Глава 5
История идей о происхождении жизни
Древние и средневековые ученые всего мира были уверены, что живые организмы постоянно самозарождаются из неживой материи: мухи – из гниющего мяса, мыши – из грязных тряпок и т. д. Первым попробовал проверить это итальянец Франческо Реди в XVII веке. Он клал мясо в кувшины и закрывал некоторые из них тонкой кисеей. Оказалось, что черви заводятся только в незакрытых кувшинах, в которые могут залетать мухи. Так было показано, что самозарождение червей в мясе невозможно – они вылупляются из яиц, отложенных мухами.
Затем были открыты микроорганизмы. Все считали, что хотя бы эти простейшие существа точно могут самозарождаться! Но и это было опровергнуто Ладзаро Спалланцани в XVIII и Луи Пастером в XIX веках. Спалланцани кипятил бульон и запаивал его в стеклянных колбах. Бульон не прокисал месяцами и годами в запаянной колбе, но быстро портился после ее вскрытия, и в нем обнаруживались микроорганизмы. Критики возражали, что для самозарождения в запаянной колбе недостаточно «упругости» (давления) воздуха. Тогда Луи Пастер повторил эксперимент Спалланцани, немного изменив его: вместо наглухо запаянной колбы он использовал открытую, вытянув ее горло в длинную и тонкую S-образно изогнутую трубочку. Этого было достаточно, чтобы бульон не портился, хотя воздух мог проходить внутрь. Так было показано, что даже микроорганизмы образуются путем размножения уже существующих микроорганизмов. (Кстати, узнав об опытах Спалланцани, повар Николя Аппер создал технологию консервирования продуктов в герметично закрытых банках, за что получил большую премию и личную благодарность от Наполеона.)
После успехов Пастера перед учеными встала задача: объяснить происхождение жизни, раз уж жизнь есть, а самозарождения в экспериментах не происходит. Первые успехи в этом направлении были достигнуты А. И. Опариным и Джоном Холдейном в 1920-х годах. Опарин работал с коллоидными растворами белков и полисахаридов и обнаружил, что в некоторых условиях растворенные белки собираются в компактные капли – коацерваты, – которые могут расти, поглощая растворенные вещества из внешней среды, и делятся подобно клеткам. Также он предположил, что атмосфера древней Земли была бескислородной и поэтому в ней мог протекать абиогенный синтез органических веществ. Холдейн развил и конкретизировал идею «первичного бульона» – древнего океана, взаимодействующего с бескислородной атмосферой, в котором под действием разрядов молний, солнечного ультрафиолета и вулканических извержений идут разнообразные химические реакции, приводящие к образованию сложных органических молекул, а те, в свою очередь, образуют коацерватные капли, из которых со временем развиваются клетки.
Идеи Опарина и Холдейна получили экспериментальное подтверждение в 1953 году в опытах Стенли Миллера и Гарольда Юри. В этих экспериментах смесь газов, имитирующая древнюю атмосферу Земли (СН4, NH3, H2), запаивалась в замкнутой стеклянной установке, в которой были подогреваемая колба с водой, холодильник и электроды (рис. 5.1). Через электроды пропускали электрические разряды, имитирующие молнии. По прошествии нескольких суток Стенли Миллер вскрыл установку и обнаружил в воде разнообразные органические молекулы, в том числе простейшие аминокислоты (глицин, аланин), сахара (глицеральдегид, гликолевый альдегид) и органические кислоты (уксусную, молочную), характерные для живых организмов. Последующие экспериментаторы, варьируя условия и совершенствуя методы анализа, расширили набор продуктов в таком синтезе. Были получены многие аминокислоты, пуриновые основания – аденин и гуанин (они появляются, если в смесь газов добавить синильную кислоту), четырех– и пятиуглеродные сахара.
В целом можно было считать, что большинство необходимых для жизни молекул синтезируются абиогенно в условиях древней Земли.
Сложности теории абиогенеза
Через несколько лет после опытов Миллера была открыта двухспиральная структура ДНК, и началось бурное развитие молекулярной биологии. За 10–15 лет был расшифрован генетический код (таблица соответствия между последовательностями ДНК и белков), изучены механизмы копирования ДНК и обмена ее участками. Стал понятен путь передачи наследственной информации в клетках (ДНК → РНК → белки), носящий название «центральная догма молекулярной биологии», и открыты многие другие детали функционирования клеток. Стало понятно, что живые клетки не так просты, как казалось во времена Опарина, и пропасть между живым и неживым стала казаться совсем непреодолимой.
Основы химической структуры жизни
Важнейшую роль в любом живом организме выполняют так называемые полимерные молекулы. Они состоят из множества звеньев, соединенных в цепочку. Полимерные молекулы в клетках относятся к трем основным классам: белки, нуклеиновые кислоты (ДНК и РНК) и полисахариды. Белки состоят из соединенных в цепочку аминокислот, ДНК и РНК – из нуклеотидов, а полисахариды – из моносахаридов. Свойства полимеров зависят от типов входящих в них звеньев, от их последовательности и от типов связей между звеньями. Например, два хорошо известных полисахарида – крахмал и целлюлоза – состоят из длинных цепочек молекул глюкозы и отличаются только типом связи между глюкозными звеньями.
В составе белков встречаются 20 основных аминокислот. Нуклеотидов же только пять, из них три (аденозин, гуанозин, цитидин) – общие для ДНК и РНК, тимидин входит только в ДНК, а уридин – только в РНК. Полисахариды чаще всего состоят из одного или двух типов моносахаридов. Молекулы ДНК обычно образуют длинные нити. У большинства белков нить компактно свернута в клубок (глобулу), но бывают и белки, нити которых сплетаются в длинные и толстые «канаты» (фибриллы). В качестве примера можно привести коллаген сухожилий или фиброин шелка.
ДНК в клетках служит хранилищем генетической информации. Белки выполняют самые разнообразные функции, но чаще всего они работают ферментами, т. е. ускоряют (катализируют) определенные химические реакции. Кроме ферментов существуют транспортные, сигнальные, защитные и многие другие функциональные группы белков. Полисахариды обычно играют в живых организмах две роли: формы хранения сахаров (крахмал, гликоген) и прочного конструкционного материала (целлюлоза, хитин).
Геном даже самых простых бактерий состоит из более чем миллиона нуклеотидов и кодирует свыше тысячи белков. Иными словами, бактериальная клетка содержит мегабайты информации. Для работы этого генома требуются специальные молекулярные машины сборки белков, копирования ДНК, энергоснабжения и средства регуляции и управления. Сложность такой системы очень высока, а более простых самостоятельно размножающихся систем биология не знает. Вирусы не в счет – для их размножения требуется сложная живая клетка. Мы знаем только один путь происхождения более сложных систем из простых – это эволюция по Дарвину, путем естественного отбора. Но чтобы началась эволюция, нужны какие-то единицы живого, способные к размножению. Если естественный отбор начинается только с появлением первой клетки, то для ее образования случайным путем требуется гигантское время – на много порядков больше возраста Вселенной. Эта проблема называется «неупрощаемая сложность» (irreducible complexity). Астрофизик Фред Хойл охарактеризовал ее при помощи аналогии: «случайное самозарождение жизни так же вероятно, как случайная сборка „Боинга-747“ при прохождении урагана через мусорную свалку».
Вторая проблема чисто химическая, и связана она с формой молекул аминокислот и сахаров в живых организмах. Поскольку связи атома углерода (а их четыре) направлены к вершинам пирамиды, возможны два способа размещения четырех разных групп вокруг такого атома, и эти два способа являются зеркальными отражениями друг друга, подобно левой и правой руке (рис. 5.2). Подобное свойство веществ называется еще хиральностью (от др.-гр. χειρ – «рука»). Молекулы с такими свойствами называются еще «оптически активными». Это название – «оптическая активность» – напоминает о свойстве подобных веществ поворачивать плоскость поляризации проходящего через них света; хиральные молекулы поворачивают плоскость поляризации по-разному, т. е. являются оптическими изомерами. Оптическая активность позволила, например, Луи Пастеру разделить левовращающий и правовращающий изомеры винной кислоты, просто сортируя их кристаллы пинцетом: в поляризованном свете одни кристаллы были темными, а другие – светлыми. Он же показал, что плесень может питаться только правовращающим изомером винной кислоты.
Оптические изомеры многих веществ, например, молочной кислоты, легко отличить по вкусу и запаху, потому что наши обонятельные рецепторы – это белки, построенные из левых изомеров аминокислот. Правовращающие аминокислоты в белках не встречаются, хотя иногда бывают в клеточных стенках бактерий, пептидных антибиотиках и других экзотических местах. Кроме того, все природные ДНК и РНК содержат исключительно правый изомер сахара (рибозы или дезоксирибозы). Живое вещество, таким образом, хирально чистое, т. е. состоит из оптических изомеров определенного типа, тогда как во всех абиогенных синтезах получаются левые и правые изомеры в равных долях, а сделанные из такой смеси цепочки белков и РНК имеют беспорядочную укладку и не способны выполнять никакие биологические функции.
Оптическая активность вещества проявляется либо при взаимодействии с поляризованным светом, либо при встрече с другим оптически активным веществом. Если мы хотим объяснить переход от смеси изомеров в абиогенно синтезированной органике к хирально чистому живому веществу, то оказываемся в положении Мюнхгаузена, тащившего себя из болота за волосы: ведь для получения чистых оптических изомеров в клетках нужны ферменты из хотя бы 50–100 аминокислот одной оптической формы, которые невозможно получить из смеси двух оптических форм аминокислот.
Третью проблему обнаружили геохимики и космохимики. Межпланетные аппараты изучили Луну, Венеру, Марс и Меркурий, стал известен состав атмосфер Венеры и Марса. Применение новых аналитических методов к древнейшим земным горным породам позволило уточнить состав древней атмосферы Земли. Он оказался очень похожим на современные атмосферы Венеры и Марса – 95–98 % углекислого газа (СО2), 2–4 % азота (N2) и малые доли других газов, в основном аргона и сернистого газа. Из такой газовой смеси в аппарате Миллера не получается никакой органики. Опыт Миллера, по современным астрономическим представлениям, имитирует условия протопланетного облака, планет-гигантов и их ледяных спутников, где действительно много метана, аммиака и сероводорода, и может объяснить происхождение аминокислот в метеоритах, но имеет отдаленное отношение к древней Земле. Для получения органических веществ из CO2 необходим восстановитель, и ученые занялись его поисками.
Есть и другие проблемы. Например, водная среда «первичного бульона» плохо подходит для образования белков из аминокислот или ДНК из нуклеотидов. В этих реакциях выделяется вода, и в разбавленном водном растворе химическое равновесие будет сдвинуто в сторону распада длинных полимерных молекул на отдельные «кирпичики». Клетки обходят эту проблему, затрачивая на соединение звеньев химическую энергию в виде АТФ, но для доклеточных стадий эволюции надо искать какие-то другие, более простые способы получения белков и ДНК.
Наконец, важнейший компонент живых клеток, входящий в состав РНК, ДНК и многих других незаменимых молекул, – фосфор – в неживой природе встречается только в виде нерастворимых и химически инертных минералов, таких как апатит. Чтобы получить содержащие фосфор органические молекулы, надо найти где-то фосфор в растворимой и химически активной форме.
Панспермия
В качестве альтернативы абиогенезу (происхождению жизни из неживой материи) ряд крупнейших ученых (Берцелиус, Гельмгольц, Аррениус, Вернадский) предлагали гипотезу панспермии: распространения жизни от одних небесных тел к другим. Аррениус, например, расчетами показал, что споры микроорганизмов размерами меньше 1,5 микрон могут распространяться с планеты на планету и покинуть Солнечную систему за счет давления электромагнитного излучения (в том числе и света). Гипотеза панспермии, однако, не объясняет, как появилась самая первая жизнь, а только отодвигает это событие в более далекое прошлое и в неизвестное место Вселенной. В крайнем варианте панспермии предполагается, что жизнь представляет собой неотъемлемое свойство материи и существует с того же момента, что и Вселенная.
Гипотеза панспермии предсказывает, что жизнь должна быть широко распространена на разных планетах и даже в метеоритах. Однако мы пока не нашли следов жизни на Марсе, хотя искали весьма тщательно. В метеоритах жизни тоже нет. Углистые хондриты богаты органикой, включая аминокислоты, но она вся не обладает хиральной чистотой и, следовательно, не может происходить из живых организмов. Так что гипотеза панспермии многими обоснованно критикуется.
Мир РНК
Первое решение проблемы «неупрощаемой сложности» наметилось в конце 1970-х годов. Тогда были открыты РНК, обладающие каталитической активностью, или рибозимы. До того РНК считалась лишь скромным посредником между ДНК и белками – ведь обычно в клетке генетическая информация копируется с ДНК на РНК, и потом по «оттиску» РНК синтезируются белки. Были, правда, известны вирусы, хранящие генетическую информацию на молекулах РНК, и часть из них способна даже переписывать генетическую информацию с РНК на ДНК. Но с открытием рибозимов стало понятно, что РНК может заменять белки в качестве катализаторов химических реакций.
Катализ
В этой книге мы много раз встретимся с понятием «катализатор». Катализатором химики называют вещество, которое ускоряет химическую реакцию, но при этом не расходуется. Рассмотрим это на примере разложения перекиси водорода. Перекись может разлагаться на воду и кислород. Пока перекись хранится во флаконе, ее разложение происходит очень медленно, буквально годами. Ускорить эту реакцию можно несколькими способами. Например, раствор перекиси можно прокипятить, и она разложится, потому что все химические реакции идут быстрее при повышении температуры. А можно бросить во флакон ржавый гвоздь, и реакция пойдет при комнатной температуре, что будет заметно по появлению пузырьков кислорода. Ржавчина (смесь оксидов железа) является катализатором разложения перекиси водорода. В ходе реакции уменьшается количество исходного вещества (перекиси) и возрастает количество продуктов (воды и кислорода), катализатор же не расходуется. Один ржавый гвоздь может разложить и флакон, и ведро, и цистерну раствора перекиси.
Кроме ржавчины для этой реакции существуют и другие катализаторы. В живых клетках есть фермент, называемый каталаза, который очень эффективно разлагает перекись. Благодаря ей при обработке царапины перекисью последняя разлагается, при этом выделяемый кислород убивает опасные бактерии. Особенно много каталазы содержится в клетках печени. Попробуйте бросить маленький кусочек сырой говяжьей печенки в стакан с перекисью, и вы увидите, как бурно пойдет реакция.
Биохимические процессы в клетках происходят благодаря каталитической активности тысяч ферментов. Каждый из них ускоряет, как правило, только одну определенную реакцию. Молекулы ферментов обычно имеют впадину, или «карман», в которой реагирующие молекулы относительно закрыты от остального содержимого клетки и ориентируются нужными сторонами друг к другу. Поэтому ферменты не только ускоряют нужные реакции, но и подавляют ненужные побочные реакции тех же веществ.
Появилась теория «мира РНК», согласно которой самокопирующиеся рибозимы (катализирующие синтез РНК на матрице РНК) стали первыми, очень простыми живыми системами. Они начали дарвиновскую эволюцию задолго до появления клеток и со временем, по мере усложнения, передали каталитические функции белкам, а длительное хранение наследственной информации – ДНК. В дальнейшем были получены искусственно сотни рибозимов. Выяснилось, что рибозимом является и ключевой каталитический центр рибосомы, организующий синтез белка. Однако пока ни один рибозим не может создать копию себя из мономеров, так что теория РНК-мира в ее исходном виде не может считаться полностью доказанной.
Теория РНК-мира была создана молекулярными биологами для решения тех аспектов проблемы происхождения жизни, которые казались им наиболее важными: появления системы из ДНК, РНК и белков, связанных генетическим кодом. Ученые, изучавшие жизнь с других сторон, и прежде всего биохимики и биофизики, встретили ее скептически. Так, любой живой организм должен как-то получать энергию из внешней среды и вещества, из которых он будет строить себя и свои копии. Гетеротрофные организмы (например, животные) должны получать органические вещества в готовом виде и энергию извлекают из процессов их распада (дыхание, брожение). Автотрофные организмы, такие как растения, способны построить все необходимые органические вещества из простых неорганических предшественников (углекислого газа, воды и минеральных солей) и получают энергию обычно в виде света (фотосинтез). Есть автотрофные бактерии, которые обходятся без света и получают энергию из химических реакций между неорганическими веществами (хемосинтез).
При помощи одной только РНК, без участия белков, невозможен ни фотосинтез, ни хемосинтез. Так что организмы РНК-мира нуждались в готовых органических веществах, причем довольно сложных (строительные блоки РНК, нуклеотиды, устроены сложнее, чем аминокислоты, и в аппарате Миллера самопроизвольно не возникают). Более того, энергию для своей жизни и размножения РНК-организмы могут получать только в виде активированных нуклеотидов – например, нуклеотид-трифосфатов, к которым относится АТФ, основной переносчик энергии в современных клетках. Итак, чтобы мир РНК из изящной гипотезы стал хорошо обоснованной теорией, мы должны как-то примирить его с грубой биохимической реальностью. Либо мы должны найти для РНК-организмов «стол и дом» – место обитания, где для них будет надежный источник пищи в виде активированных нуклеотидов. Либо же нам придется дополнить РНК в первых живых системах какими-то другими веществами, при помощи которых РНК-организмы смогут вписаться в окружающую среду, в том числе освоить фото– или хемосинтез. В качестве этих дополнительных веществ мы рассмотрим витамины (мир РНК-коферментов) и некоторые минералы (железосерный мир и цинковый мир).
Термодинамика жизни
Теория РНК-мира никак не рассматривает потоки и превращения энергии в живых системах. Поэтому биофизики, изучающие эти процессы, были в ней особенно разочарованы и стали создавать свои теории для объяснения энергетической стороны возникновения жизни (дальнейшее изложение во многом основано на книге К. Еськова «История Земли и жизни на ней», это лучшее известное автору изложение термодинамических основ жизни на русском языке).
Нам придется начать издалека. От людей, поверхностно знакомых с физикой, можно услышать утверждения вроде «жизнь нарушает второй закон термодинамики». Что это значит и почему это неверно?
Важнейшим достижением человечества стало создание машин для превращения тепла в механическую работу. Первой такой машиной был паровой двигатель. Он производит работу при передаче тепла от горячего котла с паром к холодильнику с водой. Поэтому наука о взаимных превращениях работы и энергии стала называться термодинамикой, а паровой двигатель – ее основной моделью.
Первый закон термодинамики, или закон сохранения энергии, гласит, что из любой системы нельзя получить больше работы, чем в ней содержится энергии. Воображаемое устройство, которое нарушает этот закон, получило название «вечный двигатель первого рода». Во всех реальных ситуациях, конечно, работы будет получаться меньше, чем допускает закон сохранения энергии, из-за всевозможных потерь, например, на трение. Но эти потери можно уменьшить. Например, если мы рассматриваем электрический двигатель, то можно использовать в нем сверхпроводящие обмотки, магнитно-левитационные подшипники и поместить двигатель в вакуум, чтобы исключить трение о воздух, и тогда реально получить коэффициент полезного действия (отношение произведенной работы к затраченной энергии) выше 99 %.
С тепловым двигателем, однако, такая оптимизация невозможна. Как доказал в 1824 году Сади Карно, эффективность теплового двигателя ограничена разностью температур горячего и холодного резервуаров (котла и холодильника в случае паровой машины):
I = (T 2 – T 1 )/T 2
(T1 – температура холодильника, Т2 – температура нагревателя, по шкале Кельвина, которая начинается от абсолютного нуля, – 273,13 °С).
Иными словами, если холодильник у нас имеет комнатную температуру (27 °C = 300 К), а нагреватель – 127 °C = 400 К, как у первых паровых машин, то мы можем превратить в работу не более 25 % тепловой энергии. Если у нас есть только одно, сколь угодно горячее тело и нет холодильника, мы вообще не можем превратить его тепловую энергию в работу. Это и есть одна из формулировок второго закона термодинамики: «Ни одно устройство не способно извлечь работу из системы, находящейся на одном потенциальном уровне». Она относится и к другим видам энергии: чтобы получить работу из потенциальной энергии тела, поднятого над Землей, ему должно быть куда падать. Из камня, лежащего посреди высокогорного плато, работы не получить. Чтобы пошел электрический ток, должна быть разность электрических потенциалов между разными телами. Иначе говоря, если в системе есть разные уровни энергии, то она будет перетекать с высокого уровня на низкий: тепло будет передаваться от горячего тела к холодному, камень покатится вниз по склону, а электрический ток пойдет от высокого потенциала к низкому.
Если паровой двигатель представляет собой замкнутую систему, т. е. не обменивается ни веществом, ни энергией с внешней средой, то горячий резервуар будет постепенно остывать, а холодный – нагреваться. В соответствии с формулой Карно получается, что чем дальше, тем меньшая доля тепловой энергии в такой системе может быть превращена в работу, а доля «недоступной» тепловой энергии будет расти. В 1865 году Р. Клаузиус, рассматривая эту недоступную тепловую энергию, ввел новую физическую величину – энтропию (S). Она отражает отношение тепловой энергии к температуре и имеет размерность джоуль на градус. В любом процессе, где происходит превращение энергии, энтропия растет либо в идеальном случае не убывает. Поэтому второй закон термодинамики называют еще «законом неубывания энтропии».
Пусть у нас в системе есть отдельные холодный и горячий резервуары, между которыми затем идет передача тепла, и их температура выравнивается. Можно сказать, что система вначале была упорядочена – поделена на горячую и холодную части, а потом перешла в беспорядочное, или хаотическое состояние. Мы видим, что, когда температура в системе выравнивается, уровень беспорядка (хаоса) в системе возрастает. Поскольку энтропия при этом тоже возрастает, возникает вопрос: нет ли связи между хаосом и энтропией? Действительно, связь между ними есть. Как доказал в 1872 году Л. Больцман, энтропия является мерой неупорядоченности системы:
S = klnP,
где k – универсальная постоянная Больцмана (3,29 × 10–24 кал/град), а P – мера неупорядоченности системы.
Мера неупорядоченности P определяется как «количество микросостояний, которыми реализуется данное макросостояние». Что это значит? Попробуем объяснить на простейшем примере. Пусть у нас есть сосуд, в котором находятся четыре одинаковые молекулы газа. Каждая молекула может находиться с равной вероятностью в левой или в правой половине сосуда. Почему маловероятно, что все четыре молекулы окажутся в одной половине? Потому что движутся они независимо друг от друга, и по правилам комбинаторики в такой системе есть 16 вариантов расположения молекул. Это будут микросостояния. Макросостояния – это обезличенные описания ситуации в сосуде, когда мы не отличаем молекулы друг от друга. Макросостояний возможно пять: все молекулы слева; три слева, одна справа; две слева, две справа; одна слева, три справа; и все молекулы справа. Понятно, что макросостояние «все слева» реализуется только одним микросостоянием (каждая из четырех молекул должна быть слева). Макросостояние «два слева, два справа» можно получить шестью разными способами: слева могут быть молекулы 1 и 2; 1 и 3; 1 и 4; 2 и 3; 2 и 4; 3 и 4. Иначе говоря, для более упорядоченного состояния «все слева» Р = 1, а для неупорядоченного состояния «два слева, два справа» Р = 6. Если мы рассматриваем не четыре молекулы в сосуде, а, скажем, 1022 (10 000 миллиардов миллиардов) – примерно столько молекул воздуха находится в объеме обычного стакана, то состояние, когда молекулы поровну распределены между половинами стакана, реализуется примерно 1044 микросостояниями, а состояние, когда весь воздух собрался в одной половине стакана, – только одним. Отсюда понятно, почему заполнение воздухом половины стакана – крайне маловероятное событие, которое никто никогда не видел.
Соотношение Больцмана показывает, что в замкнутой системе все процессы в конечном итоге ведут к увеличению хаоса. Поскольку наша Вселенная по определению является замкнутой системой, то в отдаленном будущем ее неизбежно ждет «тепловая смерть» – полное исчезновение всякой структуры. Это, казалось бы, налагает запрет на возникновение более организованных (а значит, менее вероятных) структур из менее организованных, т. е. на прогрессивную эволюцию. Это очень беспокоило самого Больцмана: горячо восприняв дарвиновскую теорию эволюции, он потратил много сил, чтобы дать ей строгое физическое обоснование, но не смог. Однако живые организмы, создавая свои копии из слабо организованной неживой материи и усложняясь в ходе эволюции, очевидно, могут уменьшать свою энтропию. Как им это удается?
Вообще-то, этот трюк умеют делать не только живые организмы. Как работает обычный холодильник? Он понижает температуру внутри холодильной камеры и повышает температуру снаружи, т. е. понижает энтропию системы «холодильник – комната». Но эту систему нельзя считать замкнутой: она получает энергию извне, по электросети, в которую включен наш холодильник. Если мы рассматриваем систему «холодильник – комната-электростанция», то ее энтропия со временем только растет. Точно так же любой живой организм нуждается во внешних источниках энергии. Растения получают ее в виде солнечного света, а животные – в виде пищи. В конечном счете почти вся биосфера питается энергией Солнца. Она выделятся в ходе термоядерных реакций, связанных с огромным повышением энтропии, поэтому энтропия системы «Земля – Солнце» со временем растет, несмотря на возникновение и эволюцию земной жизни.
Здесь надо подчеркнуть, что термодинамика (связанная родством с химией) в одном отношении отличается от всех остальных разделов физики, так или иначе выросших из классической механики. В классической механике все процессы обратимы (т. е. могут точно так же происходить в обратную сторону), а картина мира – детерминистическая. Это значит, что если знать все параметры всех тел во Вселенной на какой-то момент времени, то можно точно предсказать ее будущее на любой срок, а также до мельчайших деталей восстановить ее прошлое. А если все процессы обратимы, то объективного времени вообще не существует, а есть только субъективное время, вводимое для нашего удобства, в виде нумерации порядка событий. Даже теория относительности и квантовая механика, перевернувшие физику в XX веке, в этом отношении сохраняют верность классической механике: в уравнении Шрёдингера, лежащем в основе квантовой механики, время остается однозначно обратимым.
В термодинамике все не так: ее модель Вселенной – не вечное вращение планет вокруг Солнца, а паровая машина, в топке которой безвозвратно сгорает топливо. Согласно второму закону термодинамики эта машина постепенно сбавляет обороты, приближаясь к тепловой смерти. Поэтому ни один момент времени не равен предыдущему, события невоспроизводимы, а время объективно существует и имеет однозначное направление. Термодинамика разграничивает обратимые процессы, в которых энтропия не изменяется, и необратимые, в результате которых происходит возрастание энтропии.
Как показал Илья Пригожин, необратимость появляется, только если в системе возможно случайное поведение. Случайность создает различие между прошлым и будущим системы и, следовательно, необратимость. Движение молекул в газе можно считать случайным, и первые необратимые процессы, которые изучала термодинамика, были связаны с поведением газов в тепловых двигателях. В термодинамике картина мира становится стохастической, и предсказать будущее уже невозможно, даже зная все про настоящий момент.
Классическая термодинамика XIX века имела два ограничения. Во-первых, она рассматривала в основном замкнутые системы. Во-вторых, она изучала достаточно медленные процессы, в которых в каждый момент времени система находится близко к равновесию. В XX веке ситуация изменилась. Появились новые виды тепловых двигателей, и при их разработке инженеры столкнулись с явлениями, которые в классической равновесной термодинамике принципиально невозможны. Например, при создании жидкостных ракетных двигателей инженеры столкнулись с серьезной проблемой высокочастотных пульсаций горения. Внезапно в работающем двигателе начинались быстрые – сотни раз в секунду – колебания давления, которые нарастали до тех пор, пока двигатель не взрывался. Чем мощнее двигатель и чем выше давление в нем, тем чаще возникали эти пульсации. Найти причину этих колебаний и устранить их долго не удавалось. Среди людей, которые знали об этой проблеме и не могли ее решить, был и великий математик, президент Академии наук СССР Мстислав Келдыш. И вот в декабре 1964 года в его кабинет пришел молодой биофизик Анатолий Жаботинский, поставил на стол стакан, смешал в нем несколько реактивов, и жидкость в стакане стала менять цвет с красного на синий и обратно. Это была первая признанная колебательная химическая реакция, ныне известная как «реакция Белоусова – Жаботинского» (BZ-reaction). В тонком слое раствора, например, на тарелке, в ней получаются сложные узоры из движущихся колец и спиралей (рис. 5.3). Келдыш сразу понял, что жидкость, меняющая цвет туда-обратно, имеет прямое отношение к неустойчивости горения в ракетном двигателе.
Реакция Белоусова – Жаботинского стала важной моделью новой, неравновесной термодинамики, за создание которой Илья Пригожин получил Нобелевскую премию в 1977 году. В неравновесной термодинамике доказывается, что в открытых системах, далеких от равновесия, возможна самоорганизация: местное уменьшение энтропии, которое может проявляться как появление новых структур. Это могут быть и коллективные, упорядоченные движения многих молекул. Пригожин назвал такие структуры диссипативными, чтобы подчеркнуть парадокс: процесс диссипации (безвозвратной потери энергии) играет в их возникновении ключевую конструктивную роль.
Одним из простейших случаев такой самоорганизации являются ячейки Бенара. Если равномерно нагревать снизу тонкий слой вязкой жидкости, на поверхности станут видны структуры правильной, в классическом варианте шестиугольной формы (рис. 5.4). Это и есть ячейки Бенара. Их появление связано с особенностями перераспределения тепла в слое жидкости высокой плотности. Поначалу тепло будет проходить через жидкость только за счет теплопроводности. Но если греть достаточно сильно, то в какой-то момент в жидкости начнется конвекция: молекулы начнут движение, организуясь в упорядоченные структуры. Это противоречит классической термодинамике, где тепловой поток – это источник потерь (диссипации), разупорядочивания, а не порядка. Если в классической термодинамике тепловой поток считается источником потерь, то в ячейках Бенара он становится источником порядка. Пригожин характеризует возникшую ситуацию как гигантскую флуктуацию, стабилизируемую путем обмена энергией с внешним миром. Похожим образом возникают циклоны – самоорганизующиеся структуры в атмосфере Земли.
Самоорганизация в реакции Белоусова – Жаботинского имеет другое происхождение. Для появления самоорганизации в химических системах необходимо, чтобы в них происходили автокаталитические реакции, т. е. такие, где продукт реакции ускоряет синтез самого себя. Реакция Белоусова – Жаботинского (окисление малоновой кислоты броматом калия в присутствии солей церия) оказалась очень сложна, в ней насчитывается свыше 30 промежуточных продуктов, и помимо автокаталитических шагов в ней есть также подавление отдельными веществами синтеза друг друга.
В ракетных двигателях такой сложной химии нет. Столь опасная самоорганизация в них имеет смешанное физико-химическое происхождение. Движение газов в ракетном двигателе происходит очень быстро, сравнимо со скоростью химических реакций в них, поэтому газы в камере сгорания далеки от равновесия. На съемках старта ракет на керосиновом топливе («Союз», «Зенит», «Фалькон») хорошо видно, что ярко-желтое пламя тянется на десятки метров за ракетой. Желтый свет испускают частички сажи, которые являются промежуточными продуктами горения керосина. Конечные продукты сгорания керосина – вода, угарный и углекислый газы – прозрачны. Вместо автокатализа в камере сгорания срабатывает ускорение химических реакций в газе. Поскольку горение керосина в ограниченном объеме приводит к повышению температуры и давления, возникает обратная связь: случайное ускорение горения в одном месте повышает давление, а давление ускоряет горение дальше. Повышенное давление не может оставаться в одном месте. Волна повышенного давления распространяется по газу и отражается от стенок камеры, и в какой-то ее точке отраженные волны сходятся. Там горение резко ускоряется и волна повышенного давления (фактически звуковая волна) расходится из этой точки, усилившись. Так в камере сгорания возникают устойчивые, нарастающие колебания давления. Благодаря реакции Белоусова – Жаботинского, которая гораздо безопаснее в изучении, чем ракетный двигатель, удалось разобраться в этих неустойчивостях, разработать форму камеры сгорания, в которой эффективно поглощаются звуковые волны, и создать надежные и мощные ракетные двигатели.
Любой живой организм является неравновесной системой. Равновесное состояние живого существа в обиходе называется трупом. Как и диссипативные структуры неживой природы, любая форма жизни существует благодаря какому-нибудь внешнему градиенту. Например, для человека и животных это химический окислительно-восстановительный градиент между кислородом атмосферы и органическими веществами пищи. Но этот градиент создан другими формами жизни, которые используются в пищу, т. е. в конечном итоге в подавляющем большинстве растениями.
Бывает, что живые существа используют и другие градиенты. Например, альбатрос для своего полета использует разницу в скорости ветра на разной высоте над водой. Он чередует планирование с медленной потерей высоты и короткие взлеты выше, в слой быстрого ветра, чтобы в нем набрать скорость для следующего планирования. В дальних перелетах 80 % энергии, нужной для полета, альбатрос получает из разных скоростей ветра, и только 20 % – из пищи. С точки зрения Земли альбатрос – это прежде всего мешалка для воздуха, и лишь во вторую очередь потребитель рыбы и кальмаров.
Биосфера в целом эксплуатирует энергию Солнца, т. е. градиент температуры между Солнцем и холодным космосом; этот градиент используется путем поглощения солнечного света в ходе фотосинтеза и излучения тепла в космос с поверхности планеты. На космических снимках хорошо видно, что богатые жизнью области планеты – леса и прибрежные воды – темнее, чем остальная суша или океан. Отдельные организмы могут так же использовать химический окислительно-восстановительный градиент между атмосферой и мантией Земли. Мантия содержит много железа в восстановленной (двухвалентной) форме, которое может окисляться при контакте с веществами поверхности Земли – кислородом, водой, углекислым газом. Этот градиент используют микробы, получающие энергию (читай – питающиеся) путем хемосинтеза.
Хотя жизнь имеет общие черты с неживыми диссипативными структурами, живые организмы обладают важным отличием от циклонов и ячеек Бенара. Диссипативные структуры возникают всякий раз, когда есть условия для их появления, и исчезают вместе с ними. Форма диссипативных структур определяется этими условиями. Любой современный живой организм, в отличие от них, обладает эволюционной историей, уходящей на четыре миллиарда лет в прошлое – это более четверти возраста Вселенной! Устройство живых организмов гораздо больше зависит от путей эволюции в прошлом, чем от современных условий их жизни. Такая историческая память обеспечивается молекулами ДНК, хранящими информацию об устройстве клеточных белков, эта информация копируется из поколения в поколение с высокой точностью. В следующих главах мы попытаемся понять, как из химических диссипативных структур возникла жизнь, основанная на наследственной информации.
Глава 6
Место происхождения жизни, «первичный бульон», пицца и майонез
Сколько воды надо для появления жизни?
«Первичный бульон» как среда для появления жизни имеет свои недостатки. В водной среде белки, РНК и ДНК неустойчивы. Эти длинные молекулы со временем распадаются на отдельные звенья – аминокислоты или нуклеотиды. Химическое соединение аминокислот в белок или нуклеотидов в РНК происходит с выделением воды. Поэтому когда ее вокруг много, равновесие этой реакции смещено в сторону распада белка или РНК (такой распад с участием воды называется «гидролиз»). Первым обратил внимание на эту проблему в контексте происхождения жизни Джон Бернал еще в 1949 году.
Клетки строят длинные молекулы, используя активированные нуклеотиды и аминокислоты. При построении РНК и ДНК в ход идут нуклеотид-трифосфаты, их соединение в цепочку сопровождается выделением пирофосфорной кислоты, а не воды. Похожая хитрость позволяет клеткам собирать белки. Однако в аппарате Миллера получаются обычные, а не активированные аминокислоты. Без сложных клеточных систем активации получить из них белки в водной среде нельзя. Поэтому на безжизненной планете для соединения аминокислот и нуклеотидов в цепочки надо как-то избавляться от воды. Для этого хорошо подходят, например, заливы и лагуны по берегам океана, которые наполняются водой во время прилива и пересыхают в отлив. Похожие условия частого высыхания возможны в вулканических районах благодаря регулярным выбросам горячей воды из гейзеров.
Эксперименты показали, что запекание сухих смесей нуклеотидов при температуре 120 °C приводит к образованию коротких цепочек РНК из 3–10 нуклеотидов. Для соединения аминокислот в белки эти условия слишком жесткие, они приводят к разложению самих аминокислот. Однако, как выяснилось, полного высыхания и не требуется: достаточно, чтобы в растворе не было «химически свободной» воды. В крепком рассоле (100 и более граммов NaCl на литр, как в Мертвом море) все молекулы воды прочно связаны с ионами натрия и хлора и не являются химически свободными. Поэтому в рассоле при температурах 60–80 °C равновесие смещено в сторону образования связей, и аминокислоты соединяются в короткие цепочки (эта реакция называется «солевой пептидный синтез» и будет подробнее описана в следующих главах). Так что, хотя вода и необходима для жизни, ее не должно быть слишком много.
Другая проблема теории «первичного бульона» связана с тем, что в нем нет границ. В клетках тысячи генов «играют в одной команде» благодаря клеточной мембране, отделяющей их от внешней среды. Чтобы возникла простейшая кооперация между разными РНК, одни из которых занимаются копированием, а другие, например, готовят для этого детали-нуклеотиды, эти РНК должны как-то отделить свою тесную компанию от остального мира. Тогда нуклеотиды пойдут на копирование только тех РНК, которые их делали, а копирующая РНК будет копировать только себя и своих соседей, которые поставляют ей нуклеотиды. В безграничном бульоне же эти нуклеотиды будут расплываться и достанутся всем соседям, независимо от их вклада в общее дело. Копирующая РНК, которая попытается копировать не только себя, но и другие молекулы, в условиях бульона не сможет отличить союзников от прихлебателей и в итоге проиграет в конкуренции.
Ученые предложили два разных решения проблемы границ, которые по аналогии с «первичным бульоном» были названы «первичная пицца» и «первичный майонез». В модели «первичной пиццы», изложенной в книге «The Major Transitions in Evolution» (John Maynard Smith, Eörs Szathmáry, 1995), предполагается, что жизнь зарождалась в виде тонкого слоя органических молекул на поверхности глины (например, каолинита или смектита), частицы которой состоят из тонких алюмосиликатных слоев. Глина может набухать, потому что молекулы воды, как и другие катионы и анионы, внедряются между этими слоями, увеличивая расстояния между ними.
Эксперименты показали, что глина довольно прочно связывает аминокислоты, нуклеотиды, белки, РНК и другие биологические молекулы. На поверхности кристаллов глины и между ее слоями они накапливаются в высокой концентрации даже из очень разбавленного раствора. Адсорбирующие свойства глины используются и в быту: вы наверняка видели смектит под названием «минеральный наполнитель для кошачьих туалетов». На глине нуклеотиды самопроизвольно выстраиваются именно так, как нужно для их «сшивания» в цепочку РНК. Длинные молекулы РНК очень редко отделяются от глины полностью, но могут медленно перемещаться по ее поверхности, открепляясь то одним, то другим концом. Математическое моделирование взаимодействия разных РНК на плоской минеральной поверхности (Czaran T., Szathmary E., 2000) показало, что в таких условиях легко образуются группы разных молекул, связанных взаимной помощью, а размножение паразитов ограничено и не приводит к вымиранию кооперирующихся РНК. Так что, хотя четких границ на минеральной поверхности нет, она достаточно ограничивает подвижность РНК и нуклеотидов, чтобы могли появиться тесные группы взаимопомощи.
Еще один вклад минеральной подложки в возникновение жизни состоит в том, что она может работать катализатором, т. е. ускорять химические реакции. Эта функция выходит на первый план в тех вариантах модели «первичной пиццы», в которых в качестве минеральной основы предлагается не глина, а сульфидные минералы – пирит (FeS2), сфалерит (ZnS), алабандин (MnS). Дальше в этой главе мы подробнее рассмотрим связь сульфидных минералов с биохимией.
Модель «первичного майонеза» предложена Гарольдом Моровицем в книге «Mayonnaise and The Origin of Life: Thoughts of Minds and Molecules». Она предполагает, что примитивные аналоги клеточных мембран существовали с древнейших времен, еще до появления самокопирующихся РНК. Иными словами, весь мир РНК существовал внутри протоклеток – мелких жировых пузырьков. Теория «первичного майонеза» имеет меньше сторонников, чем теория «первичной пиццы», потому что для протоклеток существует проблема питания: нуклеотиды очень плохо проходят через мембраны. В современных клетках для этого существуют специальные транспортные белки, но адекватного решения для поглощения нуклеотидов примитивными протоклетками пока не найдено. Зато в модели «первичного майонеза» достигается очень эффективное разделение молекул РНК на кооперирующиеся группы, поэтому отвергать ее ученые не спешат. Более того, есть пути совмещения теорий «первичной пиццы» и «первичного майонеза»: частицы глины, как оказалось, помогают образованию мембранных пузырьков, при этом возникший пузырек окружает частицу глины со всех сторон.
Солнце: друг или враг?
Почти вся современная жизнь прямо или косвенно зависит от энергии солнечного света, которая в ходе фотосинтеза используется для построения сахаров и других клеточных веществ. Даже глубоководные сообщества, обитающие в полной темноте, зависят от кислорода, вырабатываемого водорослями в верхних слоях океана. Как известно, в стратосфере существует озоновый слой, который поглощает 99 % ультрафиолетового излучения Солнца. Озон (О3) образуется из кислорода под действием того же ультрафиолета. В древние геологические эпохи, когда кислорода в атмосфере еще не было, озонового слоя тоже не могло быть. Более того, молодое Солнце излучало больше ультрафиолета, чем сейчас, когда оно, разменяв пятый миллиард лет, стало спокойной звездой среднего возраста. Поэтому во времена появления жизни на Земле ее поверхность подвергалась мощному ультрафиолетовому излучению, и смертельная для многих современных организмов доза излучения набиралась за несколько минут. В связи с этим многие ученые склонялись к тому, чтобы спрятать первые живые организмы поглубже под воду для защиты от губительных лучей.
Однако ультрафиолетовое излучение вызывает самые разнообразные химические реакции, в том числе ведущие к синтезу аминокислот и нуклеотидов из простых молекул. Так что для каких-то этапов происхождения жизни оно, наоборот, могло быть полезно. Как же разобраться, какие из первых шагов жизни происходили на свету, а какие – в темноте?
Ответ на этот вопрос пришел с неожиданной стороны. В последние годы бурно развивается синтетическая биология, целью которой является создание организмов с принципиально новыми свойствами. Например, коллектив под руководством Стивена Беннера достиг больших успехов в создании альтернативных нуклеотидов. Эти искусственные звенья хорошо встраиваются в ДНК и РНК обычными природными ферментами, образуют комплементарные пары друг с другом, но не со стандартными нуклеотидами А, Г, Т и Ц, и расширяют нуклеотидный алфавит до шестибуквенного (рис. 6.1) (Malyshev et al., 2014; Yang et al., 2011 (русский краткий анонс: )).
Получается, что с задачей хранения генетической информации в принципе могут справиться самые разные варианты нуклеиновых оснований, и А, Г, Т, Ц, возможно, были отобраны природой совсем по другим признакам. Как считает известный биофизик Армен Мулкиджанян, таким признаком была устойчивость к ультрафиолетовому излучению (Mulkidjanian, A. Y., Galperin, M. Y., 2007).
Здесь надо пояснить, как устроены молекулы и как происходит их взаимодействие со светом. Каждая химическая связь, изображаемая в структурных формулах линией между атомами, обычно состоит из двух электронов, которые вместе движутся между двумя связанными атомами. У каждого электрона есть собственное магнитное поле, направление которого называется «спин». Два электрона, образующие химическую связь, имеют противоположные спины, так что их магнитные поля взаимно компенсируются. Такие электроны называются «спаренными». Если молекулу разорвать на две части, то электроны из разорванной связи имеют два варианта дальнейшей судьбы. Они могут разойтись по одному в каждый фрагмент молекулы или оба вместе в один из фрагментов. В первом случае эти электроны остаются без пары и готовы к образованию новой связи с любой подходящей молекулой. Фрагменты молекул, имеющие неспаренный электрон, очень химически активны и называются «радикалы». Во втором случае, когда одному фрагменту достаются два электрона, а другому – ни одного, эти фрагменты имеют электрический заряд и называются «ионами». Неспаренных электронов в них нет, и они более стабильны, чем радикалы.
Когда в молекулу попадает фотон с подходящей энергией, он поглощается парой электронов, образующей химическую связь, и молекула переходит в возбужденное состояние с избыточной энергией. Возбужденных состояний как минимум два. Сначала молекула оказывается в неустойчивом и короткоживущем состоянии (так называемом синглетном состоянии). В нем спины электронов возбужденной пары еще антипараллельны, как и в спокойном состоянии молекулы. В синглетном состоянии молекула может сбросить возбуждение и вернуться в исходное состояние путем флюоресценции (излучения светового кванта с энергией чуть меньше исходной) или рассеяния энергии в тепло либо перейти в следующее – триплетное – состояние, в котором спины электронов становятся параллельными и химическая связь между атомами фактически разрывается. Если в молекуле была возбуждена одинарная связь, то молекула разрушается в этом месте. Если же была возбуждена двойная связь (точнее, так называемая пи-электронная система, образующая «вторые палочки» двойных связей), то молекула в триплетном состоянии сохраняет целостность, но становится бирадикалом – иными словами, у нее теперь имеются два неспаренных электрона, которые могут образовать две новые химические связи. Поэтому молекула в триплетном состоянии химически активна и вступает в разнообразные реакции. Например, молекулы этилена (С2H4), имеющие двойную связь между атомами углерода, при УФ-облучении частично объединяются попарно в циклобутан (С4H8), у которого вместо одной двойной связи образуются две одинарные связи между двумя дополнительными атомами углерода (рис. 6.2). Молекула может также вернуться из триплетного состояния в основное, невозбужденное путем излучения кванта света – фосфоресценции. В отличие от флюоресценции фосфоресценция может происходить спустя минуты и часы после облучения вещества, а разница в энергии поглощенного и излученного кванта света больше.
Так вот, у природных азотистых оснований синглетное состояние крайне короткоживущее. Оно легко рассеивает энергию возбуждения в тепло через колебания и вращение молекулы, обмен атомами водорода и другие механизмы и возвращается обратно в невозбужденное состояние. Синглетное состояние пуриновых оснований, аденина и гуанина, живет около 10–12 секунды – примерно в 10 000 раз меньше, чем синглетные состояния большинства молекул сравнимого размера и сложности, например аминокислоты триптофана. Благодаря быстрому рассеиванию энергии они из синглетного состояния практически всегда переходят в невозбужденное, а не в химически активное триплетное. А раз азотистые основания практически не попадают в триплетное состояние, то и разрушение их под действием ультрафиолета происходит очень редко.
Пиримидиновые основания, цитозин и тимин, рассеивают энергию несколько хуже, чем пурины, и, соответственно, менее устойчивы. Однако образование комплементарных пар улучшает рассеивание энергии еще примерно в 50 раз благодаря обмену протонами в водородных связях пары. Поэтому устойчивость комплементарной пары нуклеотидов к ультрафиолету выше, чем каждого из них по отдельности. Кроме того, в нуклеиновых кислотах плоские молекулы азотистых оснований лежат стопкой, поэтому их пи-электронные системы взаимодействуют между собой (так называемое стэкинг-взаимодействие) и могут передавать друг другу энергию возбуждения, еще усиливая рассеивание и дополнительно увеличивая устойчивость к ультрафиолету – до 20 раз по сравнению с одной комплементарной парой нуклеотидов (Mulkidjanian et al., 2003).
Азотистые основания не только сами устойчивы к ультрафиолету, они защищают соседние молекулы. Например, они предохраняют от УФ-расщепления фосфоэфирную связь (О-Р). При облучении УФ глицеролфосфата отщепление фосфорной кислоты происходит в 300 раз быстрее, чем при облучении аденозинмонофосфата, а образование комплементарных пар и стэкинг-взаимодействие в цепочке ДНК или РНК еще увеличивают степень защиты.
Таким образом, солнечный ультрафиолет, который в принципе разрушительно воздействует на нуклеотидную цепочку, как и на любые органические молекулы, может служить фактором отбора по следующим направлениям:
• отбор самых УФ-стойких азотистых оснований;
• отбор азотистых оснований, склонных образовывать комплементарные пары;
• отбор нуклеотидов одной хиральности из смеси правых и левых нуклеотидов (так называемой рацемической смеси), потому что смесь правых и левых нуклеотидов в цепочке нарушает стэкинг-взаимодействие;
• отбор длинных молекул РНК по сравнению с более короткими, потому что в длинных цепочках стэкинг-взаимодействие увеличивает устойчивость к ультрафиолету;
• отбор молекул РНК, содержащих двуспиральные участки (шпильки), среди молекул со случайными последовательностями, потому что в них больше нуклеотидов входят в состав комплементарных пар.
Минеральный состав живых клеток
Важную информацию об условиях обитания древнейших форм жизни мы можем получить из состава солей в современных клетках. Как это возможно?
Еще в 1920-х годах физиолог Арчибальд Макалум обратил внимание на то, что относительный состав солей в крови человека и других позвоночных очень похож на относительный состав солей в морской воде. Он так объяснил это наблюдение: первые животные возникли в море и поначалу не имели почек или других систем регуляции состава солей в межклеточных жидкостях своего тела. А к тому времени, когда у животных появились эффективные почки, многие процессы в разных органах уже были завязаны на «морской» состав солей в крови. Поэтому млекопитающие, предки которых вышли на сушу более 300 млн лет назад, до сих пор носят в крови соли в том же соотношении, что и их далекие предки, хотя на суше необходимые соли (прежде всего хлориды) в дефиците. Поэтому соленая пища, содержащая хлорид натрия, для нас более вкусна, чем пресная.
История минерального (солевого) состава клеток в чем-то аналогична. Так как первые клетки вряд ли были способны контролировать содержание неорганических солей (для этого требуются сложные липидные мембраны и энергозатратные системы активного транспорта), то солевой состав тех клеток должен был быть таким же, как в их окружающей среде. К этому солевому составу изначально приспосабливались первые РНК и белки, и затем менять его было бы уже слишком сложно.
Если сравнить содержание различных ионов в цитоплазме клеток и морской воде (табл. 6.1), бросается в глаза высокое содержание в клетках калия и низкое – натрия. Геологи уверены, что морская вода во все эпохи, как и сейчас, содержала мало калия и много натрия. В континентальных озерах, как пресных, так и соленых, «клеточные» пропорции ионов тоже не встречаются. Ближе всего к клеткам по соотношению калия и натрия оказываются воды некоторых геотермальных источников.
Другой особенностью ионного состава клеток оказывается высокая концентрация ионов переходных металлов, прежде всего железа и цинка, а также марганца и меди. Если железо широко распространено и в неживой природе, то медь, марганец и особенно цинк содержатся в клетках в очень большом количестве по сравнению с внешней средой. Концентрация цинка в клетках в миллион раз выше, чем в морской воде! Обогащение этими переходными металлами характерно для одной разновидности геотермальных источников – «черных курильщиков».
«Черные курильщики» были открыты в 1977 году при погружениях батискафа «Алвин» к срединно-океаническому хребту в Атлантике. Исследователям открылась поражающая воображение картина – торчащие из морского дна трубы, из которых валит густой черный дым (рис. 6.3). Это, конечно, не дым, а перегретая глубинная (так называемая геотермальная, ее источником являются химические процессы в нижних слоях земной коры и мантии) вода с температурой до 400 °C, которая не закипает из-за большого давления. Ее мутность и черный цвет обусловлены взвесью сульфидов металлов. При контакте геотермальной воды с океанской первая охлаждается, и из нее сначала выпадают сульфиды железа, меди и никеля, имеющие черный цвет. Из этих сульфидных осадков складываются трубы «черных курильщиков». При дальнейшем охлаждении, в диапазоне температур 200–300 °C, из воды выпадают сульфиды цинка и марганца, покрывающие белым ковром дно вокруг «черных курильщиков». Если геотермальная вода поднимается вверх относительно медленно, она успевает остыть до 300 °C еще до выхода в океан, и в этом случае образуются небольшие «белые курильщики», трубы которых сложены из сульфидов цинка и марганца. Кроме сульфидов переходных металлов геотермальная вода обогащена также сероводородом, калием и магнием и имеет щелочную реакцию.
«Черные курильщики» обладают и другими свойствами, полезными для зарождения жизни. Во-первых, минеральные осадки в них образуются из частиц микронного (0,001 мм) размера и пронизаны громадным количеством пор. Эти поры по размеру соответствуют бактериальным клеткам и образуют сложный лабиринт, в котором могут в относительной изоляции размножаться разные доклеточные формы жизни. Во-вторых, сульфидные минералы, которые откладываются вокруг «черного курильщика», являются отличными катализаторами разных химических реакций, в том числе ведущих к синтезу аминокислот и других клеточных веществ. Более того, в состав многих современных клеточных ферментов входят неорганические кластеры – наночастицы некоторых минералов. И это именно те минералы, которые образуются в «черных курильщиках»: пирит FeS2, макинавит (Fe, Ni) S, грейгит Fe5NiS8, виоларит FeNi2S4 (Russell et al., 2014, таблица на с. 14). В-третьих, в «черных курильщиках» и других геотермальных источниках существуют устойчивые мощные градиенты температуры и химического состава, т. е. неравновесные условия, которые, как мы помним из прошлой главы, совершенно необходимы для жизни. Хотя современные организмы используют химические градиенты, для первых живых организмов мог быть полезен и устойчивый перепад температур. В условиях перепада температур растворенные крупные молекулы, такие как РНК и белки, могут двигаться от тепла к холоду. Это явление называется «термофорез». Оно объясняется большей энергией частиц в нагретых зонах и, соответственно, их большими импульсами, направляющими частицы из нагретых зон в холодные. Это явление используется для концентрирования РНК и других молекул.
Как показали эксперименты, в длинных заполненных водой порах в условиях перепада температур может происходить очень сильное концентрирование нуклеотидов, РНК и других растворенных веществ – в миллионы и миллиарды раз! Например, в стеклянном капилляре, нагреваемом с боковой стороны и выходящем верхним концом в холодную колбу (Baaske et al., 2007), нуклеотиды подсасываются из холодного раствора и концентрируются в нижней, горячей части. Их концентрация там возрастает в 6–10 раз на каждый миллиметр длины трубки, т. е. 10-сантиметровый капилляр может повысить их концентрацию в миллиард раз. Молекулы РНК, состоящие из 5–10 нуклеотидов, концентрируются легче при увеличении толщины трубки. Кроме простого концентрирования в таких капиллярах идут более сложные процессы, связанные с колебаниями температур и концентраций, помогающие образованию длинных молекул РНК, которые мы подробнее рассмотрим в главе 9.
Все это делает «черные курильщики» подходящим местом для появления жизни, и происходящие в них процессы привлекли пристальное внимание ученых. Сейчас существует две хорошо разработанные теории происхождения жизни в связи с геотермальными источниками: «железосерного мира» и «цинкового мира». Обе они предлагают решение сразу многих проблем на пути появления жизни, включая восстановление углекислого газа и образование биополимеров. Рассмотрим их подробнее.
«Железосерный мир»
Теория «железосерного мира» принадлежит немецкому биофизику Гюнтеру Вахтерхойзеру (Wächtershäuser, 2006. Пересказ одной из предыдущих его статей на русском языке: ).
Вахтерхойзер и его последователи обосновали теоретически и проверили экспериментально многие химические реакции, происходящие в условиях окрестностей «черных курильщиков» – при температурах 50–150 °С и высоком давлении. Основным источником водорода для восстановления СО2 является происходящая при температурах выше 100 °C реакция взаимодействия сероводорода с сульфидом железа:
H 2 S + FeS → FeS 2 + 2 [H],
в которой сульфид железа превращается в пирит, а атомы водорода остаются адсорбированы на его поверхности. С помощью этих атомов водорода на поверхности сульфида железа может происходить, например, восстановление СО2 до метилмеркаптана:
CO 2 + 4 H 2 S + 3 FeS → CH 3 SH + 3 FeS 2 + 2 H 2 O,
а также фиксация азота:
N 2 + 3 H 2 S + 3 FeS → 2 NH 3 + 3 FeS 2 ,
и дальше превращение альфа-кетокислот в аминокислоты:
R-CO-COOH + NH 3 + FeS + H 2 S → R-CHNH 2 -COOH + FeS 2 + H 2 O.
В присутствии сульфида никеля, тоже характерного для «черных курильщиков», разнообразие химических реакций сильно возрастает. СО2 и присутствующий в вулканических газах угарный газ (СО) превращаются в уксусную, пировиноградную и другие органические кислоты, а также тиометилацетат (CH3CO-S-CH3). Важным промежуточным продуктом в этой химической системе является карбонилсульфид (COS). С его помощью, например, происходит «сшивание» аминокислот в пептиды даже в воде: на первом шаге реакции уходящей группой становится не вода, а H2S, и CO2 – на втором (рис. 6.4, Leman et al., 2004). В присутствии фосфатов COS может фосфорилировать аминокислоты и «сшивать» фосфат в пирофосфат (Leman et al., 2006).
Отрицательно заряженные органические кислоты адсорбируются (прилипают) на поверхности сульфидных минералов и могут накапливаться в больших концентрациях. В целом в условиях «черного курильщика» возможен синтез большого разнообразия органики, едва ли не больше, чем в опытах Миллера.
Аргументом в пользу такого сценария являются содержащиеся в ферментах современных клеток железосерные кластеры – фактически, наночастицы пирита (рис. 6.5). Они переносят электроны и участвуют в разнообразных окислительно-восстановительных реакциях.
«Цинковый мир»
Другой сценарий абиогенного синтеза органики на геотермальных источниках – теория «цинкового мира» – предложен Арменом Мулкиджаняном (Mulkidjanian, 2009; Mulkidjanian, Galperin, 2009). Он основан на способности сульфидов цинка и марганца к фотохимическому восстановлению разных веществ. Кристаллы ZnS и MnS поглощают ближний ультрафиолет (так называемый «черный свет», т. е. волны с диапазоном 400–315 нм). Их возбужденное состояние устойчиво, благодаря чему сульфид цинка, например, может часами фосфоресцировать в темноте. В этом состоянии возбужденный электрон обычно находится в «потенциальной яме» на поверхности кристалла и может участвовать в химических реакциях, восстанавливая разные вещества. В водной среде эти кристаллы восстанавливают CO2 до муравьиной кислоты (НСООН), уксусной кислоты и других органических кислот, сульфид цинка оказывается самым эффективным восстановителем с квантовым выходом до 80 % (80 % поглощенных фотонов вызывают химическую реакцию). При этом на кристалле накапливается положительный электрический заряд. Если нет подходящих восстановителей, то происходит фотокоррозия сульфида цинка с выходом ионов цинка в раствор и образованием молекулярной серы:
Аналогично сульфидам железа в «черных курильщиках» сульфид цинка на свету может восстанавливать азот до аммиака:
Образование аминокислот из кетокислот тоже эффективно происходит на кристаллах сульфида цинка при освещении.
Если в воду с освещенными кристаллами сульфида цинка поступает сероводород, то вышедшие в раствор ионы цинка вновь осаждаются в виде кристаллов. Иначе говоря, в этом случае сульфид цинка не расходуется, а выступает катализатором для восстановления CO2 сероводородом:
CO 2 + H 2 S → HCOOH + S.
Муравьиная кислота и аммиак, образующиеся на сульфиде цинка, при подсыхании воды выпадают в осадок в виде формиата аммония HCOONH4. Эта соль при прогревании в сухом виде теряет воду и превращается в формамид CHONH2. Формамид может служить сырьем для синтеза азотистых оснований РНК (подробнее – в следующей главе). Кроме того, благодаря высокой температуре кипения (218 °C при обычном давлении) он эффективно накапливается в пересыхающих лужах, и в среде формамида, в отличие от водной среды, нуклеотиды легко соединяются в РНК и не распадаются.
Сульфид цинка хорошо удерживает на своей поверхности ДНК и РНК. Кроме того, сульфид цинка способен принимать световое возбуждение с нуклеотидов, РНК и других молекул. Это защищает РНК от УФ-расщепления, и в то же время накопление РНК на поверхности минерала позволяет собирать больше света и ускоряет фотосинтез в этом месте.
Нет ли здесь противоречия? С одной стороны, абиогенный фотосинтез на ZnS требует света, и нуклеотиды несут следы отбора на устойчивость к ультрафиолету. С другой стороны, в наше время отложения сульфида цинка образуются только в темных морских глубинах вокруг «черных курильщиков». Чтобы вода могла выносить из недр Земли и накапливать на поверхности ZnS и MnS, требуется ее температура 200–250 °C, а для выноса FeS – 300–350 °C. Чтобы вода при таких температурах не закипала, необходимо высокое давление, которое сейчас бывает только в глубинах океана. Но, как мы помним, после гигантского столкновения и появления Луны Земля еще 50–100 млн. лет имела сверхплотную атмосферу углекислого газа, подобно современной Венере. Давление этой атмосферы в 50–200 раз превышало современное, и в ту эпоху геотермальные источники с отложениями ZnS и MnS (аналоги «белых курильщиков») могли существовать на поверхности Земли, под лучами Солнца.
Именно сульфид цинка позволяет снять противоречие между необходимостью ультрафиолета для появления нуклеотидов и РНК и его опасностью для сколько-нибудь сложных форм жизни. Всего один миллиметр осадка ZnS защищает от ультрафиолета так же эффективно, как 40-метровый слой воды. Поэтому первые организмы могли укрываться от света в толще минерального осадка, но при этом иметь доступ к продуктам фотохимических реакций в верхнем слое. Более того, видимый свет хорошо проходит через осадок сульфида цинка, и населяющие этот осадок организмы имели возможность вести свой собственный фотосинтез, используя видимый свет.
Как сделать выбор между «цинковым» и «железосерным» мирами?
По первой теории жизнь зарождалась в среде, где было очень много растворенного цинка. Он мог включаться в структуры РНК и первых белков и сохраниться там до наших дней. Если же жизнь вышла из «черных курильщиков», то скорее можно ожидать, что в РНК и древних белках будет содержаться железо.
Как мы видели выше (табл. 6.1), цинк по общему содержанию в клетках сравним с железом и превосходит все прочие переходные металлы. В известных структурах РНК железо совершенно отсутствует, а цинк встречается чаще других переходных металлов (табл. 6.2). На втором месте – марганец, ведущий себя подобно цинку. Многие рибозимы требуют присутствия ионов металлов для проявления каталитической активности. Среди таких металлов самые распространенные – магний, цинк и марганец, а железо никогда не встречается.
Цинком также обогащены самые древние белки и ферменты с древними функциями. Из 49 универсальных белков (таких, которые присутствовали во всех прочитанных на 2008 год геномах) 37 содержат цинк, 19 – марганец и только 3 – железо. Причем цинк не обязательно нужен для каталитической активности, часто он просто стабилизирует трехмерную структуру. Один из таких древних белковых фолдов (укладок) – ДНК-РНК-связывающий домен, называемый «цинковый палец», где атом цинка связан между двумя остатками цистеина и двумя – гистидина, очень широко распространен, например, среди ДНК-связывающих белков.
Таким образом, можно сказать, что содержание металлов в клетках подтверждает теорию «цинкового мира», а не «железосерного».
В пользу «цинковой» теории говорит еще то обстоятельство, что ионы железа легко расщепляют РНК, связываясь с 2' и 3' гидроксильными группами рибозы. Поэтому клетки хранят избыток железа в связанном виде, вместе с белком ферритином. Вахтерхойзер, чтобы обойти эту сложность, предполагает, что первые нуклеиновые кислоты содержали вместо рибозы четырехуглеродные сахара, такие как эритроза. Подобные ксенонуклеиновые кислоты были получены искусственно, они устойчивы к ионам железа, щелочам и высокой температуре, могут комплементарно соединяться с классическими РНК, но в таком случае непонятно, почему они сменились более уязвимыми нуклеиновыми кислотами с рибозой (подробнее об этом будет рассказано в главе 12).
В целом теория «цинкового мира» находит больше подтверждений, но полностью отвергать роль химических реакций на поверхности пирита нельзя. В конце концов, зоны сульфидов железа и сульфидов цинка соседствуют в одних и тех же геотермальных источниках. Вещества, синтезируемые на сульфиде железа, постепенно смываются и переносятся с током воды и пара в зону сульфида цинка, где могут включаться в происходящие там под действием света процессы. Именно железосерный «нижний этаж» геотермальных источников мог поставлять наверх серосодержащие вещества: карбонилсульфид, меркаптаны, тиоацетат и тиометилацетат. Последний особо важен для биохимии, так как является простейшим аналогом ацетилкофермента А, способного легко присоединять ацетильную группу (CO-CH3) к другим органическим молекулам (подробнее об ацетилкоферменте А будет рассказано в главе 11).
Фосфорная проблема и пути ее решения
Живые клетки содержат большое количество фосфора. Он входит в состав ДНК, РНК, энергетической «валюты» – АТФ и многих других жизненно важных молекул. Сахара присутствуют в клетках в основном в фосфорилированной форме. Однако в неживой природе фосфор существует практически только в виде фосфатных минералов, таких как апатит Ca5(PO4)3OH, которые нерастворимы в воде и химически инертны. Более того, высокая концентрация растворенного фосфата несовместима с клеточными концентрациями магния и кальция – их фосфаты плохо растворимы и должны выпадать в осадок. В клетке этого не происходит, потому что почти весь внутриклеточный фосфор находится в составе различных фосфорилированных органических молекул, соли которых с магнием и кальцием растворимы.
Как же собрать в колыбели жизни достаточно фосфора, причем в форме, пригодной для получения сахарофосфатов и нуклеотидов? В принципе, возможно несколько решений (рис. 6.6). Например, пирофосфат (P2O74−) растворим в воде в присутствии кальция и магния и, более того, способен служить источником энергии для биохимических реакций, подобно АТФ. Некоторые микроорганизмы и сейчас используют пирофосфат для тех реакций, которые у других организмов требуют затрат АТФ. Другая растворимая и химически активная форма фосфора – фосфит (HPO32−). Это соединение может окисляться до фосфата с выделением большого количества энергии и давно используется химиками для синтеза искусственной ДНК (Lestinger et al., 1975). Кроме того, многие бактерии обладают ферментами для окисления фосфита и могут использовать его как единственный источник фосфора. Некоторые бактерии даже способны получать энергию из процесса окисления фосфита.
Где и как могли накопиться пирофосфаты или фосфиты в высоких концентрациях? Хорошим источником могут быть метеориты. В двух типах метеоритов (состоящие из железа и силикатов энстатитовые хондриты и железные метеориты) содержится до 0,1–0,5 % минерала шрайберзита (фосфид железа Fe3P). При попадании в воду шрайберзит постепенно разлагается, выделяя фосфиты, фосфаты, пирофосфаты, оксид железа и водород. До 50 % фосфора из шрайберзита переходит в фосфиты и до 5 % – в пирофосфаты. Фосфит устойчив к ультрафиолетовому излучению, не окисляется в отсутствии катализаторов и может сохраняться в морской воде сотни миллионов лет (Pasek et al., 2008).
Другой источник фосфитов и пирофосфатов – вулканы и связанные с ними наземные геотермальные источники. Измерения японских геохимиков на вулкане Усу (остров Хоккайдо) показали, что в выходящих из фумарол вулканических газах с температурой 540–700 °C содержится заметное количество летучих оксидов фосфора: P4O10, PO2 и P4O6. При лабораторном моделировании поведения жидкой лавы при температуре 1300 °C оказалось, что до 40 % фосфора из нее улетучивается в виде оксидов (Yamagata et al., 1991). Последующее растворение этих оксидов в воде дает фосфиты и пирофосфаты.
Вода многих наземных геотермальных источников обогащена соединениями фосфора: например, в грязевых котлах Мутновской сопки на Камчатке его концентрация достигает 0,01 % (Bortnikova et al., 2009). В большинстве геохимических анализов геотермальной воды измерялся общий уровень фосфора во всех формах, не различая фосфат, пирофосфат и фосфит, но для горячих источников Мамонтовых озер в Калифорнии показано, что до половины фосфора в их воде содержится в виде фосфита (Pech et al., 2009). В древних вулканических газах и геотермальных водах, скорее всего, содержание всех форм фосфора было еще в несколько раз выше, потому что древнейшие материки, как мы помним из главы 4, были сложены богатыми фосфором KREEP-базальтами.
Еще один механизм накопления фосфора связан с уже упомянутыми кристаллами сульфида цинка. Как мы помним, на свету эти кристаллы постепенно разрушаются. В качестве подходящего восстановителя для предохранения ZnS от фотокоррозии, как оказалось, идеально подходят восстановленные формы фосфора – фосфиты и гипофосфиты (H2PO2−). В присутствии фосфитов ZnS проводит восстановление CO2, сопряженное с окислением фосфита до фосфата. Более того, значительная часть этого фосфата соединяется с прилипшими к кристаллу органическими молекулами, образуя фосфорилированные сахара и кислоты, как в клетках. Это один из возможных путей накопления фосфорилированной органики в местах зарождения жизни.
Наземные геотермальные поля – колыбель жизни?
Поиск местообитаний, богатых переходными металлами и фосфором, ведет нас к горячим источникам вблизи вулканов. Как мы помним, еще одна особенность минерального состава клеток – это высокая концентрация калия и малая – натрия. В морской воде соотношение этих металлов обратное. Если фосфор и соли переходных металлов в принципе могут накапливаться в высыхающих водоемах любого типа, то соотношение калий-натрий не меняется при высыхании и поэтому является самым надежным признаком возможной колыбели жизни.
Геотермальные воды горячих источников разных типов сильно отличаются друг от друга по соотношению калия и натрия, среди них есть похожие в этом отношении как на морскую воду, так и на клетки. Горячие источники обычно питаются водой с поверхности – дождевой, снеговой или речной, так называемыми метеорными водами. Метеорные воды стекают по трещинам и сквозь поры вглубь земной коры, ближе к магматическому очагу, там нагреваются и частично растворяют горные породы. Поднимаясь снова к поверхности, горячая вода закипает по мере снижения давления. Чаще всего пар выходит из земли по трещинам прямо над магматическим очагом, и такие выходы называются фумаролами. Жидкая вода, которая не успела выкипеть, тоже поднимается по трещинам и выходит на поверхность горячими источниками. Типичное геотермальное поле, например, Лардерелло в Италии, состоит из множества фумарол в середине и горячих источников по краям.
В холодном и влажном климате (Камчатка, Исландия, Йеллоустоун, Новая Зеландия) встречается еще два типа горячих источников – гейзеры и грязевые котлы. Гейзер периодически выбрасывает струю горячей воды под давлением, а в остальное время из него идет пар. Если пар охлаждается не текущей сверху холодной водой, а холодным воздухом на поверхности, то он конденсируется, и получаются грязевые котлы. Их грязь состоит из мельчайших частиц глины, которые образуются из поднимающихся с паром летучих силикатов.
В совместной работе Армен Мулкиджанян и вулканолог Андрей Бычков (2012) показали, что из всех типов водоемов и горячих источников именно грязевые котлы лучше всего подходят на роль колыбели жизни. Как известно геологам, при кипении горячей минеральной воды, особенно при температурах выше 100 °C (под давлением), происходит разделение растворенных веществ. Одна их часть остается в жидкости и выходит в горячих источниках, а другая испаряется вместе с водой и выходит через фумаролы и грязевые котлы. Понятно, что с паром вырываются прежде всего вулканические газы, которые были растворены в воде (H2S, CO2, NH3, HCN), но также в пар переходят оксиды фосфора, силикаты и соли некоторых металлов, прежде всего калия, цинка и марганца (рис. 6.7)! За счет разделения ионов металлов при кипении пар, поднимающийся от магматического очага, содержит много калия и мало натрия, как цитоплазма клеток. Такой же минеральный состав имеет и жидкость грязевых котлов, образуемая при охлаждении и конденсации этого пара. Иными словами, жидкость грязевых котлов – это наиболее похожая на цитоплазму клеток природная среда. Вода геотермальных источников, которая не выкипела под землей, а поднималась на поверхность в жидком виде, наоборот, обогащена нелетучими солями – хлоридами натрия и железа.
Грязевые котлы обогащены именно теми элементами, которые накапливают клетки: калием, фосфором, азотом (в виде аммиака) и микроэлементами: цинком, марганцем, молибденом и бором (в следующей главе мы увидим, что молибден и бор очень важны для появления РНК). Натрия в них немного, и соотношение калий/натрий получается близким к внутриклеточной среде. Правда, современные грязевые котлы содержат много серной кислоты, которая получается при реакции сероводорода с кислородом воздуха, и практически необитаемы. Но в древние эпохи, когда кислорода в атмосфере еще не было, грязевые котлы должны были иметь нейтральную среду и быть пригодными для жизни. В нейтральной среде силикаты должны были осаждаться не в виде жидкой глины, а в виде цеолитов и других твердых пористых силикатных минералов с огромной поверхностью. Ионы цинка и марганца в сероводородной воде должны были осаждаться в виде сульфидов, причем для такого способа накопления ZnS и MnS даже не требуется повышенное атмосферное давление.
Получается, что наземное геотермальное поле предоставляет почти все необходимое для зарождения жизни:
• среду, обогащенную калием, фосфором и необходимыми микроэлементами;
• местообитание со встроенным источником тепла, с практически постоянными условиями независимо от капризов погоды;
• пористые минеральные осадки, работающие в качестве катализаторов и предоставляющие огромное количество раздельных микроотсеков для обитания доклеточных форм жизни;
• испаряющиеся лужи, в которых могут накапливаться органические вещества и благодаря высокой концентрации солей и формамида может идти образование цепочек РНК и белков;
• несколько разных механизмов получения органических веществ из атмосферного CO2 и азота;
• освещаемую солнцем поверхность, на которой идут фотохимические реакции, и совсем рядом с ней – защищенные от ультрафиолета поры в осадках;
• подогреваемые с одной стороны поры и трещины, в которых происходит накопление нуклеотидов и РНК до высоких концентраций.
Никакие другие местообитания не обладают сразу всеми этими достоинствами. Например, в «черных курильщиках» нет обогащения калием и фосфором, нет ультрафиолета и нет накопления веществ в испаряющихся лужах. Так что грязевые котлы наземных геотермальных полей на сегодня представляются самым вероятным местом появления жизни.
Глава 7
Получение нуклеотидов из продуктов атмосферной фотохимии
Вспомним, как устроены нуклеиновые кислоты: РНК и ДНК. Их длинные молекулы состоят из повторяющихся единиц – нуклеотидов. Каждый нуклеотид состоит из трех основных деталей: азотистого основания, сахара (рибоза в РНК и дезоксирибоза в ДНК) и фосфата. Остов молекулы составляют соединенные в цепочку сахара и фосфаты, а азотистые основания прикреплены к сахарам сбоку (рис. 7.1). В двухцепочечной форме две цепи РНК или ДНК лежат рядом и образуют двойную спираль. Их азотистые основания контактируют между собой, образуя комплементарные пары А-Т и Г-Ц, а сахарофосфатные остовы удалены друг от друга, располагаясь кнаружи от пар азотистых оснований.
Когда в клетке строятся новые молекулы ДНК или РНК, сначала рибоза соединяется с одним из четырех азотистых оснований. Такая молекула называется нуклеозид. Дальше к ней присоединяются фосфатные группы общим числом до трех. Нуклеозид с фосфатными группами составляет нуклеотид. Далее из нуклеотидов строится цепочка РНК или ДНК. Новые нуклеотиды присоединяются к цепочке по одному, и каждый раз две фосфатные группы отделяются, а третья входит в состав цепочки. На построение фосфатного хвоста нуклеотидов затрачивается энергия, а при его распаде эту энергию можно использовать разными способами. Нуклеотид-трифосфаты и другие формы нуклеотидов, которые можно соединить в цепочку РНК без дополнительных затрат энергии, называют еще «активированными нуклеотидами». Один из активированных нуклеотидов, АТФ (аденозинтрифосфат), играет в клетках роль универсальной энергетической «валюты», подобно электрической энергии в человеческой цивилизации (рис. 7.2). АТФ может с равным успехом обеспечивать энергией сборку РНК, ДНК и белков, сокращение мышц, прохождение нервного импульса, фильтрацию и концентрирование солей в почках, а также множество других процессов.
Соответственно, чтобы получить РНК, не имея клеток и ферментов, надо как-то создать азотистые основания и рибозу из тех веществ, которые были доступны на древней Земле. Потом необходимо соединить их друг с другом и с фосфатом в нуклеотиды, а затем соединить нуклеотиды в цепочки.
Как мы помним, атмосфера древней Земли могла состоять в основном из углекислого газа и азота, и органические вещества в такой среде не образуются. Во время проведения опытов Миллера по получению аминокислот и другой органики в электрических разрядах ученые использовали смесь водорода, метана и аммиака, которая в условиях Земли быстро будет разрушена солнечным ультрафиолетом. В прошлой главе мы определили, что первые шаги земная жизнь делала в геотермальных водоемах, где есть несколько источников органических веществ. Это фотосинтез на кристаллах сульфида цинка, поставляющий муравьиную, уксусную и другие органические кислоты, и реакции на горячем сульфиде железа, в которых образуется карбонилсульфид (COS), меркаптаны, тиоуксусная кислота (CH3COSH) и ее эфиры. Для синтеза азотистых оснований это не очень подходящее сырье, потому что там нет необходимого азота, зато есть ненужная для РНК сера. Однако если на планете действует постоянный источник метана, то солнечный ультрафиолет может производить из него и атмосферного азота хорошее сырье для азотистых оснований и сахаров.
Круговорот метана на древней Земле
В 2000 году на дне Атлантического океана были обнаружены белые колонны неправильной формы и высотой до 50 м. Из колонн сочилась горячая вода. Это гидротермальное поле, получившее название Lost City («затерянный город»), отличается от «черных курильщиков», о которых мы говорили ранее. Температура воды в Lost City около 80 °С, и несет она не сульфиды металлов, а гидроксид магния, который выпадает в осадок и слагает белые колонны. В отличие от «черных курильщиков», Lost City находится примерно в 50 км от рифтовой долины, и его вода подогревается не горячей магмой, а химическими реакциями в толще твердых донных пород. Эти реакции в геологии называются «серпентинизация»: в них изверженные в рифтовой долине базальты превращаются в минералы зрелого океанского дна – серпентиниты. Серпентинизация происходит, когда базальт остывает до 200–300 °С, трескается и в трещины входит морская вода. Она реагирует с силикатами железа, окисляя железо до магнетита, при этом выделяется водород:
3Fe 2 SiO 4 + 2H 2 O → 2Fe 3 O 4 + 3SiO 2 + 2H 2 .
Если в воде был растворен углекислый газ, то он в этих условиях восстанавливается до метана (CH4) и муравьиной кислоты (HCOOH). В горячей воде Lost City растворено до 30 мг/л метана и водорода, до 7 мг/л муравьиной и до 1 мг/л уксусной кислоты; изотопный состав углерода в них точно такой же, как в углекислом газе, т. е. метан и кислоты образуются абиогенно, без участия микробов (Lang et al., 2010).
Горячие источники, подобные Lost City, с тех пор были найдены во многих районах океанского дна. Их населяют богатые микробные сообщества, питающиеся метаном, муравьиной кислотой и водородом. На древней Земле геологические процессы были гораздо активнее, содержание углекислоты в океанской воде – выше, и серпентинизация производила большое количество водорода и метана. Выходящий в атмосферу метан вступал в химические реакции под действием солнечных лучей. Подобные процессы мы сейчас можем наблюдать в атмосфере Титана – крупнейшего спутника Сатурна, обладающего атмосферой из азота и 1–2 % метана. Как показали наблюдения зонда «Кассини» и его спускаемого аппарата «Гюйгенс», в атмосфере Титана метан превращается в ацетилен (C2H2) и более сложные углеводороды (Raulin, Owen, 2002). Кроме того, под действием ультрафиолета метан реагирует и с прочными молекулами азота, при этом образуются цианид (HCN) и его производные – цианамид (NH2 CN) и цианоацетилен (HC3N). Эти вещества создают желтую дымку в атмосфере Титана, скрывающую его поверхность.
Земля отличается от Титана в нескольких отношениях. Во-первых, она в 10 раз ближе к Солнцу и получает в 100 раз больше ультрафиолетовых лучей на каждый квадратный метр атмосферы. Во-вторых, она гораздо теплее, чем промерзший до –170 °С Титан, и в ее атмосфере есть еще водяной пар и углекислый газ. Поэтому на древней Земле метан в атмосфере реагировал не только с азотом, но и с углекислым газом и водой, образуя формальдегид (CH2O). В-третьих, на Земле идут (и почти всегда шли) дожди из жидкой воды, поэтому продукты фотолиза метана не накапливаются в виде дымки, а растворяются в каплях воды и выпадают с дождем. И синильная кислота, и формальдегид хорошо растворимы в воде и быстро вымываются дождями из атмосферы (рис. 7.3). Поэтому на поверхность древней Земли регулярно поступали те органические вещества, из которых в принципе можно построить аминокислоты, сахара и нуклеотиды: формальдегид, цианид, цианамид и цианоацетилен. Хотя мы привыкли считать цианид сильнейшим ядом, на самом деле он блокирует только кислородное дыхание. Анаэробные (живущие без кислорода) бактерии могут им питаться, и, как мы вскоре увидим, цианид является отличным сырьем для производства азотистых оснований и РНК на заре жизни.
Кроме фотохимических реакций метана есть и другие источники цианида и формальдегида. Цианид обнаруживается в газах и испарениях геотермальных полей, например на склонах Мутновской сопки на Камчатке. Формальдегид образуется из углекислого газа и паров воды при разрядах молний и при контакте атмосферы с горячим металлическим железом (обломки упавших метеоритов и включения железа в вулканических лавах) (Cleaves, 2008).
Цианид постепенно реагирует с водой и превращается в формамид (NH2CHO). Как мы увидим, формамид тоже может быть хорошим предшественником нуклеотидов, кроме того, он отличается высокой температурой кипения (218 °C) и поэтому может накапливаться в высыхающих лужах после дождя.
Химия цианидно-формальдегидных дождей
Итак, для построения сложных органических молекул на поверхности древней Земли у нас есть формальдегид, цианид и его производные. Что и как можно сделать из этих составляющих?
Еще в 1865 году А. М. Бутлеровым была открыта так называемая формозная реакция: водный раствор формальдегида (СH2O) с добавлением гидроокиси кальция (известковая вода) при небольшом нагревании превращается в сложную смесь сахаров. (Об этом, а также о других проблемах биогенеза рассказывалось в статье Пармона В. Н. Новое в теории появления жизни // Химия и жизнь. 2005. № 5.) Изучению реакции много лет мешал ее капризный характер: колбу с раствором надо было греть несколько часов без всяких видимых изменений, и вдруг в течение пары минут раствор быстро желтел, затем коричневел и загустевал. А если исходные реагенты были очень чистыми, то реакция не шла вовсе. Причиной «капризов» оказался автокаталитический характер реакции: сначала формальдегид медленно превращается в двух– и трехуглеродные сахара (гликольальдегид, глицеральдегид и дигидроксиацетон), которые затем катализируют синтез самих себя и более сложных сахаров. Если к исходной смеси добавить чуть-чуть гликольальдегида или глицеральдегида, то реакция запускается почти сразу. Другой способ ускорить ее – осветить раствор ультрафиолетом, под действием которого некоторые молекулы формальдегида соединяются в гликольальдегид.
В классической реакции Бутлерова получаются сложные смеси сахаров, в которых сахара, характерные для живых клеток, перемешаны с огромным разнообразием семи-, восьми-, девятиуглеродных сахаров и даже более сложных. Если ее не останавливать вовремя, то в итоге получается коричневая карамелизованная смесь сложных сахаров и продуктов их распада. Подобная проблема часто встречается в предбиогенной химии: если к органическим веществам долго подводить энергию в виде тепла или ультрафиолета, то в итоге обычно получаются сложнейшие, неразделимые смеси веществ, похожие на смолу или деготь. Это знает на собственном опыте каждый, кому приходилось отмывать пригоревшую кастрюлю или сковородку.
Чтобы получить в реакции Бутлерова именно те сахара, которые встречаются в клетках – рибозу, глюкозу, – нужно ее как-то останавливать на полпути. В последние годы было обнаружено, что некоторые минералы избирательно связывают и выводят из реакции отдельные сахара, именно те, которые нужны для биохимии. Например, при добавлении растворимых силикатов, таких как Na2SiO3 (силикатный клей), силикат-анион образует комплексы с четырех– и шестиуглеродными сахарами, которые выпадают в осадок и далее не участвуют в реакции. Так накапливаются сахара, имеющие две соседние гидроксильные группы с одной стороны: эритроза, треоза, глюкоза, манноза (подробнее об этом можно прочитать в заметке Александра Маркова на сайте «Элементы», ). Если же в реакционную смесь добавить гидроксиапатит Ca3(PO4)2 × Ca(OH)2, то на его поверхности практически избирательно осаждается рибоза (см. уже упоминавшуюся статью В. Н. Пармона в майском номере «Химии и жизни» за 2005 год)! Еще более эффективно и избирательно осаждают рибозу из реакции Бутлерова соли борной кислоты (бораты). (Ricardo et al, 2013). Соли молибдена превращают ядовитые разветвленные сахара, которые тоже получаются в реакции Бутлерова, в нужные линейные и повышают выход рибозы. Обратите внимание, что все эти вещества – силикаты, бораты, фосфаты и соли молибдена – избирательно накапливаются в грязевых котлах, которые и по другим признакам хорошо подходят на роль колыбели жизни.
Получить азотистые основания оказывается проще, чем сахара. Самые разные воздействия на синильную кислоту или формамид приводят к тому, что их молекулы соединяются в кольца, такие же, как в азотистых основания. Аденин и гуанин образуются из синильной кислоты при замораживании ее водного раствора, ультрафиолетовом облучении или нагревании. Если добавить цианамид или мочевину, то получаются цитозин и урацил. Все четыре азотистых основания образуются с высоким выходом из формамида (NH2CНO) на поверхности частиц оксида титана TiO2 при ультрафиолетовом облучении; аденин, цитозин и урацил – на поверхности глины или оксидов железа при нагревании (см. обзор Constanzo et al., 2007).
Получение нуклеотидов
Чтобы азотистые основания приняли участие в синтезе РНК-подобных полимеров, они должны, естественно, сначала объединиться с сахаром и фосфатом. Этот этап оказался гораздо сложнее, чем получение отдельных сахаров и азотистых оснований. Во-первых, такая реакция идет с выделением воды, и поэтому в водном растворе равновесие сдвинуто в сторону отдельных сахаров и азотистых оснований. Во-вторых, стандартные способы обхода такой проблемы – нагревание сухой смеси веществ или крепкого рассола – здесь не подходят. В этих условиях азотистые основания соединяются с рибозой, но не той стороной – связь с сахаром образует боковая аминогруппа, а не атом азота из кольца. Аденин и гуанин можно соединить с рибозой правильным способом, облучая ультрафиолетом водный раствор азотистых оснований и рибозы, но выход нужного нуклеозида не превышает 1 %, а с урацилом и цитозином этот способ вообще не работает. В клетках азотистые основания соединяются с рибозой правильно с помощью сложных ферментов, но нам надо как-то обойтись без них.
Чтобы решить эту проблему, ученые пошли другим путем. Если не удается правильно соединить готовые азотистые основания с рибозой, то можно попробовать создавать эту связь до того, как рибоза и азотистые основания будут достроены. Есть три возможных пути: строить азотистые основания на готовой рибозе, строить рибозу на готовом азотистом основании и строить и то и другое одновременно. Первый путь, кстати, используется в клетках для синтеза адениновых и гуаниновых нуклеотидов из простых предшественников. В экспериментах были достигнуты успехи на всех трех направлениях.
Так, если взять сухую смесь тех веществ, из которых в клетках образуется аденин (это три аминокислоты: глицин, глутамин, аспарагиновая кислота, а также соли муравьиной и фосфорной кислот и рибоза), и запекать ее при температуре 120–150 °C без доступа воздуха, то образуется нуклеотид аденозин-монофосфат с выходом 2–3 % и нуклеозид (азотистое основание с рибозой без фосфора) с выходом до 5 % (Kritsky et al., 2007). В водном растворе рибозо-3-фосфата при добавлении цианамида и цианоацетилена получается нуклеотид цитидин-монофосфат (рис. 7.4) (Ingar et al., 2003). В обоих этих случаях предшественники азотистого основания сначала реагируют с рибозой, а потом этот промежуточный продукт становится нуклеотидом.
Второй путь начинается с побочных продуктов синтеза азотистых оснований из формамида. Наряду с аденином, гуанином, цитозином и урацилом при этом получаются их формильные производные, имеющие альдегидную (CHO) группу на одном из атомов азота в кольце, чаще всего именно на том, который образует связь с сахаром в нуклеотидах. Эта группа может служить затравкой для построения сахара, если такое вещество (например, 9-формил-аденин) попадет в условия реакции Бутлерова – щелочную среду с формальдегидом. Все хитрости, которые позволяют получить в реакции Бутлерова именно рибозу, а не пригоревшую карамель, здесь тоже работают.
Наконец, возможность получения нуклеотидов по третьему пути, когда ни рибоза, ни азотистые основания не встречаются на промежуточных стадиях, была показана в 2009 году в работе Сазерленда с коллегами из Школы химии Манчестерского университета (см.: Клещенко Е. Реакция начала жизни // Химия и жизнь. 2009. № 7).
Они получили активированные пиримидиновые нуклеотиды (циклические 2',3'урацил– и цитидинмонофосфаты), смешивая в одной системе сразу и предшественники сахаров, и предшественники нуклеотидов, и фосфат. Казалось бы, это крайне расширяет круг возможных химических реакций, а значит, побочных продуктов должно быть больше. Но эксперимент опроверг это предположение.
Авторы использовали цианоацетилен (на рис. 7.5 это № 7), цианамид (№ 8), глицеральдегид (№ 9) и гликольальдегид (№ 10). Фосфат облегчает реакции, приводящие в итоге к нуклеотидам, и подавляет другие, побочные. Так, он направляет реакцию цианамида с гликольальдегидом в сторону промежуточного продукта № 11 (2-аминооксазол), а затем реакцию его с глицеральдегидом с образованием продукта № 12 (арабинозо-аминооксазолин). Затем продукт № 12 реагирует с цианоацетиленом, давая вещество № 13 (арабинозо-ангидронуклеозид). В обычном водном растворе при этом повышается pH, и среда становится щелочной, что приводит к распаду промежуточных продуктов и побочным реакциям с цианоацетиленом, но фосфат и тут приходит на помощь, поддерживая среду кислой и направляя реакцию в сторону продукта № 13. Для его превращения в циклический цитидин-монофосфат достаточно подогреть реакционную смесь – все необходимое в ней уже имеется. Катализатором фосфорилирования становится мочевина, образующаяся из цианамида в ходе одной из побочных реакций. Наконец, чтобы избавиться от побочных продуктов этой реакции и превратить часть цитозина в урацил, достаточно осветить раствор ультрафиолетом.
Этот синтез поражает своим изяществом: побочные продукты одних реакций здесь становятся катализаторами последующих, фосфат направляет реакции в нужную сторону задолго до того, как войти в окончательный продукт, а ключевой промежуточный продукт (№ 11) способен к самоочищению и накоплению в высоких концентрациях благодаря своей высокой летучести – он хорошо испаряется из водных растворов при слегка повышенной температуре и конденсируется во время ночных заморозков.
Как написал редактор журнала Nature в предисловии к работе команды Сазерленда, «именно потому, что эта работа открывает так много новых направлений исследований, она на многие годы останется одним из великих достижений пребиотической химии».
Вскоре в той же лаборатории аналогичным способом были получены и пуриновые нуклеотиды (циклические аденозин– и гуанозин-монофосфаты). Для этого оказалось достаточно добавить в систему синильную кислоту вместо цианоацетилена (рис. 7.6) (Powner et al., 2010).
Цианосульфидный протометаболизм
При всей важности результатов лаборатории Сазерленда и в этих путях синтеза есть к чему придраться. Во-первых, для них требуется последовательное добавление разных исходных веществ: сначала смешать гликольальдегид и цианамид, потом добавить глицеральдегид, а затем – цианоацетилен. Если смешать все сразу, то нуклеотиды практически не получаются. Во-вторых, не очень понятно, откуда взять простейшие сахара (гликольальдегид и глицеральдегид). В реакции Бутлерова они образуются из формальдегида, но тут же превращаются в более сложные сахара. Способов остановки реакции Бутлерова на глицеральдегиде пока неизвестно. В-третьих, для получения нуклеотидов нужны в больших количествах цианамид и цианоацетилен, а в атмосферных процессах они образуются в гораздо меньшем количестве, чем цианид.
Сотрудники Сазерленда обратили внимание на другие пути получения сахаров. В химии давно известен синтез Килиани – Фишера, в котором цианид реагирует с формальдегидом, давая гликольнитрил (рис. 7.7). На второй стадии гликольнитрил восстанавливается, а на третьей реагирует с водой, выделяя аммиак, и превращается в гликольальдегид. Аналогично гликольальдегид может присоединить следующую молекулу цианида и превратиться в глицеральдегид и далее в более сложные сахара. Первая и третья реакции этого синтеза легко происходят в водном растворе без дополнительных условий, а вот на втором шаге нужны водород и определенный катализатор: палладий на сульфате бария (Pd/BaSO4). Просто палладий и другие металлы, катализирующие восстановление водородом (платина, никель), не подходят, так как вызывают побочные реакции восстановления, приводящие к образованию этиленгликоля и этаноламина. Понятно, что на древней Земле не было палладия на сульфате бария, поэтому синтез Килиани – Фишера долго не привлекал внимания специалистов по предбиологической химии. Однако недавно удалось найти подходящий восстановитель, который наверняка был на древней Земле: это сероводород (Ritson and Sutherland, 2013). В качестве катализатора при этом используются цианидные комплексы меди. Под действием ультрафиолета эти комплексы отнимают электроны от сероводорода (который превращается в серу) и передают их другим молекулам, в том числе гликольнитрилу. Механизм реакции получается сложнее, чем обычный синтез Килиани – Фишера, и кроме сахаров (гликольальдегида и глицеральдегида) получаются побочные продукты, прежде всего аминокислоты: глицин, аланин, серин и треонин.
Оказалось, что по условиям эта реакция совместима с синтезом нуклеотидов из простых сахаров, цианамида и цианоацетилена. В присутствии фосфата удается получить нуклеотиды, начиная с цианида и формальдегида, а также возникает дополнительное направление побочных реакций: часть глицеральдегида превращается в диоксиацетон, который восстанавливается до ацетона. Ацетон, присоединяя дополнительные молекулы цианида, дает в итоге еще две аминокислоты, входящие в состав белков, – валин и лейцин (рис. 7.8).
Для получения концентрированных растворов цианамида и цианоацетилена ученые обратили внимание на свойства цианидных комплексов железа. При добавлении синильной кислоты к воде, содержащей соли железа и других металлов, образуются гексацианоферраты, которые при упаривании раствора выпадают в осадок: K4Fe(CN)6 (желтая кровяная соль), Na4Fe(CN)6, Ca2Fe(CN)6 и Mg2Fe(CN)6. При нагревании до 500–800 °C гексацианоферраты разлагаются, давая различные продукты: карбид железа, азот, цианиды калия и натрия. Гексацианоферрат магния при таком разложении дает нитрид магния (Mg3N2), а гексацианоферрат кальция – карбид и цианамид кальция (CaC2 и CaNCN). Если эти продукты прокаливания залить водой, то KCN и NaCN растворяются, соединения кальция разлагаются, давая цианамид NH2CN и ацетилен C2H2, а нитрид магния разлагается с выделением аммиака. При добавлении солей меди ацетилен соединяется с цианидом, давая цианоацетилен (HC ≡ C–C ≡ N) и акрилонитрил (H2C = CH – C ≡ N). На древней Земле такие процессы могли происходить, например, в окрестностях вулкана: сначала синильная кислота из дождей и вулканических газов попадает в озеро с обогащенной железом геотермальной водой, и там накапливаются гексацианоферраты. Потом повышение активности вулкана выпаривает озеро, и разные соли откладываются на его дне кольцами: менее растворимые выпадают в осадок первыми и откладываются ближе к исходным берегам, а более растворимые остаются на самом глубоком месте озерной котловины. Потом вулканическое тепло прокаливает осадки гексацианоферратов, а когда вулкан успокоится и высохшее озеро вновь зальет геотермальной водой с сероводородом, по запекшейся корке солей потекут ручьи из концентрированных растворов цианида и цианамида, в которых пойдет синтез нуклеотидов.
На основе акрилонитрила и цианоацетилена в этих условиях получаются не только нуклеотиды, но и дополнительные аминокислоты. Акрилонитрил присоединяет аммиак и превращается в бета-аминопропионитрил, который через несколько стадий дает пролин и аргинин. Цианоацетилен с помощью меди может присоединить еще молекулу цианида и превратиться в малеонитрил (№ 48). Из малеонитрила образуются аспарагиновая кислота и глутаминовая кислота. Таким образом, из четырех простых веществ (синильная кислота, сероводород, цианамид и ацетилен) получаются не только все четыре нуклеотида, но и десять из двадцати белковых аминокислот. Что еще интереснее, в этой сложной сети реакций практически не образуется никаких веществ, которые не встречались бы в современных клетках, – в отличие от аппарата Миллера и реакции Бутлерова! Значит, цианосульфидные реакции могли определить исходный набор нуклеотидов и аминокислот, из которых строились первые живые системы.
Глава 8
Происхождение хиральной чистоты
Живое вещество, в отличие от неживого, обладает хиральной чистотой: все белки состоят из левых аминокислот, а ДНК и РНК построены на правой рибозе. В опыте Миллера и других экспериментах по абиогенному синтезу левые и правые изомеры сахаров и аминокислот образуются в равных пропорциях. Если пытаться строить белки и нуклеиновые кислоты из такой смеси, то обычно получается случайное чередование левых и правых звеньев. Такие ДНК не могут свернуться в двойную спираль, а белки – в определенную устойчивую форму и потому не могут работать ферментами. Чтобы жизнь могла возникнуть, нужны какие-то механизмы, которые отделяют левые изомеры от правых. Поиск таких механизмов уводит нас очень далеко от биохимии.
Хиральная асимметрия в космосе
Изучая метеориты, ученые узнали, что хиральная асимметрия – небольшое преобладание одного изомера – возникла еще до появления планеты Земля. В богатых органикой метеоритах из группы углистых хондритов содержатся различные аминокислоты, причем левых изомеров обычно на 1–5 % больше, чем правых. Скептики объявили этот результат следствием загрязнения метеоритов земными бактериями уже после падения, а сторонники гипотезы панспермии решили, что в метеорите сохранились остатки космических микробов. Однако подробное изучение метеоритных аминокислот показало, что они возникли без участия любых организмов. Избыток левых изомеров наиболее заметен в тех метеоритных аминокислотах, которые вообще не встречаются в живых клетках, например в изовалине. «Белковые» аминокислоты из тех же метеоритов – аланин, валин, пролин – имеют почти равное содержание обоих изомеров. Изотопный состав метеоритных аминокислот точно такой же, как у сажи, карбонатов, карбидов и других углеродсодержащих веществ в том же метеорите, а живые организмы всегда обеднены тяжелым углеродом-13 по сравнению с неживой средой. Так что какие-то космические факторы могут приводить к небольшому преобладанию левых аминокислот.
Что это за факторы? Хиральность молекул проявляет себя при взаимодействии либо с другими хиральными молекулами, либо с поляризованным светом. Луи Пастер смог разделить смесь кристаллов винной кислоты, сортируя их пинцетом. В поляризованном свете кристаллы одного изомера были темными, а другого – светлыми.
Что такое поляризация света и какая она бывает? Видимый свет, наряду с радиоволнами, тепловым, ультрафиолетовым, рентгеновским и гамма-излучением, является электромагнитной волной, т. е. колебаниями электрического и магнитного поля, распространяющимися от источника на неограниченное расстояние. И электрические, и магнитные колебания направлены поперек хода луча, под прямым углом к нему и друг к другу. Обычный свет, например от Солнца, свечи или лампы накаливания, представляет собой смесь электромагнитных колебаний во всех возможных направлениях. Такой свет называется неполяризованным. Если в луче света все колебания происходят в одной плоскости, то это линейная поляризация (рис. 8.1). Свет с линейной поляризацией можно получить, пропуская неполяризованный свет через поляризационный фильтр. Кроме того, линейная поляризация может возникать при отражении света. Отраженный от горизонтальных поверхностей солнечный свет приобретает вертикальную поляризацию, поэтому поляризационные фильтры, пропускающие только свет с горизонтальной поляризацией, используются в солнцезащитных очках и фотообъективах для устранения бликов.
Бывает и более сложная поляризация, называемая круговой или спиральной. В этом случае плоскость, в которой колеблется электрическое поле, не постоянна вдоль пути луча, а вращается вокруг него. Свет со спиральной поляризацией излучается, например, при движении заряженных частиц в сильном магнитном поле (циклотронное излучение). Природным источником такого излучения являются солнечные пятна.
При прохождении линейно поляризованного света через раствор одного оптического изомера вещества его плоскость поляризации поворачивается (рис. 8.2). Левый изомер поворачивает плоскость поляризации влево, правый – вправо на точно такой же угол. Это свойство хиральных молекул и было названо оптической активностью, и из-за него левые и правые изомеры называются оптическими.
Любая спираль может быть правой или левой. Соответственно, свет со спиральной поляризацией хирален и по-разному взаимодействует с правыми и левыми хиральными молекулами – один изомер поглощает его сильнее, чем другой. Это явление называется круговым дихроизмом.
Известно, что жесткое ультрафиолетовое излучение разрушает аминокислоты. И вот оказалось, что ультрафиолет с круговой поляризацией разрушает один из изомеров заметно лучше, чем другой. В зависимости от направления поляризации освещения (лево– или правоспиральная) можно получить избыток либо левых, либо правых аминокислот.
Откуда в космосе может взяться поляризованное ультрафиолетовое излучение? В молекулярных облаках, где происходит образование новых звезд, астрономам удалось наблюдать достаточно мощное ультрафиолетовое излучение с круговой поляризацией. Уровень поляризации достигает 17 % в туманности Orion (OMC-1) и 23 % – в NGC 6334V (Chrysostomou et al., 2000). Его интенсивность вполне достаточна, чтобы за десятки тысяч лет в космической пыли образовался заметный избыток одного из изомеров аминокислот. Поляризация света в этих облаках вызвана рассеиванием на частицах пыли, причем пылинки должны быть вытянутой формы и ориентированы длинной осью в одну сторону. Такая ориентация требует достаточно сильного межзвездного магнитного поля. Наблюдения этих туманностей в инфракрасном диапазоне подтверждают наличие вытянутых пылинок, ориентированных вдоль магнитного поля. Области туманности, где преобладает ультрафиолет с одной поляризацией, достаточно велики – их размеры превышают 100 астрономических единиц (в четыре раза больше, чем размер Солнечной системы).
Поляризация ультрафиолета за счет рассеивания на пылинках в магнитном поле наблюдается только в облаках, где рождаются массивные звезды. В областях рождения небольших звезд, отличающихся меньшей температурой газа, не наблюдается сколько-нибудь заметного уровня поляризованного ультрафиолета, и, возможно, там метеоритная органика не будет иметь избытка одного оптического изомера.
Все эти фотохимические процессы с участием поляризованного ультрафиолета приводят к образованию небольших областей газопылевого облака, обогащенных аминокислотами одной хиральности. В среднем по Галактике из них будет образовываться примерно поровну звездных систем, обогащенных правыми и левыми аминокислотами, и следовательно, по этой гипотезе жизнь во Вселенной должна быть представлена примерно поровну лево– и правоаминокислотными формами.
Хиральная асимметрия в ядерных процессах
Существует и другая гипотеза о происхождении хиральной асимметрии во Вселенной. Еще в 1957 году при изучении бета-распада радиоактивных элементов (разновидность ядерного распада, при котором один из нейтронов в ядре превращается в протон, испуская быстрый электрон; при этом масса ядра практически не меняется, а заряд увеличивается на единицу) было обнаружено, что в этом процессе существует разница между левым и правым: как правило, распадающееся ядро испускает электрон с левой спиральной поляризацией. Поляризация электронов определяется несколько по-другому, чем поляризация света. Электрон, как и другие элементарные частицы, имеет спин – собственное постоянное магнитное поле. Постоянное магнитное поле порождается электрическим током, текущим по кругу, соответственно, спин подобен вращению электрона вокруг своей оси (само это название происходит от английского spin – кручение). Если электрон движется по прямой, то сложение его спина с движением дает либо левую, либо правую спираль. Поэтому электроны, в отличие от света, могут иметь только спиральную поляризацию.
Причиной бета-распада является слабое взаимодействие – одна из четырех фундаментальных сил. В отличие от трех других – гравитации, электромагнетизма и сильного ядерного взаимодействия – в слабой для получения зеркального отражения системе необходимо заменить частицы на их античастицы. Иначе говоря, бета-распад с испусканием правополяризованных частиц возможен только в мире антивещества, состоящего из антипротонов, антинейтронов и позитронов. Гипотеза Вестера – Ульбрихта, согласно которой хиральная асимметрия живой материи тем или иным способом происходит от асимметрии слабого взаимодействия, была высказана еще в 1959 году, но ее надежного экспериментального подтверждения пришлось ждать долго. Асимметрия слабого взаимодействия работает одинаково во всей Вселенной, и если она определила исходную хиральность космической органики, а затем и жизни, то жизнь на всех планетах должна использовать левые аминокислоты.
Как может быть связана асимметрия на уровне элементарных частиц с асимметрией на уровне молекул? Возможны разные механизмы. Первое обнаруженное проявление асимметрии слабого взаимодействия – поляризованные электроны, испускаемые при бета-распаде. Они могут взаимодействовать с хиральными молекулами, но их энергия слишком велика. Поэтому при попадании в молекулу эти быстрые электроны гарантированно разрушают ее, невзирая на хиральность. Однако при их рассеянии в веществе оттуда выбивается множество вторичных электронов меньшей энергии, которые в основном сохраняют исходную поляризацию. Эксперименты с поляризованными электронами небольших энергий показали, что они, подобно поляризованным ультрафиолетовым лучам, избирательно разрушают один из оптических изомеров. В обзоре Ричарда Розенберга, опубликованном в книге «Electronic and Magnetic Properties of Chiral Molecules and Supramolecular Architectures», приводятся результаты ряда экспериментов, в которых достигнут избыток одного изомера до 25 %. Причем самое сильное хиральное обогащение происходит, если облучаемое органическое вещество наморожено при низкой температуре на поверхность ферромагнитного материала, например железа. В протопланетном диске ранней Солнечной системы было много быстро распадающихся бета-радиоактивных изотопов, таких как 26Al и 60Fe, а также достаточно ферромагнитных пылинок самородного железа и его оксидов. Вторичные электроны от распада этих изотопов вполне могли привести к преобладанию левых аминокислот в веществе метеоритов.
Помимо бета-распада слабое взаимодействие существует между электронами и ядрами всех атомов и молекул в каждый момент времени. Энергия слабого взаимодействия входит в энергию покоя молекулы и отличается у двух оптических изомеров. Для свободных аминокислот эта разница ничтожно мала (менее 10–11 кДж/моль) и никак не может влиять на химические реакции, характерные изменения энергии в которых в тысячу миллиардов раз больше. Однако эта разница сильно зависит от массы центрального атома хиральной молекулы – пропорционально шестой степени! Поэтому в комплексах аминокислот с тяжелыми металлами разница энергии покоя, вносимая слабым взаимодействием, теоретически может быть достаточно большой, чтобы проявляться в химических реакциях. Кроме того, вклад энергии слабого взаимодействия может быть гораздо заметнее не в обычных химических реакциях, а в более низкоэнергетических процессах – образовании кристаллов из раствора и образовании комплексных соединений, или при температуре вблизи абсолютного ноля, когда энергия теплового движения молекул минимальна. Так или иначе, эту разницу удалось экспериментально наблюдать в процессах кристаллизации этилендиаминовых комплексов кобальта и иридия. При медленном упаривании раствора левые изомеры этих комплексов выпадали в осадок быстрее, разница составила 0,02 % для комплекса с кобальтом и 1,2 % для комплекса с иридием (Szabó-Nagy et al., 1999).
Известен один случай, когда левые и правые аминокислоты ведут себя по-разному в химической реакции с веществом, не имеющим левых и правых изомеров. Это солевой синтез пептидов, который мы упоминали в главе 6: в крепком растворе NaCl или KCl с ионами меди в качестве катализатора аминокислоты самопроизвольно соединяются в короткие пептиды. Избыток соли сдвигает равновесие в сторону синтеза, несмотря на водную среду. Хотя расчетная разница в уровнях энергии между левым и правым изомерами аминокислоты в комплексе с медью недостаточна для заметного влияния на химические реакции, в эксперименте для трех аминокислот – аланина, валина, изолейцина – соединение двух молекул левых изомеров происходит на 10–50 % быстрее, чем двух правых. Для других аминокислот такой заметной разницы нет, и непонятно, почему теория не сходится с опытом только для этих трех аминокислот.
Химическое усиление превращает небольшую хиральную асимметрию в хиральную чистоту
Так или иначе, чтобы небольшой избыток одного оптического изомера, порожденный астрономическими или квантовыми процессами, превратился в хиральную чистоту аминокислот и нуклеотидов живой материи, необходимы еще два шага. Во-первых, небольшой избыток должен быть усилен; и, во-вторых, хиральная асимметрия должна быть передана от аминокислот к рибозе и нуклеотидам, причем так, чтобы левым аминокислотам соответствовала правая рибоза.
Самый простой механизм усиления избытка одного изомера можно вывести из опытов Пастера с винной кислотой. Как мы помним, изомеры винной кислоты кристаллизуются по отдельности, и образуется смесь «левых» и «правых» кристаллов, так называемый конгломерат. Если же упаривать раствор с «метеоритным» соотношением изомеров 60:40, то преобладающий изомер начнет выпадать в осадок раньше. Вовремя остановив упаривание, можно получить чистые кристаллы одного изомера и равную их смесь в растворе.
Большинство аминокислот ведут себя противоположным образом: при упаривании раствора сначала выпадают рацемические кристаллы (с отношением изомеров точно 1:1), и раствор обогащается тем изомером, которого было больше в исходной смеси. Так, из раствора фенилаланина с отношением изомеров 52:48 удалось в два цикла упаривания получить раствор с долей L-изомера 90 % (Breslow, Levine, 2006). Аналогично ведет себя и главный оптически активный промежуточный продукт (и автокатализатор) реакции Бутлерова – глицеральдегид. Его чистые изомеры при комнатной температуре вообще не кристаллизуются, а образуют сироп, который смешивается с водой в любых пропорциях. Смесь изомеров легко образует кристаллы с температурой плавления 145 °C. Поэтому при упаривании растворов глицеральдегида с небольшим избытком одного изомера можно получить этот изомер с чистотой до 99,9 % (Breslow, 2011). Рибоза, глюкоза и другие пяти– и шестиуглеродные сахара неспособны к такой самоконцентрации оптически активного изомера, но рибоза в составе нуклеозидов (напомню, это сахар плюс азотистое основание; если присоединить к нуклеозиду остаток фосфорной кислоты, получится нуклеотид) способна. Нуклеозиды, подобно аминокислотам, предпочтительно выпадают в осадок в соотношении изомеров 1:1, оставляя в растворе избыточный изомер. Таким образом, они могут накапливаться в растворе в оптически чистой форме (Breslow, Cheng, 2010).
Еще один механизм разделения изомеров аминокислот связан с адсорбцией на кристаллах минералов (Hazen et al., 2001). Некоторые типы кристаллических структур имеют отдельные хиральные грани. Кристалл в целом при этом не хирален, так как зеркальное отражение хиральной грани есть на другой стороне того же кристалла. Самый обычный минерал с такой структурой – кальцит, основная разновидность карбоната кальция. При оседании аминокислот на кристаллы одни грани обогащаются L-изомером, а другие – D-изомером (рис. 8.3). При соединении аминокислот на поверхности такого кристалла будут образовываться пептиды высокой хиральной чистоты даже из раствора с равным содержанием левых и правых аминокислот.
В некоторых условиях можно получить хирально чистые аминокислоты из смеси равных количеств обоих изомеров. Группа испанских химиков под руководством Кристобаля Вьедма (Viedma, 2008) показала, что, если нагреть раствор аспарагиновой кислоты с добавлением салицилового альдегида и уксусной кислоты до 100–130 °С, образуются чистые кристаллы одного оптического изомера. Повторяя опыт много раз, ученые с равной вероятностью получали как правый, так и левый изомер. А добавляя небольшой начальный избыток одного изомера, они всегда в конце опыта получали его в чистом виде. Аспарагиновая кислота – это одна из двух аминокислот, оптические изомеры которых кристаллизуются раздельно. Салициловый альдегид в кислой среде позволяет растворенным изомерам переходить друг в друга, поэтому небольшие случайные отклонения в начале кристаллизации постепенно приводят к полному превращению смеси в чистый L– либо D-изомер (рис. 8.4).
Распознавание изомеров друг другом может происходить не только при образовании кристаллов. В 1996 году коллективом японских химиков была открыта реакция, названная по имени руководителя группы – реакция Соаи (Blackmond, 2010). В ней из двух оптически неактивных веществ (пиримидиновый альдегид и цинкоорганическое соединение) образуется оптически активный пиримидиновый спирт, причем соотношение изомеров далеко от 1:1 и случайно меняется от опыта к опыту (рис. 8.5). Загадочные свойства этой реакции десять лет не удавалось объяснить, но теперь мы знаем, что тут действует три фактора:
• эта реакция автокаталитическая – ее конечный продукт ускоряет собственный синтез, как и в реакции Бутлерова;
• автокатализ в реакции Соаи стереоспецифичен. Левый изомер ускоряет синтез левого изомера, а правый – правого;
• молекулы продукта в растворе объединяются попарно. Пары L–L и D – D обладают каталитической активностью, а L – D – нет.
В результате небольшой случайный избыток одного изомера продукта будет усилен во много раз, причем чем дольше идет реакция – тем сильнее. К сожалению, реакция Соаи и другие открытые учеными реакции с подобными свойствами не имеют никакого отношения к аминокислотам, нуклеотидам и вообще биохимии, но, возможно, аналогичные реакции с аминокислотами в природе тоже будут найдены.
От аминокислот к сахарам и нуклеотидам
Как от избытка левых аминокислот перейти к избытку правых сахаров? Можно предположить, что аминокислоты могут вмешиваться в реакцию Бутлерова как стереоспецифичные катализаторы. Действительно, так оно и есть. Эксперименты показывают, что добавление L-аминокислот в реакцию Бутлерова приводит к образованию избытка правых сахаров. Для большинства аминокислот этот избыток не превышает 2 %, но с глутаминовой кислотой получается 60 % D-сахаров, а с пролином – даже 80 %! Более того, комплексы глутаминовой кислоты и пролина с ионами цинка, подобно силикатам и фосфатам, останавливают реакцию на стадии пяти– и шестиуглеродных сахаров (Kofoed et al., 2005). Метеоритные небелковые аминокислоты, такие как изовалин, тоже очень эффективно передают хиральность сахарам в реакции Бутлерова.
В синтезе нуклеотидов по Сазерленду различные аминокислоты тоже вызывают стереоспецифический синтез нуклеотидов. Более того, достаточно было 1 % избытка одного из стереоизомеров аминокислот, чтобы в конце концов получились хирально чистые рибонуклеотиды! Механизм этого процесса не слишком мудреный. Аминокислоты вмешиваются в синтез Сазерленда на стадии реакции 2-аминооксазола с глицеральдегидом, причем образуется тройной продукт (рис. 8.6). Эта реакция стереоспецифична: пара глицеральдегида с аминокислотой одной хиральности реагирует в четыре раза быстрее, чем разнохиральная пара. Таким образом, небольшой избыток L-аминокислоты будет связывать L-глицеральдегид в побочный путь реакции, оставляя для синтеза рибонуклеотидов больше D-изомеров.
Сазерленд ранее показал, что рибоаминооксазолин, подобно винной кислоте в опытах Пастера, способен при упаривании раствора кристаллизоваться в хирально чистые кристаллы уже при соотношении изомеров 60:40. Экспериментально получены такие кристаллы рибоаминооксазолина прямо из реакционных смесей с участием 14 чистых L-аминокислот из 19, содержащихся в белках. Пролин по стереоспецифичности далеко превосходит все остальные аминокислоты.
В завершение можно сказать, что мы так и не знаем, как появилась хиральная чистота наших белков и РНК. Но если раньше нам не было известно даже приблизительно, как она могла получиться, то теперь мы знаем сразу несколько реалистичных механизмов, просто не можем выбрать из них тот, который был самым значимым. Изучая земную жизнь и Солнечную систему, мы никогда не сможем поставить точку в этом вопросе – за ответом надо лететь к другим звездам. Если в Галактике примерно поровну представлена лево– и правоаминокислотная жизнь или хотя бы в метеоритной органике разных планетных систем бывает как левый, так и правый уклон, то значит, основы хиральности закладываются в газово-пылевых облаках перед рождением звезд и планет. Если же мы найдем только левоаминокислотную жизнь, то значит, хиральность жизни определяется квантовыми процессами, как предполагали Вестер и Ульбрихт.
Глава 9
Механизмы копирования РНК и начало РНК-мира
Первые РНК возникают случайно
Итак, в предыдущих главах мы нашли подходящее место для РНК-мира: грязевые котлы и другие горячие источники на суше, где возможен синтез активированных нуклеотидов из веществ цианидно-формальдегидных дождей и выделяемых с вулканическими газами соединений фосфора. Также мы нашли несколько механизмов, которые могли нарушить равенство левых и правых хиральных вариантов нуклеотидов и аминокислот. Теперь можно искать пути от одиночных нуклеотидов к длинным молекулам РНК, способным создавать собственные копии.
В исходном варианте теории РНК-мира предполагалось, что сначала какие-то молекулы РНК синтезировались силами неживой природы – при помощи минералов, солнечного света и самопроизвольно идущих химических реакций. Потом среди них возник рибозим, способный копировать молекулы РНК, и с этого момента началась эволюция под действием естественного отбора (напомним, что рибозимы – это молекулы РНК, способные ускорять химические реакции, подобно белковым ферментам). В экспериментах по воссозданию такого рибозима поначалу подразумевалось, что в мире РНК копирование молекул РНК шло в принципе так же, как в современных организмах: новая нить строится из нуклеотид-трифосфатов, которые присоединяются по одному к 3' – концу растущей цепи (рис. 9.1); фермент, проводящий копирование, скользит по копируемой цепи, а матрицей служит однонитевая РНК либо одна из нитей двунитевой РНК, расплетаемой для копирования.
На поверхности смектита (разновидность глинистых минералов) происходит соединение нуклеотидов в цепи РНК длиной до 50 звеньев. Необходимы только активированные нуклеотиды; процесс занимает не более суток (Huang и Ferris, 2006). Дальнейшие эксперименты с глиной показали, что оседающие на нее нуклеотиды аккуратно выстраиваются в цепочку еще до того, как между ними возникает химическая связь, и поэтому даже из равной смеси «правых» и «левых» нуклеотидов образуется заметное количество хирально чистых цепочек. Среди четырехнуклеотидных связок оказывается 93 % хирально чистых, а среди пятинуклеотидных – 97 % (Jheeta, Joshi, 2014). К этим экспериментам можно придраться, так как в них использовались неестественные активированные нуклеотиды – нуклеотид-имидазол-монофосфаты, появление которых в условиях древней Земли практически невозможно. Однако и с более реальными формами нуклеотидов – циклическими нуклеотид-монофосфатами, которые образуются в результате синтеза Сазерленда, – получаются цепочки РНК длиной до 20 звеньев, а из чистого циклического гуанин-монофосфата – до 100 нуклеотидов даже без глины, просто при нагревании водного раствора до 80 °C (Costanzo et al., 2009).
РНК можно получить из простых, неактивированных нуклеотидов, таких как аденозин-монофосфат. В этом случае нужен тот или иной внешний источник энергии. Например, на поверхности глины при ультрафиолетовом облучении нуклеотид-монофосфаты соединяются в короткие цепочки РНК, состоящие из четырех-шести звеньев. Превращение энергии света в химические связи в этом случае осуществляется с помощью глины: можно сначала облучить УФ влажную глину, а потом в темноте добавить нуклеотиды, и получатся короткие РНК (Otroshchenko et al., 2009).
Тепловая энергия тоже может помочь. Например, при впрыскивании тонкой струйки нагретого до 100 °C раствора нуклеотидов в ледяную воду часть их соединяется по два и по три (Ogasawara et al., 2000). Наконец, самые длинные РНК получаются при упаривании раствора нуклеотидов с липидами – жироподобными веществами, образующими клеточные мембраны (Rajamani et al., 2008). В этих условиях при нагревании липидно-нуклеотидного осадка до 70–90 °C образуются молекулы РНК со средней длиной около 50 нуклеотидов, а при максимальной температуре – свыше 100 нуклеотидов. Липиды в высыхающем растворе образуют плоские слои и тонкие длинные цилиндры, внутри которых нуклеотиды накапливаются в высокой концентрации и почти без воды. В отличие от нагреваемых сухих смесей, в липидных слоях нуклеотиды упорядоченно расположены один за другим и сохраняют некоторую подвижность. Все это очень облегчает соединение нуклеотидов в длинные молекулы РНК.
РНК копирует себя: проблемы и ограничения
Попытки найти рибозим-полимеразу, которая могла бы возникнуть при случайной полимеризации нуклеотидов, до сих пор не увенчались убедительным успехом. В экспериментах были получены относительно эффективные полимеразы: среди рибозимов, работающих в водном растворе при комнатной температуре, лучшим на сегодня является tC9 (Wochner et al., 2011). Этот рибозим способен удлинять короткую РНК-затравку на 95 звеньев-нуклеотидов. Этого категорически недостаточно для самокопирования: сам tC9 имеет длину около 200 нуклеотидов, удлинение затравки на 95 нуклеотидов занимает более суток, а высокая концентрация магния, необходимая для работы tC9, приводит к его постепенному разрушению. Есть варианты условий, в которых эффективность таких рибозимов возрастает. Например, Джеймс Атуотер исследовал работу рибозимов во льду – в тонких прослойках жидкости между ледяными кристаллами. Начав с tC9, он получил его холодоустойчивую разновидность tC9Y, работающую на морозе до –19 °С. При оптимальной температуре –7 °C tC9Y присоединяет к затравке до 206 нуклеотидов за 60 часов, причем разрушение самого рибозима ионами магния сильно уменьшилось по сравнению с комнатной температурой (Attwater et al., 2013).
Опыты с рибозимами-полимеразами показали, что на этом пути есть несколько трудноразрешимых проблем. Во-первых, сколько-нибудь эффективные рибозимы-полимеразы отличаются большой длиной, до 200 нуклеотидов, следовательно, их самопроизвольное возникновение без участия дарвиновского отбора очень маловероятно. Евгений Кунин в своей замечательной книге «Логика случая. О природе и происхождении биологической эволюции» приводит расчеты, согласно которым для случайного образования такой молекулы с трудом хватает количества планет и времени существования видимой части Вселенной, содержащей миллионы галактик. Дарвиновская эволюция могла бы многократно ускорить появление сложного рибозима, но для нее необходим хоть как-то работающий механизм копирования.
Во-вторых, для этих рибозимов не все РНК-матрицы одинаково хороши. Лучше всего копируются те РНК, которые не образуют устойчивых внутримолекулярных двуспиральных участков (они называются шпильками, см. рис. 9.2). Однако все рибозимы, наоборот, содержат много устойчивых шпилек, поэтому tC9Y не может создать собственную копию.
В-третьих, рибозимы-полимеразы имеют недостаточную точность. Чтобы копируемая последовательность РНК или ДНК могла как-то эволюционировать под действием отбора, число ошибок должно быть меньше одной на одну копию – такое условие называется «предел Эйгена» в честь биофизика Манфреда Эйгена, доказавшего это в 1971 году (Eigen M., 1971). Если ошибок больше, то естественный отбор не справится даже с сохранением имеющейся генетической информации, не говоря уже о создании новой. Копирование всех бактериальных и вирусных геномов происходит именно с такой точностью. Большие геномы высших животных и растений формально не проходят предел Эйгена (например, в геноме человека размером около 3 000 000 000 нуклеотидов происходит около 30 мутаций за поколение), но поскольку большая часть нашего генома ничего не кодирует, то мутации в ней не влияют на жизнеспособность. Для tC9Y частота ошибок составляет около 2 %, т. е. при копировании РНК длиной 200 нуклеотидов он совершает в среднем 4 ошибки. При копировании самого себя с такой точностью рибозим будет разрушен мутациями за несколько поколений, несмотря на действие отбора.
В-четвертых, все известные рибозимы-полимеразы нуждаются в затравке, или праймере – коротком фрагменте РНК, который комплементарно связывается с РНК-матрицей, образуя двуспиральный участок, и будет дальше удлиняться путем присоединения нуклеотидов по одному. Эти затравки должны откуда-то браться. В современных клетках при копировании ДНК-геномов затравки делает специальный фермент, праймаза, родственный полимеразам. Эксперименты с этими ферментами показали, что совместить функции праймазы и полимеразы в одной молекуле очень сложно – хорошая праймаза делает много ошибок при удлинении затравки. Клеточные РНК-полимеразы, работающие в транскрипции (делающие РНК на матрице ДНК), обходятся без внешних затравок, но дорогой ценой – более 90 % РНК, которые они начинают синтезировать, обрываются на первых 5–10 нуклеотидах. Древний рибозим, который был не столь совершенным, как современные белковые ферменты, вряд ли смог бы копировать РНК без затравок. Бывают, правда, ситуации, когда молекула ДНК или РНК может выступать в качестве затравки для копирования самой себя. Например, при репликации способом «катящегося кольца» у некоторых вирусов двунитевой кольцевой ДНК-геном разрезается по одной цепи. ДНК-полимераза начинает удлинять один конец разрезанной нити, вытесняя другой, и совершает много оборотов по кольцу без перерыва. Однако кольцевую РНК трудно сложить в структуры, необходимые для рибозимов, и возникает необходимость в разрезании колец в определенном месте.
В-пятых, после работы рибозима-полимеразы образуется длинная двунитевая РНК, которая не может служить матрицей для следующего копирования. Чтобы продолжить копирование, надо как-то расплести ее на две отдельные нити. В клетках это делают специальные ферменты – хеликазы, расходующие энергию в виде АТФ на расплетание двойных спиралей, а специальные белки (они называются SSB – single-strand binding) связываются с одиночными нитями, чтобы они не слипались обратно. В раннем РНК-мире такой сложной системы, очевидно, быть не могло, и надо искать другие способы расплетания двунитевых РНК. Простейшим способом могут быть колебания температуры, которые используются в полимеразной цепной реакции (ПЦР) – лабораторном методе копирования ДНК в пробирке, при помощи одной полимеразы. В полимеразной цепной реакции построение вторых цепей ДНК идет при температуре 60–70 °C, а периодический короткий нагрев до 95 градусов разделяет двунитевые молекулы на отдельные нити. В условиях древней Земли подобные колебания температуры могут давать периодические выбросы кипятка из гейзеров или приливы на морском берегу. Однако при падении температуры две длинные нити РНК могут соединиться обратно. Для запуска нового цикла копирования нужно, чтобы концентрация затравок была в 100–1000 раз выше, чем длинных молекул. В ПЦР этого добиваются, добавляя большое количество искусственных затравок. В РНК-мире доступность затравок особенно критична при копировании РНК в липидных пузырьках, стенки которых пропускают только одиночные нуклеотиды, но и в растворе, и на минералах затравки все равно нужны.
Копирование РНК путем крупноблочной сборки
Стало понятно, что надо искать другие подходы к копированию РНК. Например, процесс копирования мог поначалу происходить путем сшивания концов коротких цепей, а не одиночных нуклеотидов. Обзор Карлоса Брионеса с соавторами (2009) суммирует главные открытия в этой области.
В этом сценарии первые РНК длиной 20–30 нуклеотидов образуются при случайной полимеризации на минералах. Многие из них имеют участки, комплементарные другой части молекулы, и образуют шпильки (рис. 9.3). Среди них были первые рибозимы, проводящие реакцию сшивания концов двух цепей РНК, под названием «лигазы». Они сшивали некоторые РНК друг с другом, что приводило к появлению, во-первых, более активных лигаз, а во-вторых, эти лигазы лучше узнавали те короткие РНК, из которых могли быть построены их собственные копии. По мере роста размеров и сложности РНК среди лигаз могли появиться и рибозимы-полимеразы.
Такой сценарий решает часть проблем, которые были в сценарии случайного появления полимеразы. Во-первых, рибозимы-лигазы гораздо проще и короче, чем рибозимы-полимеразы: при комнатной температуре хорошо работают лигазы длиной 40–50 нуклеотидов, а во льду – даже более короткие фрагменты, вплоть до 29 нуклеотидов (Vlassov et al., 2004). Молекулы РНК таких размеров реально получить при случайной сшивке нуклеотидов без помощи рибозимов. Во-вторых, лигазы могут сшивать две разные функциональные молекулы РНК, образуя более крупные модульные рибозимы, – путь усложнения, малодоступный для рибозимов-полимераз. В-третьих, в экспериментах рибозимы-лигазы склонны образовывать сообщества, в которых разные лигазы ускоряют сборку друг друга, поддерживая более сложную и разнообразную систему, чем один рибозим-полимераза. Более того, такие сообщества выигрывают в конкуренции с эгоистичной лигазой, собирающей только свои копии. В экспериментах Трейси Линкольн и Джеральда Джойса пара лигаз собирала копии друг друга (Lincoln, Joyce, 2009) и удваивала свою численность менее чем за час, тогда как полимеразы не могут собрать свою копию и за сутки! Более того, добавив в систему несколько версий «сырья» – коротких цепочек РНК, они добились конкуренции разных вариантов рибозимов-лигаз и начала эволюции среди них. Единственный недостаток известных сообществ лигаз, не позволяющий признать их окончательным решением проблемы копирования в мире РНК, – это необходимые для них исходные материалы. Лигазы Линкольн и Джойса так же, как их аналоги, полученные другими учеными, требуют довольно длинных фрагментов РНК, около 20 нуклеотидов, для построения из них собственных копий. Если материал для лигаз поставляется случайным соединением нуклеотидов на глине, то вероятность получения нужного 20-нуклеотидного фрагмента РНК будет крайне мала – около одной триллионной. Лигазы, хорошо работающие с кусочками РНК в три – пять нуклеотидов, пока получить не удается.
Интересный вариант содружества лигаз был получен в работе Щепанского и Джойса (Sczepanski, Joyce, 2014). Они отступили от принципа хиральной чистоты и сделали рибозим из нуклеотидов с «левыми» молекулами рибозы, отбирая его на способность сшивать обычные РНК с «правой» рибозой. В этом случае звенья рибозима не образуют комплементарных пар с теми молекулами, которые он сшивает. Подобные взаимодействия приводят к застреванию молекул РНК в обычных рибозимах-полимеразах и лигазах и сильно замедляют их работу. «Левый» рибозим из 83 нуклеотидов оказался очень хорошей лигазой, способной построить свою зеркальную копию из 11 коротких фрагментов РНК по 7–11 нуклеотидов. Зеркальная копия, в свою очередь, так же эффективно строит исходный «левый» рибозим из «левых» коротких РНК. Такой способ копирования был назван «кросс-хиральная репликация». Как и некоторые другие лигазы, этот рибозим может по совместительству «подрабатывать» полимеразой: он достраивает РНК-затравку, присоединяя к ней до шести нуклеотидных звеньев, причем к «правой» затравке присоединяются только «правые» нуклеотиды из смеси, а к «левой» – «левые». Этот эксперимент заставляет задуматься об истории хиральной чистоты: может быть, мир РНК сначала использовал левые и правые нуклеотиды в равной мере, а хиральная чистота возникла позже, с переходом к белкам? Авторы надеются в ближайшие пару лет сделать из этой лигазы кросс-хиральную полимеразу, которая будет строить из отдельных нуклеотидов свои зеркальные отражения. Посмотрим, что у них получится.
Итак, ни рибозимы-полимеразы, ни рибозимы-лигазы, известные на сегодняшний день, не обеспечивают устойчивого копирования РНК из доступных в окружающей среде древней Земли компонентов – отдельных нуклеотидов и их цепочек длиной до пяти-восьми звеньев. Чтобы запустить копирование, а следовательно, конкуренцию и естественный отбор, необходимы какие-то другие способы копирования РНК.
РНК копируются внешними силами
Самопроизвольное соединение активированных нуклеотидов, с которого мы начали эту главу, может происходить не только на глине, но и на однонитевых молекулах РНК, работающих в качестве матрицы. Достижения и проблемы в этой области обобщены в обзоре Джека Шостака (Szostak, 2012).
Еще в 1987 году было достигнуто неферментативное копирование РНК длиной 14 нуклеотидов. Использовались нуклеотид-метилимидазол-фосфаты и водный раствор с высокой концентрацией солей магния (Acevedo, Orgel, 1987).
В последующие годы это направление исследований было практически заброшено, так как ученые переключились на искусственный отбор рибозимов. Но в последние годы Джек Шостак вернулся к неферментативному копированию, причем с новыми идеями – он пытается проводить его внутри протоклеток, т. е. пузырьков, окруженных липидной мембраной. Недавно ученицей Шостака Катаржиной Адамалой было осуществлено копирование РНК внутри протоклеток (Adamala, Szostak, 2013).
Копирование РНК без помощи ферментов имеет много недостатков, которые нам знакомы по рибозимам-полимеразам:
• в конце копирования, как и у полимеразы, образуется устойчивая двунитевая РНК, которую надо как-то расплести для следующего цикла копирования;
• скорость и точность неферментативного копирования еще хуже, чем с рибозимами: ошибок – около 10 %, а на присоединение одного нуклеотида уходит более часа.
У неферментативного копирования есть и другие проблемы, которые не свойственны рибозимам-полимеразам:
• при копировании без ферментов связи между нуклеотидами образуются по-разному. Как в клеточных РНК, так и в продуктах рибозимов-полимераз, фосфатные мостики всегда связывают третий углеродный атом одного остатка рибозы с пятым атомом другого (3' – 5' – фосфодиэфирная связь, см. рис. 9.1). Без ферментов же наравне с 3' – 5' связями образуются неправильные 2' – 5' связи, и долго было непонятно, насколько это мешает появлению активных рибозимов;
• неферментативное копирование требует высокой концентрации магния, что приводит к постепенному разрушению как РНК-матрицы, так и активированных нуклеотидов. Нуклеотиды теряют фосфатные группы и превращаются в нуклеозиды, которые сами непригодны для построения цепи РНК и, хуже того, конкурируют с нуклеотидами за место на копируемой цепи РНК;
• нуклеозиды надо как-то убирать из среды, где происходит копирование РНК, или превращать их обратно в нуклеотиды;
• химические способы реактивации нуклеозидов опасны для РНК-матрицы.
По последним данным, не все эти проблемы действительно серьезны. Оказалось, что случайное чередование 3' – 5' и 2' – 5' связей не нарушает активность рибозимов по сравнению с чистыми 3' – 5' связанными РНК (Engelhart et al., 2013). Более того, примесь 2' – 5' связей снижает устойчивость двунитевой РНК и облегчает ее расплетание для повторного копирования. Так как доля 2' – 5' связей в копиях одной РНК-молекулы будет отличаться, то между ними возможно своего рода разделение труда: молекулы с большей долей 2' – 5' связей будут служить матрицами для дальнейшего копирования, а с меньшей – будут более стабильными рибозимами. Иначе говоря, даже в пределах РНК-мира за счет изменчивости связей между нуклеотидами возможно некоторое разделение на генетический материал и функциональные молекулы.
Проблемы, связанные с побочными реакциями ионов магния, удалось решить в упомянутой выше работе Адамалы и Шостака. Адамала пробовала разные вещества, которые образуют устойчивые комплексы с ионами магния, в надежде, что эти комплексы будут участвовать в одних реакциях, подобно свободным ионам магния, но не смогут участвовать в других. И оказалось, что цитрат (лимонная кислота) образует комплекс с магнием с нужными свойствами. Магний-цитратный комплекс катализирует образование РНК из активированных нуклеотидов, но не катализирует гидролиз (разрушение) РНК и отдельных нуклеотидов. Кроме того, магний-цитратный комплекс безопасен для липидных оболочек протоклеток, в отличие от обычных магниевых солей. В этих экспериментах использовались мембраны из жирных кислот, по свойствам близкие к обычному мылу. Как известно, мыло в жесткой воде (содержащей много кальция и магния) плохо мылится, т. е. не образует пузырьков, и это долго было препятствием к репликации РНК в протоклетках.
Копирование РНК в тепловой ловушке
Все процессы соединения нуклеотидов в РНК очень чувствительны к концентрации нуклеотидов, которые в разбавленном растворе гораздо хуже соединяются в цепочки. К сожалению, все известные пути получения нуклеотидов, возможные в природных условиях, дают относительно разбавленные растворы продуктов. Было бы очень хорошо найти какой-нибудь эффективный механизм их концентрирования.
Как мы помним, возникновение жизни произошло на горячих источниках. В этом ландшафте возникают пересыхающие лужи, в которых могут накапливаться различные растворенные вещества, например формамид. К сожалению, для накопления нуклеотидов этот механизм не очень подходит: при испарении воды увеличивается концентрация всех растворенных веществ, включая минеральные соли, которых заведомо больше, чем нуклеотидов. Но, как оказалось, на тех же геотермальных полях есть механизмы концентрирования, которые отличают крупные молекулы нуклеотидов и РНК от растворенных минеральных солей. Для геотермальных полей характерны мелкопористые осадки и устойчивая разница температуры между горячей подземной водой и холодным воздухом. В этих условиях в порах и трещинах, заполненных водой, возникает устойчивая конвекция: поток жидкости и тепла. Благодаря конвекции и перепадам температур эти трещины становятся удобным местом концентрирования нуклеотидов и копирования РНК.
В работе Baaske et al. (2007) изучалось поведение нуклеотидов и РНК разной длины в поре, закрытой снизу и открытой сверху в холодную воду. При подогреве сбоку в такой поре происходят конвекция жидкости и перенос растворенных молекул вдоль градиента температуры (термофорез). Оказалось, что нуклеотиды и РНК в такой поре подсасываются из холодной воды и эффективно накапливаются в нижней части холодной стенки (рис. 9.4). Для поры шириной 1 мм и длиной 10 мм получается концентрирование нуклеотидов и коротких РНК в шесть-семь раз. Но степень концентрирования очень сильно (экспоненциально) зависит от отношения длины к ширине поры. Пора размером 0,1 мм × 10 мм или 1 мм × 100 мм концентрирует нуклеотиды примерно в 100 млн раз. РНК длиной примерно 40 нуклеотидов и более ведут себя по-другому по сравнению с одиночными нуклеотидами и короткими РНК. Они очень сильно концентрируются даже в коротких порах – в 20 000 раз в поре 1 мм × 10 мм для РНК длиной 100 нуклеотидов. Длинные молекулы РНК, попавшие в такую пору, практически неизбежно захватываются ею и накапливаются на маленьком (меньше 0,01 кв. мм) участке в нижней части холодной стенки. Концентрация РНК там ограничена только их физическими размерами.
Если в такой закрытой нагреваемой поре происходит еще и образование РНК из нуклеотидов (здесь неважно, идет ли речь о копировании существующей РНК или о случайной сборке), то конвекция, термофорез и накопление нуклеотидов очень способствуют образованию длинных РНК. В работе Маста с коллегами (Mast et al., 2013) было рассчитано, что в тепловой ловушке будут получаться РНК длиной 200–300 нуклеотидов безо всяких ферментов и рибозимов. К сожалению, по техническим причинам проверяли они эти расчеты не на полимеризации РНК из отдельных нуклеотидов, а на ДНК, и при этом еще не сборка отдельных нуклеотидов, а стыковка 95-нуклеотидных фрагментов ДНК при помощи одноцепочечных «липких концов». Такие видоизменения потребовались потому, что только к фрагментам ДНК такой длины возможно присоединить флуоресцентные метки, не мешающие полимеризации. Но зато благодаря таким меткам удалось в реальном времени и с высоким разрешением измерить накопление и полимеризацию ДНК на нижнем конце холодной стенки. И в точном соответствии с теорией получилось, что молекулы ДНК в этих условиях получаются в 10–20 раз длиннее, чем при любой одинаковой со всех сторон температуре.
В поре, открытой с обоих концов, поведение молекул несколько отличается. Если есть проток жидкости снизу вверх и нагрев с одной стороны, то в поре тоже происходят конвекция и термофорез. Молекулы РНК накапливаются на нижнем конце холодной стенки, но их поведение сильно зависит от длины. Нуклеотиды и короткие РНК слабее увлекаются термофорезом в нисходящий холодный поток и в итоге вымываются из поры с восходящим потоком, а РНК длиннее определенного порога (он зависит от скорости потока и размеров поры) накапливаются в ней. Это избирательное удержание длинных РНК может противостоять быстрому размножению коротких РНК и сохранять длинные молекулы в ряду поколений несмотря на то, что они копируются медленнее (Kreysing et al., 2015).
И в открытых, и в закрытых порах благодаря конвекции молекулы РНК последовательно попадают в горячие и холодные зоны. В горячей зоне двухцепочечная РНК может разделяться на одиночные цепи, которые смогут стать матрицами для следующего цикла копирования.
Мир шпилек
Изящное решение проблемы затравок было недавно предложено Александром Марковым (). Оно состоит в том, что в условиях неферментативного копирования РНК преимущества получают те последовательности, которые могут служить затравками для синтеза собственных копий (рис. 9.5). Такими свойствами обладают палиндромные последовательности РНК. Палиндромами называли слова или фразы, которые читаются одинаково в обе стороны («А роза упала на лапу Азора»). В случае РНК и ДНК палиндромной последовательностью называют такую, которая читается одинаково слева направо и – после замены нуклеотидов на комплементарные – справа налево. Например, последовательность GGACCUAGGUCC будет палиндромом.
При случайном разрыве таких цепей РНК получаются короткие фрагменты, которые тоже могут служить затравками для удлинения своих родственников. В условиях неферментативного копирования РНК идея Маркова («Мир палиндромов») превращает необходимость затравок из проблемы в фактор естественного отбора, который начинается еще до появления первого активного рибозима, с молекулами РНК длиной 15–20 нуклеотидов. Причем низкая скорость неферментативного копирования здесь не страшна: достройка концов палиндромных РНК требует присоединения лишь 5–10 нуклеотидов за один цикл. Палиндромность первых РНК повышает вероятность появления рибозимов, так как палиндромные последовательности образуют множество шпилек (рис. 9.6).
Следы такого способа роста структур РНК до сих пор видны в древнейшем реликте РНК-мира – молекулах транспортных РНК (тРНК). Эти молекулы длиной 76 нуклеотидов имеют форму клеверного листочка. «Стебелек» и каждый из «листиков» трилистника включают двуспиральные участки РНК. Три «листика» образуют шпильки, а стебелек заканчивается свободными концами цепи РНК. В последовательности тРНК давно были обнаружены внутренние повторы, допускающие другие варианты укладки молекулы, например, в виде одной длинной двухцепочечной шпильки с несколькими внутренними петлями. На основе этих повторов были предложены модели роста тРНК путем увеличения количества палиндромных сегментов молекулы (Rodin et al., 2011; DiGiulio, 2009).
Если у нас есть механизм абиогенного копирования РНК, хотя бы только коротких и палиндромных молекул, то среди них могут оказаться РНК с какой-то рибозимной активностью. Строго говоря, не только лигаза и полимераза способны ускорить накопление своих копий в такой системе. Например, рибозимы-экзонуклеазы, разрушающие молекулы РНК, могут быть полезными для их точного и быстрого копирования. Экзонуклеазы работают в клетках вместе с полимеразами и служат для отрезания неправильно присоединенных нуклеотидов, повышая точность копирования. Рибозим с такой активностью мог бы повышать точность неферментативного копирования РНК и косвенно – скорость копирования, потому что после неправильно присоединенного нуклеотида (не образующего комплементарную пару с матрицей) следующий нуклеотид присоединяется намного медленнее обычного. Кроме того, для увеличения количества собственных копий рибозим может вообще воздействовать не на копирование РНК, а на предшествующие шаги – превращение простых органических веществ в нуклеотиды. Иначе говоря, появляется обмен веществ – химические реакции малых молекул, происходящие под контролем ферментов. В следующей главе мы подробнее рассмотрим, на что способны рибозимы в процессе обмена веществ.
Глава 10
Витамины, аминокислоты и пептиды в РНК-мире
Рибозимы осваивают обмен веществ
Как только на Земле появляются молекулы РНК, которые как-то копируются, между ними начинается конкуренция. Одни молекулы РНК копируются быстрее, чем другие, и могут накапливаться в большем количестве. Любая новая особенность рибозима, повышающая вероятность его копирования, будет подхвачена естественным отбором.
В прошлой главе мы обсудили возможности и ограничения рибозимов-полимераз и лигаз, которые прямо участвуют в копировании РНК. Но это не единственные способы, которыми рибозим может влиять на количество своих копий и их эволюционную судьбу. Как справедливо замечено в обзоре Martin et al., 2015, путь от простой органики к РНК состоит из многих шагов, и ускорение любого из них при помощи рибозима будет выгодно для этого рибозима. Рибозимы в принципе могут как ускорять уже идущие реакции синтеза и активации нуклеотидов, например синтез Сазерленда, так и пускать в дело отходы и побочные продукты – свободные азотистые основания, рибозу и нуклеозиды, которые образуются при распаде РНК и нуклеотидов. Кроме того, если конкурирующие молекулы РНК находятся в лабиринте пор в минеральном осадке, то между соседями вероятно возникновение кооперации, когда каждый из них ускоряет копирование не только самого себя, но и молекул, находящихся рядом. В таком сообществе будет разделение труда, когда одни рибозимы копируют РНК, а другие занимаются производством нуклеотидов для них. Так появляется обмен веществ: химические реакции между малыми молекулами, проходящие под контролем соседних молекул; такие помощники-контроллеры получили название «ферменты».
Ресурсы, которые потребляет это сообщество РНК, можно рассортировать по сложности использования. Проще всего применять, конечно, готовые активированные нуклеотиды, такие как АТФ и ГТФ (гуанозинтрифосфат, у которого три фосфатные группы присоединены не к аденину, а к гуанину), – это одновременно и строительный материал для новой РНК, и источник энергии. Следующими после готовых активированных нуклеотидов будут нуклеотид-монофосфаты – готовые строительные блоки РНК, но без запаса энергии. Еще немного сложнее использовать нуклеозиды – чтобы пустить их в дело, надо добавить фосфатную группу. И нуклеотид-монофосфаты, и нуклеозиды неизбежно появлялись при распаде цепочек РНК.
Следующие по сложности использования ресурсы – отдельные азотистые основания и рибоза, образующиеся из цианида и формальдегида. Они должны быть правильно соединены друг с другом, чтобы получились нуклеозиды. Затем, когда и этот ресурс использован, можно было попытаться ускорить превращение гликольальдегида, глицеральдегида, формальдегида и цианистых соединений в нуклеотиды. Наконец, когда весь цианидно-формальдегидный дождь стал быстро и эффективно превращаться в РНК, в конкуренции начали выигрывать те химические системы (возможно, их уже допустимо называть живыми организмами), которые освоили восстановление углекислого газа и получили неисчерпаемый источник углерода.
Как только кончаются готовые активированные нуклеотиды – и строительный материал, и запас энергии «в одном флаконе», – нужно осваивать другие источники энергии. В условиях грязевых котлов их много. Например, летящие с вулканическими газами оксиды фосфора, растворяясь в воде, дают полифосфаты, которые легко использовать для активации нуклеотидов. Можно получать энергию, окисляя фосфиты и гипофосфиты, образующиеся из тех же вулканических оксидов фосфора. Можно как-то пристраиваться к фотохимическим реакциям на кристаллах сульфида цинка или пытаться улавливать солнечный свет своими силами. Мы не знаем, какие из этих источников энергии были освоены РНК-организмами раньше, но в итоге, скорее всего, они все так или иначе использовались.
В лабораториях идет поиск рибозимов, которые проводили бы все эти реакции. Например, правильное соединение рибозы и азотистых оснований в нуклеозиды, которое так долго не удавалось сымитировать в абиогенных условиях, рибозимам вполне по силам. Путем искусственной эволюции были получены рибозимы, которые соединяют активированную форму рибозы (5-фосфорибозил-1-пирофосфат) с азотистыми основаниями, производя нуклеозиды. В клетках фосфорибозил-пирофосфат тоже является ключевым промежуточным продуктом на пути к нуклеозидам. Рибозим A15 соединяет с рибозой урацил и цитозин, а рибозим МА – аденин и гуанин (рис. 10.1). Оба они ускоряют соответствующую реакцию в миллионы раз (Martin et al., 2015).
Активация нуклеозидов путем добавления к ним трех фосфатных групп катализируется рибозимом TPR1 размером 96 нуклеотидов. В качестве источника фосфора и энергии он использует триметафосфат, промежуточный продукт растворения оксида фосфора в воде, который доступен в грязевых котлах. В водно-формамидном растворе фосфорилирование нуклеозидов может происходить даже без помощи рибозимов. Нужен только самый обычный фосфатный минерал гидроксилапатит Ca5(PO4)3OH, немного солей меди и нагревание до 80 °C. Медь используется для фосфорилирования нуклеозидов и в современных клетках, она входит в состав фермента пурин-нуклеозид-киназы.
Основной шаг, повторяемый в реакции Бутлерова, называется в химии «альдольная реакция» (рис. 10.2). Рибозимы, проводящие альдольную реакцию, тоже получены в эксперименте (Chen et al., 2007). Для превращения в катализаторы им необходимы ионы цинка, подобно их функциональным белковым аналогам – альдолазам класса II.
Для многих других химических реакций, нужных для производства нуклеотидов из простых молекул, возможностей чистой РНК недостаточно. Прежде всего, РНК неспособна к окислительно-восстановительным реакциям, следовательно, рибозимы не могут восстанавливать СО2 и использовать энергию окисления неорганических веществ, таких как сера, железо и водород. Белки, состоящие из 20 разных аминокислот, могут проводить гораздо больше химических реакций, но и их возможности ограничены. Более половины ферментов для работы нуждаются в дополнительных веществах – коферментах и микроэлементах. Например, для проведения окислительно-восстановительных реакций в наборе из 20 аминокислот есть цистеин, который может легко и обратимо окисляться и восстанавливаться. Однако большинство ферментов окисления и восстановления нуждаются в дополнительных веществах. Это могут быть коферменты НАД (никотинамидадениндинуклеотид) и ФАД (флавинадениндинуклеотид), железосодержащий кофермент – гем, железосерные кластеры, молибденоптериновый комплекс и ряд более экзотических веществ.
РНК и витамины
Коферменты – это разнородная группа веществ, которые выполняют особые функции в биохимии и не относятся ни к одному из основных классов веществ живых организмов (белки, нуклеиновые кислоты, сахара, липиды). Организм человека не способен производить большинство коферментов из простых предшественников, поэтому мы должны получать их «заготовки» с пищей, в виде витаминов. Коферменты НАД и ФАД переносят атомы водорода и участвуют в окислительно-восстановительных реакциях. Кофермент А (КoA) работает в реакциях, связанных с переносом ацетильных групп (-CO-CH3) и других кислотных остатков. Тиаминпирофосфат принимает участие в реакциях карбоксилирования и декарбоксилирования (присоединения и отщепления углекислого газа). Цианкобаламин служит для переноса метильных (CH3) групп.
Многие важнейшие коферменты имеют в своем составе адениновый нуклеотид: у кофермента А (КoA) к нему присоединена молекула витамина В5, у НАД – витамин РР, у ФАД – витамин B2 (рис. 10.3). Адениновый нуклеотид также входит в состав аденозил-кобаламина – активной формы витамина В12. Более того, у коферментов НАД и ФАД молекула в целом выглядит как два соединенных нуклеотида, где одно азотистое основание – обычный аденин, а в роли второго выступает никотинамид или флавин. Аденин в составе коферментов никак не участвует в их работе и служит только для узнавания коферментов белками. Скорее всего, это наследие РНК-мира, в котором витамины были пришиты к рибозимам для расширения их каталитических возможностей.
В опытах по искусственному отбору рибозимов были получены рибозимы, катализирующие часть этапов синтеза коферментов, а именно присоединение пантетеина, никотинамид-мононуклеотида и флавин-мононуклеотида к АТФ с образованием КoA, НАД и ФАД соответственно (Jadhav, Jarus, 2002). Также известны рибозимы, которые специфически пришивают НАД, ФАД или КoA к концу своей собственной молекулы или к другой РНК.
Коферменты НАД и ФАД переносят атомы водорода от одной молекулы к другой и необходимы в клетке для проведения окислительно-восстановительных реакций. Хотя в клетках они работают совместно с белками, в экспериментах были получены рибозимы, которые прочно и избирательно связывали НАД и с его помощью окисляли спирт в альдегид (рис. 10.4), – в клетках эту реакцию проводит НАД-содержащий белковый фермент алкоголь-дегидрогеназа (Tsukiji et al., 2004). Для никотинамида, ключевого компонента НАД, обнаружен простой путь синтеза, не требующий никаких ферментов и вполне реальный в условиях древней Земли. В нем простой сахар (диоксиацетон-фосфат) реагирует с аспарагиновой кислотой (одна из обычных аминокислот в составе белков) в водном растворе при температуре 60–100 °C (Cleaves, Miller, 2001). РНК, в которых на 5' конце находится НАД вместо обычного нуклеотида, обнаружены и в современных клетках: у кишечной палочки такой модификации подвергается до 15 % малых регуляторных РНК (sRNA) (Cahova et al., 2014), хотя функция НАД в составе этих РНК пока неизвестна.
Кофермент А тоже прекрасно ладит с рибозимами. Очень впечатляет работа Вазанта Ядхава и Михаэля Яруса (Jadhav и Yarus, 2002). Они создали набор рибозимов, проводящих в одном опыте три последовательные химические реакции: пришивание КoA к концу РНК, активацию органической кислоты при помощи АТФ (при этом получается ацил-аденилат) и перенос кислотного остатка ацил-аденилата на КoA в составе рибозима. Затем другая команда химиков получила рибозим, который использует ацетил-КоА и малонил-КоА для реакции конденсации Клайзена (Ryu et al., 2006). В этой реакции – а она является ключевым шагом в построении длинных молекул жирных кислот – соединяются два остатка органических кислот.
Еще один кофермент, который удалось заставить работать вместе с рибозимом, – это тиаминпирофосфат, активная форма витамина В1. Он используется в обмене веществ там, где надо присоединить или отщепить молекулу углекислого газа. Канадские химики Пол Чернак и Дипанкар Сен получили рибозим, который прочно связывает тиаминпирофосфат и с его помощью отщепляет СО2 от пировиноградной кислоты и ее аналогов (Cernak, Sen, 2013). Эта реакция очень важна в обмене веществ, через нее проходит «сгорание» всех потребляемых нами сахаров (подробнее в главе 11). Воспроизведение ее при помощи рибозима, а не белкового фермента – существенное доказательство возможности сложного обмена веществ до появления белков.
В той же лаборатории под руководством Дипанкара Сена рибозимы «подружились» и с гемом. Этот кофермент входит в состав гемоглобина крови, придавая ей красный цвет и способность переносить кислород. Кроме того, гем входит в состав цитохромов – большой группы белков, участвующих в самых разных окислительно-восстановительных реакциях.
РНК, отобранные на прочное связывание гема, заодно проводили две химические реакции: окисление разных веществ перекисью водорода при помощи гема и вставку цинка и меди в протопорфирин IX (подобная реакция происходит на последней стадии сборки гема) (Sen and Poon, 2011).
РНК и свет
Как мы помним, еще до возникновения жизни компоненты РНК прошли отбор на устойчивость к ультрафиолетовому излучению. Главный механизм этой устойчивости заключается в том, что азотистые основания очень быстро превращают энергию поглощенного ультрафиолета в тепло. Для запуска этого механизма поглощенная порция энергии должна быть достаточно велика. Азотистые основания поглощают ультрафиолет с длиной волны 240–280 нм (УФС), который сейчас задерживается озоновым слоем и не доходит до поверхности Земли. Более длинноволновый ультрафиолет (УФА и УФВ) азотистые основания не поглощают, и возбуждение соседних молекул, вызванное поглощением УФА или УФВ, не снимают. Следовательно, если мы хотим создать рибозим, который будет делать что-то полезное при помощи света, надо дать ему «антенну» – какую-то вспомогательную молекулу, чтобы она поглощала свет. И поглощать она должна видимый свет или УФА, чтобы азотистые основания не могли растратить его энергию в тепло. Примерно так рассуждали в лаборатории Дипанкара Сена, когда начали работу по созданию рибозима-фотолиазы.
Обычная фотолиаза – это фермент, который чинит тиминовые димеры, один из типов повреждений ДНК, возникающих под воздействием ультрафиолета (рис. 10.5). Фотолиаза содержит кофермент ФАД и работает только при освещении синим светом. Для расщепления очень прочного четырехчленного кольца тиминового димера обычного восстановительного потенциала ФАД недостаточно, и в реакцию вступает его возбужденная синим светом форма (о возбужденных состояниях и их химических свойствах рассказывалось в главе 6).
Фотолиаза сохраняет некоторую активность и без ФАД. В этом случае ей нужен не синий свет, а ближний ультрафиолет (УФА), который поглощается аминокислотой триптофаном в составе белковой цепи. В норме триптофан передает возбуждение на ФАД, но без ФАД может и напрямую восстанавливать кольцо тиминового димера.
Аспиранты Дипанкара, зная эти детали, в эксперименте по отбору рибозимов-фотолиаз взяли в качестве антенны серотонин – производное триптофана. Серотонин работает в качестве сигнальной молекулы в нашей нервной системе, но ни в каких особых отношениях со светом замечен не был, хотя он хорошо поглощает УФА. В эксперименте было получено несколько разных рибозимов-фотолиаз, лишь немного уступающих по активности белку-фотолиазе. Подробное изучение показало, что один из этих рибозимов, названный UV1C, прекрасно обходится без серотонина (Chinnapen, Sen, 2004)! Он поглощает более коротковолновый ультрафиолет, чем рибозимы с серотонином (300 нм против 320), работает менее эффективно, но тоже неплохо. Как оказалось, за поглощение света и его использование в UV1C отвечает G-квардуплекс – особая структура из четырех гуанинов, связанных водородными связями в большое плоское кольцо (рис. 10.6). Такая структура взаимодействует со светом как единое целое. Квадруплекс поглощает более длинные волны, чем одиночный гуанин или пара G-C, и не рассеивает их в тепло. Такие четверки образуются в ДНК и РНК, богатых гуанином, и важны для поддержания устойчивости концевых частей хромосом в наших клетках. Они же, как оказалось, нужны для связывания гема рибозимами.
Та же фотолиаза вдохновила на исследования и Михаила Критского из Института биохимии имени А. Н. Баха в Москве. Его группа изучала взаимодействие со светом кофермента ФАД. Этот кофермент участвует во многих окислительно-восстановительных реакциях как переносчик водорода и электронов, но играет и другие роли. Кроме фотолиазы ФАД поглощает свет в криптохромах – белках, регулирующих суточные ритмы животных и растений. На основе ФАД-содержащих криптохромов у животных возникли также системы восприятия магнитного поля.
Критский с сотрудниками обнаружили, что флавин можно получить очень просто, запекая сухую смесь аминокислот (глутамат, глицин, лизин) при температуре 180 °C без доступа воздуха. При растворении запеченной смеси в воде с силикатами образуются микросферы из неупорядоченных пептидов, силикатов и флавина. Эти микросферы при освещении поглощают синий свет и за счет его энергии способны синтезировать АТФ из АДФ и неорганического фосфата, осуществляя фотореакцию с неплохой эффективностью – одна молекула АТФ на пять поглощенных квантов света (Kritsky et al., 2007). Реакция идет лучше в присутствии окислителей: воздуха, перекиси водорода или солей трехвалентного железа. Точный механизм флавиновых фотореакций неизвестен, но он включает какие-то промежуточные окислительно-восстановительные шаги. Силикатный матрикс микросфер, видимо, необходим для удержания реагирующих молекул в правильной ориентации друг к другу – просто раствор флавинов в воде не способен производить АТФ на свету (Telegina et al., 2013).
В РНК-мире возможны и другие пути использования энергии Солнца. Например, тиоацетат (серное производное уксусной кислоты) разрушается при облучении ультрафиолетом. Но в присутствии урацила и фосфатов он при этом превращается в ацетил-фосфат – богатое энергией соединение, которое может отдавать фосфатную группу, активируя нуклеотиды и способствуя синтезу РНК (Hagan, 2010).
Аминокислоты и пептиды в мире РНК
Если рибозимы легко могут использовать коферменты для получения новых химических способностей, то можно предположить, что они могли также использовать аминокислоты. Из 20 стандартных аминокислот, входящих в состав белков, меньше половины бывают ключевыми элементами активных центров ферментов: гистидин, аспарагиновая и глутаминовая кислоты, лизин, аргинин, тирозин, серин, цистеин. Даже среди этих восьми аминокислот есть две пары относительно взаимозаменяемых: аспарагиновая-глутаминовая кислоты и лизин-аргинин. Иными словами, пять-шесть видов аминокислот, вставляемых в рибозимы, могут приблизить их к белкам по химическому разнообразию и возможностям катализа.
Отдельные свободные аминокислоты и короткие пептиды из них могут ускорять химические реакции, подобно ферментам. Например, двух аминокислот – гистидин и цистеин – достаточно для превращения глюкозы в пировиноградную кислоту в три шага (через глюконовую кислоту и кетодезоксиглюконовую кислоту) (Shimizu et al., 2008). Эта последовательность реакций может быть простым аналогом гликолиза, где глюкоза тоже превращается в пировиноградную кислоту, но более сложным путем и с запасанием энергии в АТФ (о месте и значимости этой реакции в обмене веществ будет подробнее рассказано в главе 11). Две соединенные аминокислоты, серин и гистидин (такая связка называется дипептидом), могут расщеплять пептиды на аминокислоты и РНК на нуклеотиды, а в условиях недостатка воды этот же дипептид ускоряет обратную реакцию сборки РНК из нуклеотидов (Adamala et al., 2014).
В составе рибозима те же аминокислоты могут проявлять более высокую каталитическую активность и специфичность, потому что рибозим образует «карман» активного центра вокруг каталитической аминокислоты. Молекулы, не подходящие по форме к «карману», не смогут связаться с аминокислотой и прореагировать. Те молекулы, которые по форме соответствуют «карману», будут реагировать в нем быстрее, чем в растворе, потому что «карман» ориентирует их нужной стороной друг к другу. К сожалению, получению рибозимов, использующих аминокислоты, уделялось недостаточно внимания по сравнению, скажем, с поисками рибозимов-полимераз. Известен один пример рибозима, использующего гистидин. Этот рибозим расщепляет РНК и ДНК и, в отличие от других рибозимов с такой активностью, не нуждается в солях магния (Roth и Breaker, 1998).
Есть и другой способ применить пептиды для повышения эффективности рибозимов. Пептиды с положительным электрическим зарядом (в водной среде такой заряд пептидам придают аргинин и лизин) могут прочно связываться с РНК и стабилизировать ее укладку. Примеры такой помощи мы видим в рибосоме. Рибосомная РНК (крупная РНК, проводящая сборку белков из аминокислот, подробнее в главе 13) содержит много необычных элементов укладки нуклеотидной цепи, не похожих на стандартные двуспиральные петли – шпильки. Эти укладки устойчивы только благодаря тесному взаимодействию с рибосомными белками, богатыми лизином и аргинином и несущими заметный положительный заряд. В меньшем масштабе подобное взаимодействие используют вирусы. Например, у вируса иммунодефицита человека в РНК имеется особый участок, называемый TAR; он состоит из чередования двойных спиралей и шпилек. Этот участок TAR приобретает стабильную форму только при связывании с белком Tat. Контакты с РНК образуют девять идущих подряд аминокислот в белке Tat, и этот небольшой фрагмент прекрасно связывается с РНК безо всей остальной белковой молекулы. Более того, оказалось, что его можно сократить практически до полутора аминокислот – аргинин-амид тоже хорошо связывается с TAR и стабилизирует ее форму (Noller et al., 2004). 9-аминокислотный пептид из Tat в экспериментах хорошо связывался с разными рибозимами, стабилизировал их укладку и повышал их активность в десятки раз (Robertson et al., 2004).
Мы видим, что рибозимы могут использовать коферменты, аминокислоты и пептиды для расширения своих возможностей. С помощью этих дополнительных молекул рибозимы проводят многие основные типы реакций, необходимые для обмена веществ, и даже могут использовать энергию света. Судя по всему, рибозимы с коферментами могут проводить все химические реакции на пути от простых молекул до нуклеотидов.
Глава 11
Происхождение современных путей обмена веществ
Устройство обмена веществ
В прошлой главе мы подошли к разнообразным биохимическим реакциям, которые должен был освоить РНК-мир с помощью витаминов, аминокислот и микроэлементов. Теперь пора рассмотреть обмен веществ современных клеток и возможный путь к нему от древнего обмена веществ РНК-мира.
В школьных и университетских учебниках обмен веществ рассматривается на примере самых простых и важных для человека реакций. Самый известный путь обмена веществ – это гликолиз. В процессе гликолиза происходит превращение глюкозы в пировиноградную кислоту с запасанием небольшого количества энергии в виде АТФ. Гликолиз особенно важен для бактерий и дрожжей, осуществляющих брожение. В разных видах брожения он дополняется несколькими дополнительными реакциями, в результате конечными продуктами могут быть молочная кислота, этиловый спирт или уксусная кислота. В организме человека гликолиз особенно активно идет в мышцах при большой нагрузке, когда кровь не успевает доставлять достаточное количество кислорода. В этой ситуации в мышцах накапливается молочная кислота, от которой они болят после очень интенсивных тренировок.
Обмен веществ (метаболизм) делится на катаболизм (распад сложных веществ до более простых с выделением энергии), анаболизм (образование сложных веществ из простых с затратой энергии) и промежуточный метаболизм (превращение друг в друга нескольких универсальных промежуточных веществ; связующее звено между катаболизмом и анаболизмом). Путем обмена веществ называется цепочка последовательных превращений вещества, проводимая несколькими ферментами по очереди, как на конвейере. Гликолиз относится к путям катаболизма.
В центре обмена веществ большинства клеток находится цикл Кребса, еще называемый циклом лимонной кислоты или циклом трикарбоновых кислот. В этой последовательности реакций уксусная кислота (в виде ацетил-КоА) присоединяется к щавелевоуксусной кислоте, давая лимонную кислоту. Лимонная кислота, в свою очередь, последовательно теряет две молекулы СО2 и восемь атомов водорода, превращаясь обратно в щавелевоуксусную. В итоге уксусная кислота разлагается до углекислого газа и водорода на носителе (НАД или ФАД), который используется для получения энергии в реакции с кислородом.
Из кислот цикла Кребса строятся три основных класса веществ в клетках – сахара (из пировиноградной кислоты), жирные кислоты (из ацетил-КоА) и аминокислоты (из щавелевоуксусной, альфа-кетоглутаровой и пировиноградной кислот). Пути распада этих веществ для получения энергии – гликолиз, бета-окисление жирных кислот и дезаминирование аминокислот – приводят в конечном итоге к циклу Кребса (рис. 11.1).
Пути обмена веществ имеют модульную структуру и соединяются друг с другом через немногие универсальные промежуточные продукты. Например, обмен сахаров подключается к циклу Кребса через пировиноградную кислоту. Кроме гликолиза (распад глюкозы до пировиноградной кислоты) есть еще глюконеогенез – обратный путь от пировиноградной кислоты к глюкозе с затратами энергии. Благодаря глюконеогенезу, который происходит в основном в печени, молочная кислота в нашем организме может быть переработана обратно в глюкозу.
Кроме шестиуглеродных (глюкоза, фруктоза) и трехуглеродных сахаров (глицеральдегид, диоксиацетон) клетки умеют производить и расщеплять пятиуглеродные сахара, такие как рибоза, необходимая для построения ДНК и РНК. Для этого используется пентозофосфатный цикл – это сеть взаимопревращений всех классов сахаров, включая семиуглеродные (седогептулоза), шестиуглеродные, пятиуглеродные (рибоза, рибулоза и ксилулоза), четырехуглеродные (эритроза), и трехуглеродные (глицеральдегид). Цикл может работать в разных направлениях, например, производя из глюкозы рибозу для РНК и эритрозу для синтеза некоторых витаминов или, наоборот, превращая полученную с пищей рибозу в глицеральдегид для сжигания в цикле Кребса.
Клетки человека способны строить из веществ промежуточного метаболизма не все им необходимое. Они могут произвести основные сахара, такие как глюкоза, галактоза и рибоза, половину набора аминокислот, нуклеотиды и жиры. Более сложные аминокислоты (такие как лизин, метионин и триптофан) и витамины должны поступать с пищей. Другие организмы более самостоятельны. Например, кишечная палочка может построить все аминокислоты и витамины, имея в своем распоряжении только глюкозу и минеральный источник азота (нитратные или аммонийные соли). Но и человек, и кишечная палочка нуждаются в готовой органике и в конечном итоге разрушают ее. Для существования биосферы необходимы автотрофные организмы, такие как растения, которые могут производить все необходимые органические вещества из углекислого газа и азота (в форме аммиака или нитратов).
Включение углекислого газа в обмен веществ
Существует несколько биохимических путей включения СО2 в метаболизм (это называют фиксацией СО2). У растений фиксация СО2 происходит в цикле Кальвина. Когда школьникам говорят, что «растения поглощают углекислый газ и синтезируют глюкозу», речь идет именно о цикле Кальвина, но это сильно упрощенная правда. Строго говоря, в цикле Кальвина образуется трехуглеродный фосфоглицериновый альдегид, а затем из него в несколько этапов получается глюкоза (рис. 11.2). На первый взгляд, схема реакций цикла Кальвина очень сложна, однако большинство этих реакций – такие же перестройки сахаров, как и в пентозофосфатном цикле. Все они происходят по одному механизму альдольной конденсации, как и реакция Бутлерова, и катализируются родственными ферментами. Для фиксации СО2 в цикле Кальвина к пентозофосфатному циклу надо добавить только три реакции:
• перенос фосфатной группы с АТФ на рибулозо-5-фосфат с образованием рибулозо-1–5-бифосфата;
• присоединение СО2 к рибулозо-бифосфату с образованием двух молекул фосфоглицериновой кислоты;
• восстановление фосфоглицериновой кислоты до фосфоглицеринового альдегида.
Последняя реакция из этих трех, кстати, уже есть в соседнем пути метаболизма – глюконеогенезе.
Все остальные реакции в этой устрашающей схеме нужны только для того, чтобы из части фосфоглицеринового альдегида получить обратно рибулозо-1–5-бифосфат для следующего оборота цикла.
Микроорганизмы используют другие пути фиксации СО2. Например, у ацетогенов и метаногенов есть так называемый восстановительный ацетил-КоА-путь. Эти организмы получают энергию за счет восстановления СО2 водородом до метана или до уксусной кислоты. И этот путь восстановления СО2 в органику у них во многом пересекается с путем восстановления СО2 для получения энергии.
Кофермент А участвует во многих важных биохимических процессах (в том числе и в цикле Кребса, и в цикле Кальвина). Его задача – переносить остатки органических кислот на другие молекулы, например, ацетат (в главе 10 нам уже попадалось наименование этого соединения – «ацетил-КоА»). В восстановительном ацетил-КоА-пути одна молекула углекислого газа восстанавливается до муравьиной кислоты, связывается с коферментом тетрагидрофолатом (производное витамина В9) и восстанавливается далее до метильной группы (CH3). Другая молекула СО2 восстанавливается другим ферментом до угарного газа (СО) и присоединяется к метильной группе и коферменту А с образованием ацетил-КоА (рис. 11.3). Этот ацетил-КоА через цикл Кребса и другие метаболические пути становится источником углерода для всех веществ в клетке.
Цикл Кальвина и восстановительный ацетил-КоА-путь представляют собой достаточно независимые «модули», которые подключаются к остальному метаболизму через одну промежуточную ступень, которую представляет либо глицеральдегид-фосфат, либо ацетил-КоА (рис. 11.4).
Кроме этих путей известен вариант фиксации СО2, который вписан в самый центр обмена веществ у некоторых микробов. Как мы помним, в цикле Кребса происходит распад уксусной кислоты до СО2 и водорода. Оказывается, есть организмы, которые проводят реакции цикла Кребса в обратную сторону, фиксируя с его помощью углекислый газ (рис. 11.5). Это зеленые серобактерии и некоторые другие фотосинтезирующие и хемосинтезирующие бактерии. Поскольку обычный цикл Кребса идет с выделением энергии, для проведения его реакций в обратную сторону необходимо затрачивать энергию в виде АТФ.
Существует гипотеза, согласно которой восстановительный цикл Кребса шел при помощи минеральных катализаторов еще до появления РНК и белков и, с побочными реакциями, создал аминокислоты и нуклеотиды из СО2 (Smith and Morowitz, 2004). Она основана на следующих фактах:
• обратный цикл Кребса является автокаталитической реакцией. С учетом ветви, в которой уксусная кислота превращается в щавелевоуксусную, за один оборот цикла из одной молекулы щавелевоуксусной кислоты и четырех молекул СО2 образуется две молекулы щавелевоуксусной кислоты. Следовательно, цикл может наращивать массу своих промежуточных веществ, потребляя СО2 и восстановитель из внешней среды;
• для реакций цикла Кребса не обязательны коферменты, кроме КоА, который в принципе можно заменить разными простыми сероорганическими веществами;
• все ферменты обратного цикла Кребса нуждаются только в одном металле (железе), водород поступает на носителе – ферредоксине (это простой белок с железосерными кластерами, о них подробнее было в главе 7), следовательно, есть надежда провести все реакции обратного цикла Кребса на поверхности какого-нибудь железосодержащего минерала;
• все реакции обратного цикла Кребса не требуют встречи двух молекул органических кислот друг с другом, следовательно, цикл устойчив к разбавлению своих реагентов.
К сожалению, пока не удалось в эксперименте подобрать условия, в которых все эти реакции будут проходить на минеральных катализаторах с достаточной скоростью и выходом, чтобы цикл действительно стал автокаталитическим. На сегодняшний день экспериментально удалось провести только шесть из одиннадцати реакций восстановительного цикла Кребса, причем не на железосодержащих минералах, а на кристаллах сульфида цинка при освещении (рис. 11.6, Guzman, Martin, 2009.).
Организмы с другими путями фиксации СО2 могут использовать часть реакций восстановительного цикла Кребса. Например, метаногены и ацетогены с восстановительным ацетил-КоА-путем имеют часть ферментов этого цикла. Они могут, присоединяя СО2, превращать ацетил-КоА в пировиноградную, щавелевоуксусную и далее в кетоглутаровую кислоты, используя их для построения аминокислот. Реакций от кетоглутаровой до лимонной кислоты у них не происходит, цикл остается незамкнутым.
Порядок возникновения реакций обмена веществ
Если обмен веществ строился постепенно, начиная с фиксации СО2, то очевидно, что восстановительный цикл Кребса является лучшим кандидатом на роль самого древнего способа восстановления СО2 и включения его в органику, потому что с него начинаются синтезы аминокислот, сахаров и жиров. Использование восстановительного цикла Кребса позволяет обойтись меньшим количеством реакций и ферментов, чем в случае цикла Кальвина и восстановительного ацетил-КоА-пути. В таком случае цикл Кальвина и восстановительный ацетил-КоА-путь могли возникнуть позже, как более упорядоченные и специализированные способы фиксации углекислого газа. В самом деле, в восстановительном цикле Кребса есть четыре разные реакции включения СО2 в органику, в ацетил-КоА-пути – две, в цикле Кальвина – только одна. Поэтому цикл Кальвина проще оптимизировать для работы при малых концентрациях СО2, чем другие пути, и он преобладает в современной биосфере, где содержание СО2 в тысячи раз меньше, чем во времена зарождения жизни. Ацетил-КоА-путь, в отличие от других способов фиксации СО2, обходится без затрат АТФ и поэтому оптимален для организмов, сидящих на скудном энергетическом пайке, как метаногены.
Однако если обмен веществ строился с другой стороны – со стороны синтеза компонентов РНК для нужд РНК-мира, то обратный цикл Кребса уже не кажется удачным выбором. От кислот цикла Кребса что до рибозы, что до азотистых оснований в карте метаболизма нужно пройти очень много «шагов» – химических реакций. Цикл Кальвина в этом случае подходит лучше, так как он сразу дает рибозу. Более того, у некоторых микроорганизмов известен вариант цикла Кальвина, который начинается с нуклеотида аденозин-монофосфата (АМФ), что еще сильнее подчеркивает его связь с РНК-миром (Sato et al., 2007). Но непонятно, как связать цикл Кальвина с синтезом азотистых оснований.
Кроме того, как мы видели в предыдущих главах, древнейший обмен веществ РНК-мира строил сахара и азотистые основания из таких простых предшественников, как формальдегид, цианид и формамид. Хотя эти вещества в конечном итоге получались из СО2, необходимые для этого реакции были далеко разнесены в пространстве. Серпентинизация производила метан в толще земной коры при высокой температуре, а формальдегид и цианид получались из метана высоко в атмосфере, чтобы потом выпасть с дождем и оказаться в распоряжении РНК-организмов. Переход с питания формальдегидом и цианидом на восстановление СО2 своими силами мог произойти достаточно поздно, когда какие-то из современных путей метаболизма уже сложились. Как минимум для этого требовалось освоить синтез нескольких витаминов.
По крайней мере начиная с появления клеточных форм жизни – бактерий и архей – возможно проследить эволюцию этих путей методами сравнительной геномики по наличию и отсутствию соответствующих ферментов в реконструированных предковых геномах. Такой анализ был проведен (Braakman and Smith, 2012) и показал, что цикл Кальвина – довольно позднее изобретение цианобактерий. Два других пути фиксации СО2 оказались более древними: и восстановительный цикл Кребса, и восстановительный ацетил-КоА-путь были у общего предка всей клеточной жизни, давшего начало разным группам микроорганизмов. Это необычный результат, так как ни один современный организм не сочетает в себе два эти пути фиксации СО2 – благодаря промежуточному метаболизму все необходимые вещества можно произвести, имея только один путь получения органики из СО2. Авторы статьи считают, что сочетание двух путей повышало надежность обмена веществ. В самом деле, автокаталитические свойства восстановительного цикла Кребса могут быть не только преимуществом, но и недостатком. С одной стороны, если, например, из-за сбоев в регуляции синтеза аминокислот запас кислот цикла Кребса падает, то и скорость фиксации СО2 тоже падает, и эффективность цикла может уменьшиться ниже порога самовоспроизводства. В этом случае восстановительный ацетил-КоА-путь может быть независимым источником органики, подпитывающим ослабленный цикл Кребса и дающим ему шанс на продолжение. С другой стороны, при возникновении проблем с синтезом коферментов для ацетил-КоА-пути восстановительный цикл Кребса, мало зависящий от коферментов, дает клетке шанс на выживание. Скорее всего, общий предок бактерий и архей уступал обеим линиям своих потомков как в совершенстве систем регуляции, так и в качестве изоляции своей внутренней среды от внешних условий – например, у него были более проницаемые клеточные мембраны (подробнее об этом будет рассказано в следующей части книги). В дальнейшем, когда у клеток появились совершенные мембраны и надежные регуляторные системы, поддерживать сразу два пути фиксации СО2 стало уже невыгодно. Ацетил-КоА-путь фиксирует СО2 без затрат АТФ, но зато его ключевой фермент, CODH/ацетил-KoA синтетаза, очень уязвим для кислорода и других окислителей. Поэтому потомки оставили себе один из двух бывших у предка путей – какой именно, зависело от условий их обитания.
Чтобы проследить более древнюю историю обмена веществ, нам придется рассмотреть реакции синтеза азотистых оснований. Эти реакции при детальном рассмотрении выглядят довольно беспорядочно. Азотистые основания строятся из аминокислот (глицин, глутамин, аспарагиновая кислота) и необычных одноуглеродных продуктов (Martin and Russell, 2007). Пуриновые основания (аденин и гуанин) собираются буквально по одному атому, как лоскутное одеяло (рис. 11.7).
В состав пуринового кольца входят остаток глицина (практически целиком) и атомы азота, позаимствованные у других аминокислот – глутамина и аспарагиновой кислоты (атомы 1, 3 и 9 на рисунке пуринового основания). Два из пяти углеродных атомов кольца, однако, включаются при синтезе в виде формильной группы формил-тетрагидрофолата (т. е. муравьиной кислоты на носителе, атомы 2 и 8 на рисунке), а еще один – из СО2 в виде карбоксил-фосфата, простого фосфатного эфира (атом 6). Пиримидиновое кольцо строится из аспарагиновой кислоты и карбамоил-фосфата – вещества, которое образуется в клетках из СО2, аммиака и фосфатной группы АТФ.
Иными словами, фиксация углекислого газа не является строгой монополией автотрофных растений и бактерий: даже в человеческом организме происходит фиксация небольшого количества СО2 при синтезе азотистых оснований. В каждой клетке вашего тела во многих нуклеотидах один атом углерода происходит из углекислого газа, зафиксированного вашими собственными ферментами!
Кроме карбамоил-фосфата и карбоксил-фосфата в синтезе азотистых оснований могут участвовать другие простые фосфатные эфиры (рис. 11.8). Муравьиная кислота у некоторых микробов, например Methanocaldococcus jannaschii, может включаться в пурины в виде формил-фосфата.
Фолатный путь восстановления одноуглеродных групп
В ацетил-КоА-пути фиксации углекислого газа у микробов-метаногенов и ацетогенов участвует фолиевая кислота (витамин В9). Ее активная форма называется тетрагидрофолат, или сокращенно ТГФ). Она участвует в переносе, окислении и восстановлении одноуглеродных фрагментов. Формы витамина В9 с присоединенными одноуглеродными фрагментами называются формил-тетрагидрофолат (ТГФ), метилен-ТГФ и метил-ТГФ. Однако витамин В9 необходим и в организме человека, хотя человек не обладает способностью к фиксации углекислого газа по ацетил-КоА-пути. Зачем витамин В9 нужен человеку и животным?
В обмене веществ животных одноуглеродные фрагменты тоже используются в некоторых реакциях. Например, метил-ТГФ служит источником метильных (СН3) групп для метилирования ДНК. Метилирование (присоединение метильных групп) азотистых оснований ДНК используется для включения и выключения генов. Поэтому самые тяжелые последствия недостаток витамина В9 в диете вызывает во время беременности – при этом часто возникают врожденные уродства плода.
Также в обмене веществ животных необходим формил-ТГФ, используемый, как и у микробов, для получения пуриновых азотистых оснований.
У микробов-метаногенов метил-ТГФ образуется в конечном счете из углекислого газа через муравьиную кислоту, формил-ТГФ и метилен-ТГФ (реакции 1, 2, 3, 4 на рисунке 11.9). У человека и животных нет ферментов для получения муравьиной кислоты из СО2, и источник формил-ТГФ и метил-ТГФ у них другой. Одноуглеродные фрагменты у них образуются при распаде аминокислоты серина. Серин сначала распадается на метилен-ТГФ и глицин, а затем глицин распадается на второй фрагмент метилен-ТГФ, углекислый газ и аммиак (реакции 5 и 6 на рис. 11.9). Серин образуется в несколько стадий из фосфоглицериновой кислоты (промежуточный продукт гликолиза) (реакция 7 на рис. 11.9).
Эти реакции, в которых атомы углерода окисляются, восстанавливаются и переносятся по одному, выглядят несколько чужеродными по сравнению с остальной биохимией. Гораздо чаще новые молекулы в клетках строятся не из отдельных углеродных субъединиц, а на основе более крупных блоков, таких как двухуглеродный ацетил-КоА и трехуглеродная пировиноградная кислота.
Фолатные реакции и взаимопревращения глицина и серина образуют отдельный модуль обмена веществ, который долго был незаслуженно обойден вниманием исследователей. Большинство аминокислот образуются из продуктов цикла Кребса: аланин, валин и лейцин – из пировиноградной; аспарагиновая, треонин, изолейцин и лизин – из щавелевоуксусной; глутаминовая, пролин и аргинин – из кетоглутаровой. Однако есть аминокислоты другого происхождения. Гистидин образуется из азотистых оснований (аденина), а глицин и серин связаны с обменом одноуглеродных групп… Молекула глицина может распадаться на метиленовый фрагмент на носителе-фолате, CO2 и NH3, а может быть собрана из двух метиленовых фрагментов и NH3. В разных частях этого цикла восстановление и окисление не всегда обратимо, поэтому при распаде возникает СО2, а при синтезе используются только метиленовые группы. Синтез и распад глицина (реакция 6 на рисунке) и превращение глицина в серин (реакция 5) полностью обратимы, так же как окисление и восстановление атомов углерода (на биохимическом жаргоне их называют С1-фрагменты) на фолате (реакции 3 и 4). Этот биохимический модуль может иметь разные соединения с другими путями метаболизма и внешней средой. В обмене веществ человека, животных и эволюционно молодых групп бактерий (например, протеобактерий, к которым относится кишечная палочка) есть путь синтеза серина из фосфоглицериновой кислоты (промежуточный продукт гликолиза) (реакция 7 на рис. 11.9). В этом случае глицин образуется из серина, метилен-ТГФ – из глицина, а фолатный путь работает от середины к двум концам – к формил-ТГФ и метил-ТГФ. Часть метиленовых групп окисляется до формильных для синтеза пуринов, а другие восстанавливаются в метильные для реакций метилирования. У растений и цианобактерий мы видим другую связь одноуглеродного метаболизма с остальным – через глицин. И формил-ТГФ, и метил-ТГФ, и серин у них образуются из глицина. Глицин, в свою очередь, образуется путем аминирования глиоксиловой кислоты (реакция 8). Глиоксиловая кислота у них образуется в нежелательной побочной реакции рибулозо-бифосфата с кислородом и должна как-то утилизироваться. В этом случае фолатный путь работает так же, как у животных: от середины к обоим концам.
Как у животных, так и у растений одноуглеродный метаболизм питается от основного. У микробов с ацетил-КоА-путем фиксации углекислого газа, наоборот, практически весь обмен веществ питается через одноуглеродный метаболизм.
Удивительный результат Браакмана и Смита состоит в том, что у многих микроорганизмов нет никаких связей между одноуглеродным блоком и остальным обменом веществ. У них нет ни ферментов окислительного серинового пути (реакция 7), ни глиоксилат-трансаминазы, превращающей глиоксиловую кислоту в глицин (реакция 8). Зато фермент формат-дегидрогеназа, проводящий реакцию 1, оказался очень широко распространен в разных группах микроорганизмов, использующих как различные пути фиксации СО2, так и питающихся готовой органикой. Это означает, что фолат-глицин-сериновый модуль метаболизма у многих микробов вообще не соединен с остальным обменом веществ и работает с углеродом, полученным только из внешней среды! Такое странное устройство обмена веществ наводит на мысль, что связи одноуглеродного метаболизма с остальным неоднократно возникали и исчезали в ходе эволюции.
Питаться муравьиной кислотой и угарным газом проще, чем углекислым газом
Почему, собственно, мы пытаемся восстановить эволюцию обмена веществ начиная с фиксации СО2? Углекислый газ – устойчивое вещество, и его восстановление без хороших катализаторов и при умеренных температурах идет очень медленно. В цикле Кальвина это проявляется в том, что восстановление углерода и включение СО2 в органику происходит на разных шагах. В ацетил-КоА-пути для восстановления СО2 используются сложные ферменты, содержащие молибден (формат-дегидрогеназа, с ее помощью получается муравьиная кислота) или никель (СО-дегидрогеназа, с ее участием производится, как видно из наименования, угарный газ). При абиогенных способах восстановления высокий энергетический порог активации этой реакции преодолевается с помощью ультрафиолета (в цинковом мире), высокой температуры (серпентинизация) или обходится через реакцию с сероводородом, дающую карбонилсульфид (железосерный мир). Однако, где бы ни существовал РНК-мир, строящий все более сложный обмен веществ, ему помимо СО2 были доступны и другие, более активные одноуглеродные вещества – например, муравьиная кислота, формальдегид и угарный газ. Муравьиная кислота на суше образуется в результате фотосинтеза на сульфиде цинка, а в море – за счет фотохимических реакций СО2 с растворенным железом; кроме того, она выносится геотермальными источниками из толщи земной коры, где образуется при реакциях горячей воды с базальтами. Формальдегид падает с неба с дождями, где он возникает при фотолизе метана. Угарный газ выделяется в составе вулканических газов и образуется в большом количестве при сгорании метеоритов в углекислотной атмосфере. Участие муравьиной кислоты в синтезе пуринов позволяет предположить, что этот биохимический путь сложился еще до появления ферментов фиксации СО2, когда жизнь довольствовалась муравьиной кислотой и формальдегидом. Гипотеза, что фиксация формальдегида и муравьиной кислоты предшествовала фиксации СО2, не нова – ее высказали еще в 1978 году Род Квэйл и Томас Ференци (Quayle and Ferenci, 1978).
Организмы, способные питаться восстановленными одноуглеродными соединениями (метаном, метанолом, метиламином, метилмеркаптаном, формальдегидом и муравьиной кислотой), существуют и сегодня. Это метилотрофные бактерии. В природе им чаще всего достаются метан и метанол, но в лаборатории они могут жить и на формальдегиде, и на муравьиной кислоте. Включение всех этих веществ в метаболизм метилотрофов происходит несколькими способами. Сначала все одноуглеродные вещества связываются с тетрагидрофолатом с затратой энергии АТФ. Получается формил-тетрагидрофолат. Затем возникают различия. Одни метилотрофы используют ацетил-КоА-путь. В нем, напомню, метил-ТГФ, полученный из метана и метанола, реагирует с угарным газом и коферментом А, давая ацетил-КоА. Другие метилотрофы окисляют метил-ТГФ до метилен-ТГФ; формил-ТГФ (из муравьиной кислоты) восстанавливается до того же метилен-ТГФ. После этого метилен-ТГФ распадается, высвобождая формальдегид (реакция 10 на рис. 11.9).
Затем включается рибулозо-монофосфатный цикл. Входящим веществом этого цикла служит формальдегид: попадая в рибулозо-фосфатный цикл, он превращается в сахара (рис. 11.10). Рибулозо-фосфатный цикл похож на пентозофосфатный цикл и цикл Кальвина и фактически представляет собой упорядоченную реакцию Бутлерова.
Есть и еще один вариант метилотрофного обмена веществ, в котором свободный формальдегид не участвует, а вместо этого метилен-ТГФ реагирует с глицином, образуя серин (реакция 5 на рис. 11.9) (Rothschild, 2008). Дальнейшие превращения серина обратно в глицин с вводом углерода в центральный обмен веществ (сериновый цикл) сложны. Судя по данным сравнительной геномики, сериновый цикл возник довольно поздно и заимствовал ферменты из многих других биохимических путей. Рибулозо-монофосфатный и сериновый циклы представляют собой еще два варианта связи между одноуглеродным и основным метаболизмом.
Выбор между разными способами включения углерода в обмен веществ у метилотрофов диктуется условиями среды. В анаэробных условиях выгоднее ацетил-КоА-путь, потому что он обходится без высвобождения ядовитого формальдегида (формалин, 4 %-ный водный раствор формальдегида, используется как дезинфицирующее средство). Но ключевой фермент ацетил-КоА-пути уязвим к кислороду, поэтому в аэробных условиях приходится использовать рибулозо-монофосфатный и сериновый циклы. Рибулозо-монофосфатный и сериновый циклы появились как приспособление метилотрофного образа жизни к кислородной среде, несовместимой с ацетил-КоА-путем. Однако рибулозо-монофосфатный цикл, питаемый свободным формальдегидом, может быть похож на древнейшие пути синтеза сахаров, которые возникли из упорядочения реакции Бутлерова и тоже использовали формальдегид.
Становление обмена веществ
Современный обмен веществ появился не сразу. Скорее всего, его становление прошло через много последовательных стадий. Мы можем попробовать восстановить путь развития обмена веществ начиная от мира РНК и до клеточных организмов современного типа, таких как бактерии.
Обмен веществ должен делать нужные для организма вещества из тех, что есть в наличии. Для организмов РНК-мира были нужны прежде всего нуклеотиды и их компоненты – рибоза и азотистые основания. Круг веществ, которые были доступны для РНК-организмов во внешней среде, мы уже очертили в главах 6 и 7: это углекислый газ, формальдегид, муравьиная кислота, формамид, синильная кислота и ее производные (цианамид и цианоацетилен) и, скорее всего, аммиак (NH3) и угарный газ (СО).
Для получения рибозы из этого списка лучше всего подходит формальдегид, легко вступающий в реакцию Бутлерова. В современных клетках взаимные превращения сахаров (в цикле Кальвина и пентозофосфатном цикле) происходят по тому же механизму альдольной конденсации, что и стадии реакции Бутлерова. Более того, у ряда метилотрофных микробов мы встречаем рибулозо-монофосфатный цикл, производящий сахара непосредственно из формальдегида. Скорее всего, у РНК-организмов действовал какой-то примитивный вариант рибулозо-монофосфатного цикла под контролем рибозимов.
Азотистые основания нуждаются в других веществах-предшественниках. До появления жизни они могли строиться из цианида или формамида, как было рассказано в главе 7. В клетках для построения азотистых оснований используются аминокислоты (глицин и аспарагиновая кислота), муравьиная кислота (в форме формил-ТГФ или формил-фосфата), углекислый газ и карбамоил-фосфат. Кроме того, часть азота для пуриновых оснований поступает в составе третьей аминокислоты – глутамина, но его можно заменить просто достаточным количеством аммиака. Муравьиная кислота, СО2 и аммиак доступны в среде. Карбамоил-фосфат похож на формамид, соединенный с фосфатной группой, и возможно, занял место формамида в древнейшем обмене веществ. Глицин образуется в глициновом цикле, например, из муравьиной кислоты и аммиака.
Сложнее определить источник аспарагиновой кислоты. В клетках она образуется из щавелевоуксусной кислоты и аммиака. Щавелевоуксусная кислота является промежуточным продуктом цикла Кребса. Щавелевоуксусная и другие кислоты цикла Кребса образуются, например, из СО2 на кристаллах сульфида цинка при освещении, или из формамида на кристаллах оксида титана, или из синильной кислоты при чередовании освещения и нагревания в темноте. Иными словами, в среде, где есть кристаллы сульфида цинка, формамид или синильная кислота, какое-то количество аспарагиновой кислоты неизбежно получится. РНК-организмы могут при помощи рибозимов ускорять и стабилизировать любой из этих путей получения аспарагиновой кислоты.
Иначе говоря, на этой стадии обмен веществ РНК-организмов имеет два относительно независимых блока: сахарный (родственный реакции Бутлерова и рибулозо-монофосфатному циклу), питаемый формальдегидом, и одноуглеродный, питаемый муравьиной кислотой и производящий глицин и пуриновые нуклеотиды (рис. 11.11. А). Связь между этими двумя блоками осуществлялась через формальдегид и метилен-ТГФ. Метилен-ТГФ может распадаться, давая формальдегид, если во внешней среде его вдруг окажется недостаточно для синтеза сахаров. Кроме того, есть какие-то химические реакции для получения аспарагиновой кислоты, но мы не знаем, какие именно.
Переход ко второй стадии связан с появлением первых белков и увеличением потребности в разнообразных аминокислотах для их построения. Большинство аминокислот, входящих в состав белков, образуются из трех кислот цикла Кребса: пировиноградной, щавелевоуксусной и кетоглутаровой. Все эти кислоты образуются из формамида или на кристаллах сульфида цинка, но с небольшим выходом, поэтому с переходом к белкам нужен более надежный их источник. К этому моменту РНК-организмы уже освоили синтез сахаров. Сахара – не очень стабильные вещества, которые постепенно разлагаются, особенно при повышенной температуре. Основным продуктом их распада является пировиноградная кислота. Различные сахарофосфаты (глюкозо-6-фосфат, рибозо-5-фосфат, глицеральдегид-3-фосфат) превращаются в пировиноградную кислоту просто при нагревании до 70 °C в растворе с солями железа (Keller, 2014). Превращение глюкозы в пировиноградную кислоту в три шага (через глюконовую кислоту и кетодезоксиглюконовую кислоту) происходит с достаточной скоростью даже при комнатной температуре в присутствии двух аминокислот – цистеина и гистидина (Shimizu et al., 2008). Эти и другие подобные реакции, постепенно переходя под контроль рибозимов и ферментов, были примитивными предшественниками гликолиза. Превращение пировиноградной кислоты в щавелевоуксусную и далее в кетоглутаровую происходит в восстановительном цикле Кребса. Эти реакции проходят на кристаллах сульфида цинка, но с небольшой эффективностью, и с повышением потребности в аминокислотах были взяты под контроль рибозимов и ферментов. На этой стадии возникает примитивный гликолиз и часть восстановительного цикла Кребса – от пировиноградной кислоты до кетоглутаровой (рис. 11.11. Б).
По мере развития жизни конкуренция за основные ресурсы – муравьиную кислоту и формальдегид – обостряется. В выигрыше оказываются те организмы, которые сумели освоить новые источники углерода. Например, это мог быть угарный газ (СО). Третья стадия развития обмена веществ начинается с появления фермента ацетил-КоА-синтетазы. Этот фермент соединяет метильную (СН3) группу метил-ТГФ с молекулой угарного газа и коферментом А, образуя ацетил-КоА. Появление ацетил-КоА-синтетазы открывает доступ к новому источнику углерода – угарному газу и позволяет пережить нехватку муравьиной кислоты. Вторым следствием появления этого фермента становится возникновение новой связи между одноуглеродным блоком обмена веществ, построенным вокруг реакций с участием витамина В9, и остальным обменом веществ (рис. 11.12. А). Если раньше для превращения муравьиной кислоты в рибозу и аминокислоты приходилось использовать ядовитый формальдегид в качестве промежуточного продукта, то теперь появилась возможность заменить этот путь на более безопасный, через ацетил-КоА и пировиноградную кислоту. Если раньше пировиноградная кислота получалась из сахаров, то теперь, наоборот, нужен способ получать сахара из пировиноградной кислоты. Для получения рибозы и других сахаров из ацетил-КоА через пировиноградную кислоту возникает глюконеогенез – обращение реакций гликолиза. Так путь от доступных в окружающей среде соединений углерода (муравьиная кислота и СО) к рибозе стал намного длиннее, но безопаснее.
Далее в истории метаболизма происходят новые изменения. Протоклетки снижали свою зависимость от сульфида цинка и других минеральных катализаторов, замещая их ферментами, а нарастающий дефицит муравьиной кислоты, формамида и угарного раза вынуждал их переходить к потреблению углекислого газа. Появляется формат-дегидрогеназа, содержащая молибден: она восстанавливает СО2 до муравьиной кислоты для работы фолатного пути. Наконец, у ацетил-КоА-синтетазы возник второй активный центр с никель-железосерным кластером, позволяющий ей восстанавливать СО2 до СО. Так появился полностью автотрофный обмен веществ, способный строить все аминокислоты, нуклеотиды и витамины из углекислого газа в качестве единственного источника углерода, а также обладающий высокой устойчивостью за счет дублирования путей фиксации СО2 (рис. 11.12. Б). Такой обмен веществ, скорее всего, и был у последнего всеобщего предка клеточной жизни.
Итак, обмен веществ развивался и усложнялся в двух направлениях. Во-первых, он переходил от сложных и дефицитных исходных веществ к простым и легкодоступным: от рибозы и азотистых оснований – к формальдегиду и цианиду, потом – к муравьиной кислоте и угарному газу и, наконец, – к углекислому газу. Во-вторых, обмен веществ сначала строился вокруг производства компонентов РНК (рибозы и азотистых оснований), а затем основным направлением стало получение аминокислот для сборки белков.
Давний спор о способе питания первых живых организмов (автотрофный или гетеротрофный), похоже, разрешился. Первые РНК-организмы питались готовыми азотистыми основаниями и рибозой, т. е. гетеротрофным способом. Потом они усложнялись и переходили к питанию более простыми веществами. Хотя все эти готовые органические вещества (рибоза, азотистые основания, цианид, формальдегид, муравьиная кислота) в конечном итоге получались из СО2, это происходило без участия живых организмов. В современном мире круговорот углерода замыкается в основном благодаря живым организмам: автотрофы производят органику из СО2, а гетеротрофы потребляют органику, в конечном итоге превращая ее обратно в углекислый газ. Но пока жизнь делала самые первые шаги, она не могла поддерживать все эти процессы, и часть углеродного круговорота, освоенная потом автотрофами, обеспечивалась только силами неживой природы.
Какое-то время организмы позднего РНК-мира и раннего РНК-белкового мира сочетали усвоение углекислого газа, муравьиной кислоты и при случае также формальдегида и угарного газа. Иначе говоря, они сочетали в себе признаки автотрофов и гетеротрофов. Здесь хорошо видно, что местами между ними проведена довольно искусственная граница. Муравьиная кислота – органическое вещество, а угарный газ – неорганическое. Поэтому микробы, способные питаться угарным газом, должны называться автотрофами, а потребители муравьиной кислоты – гетеротрофами, хотя различия между ними сводятся буквально к одному-двум ферментам.
В конечном итоге жизнь освоила построение всех необходимых молекул из СО2, и появились действительно автотрофные клетки. Но произошло это, судя по всему, уже после появления белков и системы их производства (рибосомы). До этого жизнь успела достичь немалой сложности, питаясь муравьиной кислотой.
Такие привычные нам пути обмена веществ, как гликолиз, похоже, появились позднее. Классический гликолиз состоит из 12 последовательных реакций, и все ради того, чтобы выжать немного энергии в виде АТФ из превращения глюкозы в пируват. Если нам просто нужно получить пируват из сахаров, достаточно использовать упрощенный гликолиз, проходящий в три стадии при помощи свободных аминокислот, т. е. даже без ферментов. С выходом клеток из геотермальной «колыбели» с ее разнообразными источниками энергии в большой мир обмен веществ оптимизировался по экономичности. В том числе возник гликолиз современного типа, позволяющий получать энергию путем брожения сахаров.
Глава 12
Альтернативная биохимия и водно-углеродный шовинизм
Определение жизни
В предыдущих главах мы проследили возникновение жизни на планете Земля с начала и до стадии сложного РНК-мира, использующего витамины. Теперь попробуем оценить возможность зарождения жизни в других условиях и на иной химической основе. Если на современной Земле мы можем легко отличить живые организмы (животные, растения, простейшие, бактерии, вирусы) от неживых систем, то по отношению к другим планетам нам придется определиться, что считать жизнью. Земная жизнь отличается от неживой природы множеством признаков, но какие из них обязательны для любой формы жизни, а какие обусловлены историческим путем ее развития на нашей планете, понять не так-то просто.
Многие ученые давали свои определения жизни. Очень часто они оказывались просто списком признаков, таких как рост, размножение, обмен веществ, самоорганизация, приспособляемость, наследственность, генетический код и возможность смерти. Эти списки не отражают представления о связи признаков между собой, не дают обоснования их независимости и достаточности для определения жизни. Хорошее определение должно охватывать базовые принципы организации и движущие силы явления, но в случае жизни дать такое определение оказалось очень трудно (Ruiz-Mirazo et al., 2004).
Пожалуй, наиболее серьезное и всестороннее обсуждение вопроса «Что такое жизнь?» проходило на экспертных советах NASA. Понятно, что искать в космосе жизнь, похожую на земную, проще, поскольку мы лучше представляем, что и где ищем – небесные тела, на которых как минимум есть жидкая вода. Представление о том, что любая инопланетная жизнь в главных чертах похожа на земную, критиковал великий астроном и член экспертного совета NASA Карл Саган. Он назвал эту позицию «водно-углеродным шовинизмом» и считал, что она обусловлена недостатком воображения.
Организаторов космических исследований беспокоит возможность того, что мы встретим жизнь в Солнечной системе, но наш «водно-углеродный шовинизм» помешает нам опознать ее как жизнь. Это будет очень обидно и, кроме того, вызовет вопросы о бездарно потраченных деньгах налогоплательщиков. Поэтому исследователи собрали группу ведущих ученых и попросили их максимально подробно рассмотреть все возможные варианты жизни, наметить пути экспериментальной проверки этих предположений и дать рекомендации по устройству приборов, которые надо ставить на космические зонды для обнаружения тех или иных форм жизни на Марсе, Европе, Титане или в других местах Солнечной системы.
По результатам работы экспертных советов в экзобиологических программах NASA было принято такое рабочее определение: «Жизнь – это химическая система, способная к дарвиновской эволюции» («The Limits of Organic Life in Planetary Systems», 2007). Что это значит?
Детали живых систем – это разнообразные и сложные органические молекулы. Между ними происходят упорядоченные химические реакции – обмен веществ. Обмен веществ регулируется и ускоряется специальными катализаторами – ферментами. Структура ферментов записана в наследуемой информации – геноме. Геном тоже представляет собой специальную молекулу – ДНК или РНК. Существуют нехимические системы, способные к дарвиновской эволюции. Вы можете организовать такую систему у себя на компьютере, установив на него какую-нибудь среду эволюционного программирования, например DEAP. Поскольку эволюционирующие программы в компьютере не имеют отношения к химии, мы не считаем их живыми.
Для эволюции по Дарвину (путем случайных мутаций и естественного отбора) необходимы и достаточны четыре условия. Во-первых, эволюционирующие единицы (организмы или программы) должны порождать собственные копии (размножение). Во-вторых, копирование должно быть не совсем точным (мутации). В-третьих, ошибки копирования должны передаваться следующим копиям (наследственность). И, наконец, ошибки копирования должны влиять на вероятность дальнейшего копирования данной программы или организма (отбор). Известны химические системы, способные к размножению. Например, кристалл, растущий в насыщенном растворе соли, можно расколоть, и осколки станут центрами роста новых кристаллов. Более того, в этом случае возможно появление дефектов, т. е. мутации. Но эти дефекты не наследуются: структура кристалла определяется строением атомов и молекул, из которых он строится, а не структурой затравки. Поэтому такая система тоже не может считаться живой. Автокаталитические химические системы также обладают способностью к размножению своих единиц (например, молекул сахаров в реакции Бутлерова), но не имеют наследственности.
Химические свойства биомолекул, которые важны для их функции
В биохимии широко используется принцип конструктора LEGO. Большие молекулы строятся из мономеров – маленьких кирпичиков, соединенных однотипными связями: белки – из аминокислот, ДНК – из нуклеотидов, полисахариды (целлюлоза, крахмал) – из сахаров. Структура мономера образована прежде всего атомами углерода, соединенными прочными связями C–C. Мономеры между собой связаны менее прочными связями: эфирными (С-О) или пептидными (-СO-NH-). В водной среде разрыв этих связей с участием воды (гидролиз) происходит без затрат энергии, нужен только подходящий катализатор.
С одной стороны, такое устройство позволяет легко разбирать ненужные белки и РНК на мономеры и собирать из них новые белки и РНК без повреждений самих мономеров. С другой стороны, в процессе обмена веществ прочные углерод-углеродные связи внутри аминокислот и нуклеотидов приходится образовывать и разрывать, чтобы создать новые вещества и утилизировать ненужные. Иными словами, основные химические связи в молекулах, составляющих живой организм, должны быть «по умолчанию» достаточно прочными, но должен существовать способ их ослабить, чтобы превращать одни вещества в другие.
В случае нашей земной жизни эти свойства реализованы с помощью углерода, кислорода, азота и водорода. Атомы углерода образуют прочные связи друг с другом и с водородом, поэтому соединения этих двух элементов (углеводороды) химически неактивны. Даже высокоразвитая жизнь с эффективными ферментами с трудом справляется с их расщеплением: лишь немногие бактерии способны питаться углеводородами, например, нефти, поэтому ее разливы и опасны для окружающей среды. Для ослабления связей С-С в биохимии используется, как правило, кислород. Карбонильная группа (С=О) в молекулах придает им химическую активность и позволяет легко создавать и разрушать связи С-С. Если вспомнить, как происходит образование новых и разрыв старых связей C–C в реакциях обмена веществ, то окажется, что почти всегда в этом участвует карбонильная группа. Она есть в составе ацетил-КоА, кетокислотах цикла Кребса и сахарах. Если необходимо соединить или разорвать углерод-углеродную связь там, где этой группы нет, то она сначала будет создана путем окисления, а затем использована для изменения скелета молекулы. Иногда вместо нее применяется иминогруппа (C=NH) с похожими свойствами.
Для хранения и копирования генетической информации очень удобны полимеры, образующие, подобно ДНК, две параллельные цепи, которые обеспечивают избыточность хранения, возможность исправить возникшие повреждения и простой механизм копирования: две цепи разделяются, и на каждой из них собирается новая парная ей цепь. Для генетического полимера желательно, чтобы он принимал линейную форму, а не сворачивался в клубки. ДНК содержит фосфатные группы, которые в воде несут отрицательный электрический заряд. Электростатическое отталкивание этих фосфатных групп способствует поддержанию относительно прямой формы ДНК. Наконец, физические и химические свойства генетической молекулы должны минимально зависеть от ее последовательности, несущей информацию, чтобы не нарушать взаимодействие с системой копирования. Это тоже достигается благодаря электрическому заряду фосфатных групп, распределенных по длине ДНК. Аналог ДНК, в котором фосфаты заменены на незаряженные диметилен-сульфоновые мостики (SNA – sulfone-linked DNA analog), сворачивается в клубки подобно белкам, его свойства (растворимость, способность к реакциям) сильно зависят от последовательности. В обычной ДНК соединение оснований в пары упорядочено тем же электрическим зарядом остова молекулы: остовы двух цепей отталкиваются друг от друга, и поэтому основания могут контактировать друг с другом только одной своей стороной, наиболее далекой от остова. В двухцепочечной форме SNA азотистые основания двух цепей соединяются не только в уотсон-криковские пары (А с Т и Г с Ц), но и множеством других способов, используя любые стороны молекулы, а не только самую дальнюю от остова цепи.
В качестве ферментов в земной жизни используются в основном белки. Есть два самых распространенных способа, с помощью которых разные ферменты ускоряют нужные химические реакции и подавляют побочные. Это связывание реагирующих молекул так, чтобы они контактировали только нужными сторонами, и проведение реакции в «кармане», внутри молекулы фермента, в относительно безводной среде. И то и другое требует, чтобы молекула фермента была определенным образом свернута. Белки идеально подходят для сворачивания, потому что остов белковой цепи лишен глобального электрического заряда. Аминокислоты в белке соединяются пептидными связями (-CO-NH-). Каждая такая связь несет небольшой отрицательный заряд на кислороде и небольшой положительный – на водороде, т. е. является диполем. Благодаря притяжению между диполями белки образуют свернутые структуры, такие как альфа-спираль и бета-слой (подробнее в главе 13). Другие типы связи между мономерами, например эфирная С-О-С, не обладают дипольными свойствами. Возможны только два аналога пептидной связи с аналогичными дипольными свойствами – сульфонамидная (-SO2-NH-) и фосфонамидная связь (-HPO2-NH-) (рис. 12.1).
Всякий раз, когда мы задаем вопросы «Почему так?» и «Почему бы не по-другому?» об устройстве живых систем, возможны три группы ответов. Во-первых, выбор одного варианта из нескольких возможных может быть функциональным: жизнь пробовала разные варианты, и самый выгодный вытеснил все прочие. Во-вторых, выбор мог быть результатом исторической случайности: пространство вариантов устройства молекул очень велико (только для небольшого белка из 100 аминокислот возможны 20100 вариантов последовательности – это гораздо больше, чем атомов во Вселенной), и жизнь, что очевидно, не могла перепробовать все возможные варианты. В-третьих, выбор может быть рудиментарным: когда-то давно он был функциональным и лучше всего подходил для решения какой-то проблемы, которая давно уже неактуальна, а потом менять что-либо было уже поздно.
Можно проиллюстрировать три типа приведенных ответов на примере выбора азотистых оснований. Пара А-Т связана слабее, чем G-C (две водородных связи, а не три). Если заменить аденин на аминоаденин, то пара аА-Т будет тоже иметь три водородные связи. Такая замена позволила бы повысить точность копирования ДНК. Однако аминоаденин в ДНК не используется. Возможное функциональное объяснение: для оптимальной работы генома нужен выбор между сильными и слабыми связями в парах нуклеотидов. Рудиментарное объяснение: аденин устойчив к ультрафиолетовому излучению. В современных клетках это свойство аденина больше не важно, но менять аденин на другие молекулы уже слишком сложно. Объяснение путем исторической случайности: аденин легко образуется абиогенно из цианида или формамида, в отличие от аминоаденина, поэтому генетические механизмы сформировались раньше, чем появилась возможность попробовать аминоаденин.
Во всех случаях, когда мы спрашиваем «Почему бы не по-другому?», полезно пытаться придумать все три типа ответов, даже если мы не можем экспериментально их проверить.
Выбор химических элементов
Биомолекулы на 99 % состоят из четырех элементов: углерода, водорода, кислорода, азота. Оставшийся процент приходится в основном на фосфор и серу. Какие общие свойства отличают эти элементы?
Во-первых, их очень много: все они, кроме фосфора, входят в десятку самых распространенных во Вселенной (рис. 12.2). Во-вторых, все эти элементы отличаются малыми размерами атомов. Размер атома определяется радиусом, на котором находятся самые внешние (валентные) электроны, и сложно зависит от положения атома в таблице Менделеева. В каждом периоде размер атома уменьшается с повышением атомного номера, потому что заряд ядра растет, и притяжение электронов к ядру усиливается. Но при переходе к следующему периоду появляется следующая электронная оболочка, и размер атома увеличивается скачком. C, N, O, P, S занимают правый верхний угол таблицы Менделеева и являются самыми маленькими атомами с валентностью 2 (O), 3 (N), 4 (C), 5 (P) и 6 (S), а водород – самый маленький атом с валентностью 1. В-третьих, все они, кроме водорода, образуют двойные и тройные химические связи. Помимо С, N, O, P и S стабильные двойные связи известны только у хлора, брома, мышьяка и селена.
Молекулы с двойными связями очень важны в биологии. Это азотистые основания (аденин, гуанин, цитозин, урацил), большинство витаминов, гем, хлорофилл и многие другие. Благодаря длинным системам сопряженных двойных связей биомолекулы могут взаимодействовать с видимым светом, обеспечивая окраску и фотосинтез. Кольцевые системы двойных связей в азотистых основаниях обеспечивают их плоскую форму и стэкинг-взаимодействие между соседними основаниями. Стэкинг-взаимодействие облегчает рост цепи при копировании и повышает устойчивость ДНК к ультрафиолету.
Сера и фосфор играют особую роль в биохимии. Их связи с другими атомами менее прочные, чем связи углерода, кислорода и азота. Поэтому фосфор и сера незаменимы в нестабильных промежуточных веществах биохимических реакций, для временного хранения энергии и переноса групп атомов с одних молекул на другие. Энергия, запасенная в фосфоэфирных (P-O-P и P-O-C) связях таких веществ, как АТФ, ацетилфосфат и креатинфосфат, используется для сшивания аминокислот в белки, нуклеотидов – в ДНК и других химических реакций. Сера используется для переноса кислотных групп на коферменте А (ацетил-КоА, сукцинил-КоА и т. д.), при этом энергия, запасенная в тиоэфирной связи (C-S-CO), расходуется на создание новых связей С-С. Другой серосодержащий кофермент, S-аденозил-метионин, аналогично переносит метильные (CH3) группы и тоже участвует в создании новых связей С-С.
Углерод образует до четырех прочных связей с другими атомами, и из него легко строятся цепочки и разветвленные молекулы. Кремний практически не уступает ему в этом отношении (рис. 12.3). Более того, на поверхности Земли кремния в 150 раз больше, чем углерода, следовательно, доступность углерода не была причиной его выбора для биохимии.
Хотя кремний действительно находится под углеродом в таблице Менделеева и во многом похож на него по свойствам, между ними есть и серьезные различия. Кремний обладает большим атомным радиусом, чем углерод, и поэтому прочность связи Si-Si вдвое меньше, чем связи C–C, а Si-H– меньше, чем C-H. Углерод легко образует двойные связи, в которых расстояние между атомами меньше, чем в обычных.
Кремний из-за большего размера атома практически не способен участвовать в двойных связях. В оксиде углерода CO2 углерод связан двойными связями с двумя атомами кислорода, и при обычных условиях СО2 – газ. В оксиде кремния SiO2 каждый атом Si связан одинарными связями с четырьмя атомами кислорода, каждый из которых образует мостик между двумя атомами кремния. Поэтому SiO2 образует твердые тугоплавкие кристаллы, например кварц.
Многие соединения кремния более химически активны, чем их аналоги с углеродом. Если метан (СН4) не реагирует с водой ни в обычных условиях, ни при сильном нагревании, то силан (SiH4) при комнатной температуре быстро разлагается водой с выделением водорода и кремниевой кислоты:
SiH4 + 3H2O → 2H2 + H2SiO3.
В подобные реакции вступают и многие другие соединения кремния, где атомы кремния не связаны с кислородом или азотом. Химик сказал бы примерно следующее: «Кремний – элемент третьего периода, поэтому его атом имеет незаполненные 3d-орбитали, которые позволяют ему проявлять электрофильные свойства и легче вступать в реакции с нуклеофилами».
Так что кремний, с одной стороны, образует очень прочные и устойчивые связи с кислородом, которые, в отличие от связей С-С, практически невозможно ослабить, а с другой – большинство других его химических связей неустойчивы в присутствии воды, аммиака и кислот. Поэтому практически в любых известных в космосе условиях кремний находится в виде устойчивых кристаллов оксида кремния и силикатов, иногда – карбидов и нитридов кремния, но не образует тех сложных молекул, которые получены в лаборатории. Углерод же не только на планетах, но и в межзвездных газово-пылевых облаках легко образует разнообразные органические соединения.
Известны и другие элементы, которые образуют сложные и разнообразные молекулы. Например, сосед углерода слева в периодической системе – бор. Его атом имеет три валентных (образующих химические связи) электрона, поэтому с кислородом образует три связи (например, в борной кислоте H3BO3). При этом атом бора не может достроить свою внешнюю электронную оболочку до восьми и образует уникальные дополнительные связи, охватывающие сразу три атома (рис. 12.4, справа).
В паре с азотом он может образовать близкие аналоги органических соединений углерода: например, боразол – неорганический аналог бензола. К сожалению, большинство соединений бора химически очень активны и легко реагируют с водой, образуя борную кислоту. Но это не главный недостаток бора. Гораздо хуже то, что во Вселенной его крайне мало, примерно в 1 млн раз меньше, чем углерода. Ядра атомов бора менее устойчивы, чем ядра углерода и гелия, и в звездах бор быстро превращается в гелий и углерод. Те скромные количества бора, которые все же есть, образовались в результате ядерных реакций в газово-пылевых облаках под действием космических лучей. Таким образом, существование жизни на основе бора запрещено ядерной физикой.
Очень экзотические сложные молекулы могут быть возможны на основе азота при сверхвысоких давлениях. Как предсказано в работах Артема Оганова (профессор Нью-Йоркского университета в Стоуни-Брук и Сколковского института науки и технологий), при давлениях выше 360 000 атмосфер азот может образовывать устойчивые разнообразные цепочки, кольца и плоские слои. Разнообразие азотоводородных молекул в этих условиях не уступает разнообразию углеводородов при обычном давлении (рис. 12.5). К сожалению, это разнообразие известно только по квантово-механическому моделированию поведения атомов и молекул. Проверить эти расчеты экспериментально очень трудно, потому что такие уровни давления достижимы лишь в очень малых объемах на гидравлических прессах с алмазными столами. В природе подобные условия могут существовать в глубинах водно-аммиачно-метановых океанов Урана и Нептуна.
Много шума вызвала публикация, сообщавшая о бактерии, которая заменила часть фосфора в своих клетках на мышьяк (Wolfe-Simon et al., 2010). Однако более тщательные исследования опровергли этот результат. Как оказалось, это просто бактерия, устойчивая к мышьяку, в том числе и внутри клетки. В состав ее ДНК и других веществ входит фосфор, а не мышьяк, как и у всех других земных организмов.
Альтернативная биохимия на тех же элементах
Как мы видим, реальной альтернативы углероду, кислороду и азоту не существует. Но, может быть, на основе этих же элементов возможна другая биохимия, непохожая на земную? Такое исключить нельзя. Возможны, например, другие растворители, кроме воды, и в них неизбежно будет совсем другая биохимия. Единственное действительно уникальное свойство воды – меньшая плотность льда по сравнению с жидкой водой. Благодаря этому водоемы зимой замерзают с поверхности, и потом слой льда замедляет потерю тепла и предотвращает полное промерзание. В озерах из других жидкостей при охлаждении твердое вещество будет тонуть, и полное промерзание наступит быстро. С точки зрения обитателей озера эта особенность воды очень полезна. Но для биосферы в целом, наоборот, такое поведение воды вредно. Лед на поверхности озер и морей отражает солнечный свет гораздо лучше, чем вода, что приводит к дополнительному остыванию планеты. Поэтому наступление ледников – самоподдерживающийся процесс. Если бы вместо воды наши моря состояли из любой другой жидкости, то климат планеты Земля был бы устойчивее.
Очевидный кандидат на замену воды – жидкий аммиак. Его молекулы тоже полярны и образуют много водородных связей, он остается жидким в широком диапазоне температур (от –78 до –33 °C при обычном давлении) и хорошо растворяет разные полярные вещества. В аммиачном растворе биохимия неизбежно будет другой, так как карбонильные (С=О) группы, очень важные для нашей земной биохимии, в аммиаке быстро превращаются в иминогруппы (C=NH). В среде аммиака иминогруппы обеспечивают такие же перестройки углеродных скелетов, как C=O в воде. Аммиак по сравнению с водой имеет тот недостаток, что в нем гораздо лучше растворяются неполярные молекулы. Поэтому липидные мембраны, ограничивающие наши клетки в водной среде, в аммиаке будут работать плохо.
Если мы посмотрим на нашу Солнечную систему, то увидим, что, в отличие от воды, аммиак в чистом виде в ней не встречается. Везде, где есть много аммиака, он смешан с водой и часто еще с метаном, будь то бездонные океаны Урана и Нептуна, ледяные кометы, спутники дальних планет и объекты пояса Койпера. На Титане водяной лед содержит 10–15 % аммиака. Под ледяной корой Титана находится глубокий водно-аммиачный океан. Водно-аммиачная смесь по нескольким признакам лучше подходит для биохимии, чем чистый аммиак. По сравнению с ним она замерзает при еще более низких температурах (до –96 °C) и не растворяет углеводороды, поэтому в ней возможно существование липидных мембран, как и в воде. В водно-аммиачной смеси реакции обмена веществ могут происходить с помощью как С=О групп, так и C=NH, что допускает бóльшую гибкость, чем наша земная биохимия.
Еще один возможный растворитель – серная кислота. Она замерзает при +10 °C и кипит при +290 °C, прекрасно растворяет разные вещества и встречается в космосе в чистом виде, например в облаках Венеры. На поверхности планет, потерявших воду аналогично Венере, но более прохладных, возможно существование жидкой серной кислоты. В серной кислоте достаточно легко идут разные химические реакции, и роль карбонильной группы С=О в ней может играть просто двойная связь между атомами углерода: С=СН2 (рис. 12.6).
Хотя мы не можем предсказать, какие молекулы будут использоваться живыми существами в аммиаке или серной кислоте, понятно, что наши азотистые основания не подойдут для генетических полимеров в такой среде. Уотсон-криковские пары образуются только в нейтральной среде (pH от 6 до 9). В кислой среде к аминогруппам (NH2) аденина и цитозина присоединяются протоны, дающие положительный заряд, а в щелочной среде, наоборот, гуанин и урацил теряют протоны и получают отрицательный заряд на месте карбонильной группы (С=О). И то и другое нарушает водородные связи между основаниями и делает эти основания непригодными для хранения генетической информации. Поэтому все микробы, населяющие сильнокислые или щелочные среды на Земле, поддерживают внутри клетки нейтральный pH, даже если на это уходит много энергии.
Еще воду можно заменить жидкой углекислотой. При обычном давлении она не существует (сухой лед сразу переходит в газ, минуя жидкую стадию), но при повышении давления становится жидкостью. При давлении 70 атмосфер СО2 остается жидким в диапазоне температур от –50 до +31 °C, а при более высоких температурах и уровнях давления переходит в сверхкритическое состояние. Сверхкритическое состояние вещества наступает при температуре и давлении выше критической точки (для СO2 это 31 °C и 74 атмосферы, для воды – 374 °C и 218 атмосфер), оно сочетает плотность жидкости и подвижность газа и растворяет разные вещества гораздо активнее, чем обычная жидкость.
Жидкая углекислота растворяет многие вещества не хуже воды. Более того, она во многом совместима с существующей биохимией. Например, липазы и ряд других ферментов в сверхкритическом СО2 работают даже активнее, чем в водной среде, и в биотехнологии это свойство уже нашло применение. Хотя сверхкритический СО2 используется для мягкой стерилизации пищевых продуктов, его антибактериальное действие связано только с растворением клеточных мембран. Ни белки, ни нуклеиновые кислоты в СО2 не страдают. Известны штаммы плесени и бактерий (например, Pseudomonas putida), которые благодаря особому составу липидов устойчивы к некоторым органическим растворителям. Они сохраняют жизнеспособность и в сверхкритическом СО2 (Budisa и Schulze-Makuch, 2014).
Как оказалось, существуют природные микробные сообщества, приспособленные к жизни в жидкой углекислоте. На дне Окинавского желоба (Восточно-Китайское море) были найдены гидротермальные поля, на которых из недр на поверхность дна выходит жидкий СО2. Японские океанологи, исследуя этот район, обнаружили на поле Йонагуни Кнолл IV на глубине 1380 м целое озеро жидкого СО2, скрытого в толще осадков на морском дне (Inagaki et al., 2006). Диаметр озера достигает 200 м, толщина слоя жидкого СО2 – около 30 см, температура – от +3 до +10 °C. В пропитанных СО2 неконсолидированных глинистых осадках над озером обитает разнообразное микробное сообщество с численностью до 1 млрд клеток на 1 см³, которое питается, окисляя идущий снизу метан и сероводород. В толще углекислотного озера есть те же самые микробы, но их численность меньше. Так что среда жидкого СО2 вполне совместима с жизнью, и она может иметь много общего с привычной нам жизнью в водной среде. Если на Земле жидкий СО2 встречается в отдельных местах на глубине, то на более массивной планете («суперземля»), получающей меньше солнечного тепла, возможны океаны жидкого СО2 с небольшой примесью воды на поверхности. Жизнь на такой планете может использовать белки и нуклеиновые кислоты, похожие на земные, но иметь совершенно другие материалы клеточных мембран.
Еще один возможный альтернативный растворитель – формамид (NH2CHO). Этот органический растворитель достаточно безопасен для живых клеток. Он даже используется в смесях для криоконсервации тканей и клеток, так как защищает их мембраны от разрыва ледяными кристаллами. Формамид легко образуется при взаимодействии синильной кислоты с водой. Он остается жидким при температурах от +3 до +220 °C, и по удельной теплоте испарения сравним с водой. Формамид растворяет большинство веществ, растворимых в воде. Как мы помним по предыдущим главам, очень вероятно, что наша земная жизнь делала самые первые шаги не в воде, а в водно-формамидных растворах. Можно себе представить планету, на которой формамид образует не только маленькие лужицы, но и озера, и моря. Жизнь в такой среде может иметь те же азотистые основания, что и у нас, но, скорее всего, другой набор аминокислот и другие клеточные мембраны.
Альтернативные варианты биохимии на древней Земле. Ксенонуклеиновые кислоты
Мир РНК, который мы рассматривали в предыдущих главах, тоже является альтернативным вариантом биохимии по сравнению с современной земной жизнью. В самом деле, мир РНК не использует белки, которые стали важнейшей и неотъемлемой частью современной биохимии. Однако РНК не очень устойчива, а ее получение полностью абиогенным путем (без участия каких-то ферментов белковой, РНК или другой природы) очень сложно и наталкивается на много препятствий, часть которых была преодолена совсем недавно, а другие остаются актуальными до сих пор.
Многие ученые пошли дальше и предположили, что миру РНК тоже предшествовала какая-то другая, более простая жизнь, использующая другие молекулы. Эти предшественники РНК должны были легче получаться абиогенно и обладать большей устойчивостью по сравнению с РНК. Чтобы хранить генетическую информацию и со временем уступить место РНК, эти молекулы должны были содержать те же азотистые основания, что и РНК, или хотя бы совместимые с ними по комплементарным парам, а остов этих молекул должен допускать их соединение с РНК в двойную спираль, состоящую из двух химически различных цепей (такая конструкция называется «гетеродуплекс»). Молекулы, удовлетворяющие этим требованиям, получили название «ксенонуклеиновые кислоты».
В разделе «Пребиотическая химия альтернативных нуклеиновых кислот» (Cleaves II and Bada, 2012) сборника «Бытие – что было в начале» (Genesis – In the Beginning) собрана информация о свойствах различных ксенонуклеиновых кислот и об их возможных образованиях на древней Земле. Идеи о замене азотистых оснований, хотя и высказывались, но не получили широкого распространения. Во-первых, стандартные азотистые основания легко и с высоким выходом получаются абиогенно (из синильной кислоты или из формамида) и достаточно устойчивы для накопления. Во-вторых, альтернативные азотистые основания, как правило, несовместимы со стандартными, а для тех, что совместимы, сложно найти какие-то преимущества по сравнению с обычным набором. В-третьих, высокая устойчивость к ультрафиолету (см. главу 6) уникальна для стандартных оснований и не встречается ни у каких их аналогов.
По этим причинам сейчас серьезно обсуждаются только два варианта расширения (не замены) набора азотистых оснований. Первым таким кандидатом в древние азотистые основания РНК является никотинамид, производное витамина РР, входящий в состав кофермента НАД. Как обсуждалось в главе 10, никотинамид в НАД связан с рибозой и фосфатом как обычное азотистое основание и придает рибозимам новые полезные свойства. В составе генетической молекулы никотинамид может замещать гуанин, образуя пару с цитозином (Liu and Orgel, 1995). Другое возможное дополнение к набору азотистых оснований – группа предшественников аденина и гуанина. Это прежде всего аминоимидазол-карбоксамид-риботид (AICAR), который получается как промежуточный продукт в ходе их синтеза. Эта молекула содержит пятичленное имидазольное кольцо с двумя атомами азота (рис. 12.7) и в составе РНК образует комплементарную пару с аденином (Bernhardt, Sandwick, 2014). AICAR является предшественником не только пуринов, но и важной аминокислоты – гистидина. Чаще всех других аминокислот гистидин встречается в активных центрах ферментов, и AICAR, сходный с ним по строению, мог выполнять аналогичные функции в древних рибозимах. AICAR образуется в небольших количествах при нагревании и облучении формамида, наряду со стандартными азотистыми основаниями. Иначе говоря, расширение набора азотистых оснований имеет смысл для улучшения каталитических свойств РНК, но при этом для хранения наследственной информации стандартный набор А, Г, Ц, У, по-видимому, лучший из всех веществ, которые были доступны на древней Земле.
Почему для хранения наследственной информации используются четыре вида азотистых оснований, а не два, шесть или восемь? Как мы помним из главы 6, синтетические азотистые основания позволяют расширить алфавит ДНК до шести букв. Более того, получены синтетические основания, образующие пару только сами с собой, и с ними можно получить алфавит с нечетным числом знаков, например, три или пять. Возможно, дело в устойчивости к ультрафиолету: в природе только четыре основания оснований оказались устойчивыми. Но почему природа не ограничилась двухбуквенным алфавитом?
Как обсуждается в обзоре Эёша Шатмари (Szathmary, 2003), двухбуквенный алфавит можно копировать более точно, чем четырехбуквенный. Четыре азотистых основания отличаются двумя параметрами: размером (A и Г большие, Ц и T маленькие) и положением водородных связей. Размер – более важное различие. Замены основания на другое такого же размера (A на Г или Ц на T) в геномах большинства организмов происходят от двух до пяти раз чаще, чем замены с изменением размера. Синтез четырех нуклеотидов требует больше ферментов, чем двух. Для точного копирования ДНК концентрации всех нуклеотидов в клетке должны быть по возможности равными. Поддерживать равные концентрации четырех нуклеотидов сложнее, чем двух. Получается, что для основной современной функции ДНК – хранения информации о последовательности белков – четырехнуклеотидный алфавит подходит хуже, чем двухнуклеотидный.
Четырехнуклеотидный алфавит оказывается лучше, чем все прочие, когда дело доходит до образования шпилечной структуры РНК. Математическое моделирование показывает, что РНК-подобная молекула с двумя типами оснований, как правило, имеет множество вариантов сворачивания в различные шпилечные структуры. Для РНК с четырьмя типами оснований обычно есть одна или две устойчивые структуры (Valba et al., 2012). Эксперименты с созданием рибозимов из РНК с ограниченным выбором нуклеотидов (три или даже два из четырех) это подтверждают: при меньшем разнообразии звеньев рибозимы возникают с меньшей вероятностью, и их эффективность ниже, чем у четырехнуклеотидных аналогов (Reader and Joyce, 2002).
Треозонуклеиновые и гликоленуклеиновые кислоты
Гораздо больше внимания ученые уделяли поиску альтернатив сахарофосфатному остову РНК, потому что «слабым звеном» РНК является рибоза. Она менее устойчива, чем другие сахара (глюкоза, эритроза, глицеральдегид), и быстрее разлагается. В составе цепочки РНК много неприятностей доставляют гидроксильные (-ОН) группы на втором углеродном атоме каждой рибозы. Они облегчают разрыв цепи РНК. Современная генетическая молекула, ДНК, не имеет этих групп и поэтому, в отличие от РНК, устойчива к щелочам, ионам железа, переносит более высокие температуры, а в нормальных внутриклеточных условиях в десятки тысяч раз менее склонна к самопроизвольным разрывам по сравнению с РНК. Поэтому много исследований было посвящено двум ксенонуклеиновым кислотам, в которых рибоза заменена на четырехуглеродный сахар (треозу) или трехуглеродный спирт (глицерин) – треозонуклеиновая кислота, ТНК, и гликоленуклеиновая кислота, ГНК (рис. 12.8).
Молекулы треозонуклеиновой кислоты (ТНК) образуют двойные спирали друг с другом и с РНК благодаря комплементарным парам азотистых оснований. Прочность связи двух нитей в таких комплексах примерно такая же, как в двуспиральной ДНК (Schoning et al., 2000). Были получены мутантные формы РНК-полимеразы, которые способны строить ТНК на матрице ДНК, и с их помощью удалось адаптировать для ТНК технологию искусственного отбора (SELEX), применяемую для получения новых рибозимов. Так, из ТНК удалось получить аптамеры – молекулы, которые избирательно связывают одно определенное вещество, в данном случае белок тромбин (Yu et al., 2012).
Гликоленуклеиновая кислота (ГНК) была подробно изучена на несколько лет позже, чем ТНК (Zhang et al., 2005). Молекулы ГНК, подобно ТНК, образуют двойную спираль друг с другом и с РНК. Форма нити ГНК такова, что уотсон-криковские пары в ней оказываются прочнее, чем в РНК, поэтому копирование ГНК на заре жизни могло быть более точным, чем РНК. С другой стороны, эта же особенность ГНК требует более высокой температуры, чтобы расплести ее двойные спирали для следующего цикла копирования.
ТНК и ГНК, подобно ДНК, не имеют свободных гидроксильных (-ОН) групп рядом с фосфоэфирной связью и поэтому устойчивы к щелочам, железу и высокой температуре. Однако эти 2' – гидроксильные группы, которые делают РНК уязвимой, одновременно важны для ее каталитических функций. Попытки получить дезоксирибозимы из ДНК показали, что они встречаются в смеси молекул случайной последовательности с вероятностью в 10–100 раз меньше, чем аналогичные по функциям рибозимы из РНК (Silverman, 2004). Скорее всего, ТНК и ГНК по каталитической активности уступают РНК и близки к ДНК.
Еще один аргумент против роли ТНК и ГНК в происхождении жизни связан с проблемой соединения азотистых оснований с сахарами. Как обсуждалось в главе 7, азотистые основания невозможно правильно соединить с рибозой или другим сахаром без помощи ферментов. Все недавно открытые обходные пути получения нуклеотидов, в которых эта проблемная связь образуется до завершения сборки азотистого основания, строго привязаны к химическим свойствам рибозы и непригодны для получения нуклеотидов ТНК и ГНК. Наконец, факт существования ДНК, которая по надежности хранения информации не лучше ТНК, но заметно сложнее в синтезе и явно произошла в процессе эволюции от РНК уже после появления белков (подробнее см. в главе 14), тоже говорит против древней жизни с ТНК или ГНК. Если эти ксенонуклеиновые кислоты когда-либо использовались жизнью, то сложно придумать причину, по которой столь простые и надежные генетические молекулы были бы потеряны и затем заменены более сложной ДНК, – жизнь редко полностью отказывается от проверенных решений.
Пептидо-нуклеиновые кислоты
Кроме ТНК и ГНК были предложены и более радикальные альтернативы РНК, такие как пептидо-нуклеиновые кислоты (ПНК) (Nelson et al., 2000). Эти молекулы состоят из пептидной цепочки, сходной с таковой в белках, к которой присоединены азотистые основания (рис. 12.9). Пептидная цепь может состоять из разных аминокислот, не обязательно входящих в стандартный набор 20 белковых аминокислот. Пептидный остов отличается большей стабильностью по сравнению с любыми вариантами сахарофосфатного остова. Наиболее изучен вариант ПНК, остов которого состоит из звеньев N-аминоэтил-глицина (aeg-ПНК). Такая ПНК образует двойную спираль сама с собой и устойчивые гетеродуплексы с ДНК и РНК. В отличие от природных нуклеиновых кислот и большинства ксенонуклеиновых, звенья aeg-ПНК не содержат хиральных центров и не могут иметь левых и правых изомеров. Спираль, однако, имеет левую и правую формы. Одиночная нить aeg-ПНК может принимать и право-, и левоспиральную форму в гетеродуплексах с правой (природной) и левой ДНК. Двухцепочечная aeg-ПНК может легко менять хиральность спирали в зависимости от того, какие хиральные молекулы прикрепляются к ее концам. Значит, жизнь на основе aeg-ПНК могла отложить решение проблемы хиральной чистоты на более поздние этапы.
Для компонентов aeg-ПНК известен достаточно надежный абиогенный путь синтеза (Nielsen et al., 2007). Облучение растворов синильной кислоты с добавлением глицина и формальдегида дает одновременно N-аминоэтил-глицин для остова и четыре азотистых основания с ацетатными боковыми группами, которые нужны для их соединения с пептидным остовом (рис. 12.10).
Простой абиогенный синтез и отсутствие хиральности делают aeg-ПНК привлекательной в качестве главной молекулы древнейшей жизни, но другие ее свойства могут этому препятствовать. Как мы уже обсуждали, для хранения генетической информации лучше подходят молекулы с распределенным по всей длине электрическим зарядом, который мешает им свернуться в клубки. С одной стороны, aeg-ПНК не заряжена, и длинные ее цепи должны быть склонны к компактному сворачиванию. К сожалению, во время экспериментов пока исследовались только короткие, менее 20 звеньев, цепи ПНК. С другой стороны, в качестве катализатора ПНК благодаря компактному сворачиванию может быть лучше, чем РНК.
Более подходящий для хранения генетической информации вариант ПНК имеет остов из остатков аспарагиновой или глутаминовой кислоты, соединенных пептидными связями, как в обычных белках. Азотистые основания здесь прикрепляются к боковым COOH-группам аминокислот через одну. Половина СООН-групп остается свободной и обеспечивает отрицательный электрический заряд по всей длине молекулы (Mittapalli et al., 2007). К сожалению, пути абиогенного синтеза такой ПНК неизвестны. Так что пока мы не можем указать ни один конкретный полимер, который мог быть предшественником РНК, и никаких следов таких полимеров в биохимии не сохранилось.
Жизнь без полимеров
Еще более радикальной альтернативой РНК-мира стали гипотезы протометаболических циклов. Согласно им на древней Земле сначала сложилась сеть химических реакций между малыми молекулами, аналогичная реакциям обмена веществ в клетках. Катализаторами этих реакций служили минералы и сами участвующие в них малые молекулы. Нуклеотиды появились как один из продуктов этой сети реакций. Возникновение РНК, рибозимов, а затем и белков лишь придало устойчивость и увеличило скорость этой сети реакций.
Конечно, теория РНК-мира не отрицает, что какие-то реакции между малыми молекулами стали источником нуклеотидов и предшествовали появлению РНК. Разногласия между гипотезой протометаболических циклов и гипотезой РНК мира (в широком смысле, включая ПНК и другие полимеры, способные к комплементарному соединению в двойные спирали; в англоязычной литературе эти группы гипотез называются metabolism-first и replication-first) заключаются в другом. В гипотезе протометаболических циклов предполагается, что сеть реакций была способна к эволюции и усложнению, т. е. у нее могло быть много вариантов, каждый из которых был способен воспроизводить себя. Такое наследование, где сохраняется и воспроизводится химический состав смеси реагирующих веществ, получило название композиционного, или концентрационного генома. Теория РНК-мира же предполагает, что наследование, а следовательно, и дарвиновская эволюция возможны только на основе полимерных молекул.
В большинстве версий протометаболической гипотезы в качестве исходной части сети реакций обмена веществ рассматривается центральный круговорот обмена веществ – цикл Кребса. В статье Лесли Оргела (Orgel, 2008) рассматриваются препятствия для прохождения этого цикла реакций на минералах без помощи ферментов. Серьезной проблемой становится специфичность катализа. Например, в восстановительном цикле Кребса двойная связь C=C в одном случае должна восстанавливаться (при образовании янтарной кислоты), а в другом – к ней должна присоединяться молекула воды (при превращении аконитовой кислоты в лимонную). Если аконитовая кислота подвергнется восстановлению (а в тех условиях, где идет восстановительный цикл Кребса, эта реакция будет необратима), то вещество будет уходить из цикла в побочную реакцию. Аналогично, если какой-то минерал катализирует распад лимонной кислоты на уксусную и щавелевоуксусную, то он же будет вызывать распад и других кислот цикла.
Есть и другие мнения о том, какие вещества составляли первые автокаталитические циклы. Например, Альберт Эшенмозер предполагает (Eschenmoser, 2007), что исходным веществом, питающим цикл, был не углекислый газ, а синильная кислота (HCN). Молекулы синильной кислоты в воде самопроизвольно объединяются по четыре, образуя тетрамер. Эти тетрамеры при нагревании или облучении превращаются в аденин и гуанин, а при низкой температуре и в темноте постепенно подвергаются гидролизу. При этом образуются органические кислоты, близкие к кислотам цикла Кребса, – гидрокси-щавелевоуксусная, дигидрокси-фумаровая. Дальше из этих кислот могут получаться простейшие сахара (гликольальдегид, глицеральдегид) и более сложные кислоты цикла Кребса, такие как лимонная. Важно, что альдегиды (формальдегид, ацетальдегид, гликольальдегид) ускоряют сборку тетрамеров синильной кислоты и образуются в ходе гидролиза этих же тетрамеров. Иными словами, здесь возможно образование разных автокаталитических циклов и накопление многих веществ, важных и в современной биохимии.
К сожалению, в ходе экспериментов так и не удалось провести эти реакции достаточно эффективно, чтобы заработал автокатализ и производительность цикла стала расти. Для восстановительного цикла Кребса, как мы упоминали в прошлой главе, удалось провести только шесть реакций из одиннадцати. В качестве источника энергии при этом использовалось ультрафиолетовое излучение, а катализатором служили кристаллы сульфида цинка (Guzman, Martin, 2009).
Идея жизни без полимеров вызывает скепсис у многих ученых не только потому, что конкретные ее варианты не удается воспроизвести в лаборатории. Сомнения вызывает сама концепция концентрационного генома – возможности хранения информации в химическом составе смеси веществ. В любом сколько-нибудь значительном объеме будет так много молекул, что их концентрации могут изменяться плавно, без заметных скачков. Например, в объеме бактериальной клетки (размер – 0,001 мм, объем – 10–9 мм³) содержится около 1010 атомов и, следовательно, около 108 молекул-мономеров, таких как аминокислоты и нуклеотиды. Обмен веществ типичной бактерии включает несколько сотен разновидностей малых молекул (аминокислоты, нуклеотиды, сахара, липиды, витамины и промежуточные продукты, такие как кислоты цикла Кребса). Следовательно, в объеме бактериальной клетки будет примерно от 10 000 до 1 млн малых молекул каждого сорта, и их концентрация может меняться ступеньками по 0,01 % и меньше, что совершенно неразличимо на биохимическом уровне точности. Случайные колебания концентраций веществ, вызванные тепловым движением молекул, легко разрушат хранимую таким образом информацию. Здесь уместен пример из области электроники – при аналоговой передаче сигнала он неизбежно искажается и загрязняется шумами, поэтому сейчас для записи и передачи звука и других аналоговых сигналов их переводят в цифровую форму – последовательность нулей и единиц, не подверженную слабым помехам.
Наша ДНК тоже представляет собой цифровую запись информации. Нуклеотидов всего четыре, и вероятность превращения одного из них в другой очень мала. Вероятность ошибки при копировании ДНК выше, но сложные и совершенные ферменты позволяют снизить и ее до одной ошибки на 100 млн нуклеотидов. К идее, что генетическая информация может надежно храниться только в цифровом виде, первым подошел физик Эрвин Шрёдингер в своей пророческой работе 1944 года «Что такое жизнь?». К тому времени было известно, что наследственная информация хранится в очень малом объеме, соответствующем крупной молекуле, и единственный квант рентгеновского излучения может вызвать мутацию. Пытаясь понять, как такие маленькие структуры могут надежно сохраняться годами, он пришел к идее «апериодического кристалла». Значительно позже Докинз предположил (Dawkins, 1996), что надежное хранение генетической информации возможно только в виде последовательности разных мономеров в полимерной молекуле, независимо от химической природы жизни. Строгое доказательство этого было выведено российским математиком Сергеем Вакуленко (Vakulenko, Grigoriev, 2008).
Ненадежность «концентрационного генома» можно проиллюстрировать на примере действия радиации на геномы обычные. Как известно, радиация очень опасна для живых организмов, особенно сложных. Например, для человека поглощенная доза излучения 10 грей приводит к смерти в течение двух-трех недель. Единица поглощенной дозы, грей, определяется как 1 джоуль излучения, переданный на 1 кг массы тела. Иначе говоря, смертельная доза радиации в пересчете на привычные единицы энергии – это всего лишь 700 джоулей, или 160 калорий. По всем обычным энергетическим масштабам человеческого организма это смехотворно мало. Это меньше, чем тепловая энергия, которую он получает от одного стакана умеренно горячего чая с температурой 40 °C. От стакана горячего чая еще никто не умирал. Почему же радиация так опасна?
Отличие радиации от тепла в том, что тепловая энергия распределена на гигантское количество мелких порций – движений отдельных молекул. Радиация же представляет собой довольно большие порции энергии в малом объеме – гамма-кванты, нейтроны, быстрые заряженные частицы. При встрече такой частицы с молекулой ДНК или белка большая порция энергии точечно воздействует на одну связь между атомами и, естественно, ее разрывает. Тепловые движения соседних молекул воздействуют на каждое звено ДНК миллиарды раз в секунду, но не превышают ее предела прочности. Если мы сравним тепло и радиацию с другими формами энергии, то окажется, что 700 джоулей вполне могут быть опасны, если они взаимодействуют с живым организмом в концентрированной форме. Например, 700 джоулей механической энергии организм человека получает при падении с высоты одного метра или от двух выстрелов из пистолета в упор. Понятно, что второй случай гораздо опаснее.
Тепловая энергия настолько безопасна для нас, как и для любого другого живого организма, потому что она распределена на мелкие порции, далеко не достигающие предела прочности ДНК. Концентрационный геном такого предела прочности не имеет и будет накапливать изменения просто от тепловых движений молекул. Поэтому при любой температуре кроме абсолютного нуля концентрационный геном будет разрушаться, как ДНК под действием радиации.
Если же для хранения наследственной информации важна не точная концентрация вещества, а только есть оно или нет, то информационная емкость подобной системы слишком мала – в ней должен быть свой автокаталитический цикл на каждый бит хранимой информации. Разные автокаталитические циклы из малых молекул не всегда хорошо уживаются друг с другом, поэтому вряд ли в одном объеме их может быть больше десяти. Для записи десяти бит информации достаточно последовательности из трех нуклеотидов. Так что аналоговый концентрационный геном ненадежен, а цифровой концентрационный геном (со своим автокаталитическим циклом на каждый бит информации) имеет ничтожную емкость по сравнению с простейшими молекулами РНК и не может поддерживать эволюцию.
Итак, мы видим, что нет убедительных доводов в пользу какой бы то ни было живой системы, предшествовавшей миру РНК. Только с появлением генетического полимера становятся возможными устойчивое воспроизведение тысяч разновидностей похожих, но разных живых систем, а значит, и эволюция путем мутаций и естественного отбора. Затем эта эволюция превратила РНК-организмы в клетки, оснащенные белками, ДНК и клеточной мембраной, изолирующей внутреннюю среду. Можно полагать, что клеточная жизнь вышла из геотермальной колыбели, освоила всю поверхность планеты и стала глобальной силой, регулирующей состав атмосферы и климат. В третьей части книги мы увидим, как это происходило.