нынешней же Нобелевской премией отмечены как его "былые" заслуги перед физикой, так и современные - создание сверхбыстрых суперкомпьютеров».

Жорес Иванович Алфёров родился 15 марта 1930 года в Витебске. Жоресом мальчика назвали в честь Жана Жореса, основателя газеты «Юманите», основателя французской социалистической партии. Отец, Иван Карпович, начинал рабочим, а после окончания Промакадемии в 1935 году работал в различных городах страны: Сталинграде, Новосибирске, Барнауле, Сясьстрое под Ленинградом. Вместе с ним путешествовала и вся семья - мать Анна Владимировна и старший брат с таким же необычным именем - Маркс.

Военные годы Алфёровы провели в городе Туринске Свердловской области, где Иван Карпович работал директором завода пороховой целлюлозы. В 1944 году в семью пришла похоронка: в Корсунь-Шевченковском сражении погиб Маркс.

С окончанием войны Алфёровы вернулись в лежащий в руинах Минск.

«Выбор мною физики, конечно, не случаен, - вспоминает Алфёров. - В послевоенном Минске, в единственной в то время в разрушенном городе русской мужской средней школе № 42 был замечательный учитель физики - Яков Борисович Мельцерзон. У нас не было физического кабинета, и Яков Борисович читал нам лекции по физике, на которых мы, вообще-то довольно "хулиганистый" класс, никогда не шалили, потому что Яков Борисович, влюбленный в физику, умел передать это отношение к своему предмету нам. На его уроках было слышно, как муха пролетит. Он не мог воспринять, что физикой можно не интересоваться и не любить! Он и порекомендовал мне ехать учиться в Ленинград.

Я, пораженный его рассказом о работе катодного осциллографа и принципах радиолокации, поехал учиться по его совету в Ленинград в Электротехнический институт (ЛЭТИ).

В ЛЭТИ, институте, сыгравшем выдающуюся роль в развитии отечественной электроники и радиотехники и в образовании в этих областях, мне очень повезло с моим первым научным руководителем. На третьем курсе, считая, что математика и теоретические дисциплины мне даются легко, а "руками" мне нужно многому учиться, я пошел работать в вакуумную лабораторию профессора Б.П. Козырева. Там я начал экспериментальную работу под руководством Наталии Николаевны Созиной, увы, уже покойной ныне - человека редкой доброты, незадолго до этого защитившей диссертацию по исследованию полупроводниковых фотоприемников в инфракрасной области спектра. Так, в 1950 году, полвека тому назад, полупроводники стали главным делом моей жизни.

И диплом я делал у нее. Во время выполнения дипломной работы, посвященной получению пленок и исследованию фотопроводимости теллурида висмута, в декабре 1952 года проходило распределение, и Наталия Николаевна очень хотела, чтобы я остался в ЛЭТИ на кафедре для совместной работы. Но я мечтал о Физтехе, институте Абрама Федоровича Иоффе, монография которого "Основные представления современной физики" стала для меня настольной книгой. В ЛЭТИ на наш факультет пришло три вакансии в ЛФТИ - тогдашняя аббревиатура Физико-технического института, - и одна из них досталась мне. Радости моей не было границ. И я думаю, что моя счастливая жизнь в науке была предопределена этим распределением».

5 марта 1953 года Алфёров создал первый транзистор, а в 1961 году защитил кандидатскую диссертацию, посвященную в основном разработке и исследованию мощных германиевых и частично кремниевых выпрямителей. На основе этих работ возникла отечественная силовая полупроводниковая электроника.

«Общие новые принципы управления электронными и световыми потоками в гетероструктурах (электронное и оптическое ограничения и особенности инжекции) я сформулировал лишь в 1966 году и, чтобы избежать засекречивания, в названии статьи говорил прежде всего о выпрямителях, а не о лазерах, - вспоминает Жорес Иванович. - В начале наших исследований гетероструктур мне не раз приходилось убеждать моих молодых коллег, теперь уже сотрудников моей лаборатории (в 1967 году я был избран ученым советом ЛФТИ заведующим сектором), что мы далеко не единственные в мире, кто занялся очевидным и естественным для природы делом: полупроводниковые физика и электроника будут развиваться на основе гетеро-, а не гомо-структур. Но, уже начиная с 1968 года, реально началось очень жесткое соревнование, прежде всего с тремя лабораториями крупнейших американских фирм - Bell Telephone, IBM и RCA.

В 1968- 1969 гг. были практически реализованы все основные идеи управления электронными и световыми потоками в классических гетероструктурах на основе системы арсенид галлия -арсенид алюминия. Помимо принципиально важных фундаментальных результатов - односторонняя эффективная инжекция, эффект "сверхинжекции", диагональное туннелирование, электронное и оптическое ограничения в двойной гетероструктуре, ставшей вскоре основным элементом исследований низкоразмерного электронного газа в полупроводниках - удалось практически реализовать основные преимущества использования гетероструктур в полупроводниковых приборах: лазерах, светодиодах, солнечных батареях, динисторах и транзиторах… Важнейшим было, конечно, создание низкопороговых, работающих при комнатной температуре лазеров на предложенной нами еще в 1963 году двойной гетерострутуре (ДГС). Подход, реализованный Панишем и Хаяси на Bell Telephone и Кресселем на RCA, был значительно более узким и основывался на использовании в лазерах одиночной гетероструктуры pAlGaAs-pGaAs. Очевидно, они не верили в возможность получения эффективной инжекции в гетеропереходах и, хотя потенциальные преимущества ДГС были известны, не рискнули на ее реализацию.

Солнечные батареи на основе гетероструктур были созданы нами уже в 1970 году. А когда американцы публиковали первые работы, наши батареи уже летали на спутниках и было развернуто их промышленное производство. Блестяще доказано их преимущество в космосе многолетней эксплуатацией на орбитальной станции "Мир"…

Но это была очень тяжелая дорога. Поначалу у меня было один-два человека тех, кто со мной работали. Были ситуации, когда мы шли в тупиковом направлении. Мой аспирант будил меня в пять утра и говорил: ты заставляешь нас заниматься безнадежным делом. Твой папа старый большевик, и ты действуешь такими же методами - толкаешь, как он в революцию, нас в эти гетеропереходы! Но потом оказалось, что мы правы».

«За исследование полупроводниковых гетероструктур, лазерные диоды и сверхбыстрые транзисторы» Алфёров был удостоен Нобелевской премии по физике за 2000 год.

Исследования в этой области привели Алфёрова сначала к системам с низкоразмерным электронным газом - так называемым квантовым ямам, потом - квантовым проволокам, сейчас же ученый занимается квантовыми точками. Уже найден способ создания ансамблей таких квантовых точек в процессе выращивания гетероструктур. Это дает огромные преимущества для лазеров, в частности, резко возрастает возможный коэффициент усиления. Поэтому в сравнительно небольшом объеме достигаются большие коэффициенты усиления, и порог, при котором начнется генерация, будет меньше. Рассматривается возможность использования квантовых точек и в других приборах.

Несмотря на все трудности, Алфёров верит в будущее российской науки: «Но для этого все должны понять уже теперь: будущее России - это наука и технологии, а не распродажа сырья. Из нашего института вышли уже четверо нобелевских лауреатов: Николай Семенов, Лев Ландау, Петр Капица и я. И будущее страны - не за олигархами, а за кем-то из моих учеников».

Часть своей Нобелевской премии Алфёров отдал на развитие научно-образовательного центра физико-технического института.

«Научно-образовательный центр, который создал Алфёров в Петербурге, достоин еще одной Нобелевской премии. За опыт поддержания науки в стране, где она целое десятилетие была не нужна государству, не финансировалась. В центр приходят еще школьниками, учатся по углубленной программе, потом - институт, аспирантура, академическое образование, - рассказывает член президиума РАН, академик, директор Института радиотехники и электроники Юрий Гуляев. - Когда из страны валом начали уезжать ученые, а выпускники школ почти поголовно стали предпочитать бизнес образованию и науке - возникла страшная опасность, что знания старшего поколения ученых некому будет передать. Алфёров нашел выход и буквально совершил подвиг, создав эту своего рода "теплицу для будущих ученых"».

В ФТИ об Алфёрове говорят: он всегда добивается всего, чего хочет. Главное для него - определить четкую и ясную цель. Жорес Иванович заводила не только в делах академических: «С ним не соскучишься, - говорят его товарищи. - Особенно любит Жорес Иванович петь. Правда, данных для этого у него нет, с чем он сам соглашается. Тем не менее поет всегда в полный голос и обязательно всю песню до конца».

Первый раз Алфёров женился совсем молодым и уже в тридцать лет развелся. Несмотря ни на что отзывался о бывшей супруге только положительно. Ученый оставил ей полученную комнату в коммуналке, а сам опять переселился в общежитие. С собой он взял лишь мотоцикл. Сегодня, кстати, ученый ездит на «вольво».

В конце шестидесятых, будучи на отдыхе в Сочи, познакомился со своей второй женой - Тамарой Георгиевной, филологом по образованию. Через полгода они поженились. «Мне при этом пришлось переехать из Москвы в Питер, что прежде казалось совершенно невозможным. Не смогла устоять перед Жорой, - вспоминает сейчас Тамара Георгиевна. - Он звонил каждый день, а по выходным прилетал в столицу на пару-другую часов, чтобы только увидеть, одарить цветами и сообщить, что "любит и ждет"».

В памятный для академика 1972 год - ему присудили тогда Ленинскую премию - родился сын Иван. Сначала он пошел по стопам отца и окончил Электротехнический институт. Но позднее занялся бизнесом. Что очень расстроило отца. Попытки «образумить» сына ни к чему не привели.

Любимое место отдыха знаменитого ученого - поселок Комарово. На берегу Финского залива у академика дача, построенная еще в сталинские годы.