4.1. Электронная «приманка» для рыб
Васильев В. [16]
Оказывается, рыбы и издают звуки, и слышат их. Некоторые крупные рыбы обнаруживают заинтересованность источниками звука, особенно импульсного характера. Схема простейшего генератора такого звука приведена на рис. 23.
Рис. 23. Принципиальная схема электронной «приманки» для рыб
Схема представляет собой несимметричный мультивибратор, собранный на двух транзисторах с емкостными связями.
В качестве нагрузки используется головной телефон. Частота повторения импульсов может регулироваться путем подбора сопротивления резистора R*, показанного на схеме штриховой линией.
Устройство размещается в пластмассовом герметичном футляре с окном, к которому прижата мембрана телефона. Внутрь также помещается батарея «Крона» и кнопочный микровыключатель В1, которым можно управлять, нажимая на кнопку через стенку футляра.
В качестве транзисторов можно использовать МП41 или ГТ308А, телефон — типа ТОН-2.
4.2. Береговой лот
Семенов И. [17]
Прибор предназначен для измерения глубины водоема. Принцип действия лота основан на измерении давления воды.
Принципиальная схема устройства показана на рис. 24.
Рис. 24. Принципиальная схема лота
Светодиод VD1 и фоторезистор RL1 образуют датчик, предназначенный для погружения в воду на дно, который тремя проводами соединяется с остальными элементами схемы. В зависимости от глубины погружения увеличивается давление воды на чувствительный элемент датчика и уменьшается освещенность фоторезистора, что регистрируется стрелочным прибором РА1. Конструкция датчика приведена на рис. 25.
Рис. 25. Конструкция датчика лота
Корпус датчика выполнен из металлической трубки. Нижний торец закрыт мембраной из резины с тканевой прослойкой толщиной 3–4 мм. В центре мембраны крепится стержень круглого сечения диаметром 5 мм с коническим концом, который входит в отверстие втулки. Перпендикулярно оси втулки в ней просверлено сквозное отверстие диаметром 4,85 мм, в котором с одной стороны помещен светодиод, а с другой — фоторезистор. Три провода марки МГТФ-0,35 выходят из корпуса через верхнюю заглушку и обмотаны липкой лентой.
Источником питания лота служит батарея «Кронам напряжением 9 В. Стрелочный прибор — микроамперметр магнитоэлектрической системы с полным отклонением стрелки 50 или 100 мкА.
4.3. Автомат кормит аквариумных рыб
Нечаев И. [18]
Автомат каждый день по утрам выполняет кормление аквариумных рыб с помощью дозатора, функции которого исполняет электромагнит, управляемый транзисторным ключом.
Принципиальная схема автомата представлена на рис. 26.
Рис. 26. Принципиальная схема автомата для кормления рыб
Устройство содержит светочувствительный элемент, в качестве которого используется фоторезистор R1, триггер Шмитта, собранный на элементах DD1.1 и DD1.2 микросхемы DD1 типа К561ЛЕ5, формирователь импульсов постоянной длительности для подачи корма на элементах DD1.3 и DD1.4 и электронный ключ на транзисторах VT1, VT2, нагруженный электромагнитом дозатора Y1.
В темное время суток сопротивление фоторезистора значительно больше R2, и на входе триггера Шмитта низкий уровень напряжения. Также низкий уровень действует на выходе триггера Шмитта, на входе элемента DD1.3 и на выходе DD1.4. Поэтому транзисторы ключа заперты, и электромагнит дозатора отключен.
С наступлением рассвета сопротивление фоторезистора уменьшается, напряжение на входе триггера Шмитта нарастает, и, когда оно достигнет порога срабатывания, триггер опрокидывается. На выходе элемента DD1.2 появляется высокий уровень и начинается заряд конденсатора С3 через резистор R6. При этом на входе DD1.3 и на выходе DD1.4 оказывается высокий уровень, ключ отпирается, и срабатывает электромагнит дозатора. Длительность подачи корма определяется длительностью заряда конденсатора С3: по мере заряда уровень напряжения на входе DD1.3 уменьшается и достигает порога запирания. Тогда ключ запирается и электромагнит выключается. Этот режим продолжается до тех пор, пока не стемнеет и схема возвратится в исходное состояние.
Эскиз печатной платы и расположение элементов схемы приведены на рис. 27.
Рис. 27. Эскиз печатной платы автомата
Питание устройства осуществляется от сети переменного тока напряжением 220 В с помощью обычного блока питания, схема которого приведена на рис. 28.
Рис. 28. Принципиальная схема блока питания автомата
4.4. Электромеханический «рыболов»
Виноградов Ю. [19]
Устройство предназначено для автоматической подсечки рыбы после нескольких поклевок, число которых определено схемой. Принцип действия конструкции поясняется кинематической схемой, приведенной на рис. 29.
Рис. 29. Кинематическая схема автомата
Здесь:
1. Футляр из пластмассы, в котором размещается электронный блок;
2. Плоская пружина из фосфористой бронзы;
3. Изоляционная пластина;
4. Контактная скоба;
5. Узлы крепления пружин;
6. Подпружиненное коромысло;
7. Зажим лески;
8. Стальная тяга;
9. Серьга зацепа с резьбой;
10. Вал редуктора с резьбой;
11. Леска;
12. Струбцинка крепления автомата.
В настороженном состоянии, показанном на рисунке, леска 11 натянута грузилом и закреплена на конце коромысла в узле 7. Пружина 2 является движителем автомата: в согнутом состоянии она удерживается тягой 8, на конце которой находится серьга 9. В резьбовое отверстие серьги на несколько витков ввернут хвостовик вала редуктора 10. При подаче питания на электродвигатель шестерня его вала вращает шестерню редуктора, его вал выворачивается из серьги, они разъединяются, и пружина 2 резко распрямляется, дергая леску и производя подсечку. Момент включения двигателя определяется электрической схемой автомата, приведенной на рис. 30.
Рис. 30. Принципиальная схема автомата
SF1 — Контакты между коромыслом и скобой, в настороженном состоянии разомкнуты и замыкаются при поклевке;
SF2 — Контакты между валом редуктора и серьгой;
SA1 — Двухполюсный тумблер-переключатель, при налаживании и насадке наживки контакты SA1.1 замкнуты, a SA1.2 разомкнуты;
SA2 — Переключатель, которым устанавливается число поклевок, после которых происходит подсечка;
SA3 — Переключатель, которым устанавливается временной интервал, в течение которого осуществляется счет числа поклевок.
Элементы 2И-НЕ DD1.1 и DD1.2 образуют одновибратор, назначение которого состоит в устранении дребезга контактов SF1. При первой поклевке сигнал датчика SF1 активизирует счетчик DD3, положительный перепад с его вывода 3 через диод VD1 запускает генератор импульсов, собранный на элементах DD2.2 и DD2.3. Импульсы с частотой повторения около 1 Гц поступают на счетчик DD4, и в зависимости от положения переключателя SA3 через 2, 4 или 8 с сигнал поступает на вход 13 элемента DD2.1, а с выхода 11 DD1.3 — нa входы R счетчиков DD3 и DD4, возвращая их в нулевое состояние. Таким образом, если за время указанного промежутка не поступили следующие сигналы поклевок, первый сигнал считается ошибочным, и схема возвращается в исходное состояние.
Кроме того, при первом сигнале поклевки с вывода 3 DD3 перепадом напряжения запускается генератор звуковой частоты, собранный на элементах DD2.4 и DD1.4. Звуковой сигнал усиливается транзисторами VT3, VT4 и воспроизводится динамической головкой НА1, извещая рыбака о начале поклевки.
Если за первым сигналом поступают следующие, микросхема DD3 их считает, и, когда их число соответствует установке переключателя SA2, сигнал через R5 поступает на выходной усилитель, собранный на транзисторах VT1, VT2, которыми включается электродвигатель M1. В результате происходит подсечка, а размыкание контактов SF2 приводит к обнулению счетчиков DD3 и DD4.