Как только стало известно, что в состав атомов входят электроны, многие физики попытались описать их положение и внутриатомное движение. В итоге было сделано заключение, что для строения атома характерна планетарная система: ядро с электронами, вращающимися вокруг него по орбитам. Хотя электроны очень капризны в выборе орбит, Нильсу Бору удалось понять их правила игры — те самые, что включали в себя принципы зарождающейся квантовой механики.

Разочарование. Этим словом можно коротко описать впечатление Бора, когда он наконец-то встретился с Джозефом Джоном Томсоном в Кембридже в 1911 году. В начале XX века этот знаменитый британский университет с почти семивековой историей считался обязательным местом посещения для любого физика. Познакомиться с сэром Дж. Дж., обменяться с ним представлениями, получить его совет и работать в Кавендишской лаборатории было мечтой многих молодых ученых со всего мира, желающих внести вклад в разработку физики атомов и электронов.

В чем был секрет Томсона? Кроме славы, которую ему принесли работа с электронами и Нобелевская премия 1906 года по физике, Томсон был известен тем, что фонтанировал идеями и задавал направление работам молодых исследователей, приезжавших к нему. На самом деле Томсон никогда не был сторонником раскрытия темы до конца — ни с теоретической, ни с экспериментальной точки зрения. Его удовлетворял подход, достаточный для того, чтобы сделать общие выводы (часто рискованные) о любом новом результате, о любом теоретическом рассуждении. Таким образом, в Кавендише можно было найти бесконечное множество незавершенных дел, которые молодые физики (менее творческие, но более упорные) могли разработать детально. Возможно, это было лишь частью проблемы.

Томсон, окруженный все возрастающим числом студентов и исследователей, не мог уделить достаточное внимание каждому из них. Кроме того, он привык давать советы и не был готов взаимодействовать с молодыми полными энтузиазма людьми, которые претендовали на общение на равных с ним, тем более если это был кто-то со слабым английским.

Долгожданный момент настал в сентябре 1911 года. При поддержке фонда «Карлсберг» Бор приехал в Кембридж на один год по постдокторской программе. В его багаже были экземпляр переведенной в спешке докторской диссертации, много иллюзий и несколько английских фраз. Последние два компонента в сочетании очень плохи. Рассказывали, что на первую встречу с Томсоном Бор взял экземпляр книги «Корпускулярная теория материи», опубликованной профессором в 1907 году, открыл ее на конкретной странице и заявил: «Вот здесь не сходится». Хорошо известно, что язык Шекспира крайне изощрен, когда дело доходит до критики, поэтому неудивительно, что непривычному к критике Томсону Бор показался невоспитанным.

Отношения не улучшились и за несколько недель. Томсон поручил Бору экспериментальную работу, связанную с поведением катодных лучей, которая не представляла никакого интереса для молодого датчанина. Кроме того, профессор всегда был занят, и у него никогда не оставалось времени ознакомиться с докторской диссертацией. Между тем Бор пытался усовершенствовать свой английский, читал полное собрание сочинений Чарльза Диккенса со словарем. Единственное, что радовало его в первые месяцы в Кембридже,— это возможность часто играть в футбольной команде университета, а также приезд его брата Харальда на Рождество и постоянные письма из Копенгагена от Маргрет.

Именно на рождественском ужине в Тринити-колледже в Кембридже Бор встретился с выпускником Томсона, новозеландцем Эрнестом Резерфордом (1871-1937), который в то время руководил лабораторией в Манчестере, проведя несколько лет в Канаде. Бор был впечатлен силой характера Резерфорда и его рассказом о своей лаборатории. Тогда он решил не ждать окончания года в Кембридже и переехать в Манчестер при первой же возможности. На самом деле, несмотря на притягательность Кавендишской лаборатории для научного мира, Бор был не единственным, кто почувствовал некоторый застой в Кембридже.

В Манчестере была более молодая и намного более динамичная школа, в ней сосредоточились на конкретной проблеме — радиоактивности, к которой в Кембридже не выказывали интереса. Кроме того, ходили слухи, что эксперименты Резерфорда могут навсегда изменить понимание структуры атома.

УЖИН В ТРИНИТИ-КОЛЛЕДЖЕ

Кембриджский университет тогда и сейчас — это конфедерация частично независимых колледжей; в XIX и XX веках дисциплины средневекового учреждения пополнили физика, химия, философия, право, теология и так далее.

Тринити-колледж — мощнейший в Кембридже. Основанный Генрихом VIII в 1546 году, он все еще является одной из самых богатых институций в Англии, его превосходят только монархия и англиканская церковь. Томсон сначала был студентом, затем фелло и, наконец, магистром Тринитиколледжа, и здесь он ежегодно устраивал ужин для исследователей Кавендишской лаборатории.

Восьмого декабря 1911 года, когда Бор решил покинуть Кембридж, отмечалась 27-я годовщина Томсона во главе Кавендишской лаборатории. Было подано около десяти различных блюд в сопровождении вин, а в конце Томсону пропели песню, сочиненную для этого случая: Oh my darlings, oh my darlings, oh my darlings, ions mine/you are lost and gone forever/ when just once you recombine («О, дорогие, о, дорогие, о, дорогие мои ионы, / вы навсегда потеряны, / если однажды рекомбинируетесь»). Через много лет Бор перенесет в Копенгаген эту неформальную традицию адаптировать современную физику к популярной культуре.

Интерьер столовой Тринити-колледжа.

ИЗОБРЕТАЯ СТРУКТУРУ АТОМА

Появление электрона на научной сцене в 1897 году имело большое значение для понимания материи и электричества. На самом деле в утверждении, что существуют частицы, меньшие, чем атом, заключалось некое семантическое противоречие, поскольку слово «атом» означает именно «неделимый». Но это был не единственный сюрприз. Стало ясно, что электроны несут в себе отрицательный электрический заряд, в то время как, в соответствии с теорией Максвелла, электрический заряд понимался не как вещество, а как свойство материи на границе между двумя материальными средами. Другими словами, никто не говорил о «заряде», а лишь об «электронно заряженном теле». Это ничего не меняло, по крайней мере для Томсона. Но когда электроны оказались отрицательно заряженными частицами, отрицательный электрический заряд стал явлением, хорошо локализованным в пространстве, — явлением редукции.

Следует подчеркнуть, что только отрицательный электрический заряд, казалось, сосредоточивается в этих маленьких электронах. Тогда никто не думал, что может существовать частица, эквивалентная электрону, но с положительным зарядом. И хотя положительный электрон был обнаружен в 1932 году, его свойства были и продолжают существенно отличаться от свойств отрицательных электронов. Что же тогда происходит с положительным зарядом? Как понять его? Как может быть, что атомы, содержащие электроны, являются электрически нейтральными? И наконец, сколько электронов содержит каждый атом и как они организованы?

Поскольку Томсону было свойственно выдвигать крупные гипотезы, неудивительно, что именно он первым подступился к этим вопросам и предложил возможные ответы. В его распоряжении были только атомы, электрически нейтральные в нормальном состоянии, и отрицательные электроны. Его идея заключалась в том, что они присутствуют в большом количестве внутри нейтрального атома. Если атом теряет несколько электронов, он оказывается заряженным положительно, а если получает электроны, то приобретает отрицательный заряд. Чтобы понять эту атомную модель, важно подчеркнуть, что для Томсона не было никакой частицы или материи с положительным зарядом, и единственный способ сделать атом положительно заряженным — это лишить его отрицательных электронов. Именно дефицит или излишек электронов определял электрический заряд атома, положительный или отрицательный соответственно. В 1904 году Томсон выразил это следующим образом:

«Атомы элементов состоят из некоторого числа отрицательно заряженных корпускул, скрытых в сфере однородного положительного заряда».

Это известно как пудинговая модель. Конечно же, не сам Томсон так ее окрестил; более того, название может ввести в заблуждение. И изюминки, и сам пудинг материальны, хотя и имеют различные свойства. В случае с атомом Томсона единственной материей была та, которую составляли электроны. При этом вопрос о числе электронов в каждом атоме довольно прост: если учитывать, что масса каждого электрона (все они равны) в 2000 раз меньше массы самого маленького атома (атома водорода), можно сделать вывод, что внутри каждого атома должны содержаться сотни электронов (около 2000 в случае с водородом или около 32000 в случае с кислородом).

Нельзя не отметить красоту и простоту этой модели атома. С помощью единственного типа частиц, электронов, объяснялась и масса, и заряд атомов. Томсон представлял, что электроны могут образовывать стабильные структуры в форме более или менее концентрических сфер. Только внешние электроны определяют такие физические и химические свойства элементов, как присутствие ионов (атомов с положительным или отрицательным зарядом) в химической связи.

Исследование в прикладной науке ведет к реформам, исследование в чистой науке ведет к революциям.

Джозеф Джон Томсон

Однако иллюзия Томсона длилась недолго. К концу 1905 года некоторые экспериментальные результаты косвенно указали на то, что число электронов в каждом атоме не превышает нескольких десятков. Это означало, что большая часть массы атомов не может состоять в его электронах, а должна быть в части положительного электричества. В чем же тогда заключалась эта положительно заряженная часть атома? Здесь Томсон приступил к исследованию положительных ионов, то есть атомов, потерявших один или несколько электронов, в поисках ключа, который позволил бы понять положительную часть атома.

Но с уменьшением числа электронов проявилась фундаментальная проблема, которую методы физики XIX века не объясняли: нестабильность атома, вызванная излучением электронов. Дело в том, что движение электрически заряженных частиц (электронов) производит множество неожиданных эффектов. Нас интересует потеря энергии при излучении, вызванном их скоростью, а также потеря скорости, вызванная сопротивлением среды.

Чтобы представить себе стабильные конфигурации электронов в море положительного электричества, требовалось, чтобы электроны двигались на больших скоростях; тогда они испускали бы электромагнитное излучение и в результате теряли энергию и скорость и падали в центр атома, который утрачивал бы свои обычные свойства. Когда считалось, что в атоме тысячи электронов, потеря энергии при излучении не представлялась проблемой: электронов было достаточно для того, чтобы энергия одних поглощалась другими и атом мог оставаться стабильным. Но когда число электронов в атоме значительно сократилось, подобная компенсация оказалась абсолютно невозможной, а значит, нельзя было представить стабильный атом. С этой же проблемой в ином контексте сталкивались многие физики того времени, и решил ее только Эйнштейн в статье 1905 года <К электродинамике движущихся тел*, заложившей основы специальной теории относительности.

Одной из актуальных тем в физике в 1911 году были эксперименты Резерфорда и, что самое важное, их истолкование самим новозеландским исследователем. Резерфорд создал в Манчестере школу «радиоактивистов» — исследовательское отделение, сосредоточенное в основном на экспериментальном изучении радиоактивности. Речь шла о явлении, открытом Анри Беккерелем (1852-1908) и супругами Пьером (1859- 1906) и Марией (1867-1934) Кюри, о котором — в отношении его эффектов, свойств и глубинной природы — было известно очень мало.

Уже в 1899 году Резерфорд понял, что речь идет не об одном, а о трех типах излучения, которые различаются электрическим зарядом и способностью проникновения в материю. Он обозначил их первыми тремя буквами греческого алфавита в порядке возрастания энергии: альфа-излучение (а) — с положительным электрическим зарядом, отрицательно заряженное бета-излучение (Р) и гамма-излучение (у), не имеющее заряда. Кроме того, первые два вида излучения явно состояли из корпускул — частиц, обладающих массой. Альфа-частицы имели массу, похожую на массу атома гелия, а бета-частицы... были электронами!

Работы Резерфорда и его команды в Манчестере мало перекликались с интересами Томсона и Кавендиша. С самого начала Резерфорд был заворожен свойствами радиоактивности и сосредоточился на этой новой области. Эти работы обеспечили ему в 1908 году Нобелевскую премию... по химии (так же, как и Марии Кюри в 1911 году). Радиоактивность — явление на полпути между физикой и химией. С одной стороны, изучение его природы, его интенсивности, его свойств при взаимодействии с материей — вопросы, традиционно физические; в то же время выделение веществ, наблюдение их реакций, измерение массы — это задачи химии. Поэтому школа Резерфорда в Манчестере объединила ученых (физиков и химиков) в деле исследования свойств радиоактивности.

ПРОИСХОЖДЕНИЕ РАДИОАКТИВНОСТИ

В начале 1896 года внимание мира было приковано к новому типу излучения — рентгеновским, или икс-лучам.

Анри Беккерель хотел понять возможную связь между этими лучами и уже известным явлением флуоресценции, при котором некоторые вещества превращаются в излучатели света, подвергнувшись интенсивному солнечному излучению. Эксперименты Беккереля были относительно просты: он брал вещества с флуоресцентными свойствами, подвергал их прямому действию солнечного света и изучал их воздействие на фотографическую пластину в темноте. После нескольких облачных дней он с удивлением обнаружил, что фотографические пластины, которые он оставил в том же ящике, что и предполагаемые флуоресцентные вещества, оказались затуманены. Беккерель сосредоточился на этом явлении и попытался выяснить, возможно ли его повторить. Оказалось, возможно. Одно из веществ, с которым он работал, содержащее соли урана, спонтанно испускало доселе неизвестное излучение, из-за которого фотографические пластины затуманивались. Можно сказать, что Беккерель открыл новое внешне необъяснимое явление, вызванное ураном. Но только спустя десятилетия работы исследовательских групп, больших затрат, выдвижения всевозможных гипотез были описаны характеристики этого явления и состоялся переход от урановых лучей к радиоактивности. На самом деле Беккерель не был заинтересован в продолжении изучения «своих» лучей. Именно супруги Кюри и Эрнест Резерфорд сделали их главной темой своих исследований. Так, они выяснили, что это излучение характерно не только для урана: его испускают и другие тяжелые элементы (последние в периодической таблице) — радий и торий. Но более важно то, что им удалось выделить новый элемент, названный полонием в честь Польши, родины Марии Кюри.

Анри Беккерель.

Каким образом радиоактивность связана с составом атома? Вскоре выяснилось, что радиоактивность — атомное явление. Альфа- и бета-частицы испускались атомом, что наводило на мысль о том, что это лишь компоненты радиоактивных атомов (сложнее было с у-излучением, которое больше походило на свет, чем на частицу). Кроме того, Резерфорд доказал, что радиоактивность — не инертный процесс, она меняет природу веществ: при испускании радиоактивности один элемент превращается в другой, близкий к нему в периодической таблице. Другими словами, радиоактивность является процессом (спонтанным или индуцированным, доподлинно известно не было), который преобразует элементы.

В итоге, хотя и косвенно, радиоактивность также оказалась очень полезным инструментом для анализа структуры атомов. После ее открытия ученые переключились на изучение всех типов радиации, подвергая ее воздействию различные материалы, различную толщину одного и того же материала, под разными углами падения. При этом была получена важная информация об энергии излучения, его интенсивности и его электрическом разряде. Как раз такие эксперименты ставили в Манчестере Резерфорд и его коллеги, в частности немец Ханс Гейгер (1882-1945) и молодой британец Эрнест Марсден (1889-1970). С 1909 года Гейгер и Марсден изучали взаимодействие а-радиоактивности (которая больше всего интересовала Резерфорда) с металлическими поверхностями и поняли, что падающий пучок а-частиц не пересекает металлы линейно, а подвергается различным отклонениям — дисперсии. Это было естественно, поскольку в металле атомы образуют довольно геометрическую структуру, поэтому можно было ожидать, что а-частицы будут отклоняться от своих траекторий, проходя рядом с атомами. Но не было нормальным то, что при повторении аналогичного опыта с очень тонкими поверхностями а-частицы испытывали большие отклонения.

Резерфорд присоединился к Гейгеру и Марсдену, они пересмотрели эксперимент и получили сложный для понимания результат: при пропускании потока а-частиц через очень тонкую пластинку из золота большая их часть пересекала металл без изменений, но несколько частиц после столкновения с металлом «рикошетили» и отлетали в противоположном направлении (см. рисунок 1). Позже Резерфорд утверждал, что это было столь же удивительно, как если бы пули рикошетили от папиросной бумаги. Раз атом являлся, как считал Томсон, однородной массой положительного заряда с более или менее равномерным распределением электронов, этот результат не имел смысла: можно понять легкую, но не столь явную дисперсию.

РИС.1

Таким образом, в 1911 году Резерфорд предложил полностью изменить представление об атоме. Возможно, положительная часть неоднородна и не занимает весь атом, она могла быть сконцентрирована в центре атома, образуя очень маленькое ядро, вокруг которого двигались электроны. Это похоже на планетарную систему, где центр занимает ядро, обладающее большой массой и всем положительным зарядом атома. Это объясняло, почему большинство а-частиц (заряженных положительно) почти не диспергировались, но некоторые испытывали такую большую силу, что она заставляла их рикошетить: это были те частицы, которые случайно сталкивались с ядром одного из атомов.

Однако предложение Резерфорда осталось практически незамеченным. Это не было великой революцией, великим открытием, о нем не писали в газетах, его не обсуждали в кафе, оно даже не привлекло внимания ученых, которые восприняли его как частный случай поведения α-частиц. Кроме того, Резерфорд не интересовался теоретической физикой, он был экспериментатором и не мог развить теоретические следствия из данной модели.

С другой стороны, у Резерфорда эта идея возникла не только на основе его с Гейгером и Марсденом экспериментов: это предложение должно рассматриваться в контексте стремления понять, что же такое α-частицы. Уже было сказано, что они обладают массой, схожей с массой атома гелия, и заряд их в два раза превосходит заряд электрона, но при этом он положительный. Информация о радиоактивности оставалась такой скудной, что никто еще не знал, существуют α-частицы в атомах или образуются при испускании из них. Резерфорд был ярым сторонником первого варианта, поскольку уже некоторое время считал, что α-частицы входят в состав структуры атома. До представления об атоме с ядерной структурой оставалась пара шагов.

БОР В МАНЧЕСТЕРЕ

Если Кембридж на тот момент обладал семивековой историей, Манчестерскому университету было всего-то несколько десятилетий от роду. Город был эпицентром промышленной революции и в начале XX века в нем была сосредоточена большая часть британского производства, где каждый раз все более влиятельная и образованная буржуазия способствовала развитию науки и искусства. Так был учрежден местный университет, который в 1903 году получил имя королевы Виктории.

Нильс Бор приехал в Манчестер в марте 1912 года с надеждами, возродившимися после неудачного опыта с Томсоном. Поскольку это был мировой центр экспериментальной радиоактивности, Бор согласился пройти элементарную практику работы в лаборатории, после чего Резерфорд поручил ему изучение поглощения α-лучей в алюминии. Но Бор скучал в лаборатории: его большой страстью была теоретическая физика, великие понятия, математические и философские составляющие научных новшеств, а не изнуряющий и рутинный ручной труд экспериментатора. В этом Резерфорд и Бор были антиподами. Первый ненавидел громоздкие умозаключения и чрезвычайно сложные математические теории. У второго не хватало терпения на многочасовую работу с веществами и на бесконечные повторения экспериментов. Возможно, именно поэтому с годами их связала крепкая дружба и профессиональное сотрудничество на уровне организаций, когда после Первой мировой войны они возглавили самые значимые центры физики в Кембридже (Резерфорд) и Копенгагене (Бор).

РАДИОАКТИВНЫЕ РЯДЫ

Единственное, что было известно о структуре атомов к 1910 году,— то, что они содержат электроны, часть из которых может отделяться, после чего атом оказывается заряженным положительно; или, наоборот, атом может принять некий внешний электрон и обрести отрицательный заряд. За век до описываемых событий заряженные положительно или отрицательно атомы называли «ионами». Новое явление радиоактивности говорило о другом типе излучения, намного более сильном, чем потеря или поглощение электронов, и оно предполагало изменение химических (а не только электрических) свойств атомов. Во второй половине XIX века Дмитрий Менделеев создал таблицу, в которой организовал известные на тот момент химические элементы. Эта периодическая таблица, где по горизонтали они располагаются по возрастанию измеренной массы атомов, а по вертикали — по своим химическим свойствам, стала одним из самых простых и полезных инструментов развития химии; она даже служила для предсказания существования неизвестных до тех пор химических элементов. Один из компонентов таблицы, не все следствия которого еще были известны, — положение элемента согласно его «атомному номеру». Так, например, водород — первый элемент; углерод — шестой; хлор — 17- й, а золото занимает место 79. Этот атомный номер (обычно обозначаемый Z) оказался определяющим при понимании преобразований из-за радиоактивности: испускание α-частицы предполагает потерю двух порядковых номеров в периодической таблице (уменьшение Z на две единицы), в то время как испускание β-частиц увеличивает атомный номер Z на единицу. Значение всего этого еще предстояло определить.

Например,на диаграмме показаны радиоактивный ряд урана и его преобразование в другие элементы вплоть до свинца.

Вначале показалось, что Манчестер — также не идеальное место для Бора. Почти все специалисты занимались там экспериментальной физикой, и едва нашлась пара человек, которых интересовала теория. Однако эти двое ученых оказались хорошими собеседниками, более того, они повлияли на выбор Бором направления исследований.

Первым был Дьёрдь де Хевеши (1885-1966), происходивший из венгерских аристократов и хорошо знавший радиоактивные ряды. Второй — Чарльз Галтон Дарвин (1887-1962), которого Бор характеризовал в письмах своему брату как «внука настоящего Чарльза Дарвина», создателя теории естественного отбора. Молодой Дарвин был из Кембриджа и, получив диплом, решил искать новые идеи в Манчестере.

Побеседовав с Хевеши, Бор предположил, что происхождение радиоактивности, как α, так и β, кроется в атомном ядре, о котором заявил Резерфорд. Бор совещался с Резерфордом пять раз, но тот, не принимая умозрительных рассуждений, не пожелал, чтобы Бор опубликовал свою идею. Как возможно, что p-радиоактивность, испускание электронов, исходит от ядра, если он сам предположил, что ядро — это положительно заряженная часть атома? В этом не было особого смысла. Бор принял критику Резерфорда и отказался от идеи публикации.

Дарвин, в свою очередь, стремился объяснить математически потерю энергии α-частиц при их прохождении через разные материалы. Если Резерфорд прав, большинство α-частиц (которые не сталкиваются с ядром) подвергались бы некоторому отклонению во время столкновения с электронами атомов, расположенных далеко от ядра. Так как электроны примерно в 8000 раз меньше α-частиц, эти столкновения производили бы лишь незначительные отклонения и легкие потери энергии. Однако, помимо прочих неизвестных, загадкой оставалось и расположение электронов в атоме. Вопрос был важным, поскольку, представив себе столкновения между α-частицами и электронами, мы убедимся: вовсе не одно и то же, если последние распределены произвольно, если они все сосредоточены на внешней поверхности атома или если они организованы по орбитам.

Изолированные материальные частицы — это абстракции, свойства которых могут быть определены и зафиксированы только при их взаимодействии с другими системами.

Нильс Бор, «Теория атома и принципы описания природы» (1934)

Работы двух его коллег из Манчестера, особенно Дарвина, вызвали у Бора интерес к структуре атома, а именно к конфигурации электронов ядра в том виде, в каком это представлял Резерфорд. Но как вообразить стабильную структуру электронов вокруг ядра? С тех пор как Ньютон сформулировал в конце XVII века теорию гравитации для объяснения движения планет вокруг Солнца, многие физики и математики занимались расчетами для описания всех возможных орбитальных систем, существующих и отсутствующих. В системе, где тела притягиваются силами, пропорциональными расстоянию, единственная невозможная система — та, в которой тела не движутся. Если бы планеты и спутники не находились в движении, они притягивались бы друг к другу, пока не упали бы друг на друга и на Солнце. То же самое происходит с электронами в ядерном атоме: электроны должны двигаться на больших скоростях, чтобы избежать «падения» на ядро.

Движение электронов представляло собой проблему, когда их число было малым, потому что само движение являлось причиной потери энергии и столкновения с ядром. Но это не первая проблема, с которой столкнулся Бор. Его заботило, как получить информацию о движении электронов в настоящих атомах. Вспомним, что не существует микроскопа, который позволил бы заглянуть внутрь атома. В астрономии с движением планет все было понятно: когда Ньютон сформулировал теорию гравитации, в его распоряжении имелось очень точное описание планетных орбит, которое сделал Иоганн Кеплер за несколько десятилетий до этого. Но в случае с атомом, казалось, все было по-другому.

С этим новым интересом к структуре атома завершился первый опыт постдокторской работы, и Бор вернулся в Данию летом 1912 года. На родине ему предстояло множество дел. Сначала нужно было найти подходящую должность. Это оказалось непросто: в Дании существовал только один университет, и за время отсутствия Бора на кафедре физики произошли изменения. Очевидно, что хотя он и обладал блестящим умом, он был слишком молод, чтобы возглавить эту кафедру, и должность получил Мартин Кнудсен (1871-1949). Бор же стал преподавать физику студентам медицины и прочих специальностей.

Другой его целью тем летом была свадьба. После нескольких лет отношений с Маргрет пришло время жениться. Пара сочеталась 1 августа в муниципалитете Слагельсе; церемония заняла едва ли несколько минут и была проведена начальником полиции. Ввиду застенчивости и гиперактивности молодого Бора празднование максимально сократилось, к разочарованию матери Маргрет, которая надеялась, что ужин продлится около трех часов (вечность для Бора). Молодожены отправились в свадебное путешествие в Англию, а именно в Кембридж и Манчестер, где Бор продолжил размышлять и собирать информацию о структуре атома. Так был заключен брак, в котором физика стала частью семейного ядра.

АТОМ БОРА

В XIX веке, несмотря на то что не все принимали само существование атомов, некоторые представляли себе, что в атоме должна происходить некая внутренняя деятельность, возможно в виде вибраций или пульсаций, как, например, у мыльного пузыря. Это было еще до того, как на сцене появился электрон, а вместе с ним возникла идея о внутренней структуре атома. Подобные размышления были вызваны необходимостью объяснить спектр элементов, типы света, который испускает каждый элемент в знак собственной идентичности. Электромагнитная теория Максвелла показала: свет есть электромагнитное излучение, результат периодического движения тел с электрическим зарядом. Следовательно, если атомы испускают свет, внутри них должно существовать какое-то движение.

Электроны предполагали новую переменную, которая может объяснить спектр химических элементов. Возможно, свет, испускаемый атомами, — это результат вибраций (или другого типа периодического движения) электронов. Томсон, немецкий ученый Йоханнес Штарк (1874-1957) и ряд других исследователей безуспешно пытались учесть экспериментальные данные спектроскопии в своих предположениях о структуре атома. Начиная с февраля 1913 года Нильс Бор также занимался этим, хотя сосредоточился исключительно на спектре атома водорода. Уже в марте он отправил Резерфорду статью для публикации в «Философском журнале*, самом молодом научном издании того времени. Это была первая из трех статей, опубликованных им в том году и навсегда изменивших атомную физику.

СПЕКТРОСКОПИЯ, ИЛИ ИЗ ЧЕГО СДЕЛАНО СОЛНЦЕ

Благодаря научной фантастике на сегодняшний день уже несколько поколений совершили межгалактические путешествия, однако на самом деле человек смог лишь несколько раз долететь до Луны. Имеющееся у нас знание о других планетах и галактиках — результат не того, что мы были там, а того, что само пришло к нам оттуда. Особенно это справедливо в отношении Солнца и других звезд. Сколько бы путешествий в гиперпространстве ни осуществляли персонажи научной фантастики, даже они не осмеливались приближаться к Солнцу. Тогда откуда известно, что Солнце состоит в основном из водорода, небольшого количества гелия и некоторых более тяжелых элементов? Это возможно благодаря свету, который испускает звезда, а именно спектральным линиям. Ньютон первым понял, что естественный свет состоит из целого ряда цветов радуги. С помощью призмы он заметил, что обычный белый свет — это результат сочетания нескольких различных «светов», и каждый из них можно изучать отдельно. Но не каждый свет белый. Если нагреть, например, медь, получается сине-зеленый свет; литий дает красный свет, а натрий — желтый. У каждого химического элемента есть собственная визитная карточка — свет. Так в XIX веке развивалась наука спектроскопия, анализирующая тип света, испускаемого определенным химическим веществом. Технология была относительно простой. Сначала нагревали изучаемое вещество в газообразном состоянии, пока оно не начинало испускать собственный свет. Его проводили через призму, которая разлагала свет, как в случае с радугой. Так как это разложение было крошечным, получившийся спектр (цвета) наблюдали затем через микроскоп. Информация о спектре каждого элемента была все более точной. Едва стали детально известны спектры элементов, свойственных Земле, можно было сравнить их со спектром света, посылаемого Солнцем и другими небесными телами. Поскольку спектр солнечного света во многом совпадает со спектром водорода, пришли к заключению, что Солнце состоит в основном из этого элемента.

Спектроскоп, разработанный Густавом Кирхгофом и Робертом Бунзеном, 1860 год.

Бор и любой, кто пытался объяснить спектр элементов на основе движения электронов, сталкивались с двумя основными взаимосвязанными проблемами. О первой уже было сказано ранее: движение электронов для начала предполагало потерю энергии, которая приговаривала атом к смерти. Но была также и вторая загадка: факт, что спектры обычно дискретны, а не непрерывны.

Каждый элемент испускает определенные цвета, или частоты. Обычно они визуализируются на фотографической пластине в виде ряда параллельных лучей, каждый из которых соответствует определенной частоте. Но если происхождение этих частот, этого света, испускаемого атомами, заключалось в какой-то форме потери энергии атомными электронами, почему свет наблюдается только на некоторых частотах, а не на непрерывном потоке света? Другими словами, если электроны постепенно тормозят, предполагается, что в процессе торможения они пройдут через все возможные значения энергии, как автомобиль, снижающий скорость с 80 до 20 км/ч, проходит через все промежуточные скорости. Ведь природа (по крайней мере так думали ранее) не должна делать скачков.

Именно здесь Бор выдвинул новую несколько рискованную гипотезу, которую физики того времени, особенно британские, в основном не приняли: гипотезу Планка. В конце 1900 года, практически от отчаяния, профессор теоретической физики Берлинского университета Макс Планк (1858-1947) объяснил давнюю проблему излучения, предположив, что взаимообмен энергией на микроскопических уровнях не непрерывный, а происходит малыми дозами; то есть природа, похоже, все-таки делает скачки. Также нужно знать, что только после 1906 года, когда молодой и почти неизвестный Альберт Эйнштейн (1879-1955) воспользовался той же самой гипотезой для объяснения давней аномалии удельной теплоемкости твердых тел, некоторые немецкие физики начали воспринимать гипотезу Планка всерьез.

С учетом этих предпосылок Бор начал размышлять немного по-другому. Вместо того чтобы диктовать атомам, как им себя вести, согласно законам классической физики, он принял имевшуюся у него информацию, полученную в основном из спектроскопии: атомы в целом были стабильными, а при нагревании испускали свет конкретных частот, свой собственный спектр. Тогда он сосредоточился на самом простом случае — с атомом водорода.

Сегодня доказано, что число электронов в определенном атоме равно его атомному номеру, Z То есть у водорода только один электрон, у гелия два и так далее. Как Бор представил себе структуру атома водорода? Первым шагом было буквально следовать гипотезе Резерфорда и поместить ядро, обладающее массой и положительным электрическим зарядом, в центр, и тогда электрон окажется на орбите вокруг этого ядра. Исходя из экспериментального факта, что водород, как и большинство элементов, стабилен в нормальных условиях, Бор предположил, что и эта орбита стабильна и нужно забыть о возможном излучении, которое она должна испускать согласно классическим теориям.

Следует признать, что в науке обычно все делается не так. Если молодой недавно завершивший обучение человек имеет только один год опыта работы за границей и неспособен объяснить определенное явление, скорее всего ему следует продолжить учебу. Пренебрежение научными предпосылками своего времени в большинстве случаев говорит о высокомерии и чревато растрачиванием своего научного будущего. На самом деле, если бы Бор ограничился только тем, что изложено в предыдущем абзаце, то вышла бы просто гипотеза, не имеющая серьезных оснований. Однако теоретическая физика заключается не в одном только представлении моделей, но и в использовании их для вычисления и сравнения этих расчетов с лабораторными данными. Бор так и поступил, и в связи с этим его модель перестала быть умозрительным предположением и превратилась в прогноз.

Чтобы получить спектр определенного химического элемента, его нужно нагреть — другими словами, снабдить энергией. Этот избыток энергии в структуре атома позволяет электрону вращаться на большем расстоянии от ядра (если снабдить его слишком высокой энергией, он даже может вылететь из атома и оставить ядро в одиночестве). Через некоторое время возмущенный электрон вернется в свое исходное состояние, высвобождая лишнюю энергию в виде излучения, наблюдаемого на спектре (см. рисунок 2).

До этого момента Бор представлял атом как планетную систему, в которой планета (электрон) имеет привилегированное и неприкасаемое положение, его основное состояние. Неожиданный скачок наблюдался у возмущенных орбит. Бор предположил, что электроны могут занимать только конкретные орбиты с определенным значением энергии, что любое промежуточное состояние для них закрыто. Если проводить визуальную аналогию, атом представляет собой скорее лестницу, чем склон: электроны могут находиться только на ступенях и никогда — в их промежутках. Именно здесь датский ученый ввел постоянную Планка: расстояние между «ступенями», между орбитами, должно быть кратно этой постоянной. Электроны могут занимать только такие орбиты энергии, чтобы различие между ними было кратно постоянной Планка.

РИС . 2

На основе этой модели Бор получил спектр атома водорода, который был прекрасно известен уже несколько десятилетий. Каждая линия спектра (каждая частота испускаемого света) соответствовала переходу электрона с одной орбиты на другую, меньшую. Так модель Бора перестала быть чистым предположением вроде тех, что обычно выдвигал Томсон, и превратилась в модель, обладающую прогностической способностью. Впервые атомная модель количественно (а не только качественно) объяснила детали спектра атома водорода.

АТОМЫ КАК СОЛНЕЧНЫЕ СИСТЕМЫ

Бор не был первым, кто ввел постоянную Планка для объяснения атома.

В 1912 году кембриджский астроном Джон Уильям Николсон (1881-1955) предположил, что электроны вращаются вокруг гипотетически положительного ядра по орбитам, угловой момент которых кратен постоянной Планка. Поскольку Николсон был астрономом, неудивительно, что даже до экспериментов Резерфорда он представлял себе атомы в виде микроскопических солнечных систем.

Электроны, вероятно, также колеблются с частотой, кратной той же самой постоянной, как показано на рисунке. Представим себе, что мы движемся на карусели по кругу и одновременно периодически колеблемся сверху вниз, при этом в начальной точке круга есть дверь, через которую мы проходим каждый раз. когда совершаем полный оборот. Таким образом, важно, чтобы наши вертикальные колебания находились в фазе с вращательным движением. То есть каждый раз, когда мы совершаем полный оборот, наше вертикальное колебание должно поместить нас в исходное положение, чтобы мы могли пройти через дверь. Для некоторых современников модели Бора и Николсона были сходными, и даже говорили о модели Бора — Николсона. Но это неверно. В случае модели астронома излучение спектра вызвано колебанием электронов внутри орбиты. Если бы это было так, допускалось бы присутствие других орбит с другими колебаниями. Однако в модели Бора излучение спектра внутри орбиты вызывало не колебание электронов, а переход с одной орбиты на другую. Эта разница важна, потому что в случае модели Бора понятие орбиты перестает быть основным, и значимость обретает именно переход с одного уровня энергии на другой. И в этом корень постулатов квантовой механики.

Очевидно, что не все приняли эту модель. В 1913 году не было ни празднований, ни семинаров, посвященных атому Бора, эта новость не попала в популярные газеты и журналы. Дело в том, что несмотря на прогностическую способность и математическую точность, атом Бора противоречил многим постулатам физики того времени. Почему электроны могут быть только на определенных орбитах? Почему провозглашалось невозможным нахождение электрона на полпути между двумя орбитами? Каков механизм, обязывающий электроны вести себя таким образом? Какие ограничения мешают им двигаться куда угодно внутри атома? Если сравнить это с Солнечной системой, хотя и нет никакой планеты между Землей и Венерой или между Венерой и Меркурием, законы Ньютона подобной возможности априори не исключают. Отсутствие такой планеты — чистая случайность, результат того, как расположились существующие планеты вокруг Солнца. Но Бор говорил, что электроны не могут занимать другие орбиты кроме установленных квантовым отношением. Нет смысла задаваться вопросом о переходе с одной орбиты на другую: электроны находятся либо на одной, либо на другой, и никогда — между ними двумя!

Сам Резерфорд, получив рукопись, прежде чем отправить ее на публикацию, сообщил Бору:

«В твоей гипотезе мне видится серьезная трудность, которая, несомненно, не скрылась и от тебя. Как электрон решает, какую частоту он будет излучать, чтобы перейти из одного стационарного состояния в другое? Как будто (...] электрон знает изначально, на каком уровне он остановится».

Бор утверждал в своей статье, что мы должны забыть о вопросе процесса перехода с одной орбиты на другую. Этот вопрос не имел смысла, потому что предполагал наличие непрерывности физики, а Бор, как Планк и Эйнштейн, был уверен в том, что природа, по крайней мере на атомном уровне, действует скачкообразно. Именно поэтому большинство физиков, сначала в Англии, а затем в Германии (в Гёттингене и Мюнхене), приписали теорию Бора к чисто нумерологическим случайностям. Несмотря на то что числа совпадали, игнорирование вопроса о процессе перехода могло означать только интеллектуальную лень. Физика не должна довольствоваться числовыми совпадениями и обязана представлять механические процессы, вызывающие эти явления. Изменение в направлении мысли, которого требовал Бор, которому аплодировал Эйнштейн и которое невольно задал Планк, казалось, идет против самой физики и исследования материальных причин физических явлений.

МАНЧЕСТЕР — КОПЕНГАГЕН: ДВЕ ПОЕЗДКИ ТУДА И ОБРАТНО

Осенью 1913 года у Бора была очень нестабильная нагрузка, поскольку он вел вводный курс физики для студентов-медиков. Кроме того, как уже было сказано, единственную кафедру в Дании по этой дисциплине недавно предоставили Кнудсену, так что было маловероятно, разве что только по чистой случайности, что эта кафедра освободится в ближайшем будущем. Бор не впал в отчаяние и предложил Копенгагенскому университету создать новую кафедру теоретической физики. Это предложение было несколько абсурдным. В XIX веке во всех университетах мира обычно присутствовало по одной кафедре на дисциплину (одна для физики, другая для химии и так далее). Преподавателю, занимающему кафедру, ассистировали ряд помощников и лекторов; и если те желали развиваться, им приходилось ждать, пока глава кафедры этого или другого университета уйдет на пенсию и освободит место.

Но науки нестатичны, и часто университетская система должна адаптироваться (встречая иногда большое сопротивление) к возникновению новых дисциплин и их ответвлений. Именно это произошло в Германии во второй половине XIX века, когда были созданы несколько новых кафедр для промежуточной между математикой и физикой дисциплины — теоретической физики. Тогда 27-летний Бор решил, что настал момент основать новую кафедру в Копенгагенском университете и возглавить ее: настолько он был уверен в себе. К тому же у него имелись рекомендательные письма многих копенгагенских преподавателей и всемирно известных лиц, таких как его наставник в Манчестере Эрнест Резерфорд.

Этой кафедры пришлось дожидаться, но тут появился другой вариант — временная должность лектора в Манчестерском университете, которую Резерфорд предложил ему на 1914-1915 учебный год. Так Бор вернулся в тот город, где он задумал свою атомную теорию, но... в неудачный момент. Эрцгерцог Франц Фердинанд, наследник трона Австро-Венгрии, был убит в Сараево 28 июня 1914 года. В результате началось то, чего многие уже давно боялись,— масштабная война, охватившая почти все европейские державы. Формально Дания соблюдала нейтралитет, так что Бор смог занять новую должность, предложенную в Манчестере. Но обстановка в университете омрачилась.

Надеясь, что конфликт продлится только несколько недель, многие молодые люди ушли на фронт, и университеты опустели. Вести о потерях в боях оказались неожиданностью, и вскоре стало понятно, что война продлится намного дольше, чем все думали. Молодых британских ученых отозвали с полей сражений домой и привлекли к сотрудничеству с Комитетом научных и промышленных исследований (Board of Invention and Research) для разработки нового оружия и улучшения военной логистики. Комитет возглавил Томсон, он же координировал все работы. Резерфорд занимался исследованиями методов обнаружения ужасных немецких U-Boats, первых подводных лодок, и в итоге достиг успеха с помощью эха звуковых волн (сонара). Будучи иностранцем, Бор не мог работать над военными проблемами, поэтому он сосредоточился на собственных исследованиях и попытался улучшить свою модель атома. Как ни парадоксально, война обеспечила ему и его супруге Маргрет один из самых спокойных периодов в их жизни.

Нильс Бор с супругой Маргрет Норлунд на мотоцикле, около 1930 года.

Снимок, сделанный в Института теоретической физики в Копенгагене (ныне Институт Нильса Бора). Слева направо: Георгий Гамов, Чарльз Лауритсен, Нильс Бор, Эббе Расмуссен, Чандрасекхара Раман и Оскар Клейн.

Весной 1916 года Бор получил новость, что датское правительство утвердило создание кафедры теоретической физики в Копенгагенском университете, и чета решила вернуться на родину. Поскольку это было королевское назначение, требовалось пройти собеседование с королем. Это официальное мероприятие в некотором роде походило на его первую встречу с Томсоном за несколько лет до этого. Король заговорил с Бором о своей страсти к футболу. «Так вы же еще и известный футболист», — сказал монарх, но Бор сразу ответил, что знаменитый футболист — его брат Харальд. Очевидно, что протоколом не были предусмотрены такие ответы, и встреча быстро завершилась. Снова стремление Бора к абсолютной точности поставило его в неловкое положение.

С небеспочвенным оптимизмом Бор не довольствовался одной только кафедрой и сразу же сделал запрос на создание института теоретической физики, оборудованного для экспериментов с радиоактивностью, спектроскопией и некоторыми другими актуальными явлениями. В своем письме университетскому руководству Бор объяснял то, что многие физики того времени уже чувствовали:

«До сегодняшнего дня было достаточно причин предполагать, что так называемые классические механика и электродинамика составляют прочную основу для наших научных идей, [...] но в последнее время было доказано, что эта теоретическая база терпит крах в основополагающих аспектах».

Физика оказалась в кризисе, и требовалось переформулировать ее основные принципы, для чего, как утверждал Бор, ему были нужны не один-два ассистента, а целый институт, который стал бы фабрикой или двигателем новой физики. План был одобрен, и ученый получил деньги — государственные и частные — на возведение Института теоретической физики в Копенгагене. Сегодня он располагается в том же самом здании (хотя с 1965 года называется Институтом Нильса Бора). Несмотря на социальную, экономическую и политическую нестабильность, царившую в Центральной Европе после Первой мировой войны, которая коснулась и Дании, все происходило очень быстро: утверждение, строительство, открытие, состоявшееся в 1921 году, и поступление первых докторантов.

С другой стороны, Бор не переставал получать приглашения из Беркли и Манчестера, ему предлагали читать курс атомной физики в университетах Геттингена и Мюнхена. Все это истощило Бора, и в начале 1921 года ему пришлось взять несколько месяцев отпуска, чтобы утомление не переросло во что-то большее.

МОДЕЛЬ БОРА — ЗОММЕРФЕЛЬДА

Может показаться, что на время войны физика атома полностью замерла, поскольку большинство исследователей были вынуждены заниматься другими темами или поскольку Бор переключился на создание Института теоретической физики в Копенгагене. Отчасти так и было, но только отчасти. В Манчестере Бору, гражданину Дании, не позволяли заниматься «военной» физикой, но другие физики также не внесли никакого вклада в вооруженный конфликт, в основном потому что их знания не могли сослужить службу никакому министерству обороны. Это был случай Макса Планка, специализировавшегося исключительно на теоретической физике, а также Арнольда Зоммерфельда (1868-1951), профессора теоретической физики в Мюнхене.

Во время войны Зоммерфельд продолжал преподавать фундаментальную науку и заниматься популяризацией физики (он даже читал лекции солдатам в увольнении). Значительную часть своей карьеры ученый посвятил пониманию происхождения спектральных линий различных атомов. Так что он был одним из первых, кто оценил как преимущества модели Бора, так и ее ограничения. Главное ограничение заключалось в том, что Бор мог объяснить только самый простой атом (атом водорода) и только при первом приближении. На самом деле уже пару десятилетий была известна так называемая «тонкая структура спектра», в которой каждая линия оказывается дублетной, и первая модель Бора ее не объясняла.

Чтобы усовершенствовать модель, Зоммерфельд ввел два взаимосвязанных изменения. Для начала он провел аналогию с планетными орбитами Солнечной системы и допустил, что орбиты электронов необязательно круговые, а, например, эллиптические. Действительно, математика, описывающая возможные орбиты тела вокруг центра из-за притяжения центральной силы, обратно пропорциональной расстоянию (как в случае с гравитацией или электростатической силой), прогнозирует, что орбиты — это эллипсы; круговые орбиты — лишь частный случай эллипса. Кроме того, Зоммерфельд применил второе квантовое условие к эксцентриситету («удлинению») эллипсов: так же, как в модели Бора допускался скачок с одной орбиты на другую, при условии, что энергия между двумя орбитами кратна постоянной Планка, рассматривались только эллиптические орбиты, эксцентриситет которых соответствовал бы орбите с угловым моментом, кратным постоянной Планка.

Как и в случае с планетами и особенно с кометами, тело, вращающееся по эллипсу вокруг центральной силы (Солнца или атомного ядра), испытывает большую скорость, когда оно находится рядом с центром, чем когда оно далеко от него. Например, поступательное движение Земли быстрее, когда в северном полушарии зима и когда Земля ближе всего к Солнцу, но медленнее летом. Зоммерфельд учел это и связал с общей теорией относительности Эйнштейна, которая тогда широко обсуждалась. Согласно Эйнштейну, поведение электрически заряженных тел испытывает изменения при ускорении или замедлении. Так, приняв эллиптичность орбит, Зоммерфельд смог понять, почему спектральные линии всегда появляются дублетами или триплетами: для одного и того же уровня энергии (квантовое число n) из-за различных эксцентриситетов могут быть различные модели поведения (квантовое число l).

Кроме того, эллиптические орбиты не были статичными, их ось вращалась (это называется «прецессионным движением», как в случае с волчком), из-за чего было введено другое квантовое число. Зоммерфельд предположил, что это прецессионное движение также управляется квантовыми скачками, то есть что не все положения орбит возможны, а только те, чей оборот кратен постоянной Планка. Таким образом, от одного квантового числа в начальной модели Бора состоялся переход к трем, к числам, соответствующим скачку энергии, эксцентриситету орбиты и прецессионному движению.

РИС 3

РИС. 4

Все орбиты на рисунке 3 (обозначенные как s,p и d) имеют одну и ту же энергию, но различный эксцентриситет. Из-за этого скорость электронов изменяется, также, в соответствии со специальной теорией относительности, меняется модель их поведения, что порождает новое квантовое число, а следовательно и дублетность и триплетность спектральных линий определенного энергетического уровня. Наконец, каждая эксцентричная орбита (см. рисунок 4) может вращаться в плоскости своего вращения, и это дает третью степень свободы, которую связали с третьим квантовым числом.

С учетом глубокого интереса Зоммерфельда к спектральным линиям, его великая книга, в которой представлены его улучшения атома Бора, получила называние Atombau und Spektrallinien («Строение атома и спектры»). С 1919 по 1929 год книга выдержала пять переизданий (каждое из них было толще предыдущего) и стала для многих физиков источником знаний в области квантовой физики.