О проблеме регуляции экспрессии генов мы в этой книге говорим фактически во всех главах, рассматривая ее с разных сторон. Существует такое, может быть несколько одностороннее, определение развития: «Понять развитие — это значит объяснить, почему гены в клетках зародыша работают в нужное время п в нужном месте». Говоря о регуляции экспрессии генов, мы можем говорить о нескольких уровнях пли этапах этого процесса.
Первым таким уровнем являются события, которые происходят на хромосоме, т. е. те процессы, которые определяют и регулируют транскрипцию. Здесь мы рассмотрим новые данные, которые сейчас получены о строении регуляторных участков гена, так называемых промоторов. Кроме того, мы обсудим взаимоотношения ДНК с теми белками хроматина, которые создают организацию хромосомы и определяют включение определенных генов.
Вторым уровнем регуляции экспрессии генов можно считать события, происходящие в ядре с уже транскрибированной молекулой про-мРНК, т. е. процессинг и транспорт мРНК из ядра в цитоплазму. Регуляция на этом уровне, как считают некоторые исследователи, так же важна, как на уровне транскрипции, но механизмы ее почти совершенно неизвестны.
Молекула мРНК не обязательно сразу присоединяется к рибосоме и начинает транслироваться. Часто мРНК
сначала образуют комплексы с белками — информосомы, которые служат как бы депо для мРНК, и выход из этого депо может служить механизмом регуляции экспрессии, который в процессах развития играет особенную роль.
Наконец, сам процесс трансляции тоже может быть местом регуляции экспрессии генов, и это выражается не только в изменении скорости синтеза белка, но иногда и в быстрой смене состава транслируемых мРНК. Наконец, когда белок уже синтезирован и даже занял в клетке свое место, это еще не означает, что проявление действия гена неизбежно. При недостатке субстрата признак — если это продукт реакции, катализируемой ферментом, — не проявится.
1. Промоторы генов
В этом разделе мы кратко расскажем о том, какие нуклеотидные последовательности, прилегающие к генам, а иногда и внутри гена, ответственны за процесс транскрипции. У прокариот эти участки, с которыми связывается молекула РНК-полимеразы и откуда начинается считывание, известны уже давно и хорошо. Они называются промоторами. Для эукариот сведения о промоторах были получены совсем недавно. Для этого использовали два метода. По одному из них гены изолировали путем клонирования, а затем с помощью специальных ферментов — рестриктаз — из них вырезали кусочки ДНК с одного или с другого конца гена или даже посередине. В последнее время исследователи пошли еще дальше и научились искусственно комбинировать гены — «пришивать» регуляторный район одного гена к структурной части другого. После этого способности таких реконструированных генов к эффективной и правильной транскрипции проверяли в пробирке или помещая эти ДНК в ядро ооцита.
Второй метод состоит в том, что последовательность нуклеотидов в частях ДНК, прилегающих к гену, исследуется у возможно большего числа разных генов. У них обнаруживаются сходные (гомологичные) последовательности, расположенные на некотором расстоянии от стартовой точки, с которой начинается транскрипция. Эти гомологичные последовательности и рассматривают как потенциальные промоторные участки или, во всяком случае, как участки, имеющие отношение к регуляции работы генов. При таком методе анализа должны, однако, ускользать те регуляторные последовательности ДНК, которые у разных генов не одинаковые, а различные и которые, очевидно, ответственны за специфическую регуляцию работы генов — индивидуальную для каждого из них.
Для обозначения места, занимаемого нуклеотидом в области начала считывания и промоторов, принят такой порядок. Тот нуклеотид, с которого начинается считывание (стартовая точка), обозначается +1, следующий (его помещают правее) — +2, +3 и т. д. Нуклеотид, предшествующий стартовой точке (левее ее), не считывается РНК-полимеразой и его обозначают —1. Следующий перед ним —2, затем в направлении, обратном считыванию, идут —3, —4 и т. д.
Сегодня показано, что в положении +1 почти всегда стоит А, а вслед за ним идет четыре-пять пиримидиновых нуклеотидов, т. е. T или Ц. Если этот порядок нуклеотидов нарушить, то транскрипция пойдет неправильно, т. е. начнется не со стартовой точки, а по соседству с ней. Если теперь посмотреть назад (налево), на нуклеотиды, которые не должны считываться, то у бактерий в положении — 10 находится так называемая Прибнов-последовательность (по имени автора): ТАТААТА. Очевидно, это то место, на которое «садится» молекула бактериальной РНК-полимеразы, и в этом случае активный центр фермента, который собственно и начинает транскрипцию, окажется в районе стартовой точки.
У структурных генов эукариот в положении —10 ничего подобного нет, но зато очень похожая последовательность была обнаружена в районе —30 (у разных генов это место варьирует от —29 до —33). Эта последовательность выглядит, как ТАТА и по имени обнаруживших ее ученых названа Голдберг — Хогнесс-последовательность, или, короче, «ТАТА-бокс». Нарушение этой последовательности или ее изъятие приводит к замедлению транскрипции (она реже начинается) и, главное, к неправильному считыванию, т. е. к изменению стартовой точки на несколько нуклеотидов вперед или назад.
Можно думать, что РНК-полимераза, которая у эукариот по размеру больше, чем бактериальная, занимает больший участок на ДНК. Между ее «центром узнавания», который присоединяется к ТАТА-последовательности, и «активным центром», который должен находиться над стартовой точкой, расстояние равно длине в 30 пар нуклеотидов (— 10 нм). Для бактериального фермента это расстояние втрое меньше.
Te участки ДНК, о которых мы здесь рассказали, не представляют принципиального интереса, так как они определяют лишь точность стартовой точки. Ими нельзя объяснить, почему один ген работает, а другой нет. Поэтому большее внимание сейчас уделяется участкам, которые располагаются еще дальше от стартовой точки, чем «ТАТА-бокс». И действительно, у эукариот в районе от —70 до —80 нуклеотидов находится область с похожей последовательностью у разных генов. Роль этого участка цока не установлена. Может быть, более интересно, что скорость транскрипции сильно меняется (модулируется) в зависимости от наличия участка, располагающегося па расстоянии от —80 до —200 нуклеотидов от стартовой точки. Там, хочется думать, и находится регуляторный участок гена, к которому присоединяется регуляторный белок и уменьшает или увеличивает активность гена.
Сейчас уже накапливаются данные о последовательности нуклеотидов в этих регуляторных участках, которые называют модуляторами или энхансерами (усилителями). Пока не очень ясно, насколько строго должна соблюдаться такая последовательность. По одним данным, даже значительные ее изменения оказывают небольшой эффект, по другим — замена всего одной пары нуклеотидов увеличивает (или уменьшает) активность гена во много раз. Неясно и следующее. Никакой белок, даже самый длинный, не может протянуться на 100 и более нуклеотидов. Следовательно, остается не так много возможностей. Либо регуляторный белок действует на стартовую точку на расстоянии, либо молекула ДНК в этом районе сложена так, что регуляторный белок оказывается вблизи РНК-полимеразы и может контролировать ее поведение. Сейчас обсуждается и такая идея: модуляторный участок — это то место в районе гена, где РНК-полимераза может присоединиться к ДНК. Далее она уже легко «проскальзывает» до ТАТА-участка и точно со стартовой точки начинает транскрипцию,
2. Белки хроматина
Мы уже знаем, что хроматин состоит из ДНК и гистонов в равном весовом количестве и негистоновых белков (НГБ), которых в неактивных районах хромосомы всего 0,2 веса ДНК, а в активных — более чем 1,2 (в среднем НГБ мепьше, чем ДНК). Мы знаем также, что гистоны вместе с ДНК образуют нуклеосомы, и роль гистонов. очевидно, должна быть прежде всего структурная — поддерживать нуклеосомную организацию ДНК и также создавать высшие уровни ее укладки. Ho если роль гистонов так пассивна, почти механическая, то чем объяснить, что существуют варианты гистонов, которые синтезируются на разных стадиях развития морского ежа? Почему гистона H1 заметно меньше в активно работающих генах? Чем также объяснить химические модификации гистонов: перед образованием митотических хромосом в гистонах возрастает число присоединенных к ним фосфатных групп, а перед началом активной транскрипции — число ацетильных групп?
Все эти факты показывают, что гистоны играют существенную роль не только в организации хроматина, но и в происходящей на нем транскрипции. С гистонами или, точнее, с характером их связи с ДНК связана такая важная особенность ДНК, как ее повышенная чувствительность к действию нуклеаз (ферментов, разрывающих нить ДНК) именно в активных генах или в генах, готовых начать свою функцию. Похоже, что ДНК в районе таких генов менее связана с гистонами, более доступна атаке ферментов.
Негистоновые белки хроматина (НГБ) — очень разнородная группа белков, но каждый из них представлен в небольшом количестве. Выше уже рассказывалось, как новая техника использования антител против различных белков хроматина и флюоресцентных красителей позволила различить по меньшей мере две группы НГБ с различными свойствами и локализацией. Одни НГБ располагаются вдоль всей хромосомы — вероятно, это НГБ, связанные со структурой хромосом. Другие НГБ располагаются дискретно и связаны с отдельными генами. Они-то и могут быть специфически регулирующими белками, определяющими работу отдельных генов.
Часть НГБ, очевидно, играет такую же структурную роль, как и гистоны. Например, есть группа белков хроматина, которые движутся в электрофорезе быстрее других. Их так и называют — «быстродвижущаяся группа» (БДГ, или, по-английски, HMG). По своему строению и составу аминокислот они напоминают гистоны и, возможно, когда-то произошли от них. Оказалось, что некоторые белки БДГ, а именно БДГ-14 и БДГ-17 преимущественно располагаются в районах активно работающих генов. Их функция, очевидно, не только структурная.
Итак, разнообразие НГБ, аналогия с прокариотами, у которых функции регуляции осуществляют негистоновые белки, и монотонность расположения гистонов вдоль всех ДНК позволяют думать, что именно среди НГБ и следует искать специфические регуляторы транскрипции. Поэтому в большинстве схем включения и выключения генов, которые фигурируют сегодня в литературе, специфическая роль отводится именно НГБ. Это не означает, что гистоны никак не участвуют в транскрипции, но им обычно отводится неспецифическая роль.
Гены могут находиться по меньшей мере в трех состояниях: неактивном и не подготовленном к активации, неактивном, но готовом к активации (компетентном) и, наконец, в активном, работающем состоянии. В действительности различных состояний, вероятно, больше, например гены могут транскрибироваться с большей или меньшей активностью. Участки хромосом, не готовые к активации, часто образуют плотно компактизованные (спирализованные) глыбки гетерохроматина. Возможно, что гетерохроматинизация создается гистонами, например их фосфорилированием. Ho для этого необходимо, чтобы гистоны были изменены именно в данном типе клеток и только в данном участке хромосомы: в других клетках эти гены могут оказаться как раз активными. А для такой строгой локализации необходимы белки, способные не только изменить гистоны (например, фосфорилировать их), но и отличить один участок хромосомы от других, т. е. в конечном счете отличить одну последовательность ДНК от другой. Такими способностями могут, очевидно, обладать только высокоспецифичные негистоновые белки.
В клетках, компетентных к включению определенных генов, эти гены должны как-то отличаться от тех, которые к включению не готовы. Так, например, стероидные гормоны вызывают включение генов только в компетентных клетках, причем в разных клетках-мишенях они включают различные гены (см. гл. 7). Полагают, что с «компетентными» генами связан особый белок-акцептор, способный связаться с гормон-рецепторным комплексом. Такие акцепторные белки должны быть достаточно специфичны, у них две задачи: опознать последовательность в ДНК, чтобы найти тот ген, который они сделают компетентным, а затем опознать гормон-рецепторный комплекс, чтобы, связавшись с ним, включить свой ген. Выше мы говорили, что уже при возникновении компетентности гена он приобретает большую чувствительность к нуклеазам, т. е. структура хроматина изменяется. Молекулярных механизмов этого явления мы не знаем, как не знаем и механизмов компетенции во всех других случаях.
Включение генов, превращение их из компетентных в активно транскрибирующиеся тоже требует определенной специфичности. Таким образом, существенную часть НГБ должны составлять именно такие высокоспецифичные регуляторные белки. Их должно быть много видов — может быть, тысячи. С другой стороны, каждый из них может присутствовать в очень небольшом количестве — может быть, несколько молекул на клетку. У нас пока нет методов, которые могли бы выявить все белки без исключения, и особенно самые малочисленные. Ho с каждым годом техника разделения и выявления белков приближается к этому пределу.
В заключение нам следует упомянуть еще об одной возможности регуляции — посредством не белков, а низкомолекулярных РНК. Исследованы они до сих пор недостаточно — мы знаем только те их виды, которых в клетке много. У РНК, если рассматривать их как кандидатов на роль высокоспецифичных регуляторов, есть важное достоинство. Даже короткая их последовательность, длиной в 20–30 нуклеотидов, может точно опознать тот ген, который имеет участок ДНК, комплементарный к этой РНК. Белок, способный на такое опознавание, должен быть во много раз больше и сложнее. Каким образом низкомолекулярные ядерные РНК осуществляют регуляторную функцию (если они ее осуществляют), совершенно неизвестно. Схемы, которые могут быть предложены, без фактов большой ценности не имеют. Поэтому гипотеза о РНК как о регуляторах генетической активности остается пока не более чем интересной идеей.
3. Посттранскрипционная регуляция
Из молекулярной биологии мы знаем, что на генах транскрибируются большие молекулы пре-РНК, которые, прежде чем стать мРНК и выйти из ядра в цитоплазму, должны пройти процессинг. На том конце, который транскрибируется первым и который присоединяется к рибосоме, образуется «кэп» — молекула метилированной ГТФ. К противоположному концу присоединяется поли-А — отрезок, состоящий из 100–200 аденинов. Наконец, участки, считанные с экзонов, соединяются друг с другом, а участки, считанные с интронов, вырезаются и деградируют. Существуют экспериментальные данные, показывающие, что скорость процессинга и время выхода мРНК из ядра могут быть различными, т. е. они могут регулироваться.
Более важно другое: оказалось, что многие РНК могут вовсе не выходить в цитоплазму, а вскоре после синтеза деградировать в ядре. Из этих фактов родились важные представления о том, что транскрибируется очень много генов, а из ядра в цитоплазму выходит гораздо меньше видов различных мРНК. Эти взгляды, которые развивают американские ученые Бриттен и Давидсон, предполагают, что на уровне транскрипции, на хромосомах происходит только частичная регуляция и активными являются многие или даже все гены. Главная же регуляция, согласно этим взглядам, происходит на посттранскрипционном уровне, т. е. при разделении на те виды пре-мРНК, которые подвергнутся процессингу и выйдут в цитоплазму, и те, которые быстро распадутся в ядре, не выходя из него. Проблема избирательной экспрессии ограниченного набора генов в разных клетках, таким образом, отодвигается на следующий уровень регуляции.
О механизмах этого явления мы пока ничего не знаем. Нет и строгих доказательств того, что в ядре транскрибируются все или почти все гены. Все это заставляет большинство ученых пока очень сдержанно относиться к гипотезе Бриттена и Давидсона и не спешить с отказом от традиционных представлений о том, что основная регуляция работы генов происходит путем их избирательного считывания.
Тем не менее действительно существуют факты, свидетельствующие о том, что в ядрах находится значительно больше видов РНК, чем в цитоплазме (приблизительно в 10 раз), и это требует своего объяснения. Может быть, Бриттен и Давидсон правы-только отчасти и в ядрах транскрибируются РНК не со всех, но с большого числа генов. Потом в ходе процессинга происходит дальнейшая выбраковка первичных транскриптов. Если это справедливо, то выбор активных генов происходит как бы в два тура: сначала на хромосомах — предварительный и менее строгий, а затем при процессинге — окончательный.
Догадаться, как происходит регуляция, невозможно: даже правильная догадка, пока она не доказана фактами, всего лишь догадка и ценность ее невелика. Вопрос о действительной роли процессинга будет, очевидно, разрешен в ближайшие годы.
4. Информосомы — депо генетической информации
Большие молекулы РНК всегда или почти всегда связаны с белком. В ядрах они образуют рибонуклеопротеидные комплексы, которые открывшие их Г. П. Георгиев и его сотрудники назвали «информоферы». Роль их не вполне ясна. Может быть, она чисто структурна и связь про-мРНК с белком защищает их от распада или необходима для правильного процессинга. А может быть, она более специфичная и белки информофер участвуют в регуляции процессинга, т. е. в том, о чем говорилось в предыдущем разделе.
Еще до открытия ядерных рибонуклеопротеидов (РНП) комплексы РНК с белком в цитоплазме были обнаружены А. С. Спириным у ранних зародышей вьюна. Двадцать лет назад он предположил, что эти комплексы играют роль в регуляции синтеза белка и содержат мРНК. В соответствии с этим они были названы информосомами. Почти одновременно сходная идея была высказана американским биологом А. Тейлором, который предложил термин «маскированные мРНК».
Ситуация в то время была такова, что, перефразируя известное выражение, можно сказать — если бы информосомы не были открыты, их надо было выдумать. Действительно, активация синтеза белка у оплодотворенных или даже у просто активированных яиц морского ежа происходит без участия ядер. Без участия ядер происходит раннее развитие и синтез белка и у зародышей рыб и амфибий. Следовательно, увеличение интенсивности синтеза белка — резкое, как у морского ежа, или умеренное, как у рыб и амфибий, — после оплодотворения могло происходить только на мРНК, синтезированных ранее и запасенных. Если эти мРНК к моменту оплодотворения уже были, то почему они не включились в трансляцию сразу? Очевидно, они были каким-то образом изолированы от белоксинтезирующего аппарата (рибосом), т. е. маскированы.
А. С. Спирин и его сотрудники показали, что информосомы принципиально отличаются от других комплексов РНК с белком. Эти отличия состоят в ином соотношении в них белка и РНК. Для рибосом это соотношение равняется приблизительно 1: 1, и плотность рибосом, измеренная в растворах хлористого цезия, равна 1,51. Для информосом эта плотность всегда меньше и близка к 1,4. Это соответствует соотношению РНК и белка, как 3:1.
Роль информосом кажется очевидной: создать депо матриц, которое позволило бы накапливать их без немедленного синтеза белка и регулировать их переход к трансляции. Такая регуляция может быть количественной, и тогда состав мРНК на рибосомах и в информосомах одинаков — меняется только их доля в этих двух структурах. Ho она, как оказалось, может быть и качественной, и выход мРНК из информосом регулирует не только интенсивность синтеза, но до известной степени и состав синтезируемых белков.
Можно привести несколько примеров, когда участие информосом очень существенно. О накоплении мРНК в оогенезе и об их постепенном переходе на рибосомы мы уже говорили. При дифференцировке мышц мРНК мышечного белка — миозина накапливаются в миобластах заранее, еще до того, как эти клетки сольются в мышечные трубочки. Ho как только такое слияние произошло и необходим быстрый синтез миозина, его матрицы переходят из информосом в полисомы и сразу начинается активный синтез этого белка.
Последний пример касается такой очень сложной дифференцировки, как образование сперматозоидов. Этот процесс имеет еще ту особенность, что после мейоза синтез новых РНК почти или совсем не происходит. Белки же синтезируются на всех стадиях спермиогенеза, и для каждой стадии характерен синтез своих белков. Последними синтезируются белки головки спермия: у рыб это примитивные белки — протамины, у других животных — особые протаминоподобные гистоны. Их единственная функция — очень плотная упаковка ДНК в головке сперматозоида. Матрицы для синтеза протаминов или гистонов спермия транскрибируются заранее, еще до образования головки. И мРНК хранятся все это время (несколько дней) в маскированном состоянии, не транслируясь. Они начинают транслироваться только в самом конце дифференцировки, на той ее стадии, на какой это необходимо.
Механизмы, определяющие судьбу новосинтезированных мРНК, т. е. их путь в информосомы или прямо на рибосомы, неизвестны. Также неизвестно, чем регулируется выход мРНК из информосом и, что особенно сложно, чем определяется выход одних мРНК и хранение других.
5. Скорость трансляции
В синтезе белка участвуют десятки компонентов: мРНК, рибосомы, ГТФ, восемь различных факторов инициации трансляции, факторы элонгации и терминации, более 40 аминоацил-тРНК и образующие их (столько же) тРНК, АТФ, 20 разных аминокислот и 20 аминоацил-тРНК-синтетаз. Существует некоторое оптимальное соотношение между количеством всех этих компонентов. Даже небольшая нехватка любого из компонентов должна уменьшать скорость трансляции. Одни компоненты, по-видимому, всегда присутствуют в достаточных количествах и никогда не становятся лимитирующим звеном. Другие же, напротив, обычно находятся в клетке в низкой концентрации, и то одна, то другая из них ограничивает скорость синтеза белка.
Вместе с тем клетка должна иметь некоторые «излюбленные» звенья, через которые скорость трансляции регулируется чаще всего и на которые «выходят» многие регуляторные внутриклеточные связи. Одним из таких звеньев является фактор инициации — elF-2. Он может находиться в двух состояниях — фосфорилированном и нефосфорилированном (неактивном и активном). Существует специфический фермент — протеинкиназа, которая фосфорилирует elF-2, и фосфатаза, которая его дефосфорилирует. Как показал С. Очоа, именно таким путем происходит регуляция синтеза белка при многих очень различных ситуациях: синтез глобина в зависимости от присутствия гема; активация синтеза белков при пробуждении развития у высохших зародышей солоноводного рачка артемии, после попадания их в воду; замедление синтеза при действии интерферона и т. д. При других ситуациях «узким звеном» становится другой фактор инициации, например elF-3.
Факторы инициации являются, таким образом, характерными точками регуляции, но в принципе им может стать любое недостающее звено. В первую очередь таким звеном могут быть компоненты, поступающие в клетку извне, — некоторые аминокислоты и источники энергии — фосфорилированные нуклеотиды (АТФ и ГТФ). У бактерий, которые очень часто оказываются в условиях белкового или энергетического голодания, существуют специальные механизмы остановки синтеза белка. В клетках многоклеточных такая ситуация возникает, вероятно, реже, но и они могут оказаться в условиях, не способствующих максимальному синтезу белка, т. е. росту.
Перечисленные выше механизмы регуляции синтеза белка неснецифичны; они в равной степени должны замедлять или ускорять синтез всех белков. Однако существуют механизмы регуляции, действующие избирательно, т. е. подавляющие синтез одних белков больше, чем других. Один из таких известных сегодня механизмов — это регуляция посредством состава тРНК. Дело в том, что включение в белок почти каждой аминокислоты может, как мы знаем, кодироваться не одним, а двумя, четырьмя и даже шестью разными триплетами. Во многих случаях для этого необходимы различные тРНК. В то же время количество разных изоакцепторных (несущих одну аминокислоту) тРНК в клетке неодинаково, и та из них, которой меньше, может стать «узким звеном», или, как говорят англичане, «горлышком бутылки».
В то же время в генах и соответственно в мРНК одна и та же аминокислота может быть закодирована часто используемым кодоном, для которого соответствующие тРНК находятся в клетке в избытке, а также редким кодоном, который хотя и кодирует ту же самую аминокислоту, но встречается в генах редко. Для такого кодона нужна особая тРНК, и если ее концентрация в клетке мала, синтез данного белка по отношению к другим белкам будет замедляться.
Судя по тому, что количественное соотношение разных тРНК в различно дифференцированных клетках неодинаково, клетки приспособлены к тем мРНК, которые в них преимущественно транслируются. Например, при дифференцировке шелкоотделительной железы у гусеницы шелкопряда в ней увеличивается концентрация тех тРНК, триплеты которых чаще используются при кодировании фиброина (белка шелка). Ho может быть и другая ситуация, когда нехватка каких-то тРНК позволяет клетке замедлять синтез некоторых белков и этим поддерживать скорости синтеза разных белков в оптимальном соотношении.
Однако существуют и другие, неизвестные пока механизмы регуляции трансляции, которые как-то стимулируют синтез одних белков и, напротив, препятствуют образованию других. Один пример такой регуляции, на уровне трансляции, мы обсудим в последнем разделе этой главы.
6. Тепловой шок — модель для изучения регуляции на многих уровнях
В заключение этой главы мы рассмотрим один особый случай, который может служить иллюстрацией для почти всех предыдущих разделов. Этот пример показывает, что, вероятно, всегда экспрессия генов регулируется не одним механизмом и не на одном уровне, а более сложным путем с вовлечением всех путей регуляции в клетке.
Речь идет о характерных изменениях состава синтезируемых белков, которые происходят при попадании организма в условия повышенной, сублетальной температуры, или, иначе, теплового удара, а по-английски — «хит-шока». Этот процесс был открыт и лучше всего изучен на личинках дрозофилы, где смену работающих генов можно наблюдать визуально благодаря появлению или исчезновению пуфов на политенных хромосомах.
Если личинку дрозофилы из оптимальной температуры 25 °C перенести в повышенную температуру, например 37°, у нее наступает «хит-шок». Он выражается в том, что в течение нескольких минут меняется состав работающих генов в слюнных железах, а также и во всех других тканях личинки. У них активируется несколько генов, которые называют генами теплового шока. Все остальные гены, работавшие при нормальной температуре, в начале «хит-шока» выключаются. Соответственно этому начинается и синтез особых белков «хит-шока», которые, очевидно, защищают личинку от высокой температуры. Синтез же всех старых белков (за исключением гистонов) при этом быстро прекращается: прерывается их трансляция.
Феномен «хит-шока» во многом остается непонятным. Неясно, в частности, каков конкретный механизм действия повышенной температуры на активность генома. Дело в том, что эти же гены можно активировать не только нагреванием, но и действием некоторых веществ, в особенности тех, которые нарушают дыхание. Среди них, однако, есть и витамин B6, с дыханием непосредственно не связанный.
Пуфы образуются в ядрах, а вызывает их появление нагревание цитоплазмы. Нагревание изолированных ядер к появлению пуфов «хит-шока» не приводит, а помещение ненагретых ядер в цитоплазму из прогретой клетки сразу вызывает в ней исчезновение старых и появление новых пуфов. Даже добавление к ядрам только прогретых митохондрий уже достаточно для стимуляции «хит-шока».
В соответствии с новыми пуфами в нагретых клетках прекращается синтез старых видов РНК (кроме рибосомных и транспортных) и начинается синтез новых. За первые несколько минут в новые пуфы перемещается большая часть молекул РНК-полимеразы II. Через 20–30 мин размер новых пуфов и интенсивность транскрипции в них достигают максимума. Одни пуфы работают сильнее, а другие слабее. Ho эти соотношения зависят от температуры: при 33° сильнее работают одни гены, а при самой высокой (37°) — другие.
Пожалуй, самые загадочные явления при «хит-шоке» происходят в цитоплазме. Всего в течение немногих минут прекращается трансляция тех белков, которые синтезировались в клетке до «хит-шока», а освободившиеся рибосомы используются для синтеза новых, теперь уже «хит-шоковых» белков. Как это происходит, остается непонятным, так как старые мРНК не деградируют, а сохраняются в цитоплазме. По-видимому, аппарат синтеза белка после прогрева как-то начинает отличать одни мРНК от других и отдает предпочтение немногим видам мРНК «хит-шока». В белоксинтезирующей системе in vitro, полученной от прогретых клеток, рибосомы транслируют преимущественно мРНК теплового шока, в то время как в такой же системе, но из непрогретых клеток одинаково транслируются и те и другие.
Функция белков «хит-шока» не очень понятна: большая их часть после синтеза мигрирует в ядра. Можно думать, что при их участии происходит подавление синтеза РНК на других генах и осуществляется какая-то защита уязвимых частей клетки от перегревания. После снятия «хит- шока» синтез РНК на ранее активных генах возобновляется.
Обнаружена и мутация, которая нарушает способность мух отвечать на действие повышенной температуры. Естественно, что такие мухи более чувствительны к нагреванию и погибают при тех температурах, которые с помощью белков «хит-шока» переносят нормальные мухи. Оказалось также, что у этих мутантов гены «хит- шока» включаются нормально, но белки «хит-шока» образуются в гораздо меньшем количестве. Создается впечатление, что у этих мутантов как-то нарушается процессинг «хит-шоковых» РНК.
Система «хит-шока» обнаружена не только у дрозофилы, а почти у всех исследованных животных и растений, в том числе и у теплокровных. По-видимому, мы имеем здесь дело с каким-то общим и древним механизмом. Об этом, в частности, свидетельствует и сходство «хит-шоковых» белков у далеких друг от друга групп животных.
На примере приспособительной реакции организма на повышение температуры среды мы встречаемся с разнообразными механизмами регуляции экспрессии генов. Здесь и внешние к клетке, й внутренние факторы, которые способны включать одни гены и выключать другие (это называется позитивная и негативная регуляция). Поскольку существует мутация, нарушающая процессинг «хит-шоковых» РНК, этот этап реализации генетической информации также имеет свою систему регуляции. При «хит-шоке» образуются некоторые новые РНК, которые, однако, не выходят из ядер. На примере «хит-шока» обнаруживается возможность очень тонкой регуляции трансляции. Это не просто ее ускорение или замедление и даже не ускорение трансляции одних РНК по сравнению с другими. Здесь происходит необычный процесс — избирательное прекращение трансляции одних матриц и включение трансляции других. Чем глубже исследуется эта в общем-то исключительная ситуация, тем большие подробности о механизмах регуляции экспрессии генов становятся известными. При тщательном исследовании многих явлений в организме мы как бы случайно открываем возможность подойти почти ко всем механизмам, действующим в клетке, а часто и обнаружить такие, которые ранее не были известны.
Несмотря на то что регуляция экспрессии генов у эукариот изучается давно и многими научными коллективами, успехи науки в этом направлении довольно скромны. Они несравнимы с тем, как много мы знаем о механизмах регуляции работы генов у прокариот и особенно у вирусов. Дело здесь в том, что по мере повышения организации — от вирусов к бактериям, от бактерий к низшим эукариотам и от тех к многоклеточным — в еще большей степени возрастает сложность систем управления. Это усложнение носит качественный характер: добавляются новые механизмы и новые принципы регуляции. Поэтому было бы неверно думать, что исследователи вирусов и бактерий работали хорошо, а исследователи животных — хуже. Просто перед ними стояли несравнимые по сложности задачи. Впрочем, надо признать, что доступность прокариот привлекла к ним лучшие научные силы и большие средства. Сейчас успехи изучения регуляции экспрессии генов у эукариот стали намного ощутимее. В первую очередь это относится к проблеме строения промоторов (энхансеров) и их положения относительно структурного гена. Ho еще более впечатляют успехи в изучении такой старой, сложной и важной проблемы, как механизм малигнизации — злокачественного перерождения клеток. В заключение главы мы кратко коснемся этой темы.
В последние годы работами американских, английских и шведских ученых было показано, что процесс преобразования нормальной клетки в раковую проходит в два этапа, каждый из которых контролируется своими генами и вызывается своими причинами. Известно, что клетки, пока они нормальны, могут пройти лишь несколько десятков делений (см. гл. XIV). Ho под влиянием вирусов или изменений в собственных хромосомах некоторые клетки каким-то образом теряют тот контрольный механизм, который ограничивает число их делений. Такие клетки могут делиться бесконечное число раз, то есть становятся «бессмертными». В культуре ткани или в организме приобретение «бессмертности» происходит неоднократно, хотя и редко. Ho само по себе это свойство еще не означает злокачественности. Для ее возникновения необходим второй этап — значительное увеличение активности одного из онкогенов. Так называют некоторые нормальные гены клетки из-за их способности в исключительных ситуациях вызывать рак. Для возникновения этой ситуации необходимо, чтобы в одной из клеток, прошедших первый этап, произошло такое редкое событие, как попадание активного промотора в район онкогена. Это может возникнуть, например, при случайной хромосомной перестройке или включении в геном вируса. Активация онкогена в уже трансформированных клетках приводит к ненормальному увеличению количества того белка, который этим геном кодируется. Такая одиночная клетка, пока непонятно почему, становится злокачественной — она быстро и бесконтрольно делится и дает начало клону клеток, образующих опухоль.
То, что благодаря успехам в изучении строения и функции генов мы приблизились к пониманию механизмов возникновения рака делает более перспективной и борьбу с ним.