2.2 надежность
2.2.1. Динамические нагрузки
При спуске в колодец направление продольных нагрузок на веревку не меняется. Надо иметь в виду, что это неверно для крючьев.
Несмотря на принимаемые меры, всегда существует вероятность происшествий, таких как:
- мгновенная потеря и повторное восстановление контроля над спусковым устройством;
- проскальзывание обоих самохватов во время подъема и их повторное зацепление;
- случайное зацепление веревки за какой-нибудь выступ при подъеме одного спелеолога и внезапное отцепление во время выхода другого;
- неудачное начало спуска в колодец у основной опоры или неумелый выход оттуда с рывками верхней части веревки;
- разрушение основной или промежуточной опоры навески и т.д.
Последствиями таких происшествий является не только срыв спелеолога, которого должна удержать веревка, но и возникновение динамических нагрузок, которые значительно больше нагрузок при спуске и подъеме в нормальных условиях.
Хотим напомнить, что в пещере веревка никогда не используется отдельно и независимо от остального снаряжения, которым оснащены колодцы и сам спелеолог, а составляет звено так называемой страховочной цепи. Это совокупность всех элементов и снаряжения, которые в данный момент связаны посредством веревки: скала - крюк SPIT (самопробивающий шлямбурный крюк конструкции фирмы Societe de Prospection et d'Inventions Techniques - SPIT) или шлямбурный крюк, его ушко, "закладка" и пр. - карабин - веревка - спусковое устройство или самохват, страховочный конец - карабин - беседка - тело спелеолога. Как при спуске или подъеме, так и при падении возникающие статические или, соответственно, динамические нагрузки передаются каждому звену, включенному в цепь в данный момент.
Запомните:
- любая цепь прочна настолько, насколько прочно ее слабейшее звено. Страховочная цепь - не исключение из этого правила;
- из всех элементов страховочной цепи именно веревка имеет самые изменчивые характеристики и специфически ведет себя при динамических нагрузках;
- веревка подвергается самым большим нагрузкам при разрушении опоры или какого-либо элемента промежуточной навески и в случаях, когда еще при навеске данного колодца была сделана грубая ошибка, которая создала предпосылки для того, чтобы последствия внезапного падения были больше допустимых в данных конкретных условиях.
2.2.2. Энергия падения
Если подвесить тело определенного веса к концу веревки, она одновременно по всей длине, в том числе и в точке крепления, будет подвергаться действию силы, равной весу подвешенного груза. Однако, если поднять тело на некоторую высоту и отпустить, сила рывка на верхнем конце веревке будет значительно больше.
Под действием гравитации падение любого тела ускоряется. Это означает, что его скорость тем больше, чем с большей высоты оно падает. В зависимости от массы и скорости в каждый момент полета тело обладает определенной энергией, которая называется энергией падения. Эта энергия тем больше, чем больше скорость и масса падающего тела. Следовательно, энергия падения зависит от веса G тела и высоты H, с которой оно падает: E=GH (табл.5)
Таблица 5.
высота падения(м) |
скорость падения(км/ч) |
время падения(с) |
энергия падения при весе падающего тела 80 кгс(кгс*м) |
1 |
16 |
0.45 |
80 |
2 |
22 |
0.64 |
160 |
5 |
36 |
1.01 |
400 |
10 |
50 |
1.42 |
800 |
20 |
71 |
2.02 |
1000 |
При остановке веревкой падения тела скорость его падает до нуля. При этом энергия падения должна превратиться в энергию деформации преимущественно веревки, а частично - и остальных элементов страховочной цепи, в том числе тела спелеолога.
2.2.3. Пиковая динамическая нагрузка
В начале свободного падения энергия тела равна GH. Чтобы остановить падение, веревка должна совершить определенную работу деформации A, которая должна быть равна энергии падения E, то есть A=E. Это можно проиллюстрировать графиком, который показывает, каково удлинение веревки при определенной силе (рис.2). Так как работа есть произведение силы на пройденный путь (который в данном случае равен h- удлинению веревки), площадь между кривой и абсциссой равна работе, совершенной веревкой при задержании падения тела.
Сила, вызывающая деформацию веревки, непрерывно нарастает, пока работа A веревки не станет равна энергии падения E. Максимальное значение силы, которого она достигает при задержании падения, назовем пиковой динамической нагрузкой (ПДН). Иначе говоря, это максимальная сила динамического дара, которому страховочная цепь и человеческое тело подвергаются в момент, когда падение останавливается веревкой и последняя перестает удлиняться.
Величина пиковой динамической нагрузки зависит от фактора падения и динамических свойств веревки. При одинаковой энергии падения она будет ниже для более эластичной веревки и выше для той, которая слабее удлиняется (рис.3). Следовательно, сила динамического удара зависит не только от энергии падения, но также от способности веревки больше или меньше удлиняться. Поэтому неверно думать, что падению с определенной высоты всегда соответствует одинаковая пиковая динамическая нагрузка, как нельзя определять надежность веревки только на основании данных о ее прочности на разрыв.
При падении с одинаковой высоты тел различного веса возникает различная пиковая динамическая нагрузка. Даже имея очень большую прочность на разрыв, слабоэластичная веревка при задержании падения испытывает большую пиковую нагрузку, и наоборот.
Запомните:
- конкретное значение пиковой динамической нагрузки варьируется в очень широких пределах. Оно не зависит от абсолютной высоты падения, а определяется исключительно динамическими качествами веревки и фактором падения.
2.2.4. Фактор падения
Фактор падения f определяется отношением высоты падения к длине веревки, которая его задерживает: f=H/L. От него зависит степень падения, а от нее - нагрузка на страховочную цепь при его задержании веревкой.
Предположим, что мы подняли тело P на 2 м над точкой крепления веревки A (рис.4а). Если отпустить его, высота H свободного падения до его остановки веревкой будет равена 4 м, т.е. удвоенной длине веревке L. В этом случае фактор падения будет равен 2:
f = H (высота падения) / L (длина веревки)
f = H/L = 4м / 2м = 2
В переводе с языка цифр это означает, что каждый метр веревки должен поглотить энергию, равную энергии свободного падения тела с высоты 2 м: 4 м высоты падения х 80 кгс веса = 320 кгс м энергии падения, распределенной на один метр веревки. Или, другими словами, фактор определяет так называемую относительную высоту падения, т.е. сколько метров свободного полета приходится на один метр длины веревки, задерживающей падение.
Поглощаемая энергия падения одинакова для каждого сантиметра веревки и вызывает одинаковое удлинение равных участков. Поэтому и общее удлинение веревки в сантиметрах пропорционально ее длине. Следовательно, способность веревки поглощать энергию будет тем больше, чем больше ее длина. Вот почему нагрузка на веревку, принимающую на себя динамический удар, зависит не от абсолютной, а от относительной высоты, т.е. фактора падения.
Чтобы подкрепить этот вывод, давайте поднимем груз не на 2 м, а на 20 м над точкой подвеса веревки. Для этого понадобится веревка длиной 20 м, а высота падения составит 40 м. В этих условиях фактор падения не изменится: f=40/20=2. Не изменится и энергия, которую должен поглотить каждый метр 20-метровой веревки (40 м высоты х 80 кгс веса =3200 кгс м энергии падения, распределенной на 20 м веревки = 160 кгс м энергии на каждый метр веревки). Следовательно, веревка нагружается в той же степени, что и при падении с 4-метровой высоты, так как фактор падения один и тот же. Действительно, во втором случае общая энергия падения в 10 раз больше, но и веревка длиннее в 10 раз, а следовательно в 10 раз больше ее способность поглощать энергию. Из-за этого работа (A), которую совершает один метр веревки при одном и том же факторе падения, одинакова и не зависит от абсолютной высоты. Поэтому и пиковая динамическая нагрузка на данную веревку будет одна и та же как при падении с двух, так и с десяти и более метров, если фактор падения одинаков, т.е. ПДН тоже не зависит от абсолютной высоты падения, а только от его фактора. При прочих равных условиях: массе тела, динамических свойствах веревки и пр. - чем меньше фактор падения, тем меньше и величина пиковой динамической нагрузки, и наоборот.
Во втором примере на рисунке 4б высота свободного падения равна длине веревки, и f=2/2=1. Нагрузка на веревку и страховочную цепь будет значительно меньше, так как на каждый метр веревки приходится энергия, равная энергии падения тела с высоты всего в один метр (2 м высоты падения х 80 кгс веса = 160 кгс м энергии падения, распределенной на 2 м веревки = 80 кгс м энергии на каждый метр веревки).
Максимальный возможный фактор падения равен 2. Эта самая тяжелая степень падения при высоте, равной удвоенной длине веревки. Вероятность падения с таким фактором никогда не исключена при свободном лазании, если первый из связки сорвется в тот момент, когда веревка между двумя людьми не застрахована промежуточными крючьями.
При работе в шахте возможные падения при правильно сделанной навеске имеют гораздо меньшую степень. Их фактор обычно не превышает 0.3 0.5. Именно это позволяет в практике спелеологии использовать более жесткую, или так называемую статическую веревку.
2.2.5. Время падения. Импульс силы
Для абсолютно твердого тела, которое падает на абсолютно твердую поверхность, т.е. при полном отсутствии эластичных элементов, время удара стремится к нулю, а его сила - к бесконечности. Из-за наличия эластичных элементов в страховочной цепи и, в первую очередь, веревки, для преобразования высвобождающейся при падении энергии необходимо некоторое время, а сила удара зависит прежде всего от динамических свойств веревки.
Произведение силы удара на время ее действия Fудар tудар называется импульсом силы. В то время как пиковая динамическая нагрузка при фиксированном факторе падения не зависит от абсолютной высоты, импульс силы зависит от высоты H и нарастает с увеличением скорости падающего тела. Например, если для H1 необходимое время остановки падения есть t1, а для H2 - время t2 и H2/H1=R, то t2/t1=sqrt(R), или при H1=1 м и t1=0.2 с время t2 для остановки падения с высоты H2=9 м будет: H2/H1=R=9/1=9; t2/t1=sqrt(9)=3, или t2=0.2х3=0.6 с, или втрое больше. Следовательно, больше будет и импульс силы (рис.5).
Его продолжительность не зависит от веревки, так как мы установили, что работа каждого метра веревки (2.2.4.) при одном и том же факторе падения одинакова и не зависит от абсолютной высоты падения. Для спелеолога это, однако, не так, поскольку нагрузка на него действовала бы дольше.
При небольшом произведении приложенной силы на продолжительность удара, т.е. при кратком импульсе силы, человеческое тело легче выдерживает большую нагрузку. Такая же нагрузка, но при более продолжительном импульсе силы, т.е. при большем произведении приложенной силы на продолжительность удара, может привести к гораздо более тяжелым последствиям.
Запомните:
- при падении с большей высоты нагрузка дольше действует на тело. При прочих равных условиях это опаснее.
2.2.6. Факторы, уменьшающие нагрузку при поглощении динамического удара
До сих пор мы рассматривали вопросы, связанные с нагрузкой на веревку при поглощении динамического удара, с точки зрения так называемого свободного падения. При работе в пропасти такие условия возникают сравнительно редко. Обычно падение сопровождается более или менее сильными ударами или трением тела спелеолога о стены колодца. Это до известной степени уменьшает скорость падения, а следовательно и его энергию.
С другой стороны, веревка - не единственный элемент страховочной цепи, способный поглощать энергию. Пока участием крючьев, карабинов и другого металлического снаряжения в этом процессе можно пренебречь, но надо учитывать узлы, которые затягиваются, страховочный конец, который удлиняется, обвязку, стропа которой не статична, мышечные ткани спелеолога, которые также обладают некоторой эластичностью. Вместе взятые, эти факторы, хотя и незначительно, но увеличивают общую деформацию страховочной цепи и способствуют уменьшению силы рывка. Экспериментами установлено, что если при свободном падении, например, твердое тело массой 80 кг вызывает пиковую динамическую нагрузку, равную 720 кгс, то при падении человека в тех же условиях ПДН достигает только 550 кгс, т.е. мышечные ткани и обвязки могут поглотить до 25% энергии динамического удара.
Действие перечисленных факторов проявляется только при падении с малой высоты. При большей высоте можно рассчитывать только на эффект удлинения веревки.
Запомните:
- при поглощении динамического удара сильнее всех элементов страховочной цепи деформируется веревка. Следовательно, она поглощает наибольшую часть энергии;
- узлы, страховочный ремень, мышечные ткани и пр. уменьшают пиковые нагрузки, но только при падении с малой высоты.
2.2.7. Надежность статической веревки
Как уже говорилось выше, для того чтобы получить представление о практической прочности веревки, надо определить значение силы, при которой рвется веревка с узлами, мокрая, грязная и пр. Но и этого недостаточно для определения ее надежности, если она статическая. С точки зрения безопасности тот факт, что она бы выдержала, не порвавшись, трех- или трехсоткратную стандартную нагрузку при падении, не имеет никакого значения, если в то же самое время пиковая динамическая нагрузка достигает величин, превышающих способность выдержать эту нагрузку какого-либо звена страховочной цепи или спелеолога. С другой стороны, и относительно высокая на первый взгляд прочность не помешает ей порваться, если ее динамические характеристики окажутся столь низкими, что при падении ПДН превысит статическую прочность.
Поэтому надежность статической веревки не зависит от практической прочности как отдельно взятой величины, а определяется:
1. Соотношением между величиной силы, способной порвать веревку с узлами, перегибами, глиной, влагой и пр., и величиной максимальной силы динамического удара при остановке падения; или, другими словами, от соотношения между практической прочностью на разрыв и пиковой динамической нагрузкой (рис.6). А это означает, что при срыве величина пиковой нагрузки всегда должна быть меньше практической прочности. Если допустить обратное, веревка рвется;
2. Условием, что пиковая динамическая нагрузка никогда не должна превышать способности каждого звена страховочной цепи, включая тело спелеолога, выдержать ее. ПДН зависит, прежде всего, от способности веревки удлиняться и величины фактора падения. Способность любой веревки удлиняться - определенная величина. Ее надо знать, но ее нельзя изменить. Она указана в технической характеристике веревки и может быть больше или меньше в зависимости от типа веревки, а также от степени износа. Спелеолог, однако, может влиять на величину фактора падения, а через нее и на величину пиковой динамической нагрузки (2.2.4.).
Поэтому при провеске колодцев, учитывая сравнительно ограниченные возможности удлинения статической веревки, надо сделать так, чтобы величина фактора внезапного падения не вышла за пределы динамических свойств веревки (пп. 4.3., 4.4. и 4.9.). Это необходимо, чтобы при срыве величина ПДН всегда оставалась в пределах практической прочности на разрыв, т.е. чтобы гарантировать надежность веревки.
Запомните:
- чистая иллюзия рассчитывать на надежность статической веревки только потому, что исходные данные по ее практической прочности в два, три или больше раз выше максимального ожидаемого усилия, если у вас нет никакого понятия о ее динамических характеристиках.