Глава 1. Вселенная после взрыва
Мир, в котором мы живем
Путешествуя в мир черных дыр, мы столкнулись с, казалось бы, невозможным — нарастающее поле тяготения буквально переворачивало свойства пространства и времени, открывая возможность удивительных физических процессов. Теперь мы отправляемся совсем к другим границам, отправляемся вдаль, в просторы Вселенной, где неожиданно вновь сталкиваемся с абсолютной властью тяготения. Более того, мы сталкиваемся здесь с потрясающим фактом — наблюдаемая Вселенная является следствием Большого взрыва, происшедшего около 15 миллиардов лет назад, причина которого — таинственная сингулярность, подобная той, что лежит в глубине черных дыр.
Стремление понять мир, в котором мы живем, конечно, было всегда, с тех пор как люди начали мыслить. История эволюции представлений о Вселенной интересна и поучительна. Но знакомство с историей не является нашей целью. Об этом написано много прекрасных книг.
Обратимся сразу к нашему времени, к нашим знаниям. Если мы и станем иногда обращаться к истории, то только к новейшей, а в более отдаленное прошлое науки о всей Вселенной, называемой космологией, будем заглядывать не часто.
Когда мы пытаемся понять, что представляет собой Вселенная, первое, с чем мы сталкиваемся, это распределение небесных тел в пространстве. Нас будут интересовать в первую очередь самые крупные масштабы, доступные астрономам, и мы начнем с крупнейших структурных единиц Вселенной — с галактик.
Напомним читателю, что наше Солнце входит в состав огромной звездной системы, которую астрономы называют Галактикой с большой буквы, или иногда еще — нашей Галактикой. Общее число звезд, составляющих Галактику, около ста миллиардов.
Подавляющая часть звезд Галактики заполняет объем, напоминающий линзу, поперечником в 100 тысяч световых лет и толщиной 12 тысяч световых лет. Вспомним, что световой год — это расстояние, проходимое светом за год, равное 1013 километрам. В межзвездном пространстве находятся разреженный газ и пыль, собранные в большие облака. Общая их масса составляет только 5 процентов от общей массы звезд. Помимо этого «основного тела» Галактики, в ней имеется еще одна составляющая сферической формы радиусом около 5–10 тысяч световых лет. В эту сферическую систему входят звезды, как правило, менее яркие и более старые, чем в сплюснутой системе.
Молодые горячие звезды сплюснутой системы, которую иногда называют диском, собраны в спиральные рукава. Эти рукава начинаются у центральных областей Галактики и раскручивающейся спиралью простираются к ее окраинам.
По имени спиральных рукавов всю нашу Галактику называют спиральной. В спиральных рукавах имеются мощные скопления газа — газовые облака, где происходит образование молодых звезд.
Звезды и газ диска совершают орбитальные движения вокруг центра масс Галактики по почти круговым орбитам. Наше Солнце движется в Галактике со скоростью около 250 километров в секунду и совершает один оборот за 200 миллионов лет. Звезды сферической составляющей тоже движутся вокруг центра, но по очень вытянутым орбитам, произвольно наклоненным к плоскости диска.
Таковы структура и масштабы большого звездного города, как иногда называют нашу звездную систему.
За пределами нашей Галактики находятся другие звездные города — галактики с маленькой буквы. Большинство наблюдаемых галактик имеет размеры, лишь немногим уступающие нашей: в десятки тысяч световых лет, и состоят они из миллиардов звезд.
Все эти звездные системы находятся от нас на расстояниях, превышающих миллионы световых лет. Только ближайшие и крупнейшие из них видны на небе невооруженным глазом в виде туманных пятен, остальные доступны лишь большим телескопам. Из-за огромных расстояний свечение звезд в них сливается в туманное сияние. Лишь в ближайших галактиках с помощью крупнейших телескопов видны яркие звезды по отдельности.
Галактики различаются по своим формам, составу звезд, в них входящих, и по характеру их движений. По этим признакам астрономы делят галактики на четыре основных типа.
Большая часть галактик — это спиральные, подобные нашей. Но имеются галактики, в которых в линзовидном диске нет спиралей. Их так и называют — линзообразные.
Наконец, немало галактик, которые вообще не имеют диска и состоят целиком из сферической составляющей. Их называют эллиптическими за то, что на фотографиях и в телескоп они выглядят эллиптическими овалами. В этих звездных системах, как правило, мало газа и практически нет областей рождения молодых звезд.
Наименее многочислен тип неправильных галактик. Они похожи на спиральные, только яркие облака скоплений молодых звезд в них не вытянуты в спирали, а разбросаны в виде пятен. Часто эти галактики содержат большое количество газа.
Уже это беглое знакомство показывает, насколько разнообразен мир галактик. Это разнообразие выступает еще разительнее, когда мы сравниваем массы галактик и их размеры.
Напомним, что наша Галактика состоит из 100 миллиардов звезд. Крупнейшие галактики, относящиеся к классу эллиптических, содержат до десяти тысяч миллиардов звезд. В то же время есть «карликовые» галактики, состоящие всего из миллиона звезд.
Какую галактику можно считать типичной? Такую сравнительно большую, как наша, или заметно меньше?
Ответить на этот вопрос столь же трудно, как и на вопрос: какой город считать типичным — такой большой, как Москва, или заметно меньший? Ведь на один большой город приходится десятки маленьких. Точно такая же картина в мире галактик. На каждую гигантскую систему приходится большое количество карликов.
Как же распределены галактики в пространстве?
Оказалось, что это распределение крайне неравномерное. Большая часть их входит в состав скоплений. Скопления галактик столь же разнообразны по своим свойствам, как и сами галактики. Чтобы навести в их описании хоть какой-нибудь порядок, астрономы придумали несколько их классификаций. Как всегда в подобных случаях, ни одна классификация не может считаться полной. Для наших целей достаточно сказать, что скопления можно разделить на два типа — правильные и неправильные.
Правильные скопления часто огромны по своей массе. Они обладают сферической формой и в них входят десятки тысяч галактик. Как правило, все эти галактики эллиптические или линзообразные. В центре находятся одна или две гигантские эллиптические галактики. Ближайшее к нам правильное скопление находится в направлении созвездия Волосы Вероники на расстоянии около трехсот миллионов световых лет и имеет в поперечнике более десяти миллионов световых лет. Галактики в этом скоплении движутся друг относительно друга со скоростями около тысячи километров в секунду.
Гораздо более скромны по массам неправильные скопления. Число галактик, в них входящих, в десятки раз меньше, чем в правильных скоплениях, и это галактики всех типов. Форма их неправильная, имеются отдельные сгущения галактик внутри скопления.
Неправильные скопления могут быть и совсем маленькими, вплоть до мелких групп, состоящих из нескольких галактик.
Что же дальше, в еще более крупных масштабах, чем скопления галактик? Есть ли скопления скоплений галактик, то есть сверхскопления?
В последнее время исследованиями эстонских астрофизиков Я. Эйнасто, А. Саара, М. Йыэвээра и других, американских специалистов П. Пиблса, О. Грегори, Л. Томпсона показано, что самые крупномасштабные неоднородности в распределении галактик носят «ячеистый» характер. В «стенках ячеек» много галактик, их скоплений, а внутри — пустота. Размеры ячеек около 300 миллионов световых лет, толщина стенок 10 миллионов световых лет. Большие скопления галактик находятся в узлах этой ячеистой структуры. Отдельные фрагменты ячеистой структуры и называют сверхскоплениями. Сверхскопления часто имеют сильно вытянутую форму наподобие нитей или лапши. А еще дальше?
Вот тут мы сталкиваемся с новым обстоятельством. До сих пор мы встречались со все более сложными системами: маленькие системы образовывали большую систему, эти большие системы, в свою очередь, объединялись в еще большую и так далее. То есть Вселенная напоминала русскую матрешку. Маленькая матрешка находится внутри большой, та внутри еще большей. Оказалось, что во Вселенной есть наибольшая матрешка! Крупномасштабная структура в виде «лапши» и «ячеек» не собирается уже в более крупные системы, а равномерно в среднем заполняет пространство Вселенной. Вселенная в самых больших масштабах (более трехсот миллионов световых лет) оказывается одинакова по своим свойствам — однородна. Это очень важное свойство и одна из загадок Вселенной. Почему-то в сравнительно мелких масштабах есть огромные сгустки вещества — небесные тела, их системы, все более сложные, вплоть до сверхскоплений галактик, а в очень больших масштабах структурность исчезает. Подобно песку на пляже. Глядя вблизи, мы видим отдельные песчинки, глядя с большого расстояния и охватывая взглядом значительную площадь, видим однородную массу песка.
То, что Вселенная однородна, удалось проследить вплоть до расстояний в десять миллиардов световых лет!
К решению загадки однородности мы еще вернемся, а пока обратимся к вопросу, который, наверно, возник у читателя. Как удается измерить столь огромные расстояния до галактик и их систем, уверенно говорить об их массах, о скоростях движения галактик?
«Мерные масштабы» и другие инструменты астрономов
Начнем с расстояний. Несомненно, измерение расстояний в миллионы световых лет и более является чудом современной науки.
Еще в начале нашего века об измерении подобных расстояний не было и речи. Как же, с какими «мерными лентами» удалось пробиться сквозь эти невообразимые дали?
Это был очень трудный научный путь. Шаг за шагом, ступенька за ступенькой удавалось постепенно продвигаться в измерении все более далеких расстояний. При этом следующий шаг всегда основывался на успехах предыдущего.
Первая серьезная ступенька была преодолена еще в середине прошлого века. Расстояния до трех близких к нам звезд были измерены практически одновременно в России, Германии и Африке. Суть метода этих измерений в принципе такая же, как и в измерении расстояний на Земле с помощью дальномера. Дальномеры теперь встроены даже в фотоаппараты и поэтому знакомы каждому. Принцип работы такого прибора состоит в том, что направление на рассматриваемый предмет несколько различно для разных окошечек дальномера. Если известно расстояние между окошечками и угол изменения направления, то легко рассчитывается расстояние по правилам тригонометрии. В дальномере этот расчет выполняет простейшее механическое устройство. Чем дальше предмет, тем на большее расстояние надо разнести окошечки дальномера, чтобы измерение было достаточно надежным. Расстояние между окошечками называют базисом, а сам способ получил название тригонометрического. При измерении расстояний до звезд роль базиса играет диаметр земной орбиты вокруг Солнца. Изменение направления на звезду измеряется с интервалом в полгода из диаметрально противоположных точек земной орбиты. Но даже при таком огромном базисе изменение направления на ближайшие звезды меньше одной угловой секунды дуги, и требуется большая тщательность и высокое искусство измерений.
Выяснилось, что даже ближайшие звезды удалены от нас на расстояние больше светового года.
Со времени первых измерений расстояний до звезд прошло больше столетия. Несмотря на огромный прогресс в технике и методах измерений, и сейчас с помощью тригонометрического метода можно уверенно определять расстояние до звезд не больше ста световых лет.
До границ Галактики при этом еще невообразимо далеко, а о других галактиках и говорить не приходится.
Следующий огромный шаг по лестнице, ведущей вдаль, был сделан уже в начале нашего столетия, и его помогли сделать звезды, систематически меняющие свой блеск, — переменные звезды.
Начало было положено американским астрономом Генриеттой Ливитт, изучавшей переменные звезды в одной из ближайших к нам галактик — Малом Магеллановом Облаке, видимом на южном небесном полушарии.
Через несколько лет после начала исследования она выяснила любопытнейший факт. Двадцать пять звезд оказались переменными, строго периодически меняющими свой блеск. Причем чем больше был период изменения блеска, тем ярче была сама звезда! Г. Ливитт пришла к замечательному выводу: «Так как эти переменные звезды, вероятно, находятся на одинаковом расстоянии от Земли (потому что все они находятся в одной галактике — Малом Магеллановом Облаке. — И. Н.), их периоды, очевидно, связаны с количеством излучаемого ими света».
Значение этого открытия трудно переоценить. По периоду изменения яркости можно узнать светимость звезды.
Мы знаем, что видимый блеск звезды на небе ослабевает обратно пропорционально квадрату расстояния до нее. Сравнивая истинную светимость звезды с видимым блеском, можно вычислить расстояние!
Правда, для того, чтобы можно было по периоду изменения блеска звезд, изученных Г. Ливитт, вычислять расстояние, надо знать истинную светимость хотя бы одной такой звезды.
Первая попытка это сделать была предпринята Э. Герцшпрунгом. Он понял, что звезды, наблюдаемые Г. Ливитт в Малом Магеллановом Облаке, точно такие же, как хорошо известные переменные звезды, называемые цефеидами, в нашей Галактике. Блеск цефеид меняется из-за того, что они пульсируют. Теперь надо было определить истинную светимость хотя бы одной цефеиды. Вот тут-то и начались серьезные трудности. В окрестности Солнца нет ни одной цефеиды, расстояние до которой надежно можно было бы определить тригонометрическим способом и, зная ее видимый блеск и расстояние, вычислить истинную светимость.
Начались многочисленные попытки определения расстояний до цефеид нашей Галактики. Первая оценка была сделана самим Э. Герцшпрунгом. Мы не будем описывать здесь суть используемых при этом хитрых косвенных методов. Отметим только, что и первая, и многие последующие попытки были столь трудны, что привели к результатам, содержащим значительные ошибки. Эти ошибки были окончательно выявлены только в начале 60-х годов. Но работа эта настолько важна (речь идет об измерении масштабов Вселенной!), что уточнения продолжаются до сих пор.
После того как установлена истинная светимость хоть одной цефеиды с известным периодом изменения блеска, стало возможным измерять расстояние до любой цефеиды. Действительно, теперь известна зависимость «период — истинная светимость» для цефеид. Для определения расстояния до любой цефеиды достаточно по наблюдениям определить период изменения ее блеска, затем по зависимости найти истинную светимость и, сравнивая с видимым блеском, вычислить расстояние. Если цефеида входит в состав какого-либо скопления звезд или галактики, то тем самым определяется расстояние и до них.
Цефеиды здесь используются как «стандартные свечи», истинная яркость которых известна. Поэтому и весь метод получил название метода «стандартной свечи».
Роль цефеид в измерении расстояний столь велика, что известный американский астроном X. Шепли назвал их «самыми важными» звездами.
Истинная светимость цефеид очень велика — они в тысячу раз ярче Солнца. Поэтому цефеиды видны с достаточно больших расстояний, вплоть до 15 миллионов световых лет. Значит, с их помощью можно определять расстояние до ближайших галактик.
Но нас интересуют еще большие масштабы!
Для дальнейшего продвижения приходится делать еще один шаг. Хотелось бы найти «стандартные свечи» более яркие, чем цефеиды, и хорошо видимые с еще больших расстояний. Оказалось, что такие «свечи» есть. Вокруг галактик обычно наблюдается много звездных скоплений, которые за свою форму получили название шаровых.
Когда с помощью цефеид были определены расстояния до ближайших галактик, сравнили истинные светимости шаровых скоплений вокруг разных галактик. Оказалось, что если выбрать вокруг каждой галактики ярчайшее шаровое скопление, то истинная светимость этих ярчайших скоплений практически одинакова для всех галактик.
Значит ярчайшие шаровые скопления вокруг галактик можно использовать как «стандартную свечу», причем более яркую, чем цефеиды.
Этим методом можно измерять расстояние вплоть до шестидесяти миллионов световых лет. А это значит, что можно измерить расстояние уже до ближайших скоплений галактик. Дальше, увы, шаровые скопления различать пока невозможно.
Следующая ступень — использование еще более яркой «стандартной свечи». Выяснилось, что в разных скоплениях галактик ярчайшие галактики имеют одинаковую светимость — примерно в десять раз больше светимости нашей Галактики.
Эти ярчайшие «стандартные свечи» позволяют продвигаться уже на миллиарды световых лет.
Такова «лестница масштабов», используемая астрономами на пути в глубь Вселенной.
А как измеряют скорости движения далеких объектов?
Разумеется, на расстояниях не только ближайших к нам галактик, но и более отдаленных не заметны никакие перемещения звезд и других объектов на фоне неба, по которым можно было бы вычислить скорость перемещения их в пространстве поперек луча зрения.
Единственное, что можно измерить, но зато сравнительно просто и надежно, это скорость приближения к нам или удаления небесных тел. Такое измерение делается методом, использующим эффект Доплера, о котором уже упоминалось в первом разделе книги. Когда небесное тело приближается к нам — свет его голубеет, когда удаляется — краснеет. Измерение смещения линий в спектре звезды к голубому или красному концу позволяет вычислить скорость, точнее, ту часть скорости, которая направлена по «лучу зрения». Поэтому скорости, определенные по эффекту Доплера, астрономы называют «лучевыми скоростями».
Наконец, об измерении массы галактик и скоплений галактик. Ее можно определить, используя закон всемирного тяготения.
Пусть мы наблюдаем, скажем, эллиптическую галактику. В ней звезды движутся с определенными скоростями друг относительно друга. Если бы не было сил тяготения, они бы разлетелись в пространстве. Силы тяготения, обусловленные общей массой всей галактики, удерживают их от разбегания. Измерив относительные скорости звезд в галактике (это можно сделать методом Доплера) и зная размер галактики, можно вычислить силы тяготения, а значит, и массу, их создающую. Так определяют массы галактик.
При измерении масс скоплений галактик поступают аналогичным образом, только вместо движений отдельных звезд используют движение галактик в скоплении.
Теперь мы знакомы в общих чертах с тем, как были получены числа, описывающие устройство Вселенной в больших масштабах.
Возникает еще один вопрос. Как движутся в пространстве скопления галактик и отдельные, достаточно удаленные галактики?
Ответ на этот вопрос явился величайшим открытием естествознания XX века. Оказалось, что мы живем в расширяющейся Вселенной. Скопления галактик удаляются друг от друга, все вещество Вселенной было приведено в состояние расширения таинственным Большим взрывом в далеком прошлом.
Вселенная должна эволюционировать
То, что Вселенная, в которой мы живем, должна либо расширяться, либо сжиматься, было предсказано теоретически замечательным советским ученым А. Фридманом в 1922–1924 годах. Работы А. Фридмана были строго математичны и основывались на теории тяготения Эйнштейна. Но для того чтобы понять суть его открытия, нет надобности обращаться к строгой математике. Как все великое, это открытие в основе своей очень просто.
Вспомним, почему не сжимается и не расширяется обычная звезда. В ней силы тяготения уравновешены силой, создающейся перепадом давлений от плотных недр звезды к рыхлой поверхности. Но Вселенная однородна в самых больших масштабах, никакого перепада давлений в ней быть не может. Значит, там единственной существенной силой остается тяготение.
Поэтому, если представить себе, что в какой-то момент огромные массы Вселенной в среднем неподвижны друг относительно друга и распределены однородно, то в следующий момент под действием тяготения они придут в движение, вещество начнет сжиматься. В сравнительно маленьких системах тяготение можно уравновесить круговым движением тел по орбитам (как в Солнечной системе) или хаотическим движением тел по очень вытянутым орбитам (как в эллиптических галактиках). Но в огромной Вселенной это невозможно — пришлось бы задавать скорости, большие скорости света, что запрещено законами природы.
Стационарность для Вселенной невозможна — таков был вывод А. Фридмана. Но Вселенная не обязательно должна именно сжиматься под действием тяготения. Если вначале задать всем массам скорости удаления друг от друга, то она будет расширяться, а тяготение будет только тормозить разлет. Таким образом, будет ли разлет или сжатие — зависит от начальных условий, от физики процессов, которые определили начальные скорости масс. Так была теоретически открыта необходимость глобальной эволюции Вселенной.
Эта идея была совершенно новой, крайне необычной. Разные схемы строения Вселенной господствовали в науке, сменяя друг друга на протяжении веков. Но все (или почти все) эти схемы объединяло одно — это были именно схемы строения — не развития, эволюции, становления, а вечно неизменный «механизм часов Вселенной». Идея стационарности всей Вселенной казалась само собой разумеющейся. Во Вселенной могли происходить сложнейшие процессы, но от чего, от какого состояния и куда должна развиваться вся Вселенная?
Мысль об эволюции всей Вселенной представлялась нелепой, и эта мысль с большим трудом овладевала сознанием даже крупных ученых. В качестве примера можно привести самого А. Эйнштейна. Творец теории относительности понимал, сколь важна его теория для космологии. Сразу после создания общей теории относительности он стал выяснять, имеются ли у уравнений теории, примененных ко всей Вселенной, статические решения, то есть решения, описывающие состояние, не меняющееся со временем. А. Эйнштейну казалось очевидным, что надо строить именно статическую, а не эволюционирующую модель Вселенной. Но уравнения общей теории относительности в применении ко Вселенной не давали статических решений. Идея статического мира казалась настолько привлекательной, что А. Эйнштейн не поверил своим уравнениям и пытался даже их изменить, чтобы они давали стационарное решение. Мы дальше поговорим еще об этой его попытке.
Почему же идея статичности Вселенной была столь привлекательна?
По-видимому, это происходило потому, что она основывалась на видимой стационарности, неизменности астрономических тел и систем, будь то Солнечная система, звезды, звездные скопления или галактики. Вольно или невольно наблюдаемое постоянство астрономических явлений во всех известных человечеству масштабах распространялось на всю Вселенную. Очень четко об этом сказано еще у Аристотеля в его сочинении «О небе»: «В продолжение всего прошедшего времени, согласно летописям, завещаемым потомкам от поколения к поколению, мы не находим следа изменений ни во всем удаленном небе в целом, ни в одной из подходящих частей неба».
Сегодня, в конце XX века, мысль о том, что вся Вселенная должна эволюционировать, кажется нам естественной. Мы теперь знаем, что неизменность звезд, других небесных тел и их систем только кажущаяся. Человек их наблюдает в течение сроков слишком коротких, чтобы заметить эволюцию, изменение. Но звезды рождаются, живут и умирают. Продолжительность их жизни часто составляет миллиарды лет. Источником энергии, излучаемой звездами, являются ядерные реакции, идущие в их недрах. Любой источник энергии не вечен. Конечны запасы ее и в случае ядерных источников. Значит, и Солнце и звезды возникли в конечном прошлом и имеют свою историю.
Мы наблюдаем сегодня бурные процессы взрывов и эволюции в таких гигантских системах, какими являются галактики. Вещество, входящее в галактики, постепенно перерабатывается в ядерных процессах, идущих в звездах. Водород превращается в гелий, а затем и в более тяжелые химические элементы.
Итак, статическая картина неприемлема ни для каких астрономических систем, если только рассматривать достаточно большие промежутки времени. Если бы сегодня надо было заново строить модель Вселенной, необходимо было бы потребовать, чтобы модель была эволюционирующей, чтобы в ней было указание на эпоху, когда во Вселенной началось рождение звезд, галактик и т. д.
Но вернемся к началу нашего века. Первая работа А. Фридмана, доказывающая, что Вселенная должна эволюционировать, была получена редакцией немецкого «Физического журнала» в конце июня 1922 года. А. Эйнштейн был настолько убежден в необходимости статического решения уравнений, описывающих состояние Вселенной, что посчитал работу А. Фридмана ошибочной. В середине сентября 1922 года редакция того же журнала получила краткую заметку А. Эйнштейна. В ней он, по выражению академика В. Фока, «несколько свысока говорит, что результаты Фридмана показались ему подозрительными и что он нашел в них ошибку, по исправлении которой решение Фридмана приводится к стационарному».
А. Фридман узнал о мнении А. Эйнштейна из письма своего коллеги по работе в Петрограде Ю. Круткова, бывшего в то время в командировке за границей. В декабре 1922 года А. Фридман написал А. Эйнштейну письмо, в котором подробно излагал суть своих вычислений, убедительно доказывая свою правоту. Письмо заканчивалось словами:
«В случае, если Вы сочтете правильными изложенные в моем письме расчеты, я прошу Вас не отказать мне в том, чтобы известить об этом редакцию „Физического журнала“; быть может, в этом случае Вы поместите в печати поправку к вашему высказыванию или предоставите возможность для перепечатки отрывка из этого моего письма».
Письмо было получено А. Эйнштейном и сохранилось в его архивах, но, по-видимому, он не прочел его вовремя или не обратил внимание, будучи уверен в своей правоте.
В мае 1923 года Ю. Прутков встретился с А. Эйнштейном в Лейдене в доме известного голландского физика П. Эренфеста и в неоднократных беседах доказал правоту выводов советского математика. В письме к сестре в Петроград от 18 мая 1923 года Ю. Прутков пишет: «Победил Эйнштейна в споре о Фридмане. Честь Петрограда спасена!»
Сразу после бесед с Ю. Прутковым А. Эйнштейн направил в «Физический журнал» заметку, которую мы приведем здесь полностью:
«К работе А. Фридмана „О кривизне пространства“.
В предыдущей заметке я подверг критике названную выше работу. Однако моя критика, как я убедился из письма Фридмана, сообщенного мне г-ном Прутковым, основывалась на ошибке в вычислениях. Я считаю результаты Фридмана правильными и проливающими новый свет. Оказывается, что уравнения поля допускают наряду со статическим также и динамические (т. е. переменные относительно времени) центрально-симметричные решения для структуры пространства». А. Эйнштейн в дальнейшем всегда подчеркивал важность работ А. Фридмана в создании современной космологии. В 1931 году он писал: «Первым… на этот путь вступил Фридман».
Открытие расширения Вселенной
Далекие звездные системы — галактики и их скопления — являются наибольшими известными астрономам структурными единицами Вселенной. Они наблюдаются с огромных расстояний и именно изучение их движений послужило наблюдательной основой исследования кинематики Вселенной.
Пионером измерения лучевых скоростей у галактик был в начале нашего века американский астрофизик В. Слайфер. В то время еще не были известны расстояния до галактик и велись ожесточенные споры, находятся ли они внутри нашей звездной системы — Галактики — или далеко за ее пределами. В. Слайфер обнаружил, что большинство галактик (36 из измеренных им 41) удаляется и скорость удаления доходит почти до двух тысяч километров в секунду. Приближались к нам только несколько галактик. Как выяснилось позже, Солнце движется вокруг центра нашей Галактики со скоростью около 250 километров в секунду и большая часть «скоростей приближения» этих нескольких ближайших галактик связаны именно с тем, что Солнце сейчас движется к этим объектам.
Итак, галактики согласно В. Слайферу удалялись от нас. Линии в их спектрах были смещены к красному концу. Это явление получило название «красного смещения».
В 20-е годы были измерены расстояния до галактик.
В 1923 году американский астроном Э. Хаббл открыл первую цефеиду в одной из ближайших к нам галактик в созвездии Андромеды. Через год им было открыто уже более десяти цефеид в этой галактике и двадцать две цефеиды еще в одной галактике в созвездии Треугольника.
Цефеиды были открыты и в других галактиках. Расстояния до этих цефеид, а значит, и до галактик, в которых они находятся, оказались гораздо большими, чем размер нашей собственной Галактики. Тем самым было окончательно установлено, что галактики — это далекие звездные системы, подобные нашей.
Для установления расстояний до галактик, помимо цефеид, уже в первых работах использовались и другие методы. Так, одним из таких методов является использование ярчайших звезд в галактике как индикатора расстояний. Ярчайшие звезды, по-видимому, имеют одинаковую светимость и в нашей Галактике, и в других галактиках, и по этой «стандартной свече» можно определять расстояние. Но ярчайшие звезды имеют бóльшую светимость, чем цефеиды, могут быть видны с больших расстояний и являются, таким образом, более мощным индикатором расстояний.
Сравнение расстояний до галактик со скоростями их удаления (скорости были определены еще В. Слайфером и другими астрономами и только исправлялись за счет учета движения Солнца в Галактике) позволило Э. Хабблу установить в 1929 году замечательную закономерность: чем дальше галактика, тем больше скорость ее удаления от нас. Оказалось, что существует простая зависимость между скоростью удаления галактики и расстоянием до нее: скорость прямо пропорциональна расстоянию. Коэффициент пропорциональности называют теперь постоянной Хаббла.
Согласно измерениям Э. Хаббла галактики, находящиеся от нас на расстоянии одного миллиона световых лет, удаляются со скоростями сто семьдесят километров в секунду.
Со времени открытия Э. Хаббла прошло более 50 лет. Неизмеримо возросла мощность астрономических исследований, и эти исследования подтвердили закон Хаббла — закон пропорциональности скорости удаления галактик их расстоянию. Однако оказалось, что величина коэффициента пропорциональности была Э. Хабблом сильно завышена.
Дело было в том, что расстояния до галактик были определены им с ошибкой. Они были занижены раз в шесть-десять. Удивляться этому не приходится, ибо, как мы видели, для определения больших расстояний надо пройти по ступенькам длинной лестницы и ошибки возможны на каждой ступеньке.
Главные источники ошибок были установлены лишь после 1950 года, когда начал работать крупнейший в то время 5-метровый телескоп обсерватории Маунт Паломар. В 1952 году американский астрофизик В. Бааде обнаружил, что цефеиды того типа, который использовал Э. Хаббл, в действительности примерно в четыре раза ярче, чем думали раньше. Это означало, что расстояния до ближайших галактик, определенное по цефеидам, в действительности примерно вдвое больше. После добавочных уточнений оказалось, что расстояния до ближайших галактик надо утроить. Ошибка на этой ступеньке лестницы повлекла за собой ошибки и на последующих. Все измеренные расстояния и до более далеких галактик также пришлось утроить.
До описанного изменения шкалы расстояний казалось, что все соседние галактики заметно меньше нашей. Это выглядело странным. После пересмотра шкалы стало ясно, что многие галактики по размерам такие же, как наша, и даже больше. Такой вывод подкреплял уверенность в правильности пересмотра шкалы расстояний.
В конце 50-х годов выяснилось, что есть существенные ошибки и в последующих ступеньках лестницы, ведущей в даль Вселенной. Расстояния до более далеких галактик, где цефеиды уже не видны, тоже были определены Хабблом с ошибкой. Причин было две. Первая связана с тем, что для определения видимого блеска очень слабых звезд в других галактиках надо проводить сравнения их блеска с известными стандартами. Это очень сложная задача, и оказалось, что в стандартной процедуре измерений имеются погрешности.
Вторая причина неточностей состояла в том, что Э. Хаббл ошибочно принял за ярчайшие звезды в далеких галактиках (эти звезды использовались им как «стандартные свечи») очень яркие газовые облака ионизованного водорода. С таких больших расстояний эти облака выглядели яркими точками, подобно звездам, что, и привело, к ошибке. В результате шкала расстояний до далеких галактик была увеличена еще примерно в 2,2 раза.
Если мы учтем все сказанное, то окажется что все расстояния до самых далеких галактик больше, чем думал Э. Хаббл, примерно в шесть-десять раз. Точнее сказать пока невозможно. Во столько же раз оказалась меньше постоянная Хаббла, чем считал сам Э. Хаббл. Согласно современным данным галактики на расстоянии одного миллиона световых лет от нас удаляются со скоростями около 25 километров в секунду.
После этих уточнений вернемся к принципиальному значению открытия Э. Хаббла для нашего понимания строения Вселенной.
Это открытие показывало, что галактики удаляются от нас во все стороны и скорость этого удаления прямо пропорциональна расстоянию.
Этот факт вызывает невольно удивление: почему именно от нас, от Галактики, происходит разбегание других галактик. Неужели мы находимся в центре Вселенной?
Такой вывод неправилен. Дело в том, что галактики удаляются не только от нашей Галактики, но и друг от друга. Если бы мы находились в другой галактике, то видели бы, точно такую же картину разбегания, как и из нашей звездной системы.
Чтобы понять это, представим себе две галактики, удаляющиеся от нас в одном направлении, причем вторая галактика находится от нас вдвое дальше, чем первая и удаляется с вдвое большей скоростью. Перенесемся мысленно на эту вторую галактику. Она удаляется от нашей, и наблюдателю на ней, который, естественно, считает себя неподвижным, кажется, что наша Галактика движется в противоположном направлении с той же скоростью. Первая же галактика, находящаяся на полпути между нашей и второй галактикой, отстает от нее, а наблюдателю на второй галактике кажется, что она удаляется от нее в ту же сторону, что и наша, но с меньшей скоростью. Сказанное можно повторить для любых галактик.
Значит, с точки зрения наблюдателя в любой галактике картина выглядит так, как будто галактики разбегаются именно от него.
Можно представить себе еще одну модель для пояснения сказанного. Возьмем однородный шар и затем увеличим его размеры, скажем, вдвое, так, чтобы шар оставался по-прежнему однородным. Ясно, что при этом расстояния между любыми парами точек внутри шара тоже увеличатся вдвое, как бы мы эти точки ни выбирали внутри шара. Значит, при раздувании шара, где бы наблюдатель ни находился внутри его, он будет видеть одинаковую картину удаления от него всех точек внутри шара. Если взять шар неограниченно большого размера, то мы и получим картину, описанную выше, не зависящую от положения наблюдателя.
Итак, фундаментальный факт заключается в том, что галактики разбегаются — Вселенная расширяется. Это является блестящим подтверждением вывода теории Фридмана о нестационарности Вселенной.
Иногда задают следующий вопрос. Пусть скопления галактик в среднем равномерно заполняют всю Вселенную, тогда спрашивается: «куда», «во что» расширяется Вселенная?
Этот вопрос неправилен сам по себе. Вселенная — это все, что существует. Вне Вселенной ничего нет. Причем нет не только галактик или какой-либо другой материи, но и вообще ничего — ни пространства, ни времени. Нет той пустоты, в которую можно расширяться. Но для расширения Вселенной и не требуется ничего вне ее. Поясним это наглядным примером.
Пусть имеется бесконечная плоскость, на которую нанесены равномерно точки — галактики. Растянем теперь эту плоскость во всех направлениях равномерно так, чтобы расстояния между точками увеличились. Спрашивается, куда же растягивалась плоскость? Ведь она и так простиралась до бесконечности. Очевидно, таковы свойства бесконечности. Увеличив бесконечность вдвое, будем иметь все ту же бесконечность!
Давайте ненадолго отвлечемся от галактик и Вселенной и поговорим немного о бесконечности, ибо это понятие играет важнейшую роль в наших представлениях о Вселенной.
Бесконечность изучается математикой, тем ее разделом, который называется теорией множеств. Большинство из тех, кто не занимался этим вопросом специально, имеет о бесконечности весьма смутное (и наивное) представление. Интуитивно кажется, что бесконечность — это то, что получается, если неограниченно продолжать счет 1, 2, 3… и т. д. без конца. Казалось бы, какая тут еще может быть теория бесконечного?
В действительности свойства бесконечного вовсе не исчерпываются неограниченным продолжением счета. Более того, эти свойства бесконечно разнообразнее и удивительнее любых свойств конечных чисел и их совокупностей.
Мы познакомимся с некоторыми из них. Начнем с рассказа, приписываемого знаменитому математику Д. Гильберту.
Представим себе гостиницу с бесконечным числом номеров, «перенумерованных» по порядку:
1, 2, 3…
Все номера заняты. Поздно вечером приезжает еще один гость. «Свободных мест нет», — говорит ему портье. «Это не играет роли, — вступает в разговор управляющий. — Переселим гостя из номера 1 в номер 2, гостя из номера 2 — в номер 3, гостя из номера 3 — в номер 4 и так далее, а вновь прибывшего гостя поместим в освободившийся номер 1».
Среди ночи приезжает еще 1000 гостей. «Свободных мест нет», — говорит им портье. «Неважно, — возражает управляющий. Переселим гостя из номера 1 в номер 1001, гостя из номера 2 — в номер 1002 и так далее, а вновь прибывших гостей поместим в освободившиеся номера от 1 до 1000».
Не успели все гости разойтись по отведенным им номерам, как в гостиницу вваливается толпа. На этот раз вновь прибывших бесконечно много, и мы обозначим их А1, А2, А3… «Свободных мест нет», — говорит портье. «Ничего страшного, — все так же спокоен управляющий. — Переселим гостя из номера 1 в номер 2, гостя из номера 2 — в номер 4, гостя из номера 3 — в номер 6 и вообще каждого гостя из последующего номера попросим переехать в номер с вдвое большим числом. Тогда гостей А1, А2, А3… мы сможем поселить в номерах 1, 3, 5…».
В этой истории наглядно показано, что в бесконечности часть может быть равна целому. Действительно, запишем бесконечное число четных номеров в виде бесконечного ряда, а под этим рядом напишем номера гостей 1, 2, 3…
2, 4, 6, 8…
1, 2, 3, 4…
Каждому четному числу соответствует один номер гостя и наоборот. Значит, число четных чисел равно числу всех чисел натурального ряда. На первый взгляд это противоречит нашей интуиции. Ведь четные числа составляют лишь половину всех чисел. Это действительно так для любой конечной совокупности чисел. Но когда мы переходим к бесконечности, все меняется и часть может равняться целому, в чем мы наглядно убедились, сравнивая написанные выше два ряда.
О подобных же свойствах говорят и другие примеры, приведенные в шутливой истории Д. Гильберта.
Из приведенных выше примеров может показаться, что все бесконечности, так сказать, одинаковы, то есть что любое бесконечное множество элементов можно пересчитать с помощью бесконечного ряда натуральных чисел, как мы это сделали с четными числами.
Но это не так!
Знаменитый математик Г. Кантор в прошлом веке доказал, что число точек на отрезке прямой сосчитать никаким способом нельзя. Их нельзя перенумеровать с помощью бесконечного ряда натуральных чисел, приписывая каждой точке свой номер, в каком бы порядке мы ни выбирали эти точки. Всегда останется хотя бы одна точка, на которую не хватит номера!
Понять это не так уж сложно. В самом деле, представим себе, что мы взяли отрезок единичной длины и положение каждой точки характеризуем расстоянием ее от левого конца, принятого за ноль. Эти расстояния будем записывать в виде десятичной дроби. Точнее, положение каждой точки записывается, вообще говоря, в виде бесконечной десятичной дроби, у которой после запятой имеется бесконечный ряд десятичных знаков. Конечно, в исключительных случаях все знаки начиная с некоторого могут оказаться нулями.
Представим далее, что вопреки нашему утверждению кому-то удалось перенумеровать точки этого отрезка. Тогда мы выпишем десятичные дроби, характеризующие положения этих точек на отрезке, в порядке их номеров в виде таблицы. В первой строчке запишем бесконечную дробь для положения точки, получившей первый номер, во второй строчке бесконечную дробь для точки, получившей второй номер и т. д. Наша таблица может выглядеть, например, так
0,32869700833…
0,91967138452…
0,00063700114…
…………………………
Покажем, что обязательно есть точка отрезка, не вошедшая в этот список, и, следовательно, список неполон.
Для того чтобы записать десятичную дробь, характеризующую положение этой точки на отрезке, поступим следующим образом. Запишем первым знаком после запятой в десятичной дроби любую цифру, отличающуюся от первой цифры после запятой в первой строчке нашей таблицы (то есть в нашем примере не 3, а, скажем, 5). Вторую цифру в нашей дроби запишем любую, но отличающуюся от второй цифры во второй строчке таблицы (в нашем примере не 1); и так далее будем поступать до бесконечности. Ясно, что мы получим дробь, которой нет в нашем списке. Действительно, она не совпадает с первой строчкой, так как заведомо отличается первая цифра после запятой, не совпадает со второй строчкой так как заведомо отличается вторая цифра после запятой и т. д.
Точка, расстояние которой записано этой дробью, пропущена в нашем бесконечном списке и, значит, не имеет номера.
Казалось бы, можно начать нумеровать с этой точки, а уж потом давать номера всем остальным. Как шутливо замечает голландский математик Г. Фрейденталь, именно так поступил человек, побившийся об заклад съесть 20 картофелин. Съев 19 из них и чувствуя себя не в силах проглотить последнюю, картофелину, этот человек со вздохом заметил: «С нее-то мне и следовало бы начать».
Разумеется, если начать нумеровать с только что указанной точки, оставшейся без номера, то тем же способом можно найти другую точку, оставшуюся без номера при новом способе нумерации.
Наверное, читатель несколько устал от необходимости следить за необычным построением, но уж очень оно важно, и хотелось его привести для того, чтобы дать хоть немного почувствовать, насколько необычные свойства мы встречаем в царстве бесконечности.
Итак, точек на единичном отрезке прямой заведомо больше, чем бесконечных чисел натурального ряда. Математики говорят, что бесконечность точек на отрезке прямой более мощная, чем бесконечность чисел натурального ряда.
Значит, бесконечности не все одинаковые. Среди них есть более мощные, то есть более богатые элементами, и менее мощные.
Казалось бы, количество точек на всей прямой заведомо больше, чем количество точек на единичном отрезке. Ведь отрезок — часть прямой. Но мы уже осторожны и помним, что в царстве бесконечности тезис «часть меньше целого» не работает. И действительно, мощности бесконечного числа точек прямой и отрезка одинаковы. Это одинаковые бесконечности!
Более того, бесконечность числа точек на всей плоскости и даже во всем трехмерном пространстве той же мощности, что и на отрезке прямой. Все это одинаковые бесконечности. Может возникнуть подозрение, что раз множество точек всего бесконечного пространства не больше множества точек отрезка, то вообще не существует бесконечного множества еще более мощного. И эта бесконечность наибольшая.
Но это не так. Математики умеют строить множества все более и более мощные, то есть строить все большие и большие бесконечности. Нет наибольшей бесконечности, этот ряд тоже бесконечен.
Остановимся, пожалуй, в самом начале нашего пути в мир бесконечностей. Путешествие в нем, возможно, и не менее увлекательно, чем путешествие в мире черных дыр или в далях Вселенной, но это все же дорога в другом направлении человеческих знаний.
Вернемся к расширению Вселенной. После всего сказанного нас уже не удивляет, что бесконечная Вселенная может бесконечно расширяться и для этого не требуется чего-то вне Вселенной, чего-то «потустороннего».
Подобно тому как в истории Гильберта бесконечное число постояльцев можно было всех переселить только в четные номера, увеличив тем самым вдвое расстояние между ними, так и во Вселенной можно увеличить, скажем, вдвое расстояние между галактиками, оставаясь все в той же бесконечной Вселенной.
Но возникает еще один важнейший вопрос: почему Вселенная именно расширяется? Что придало галактикам скорость? Еще раз напомним, что теория тяготения не отвечает на этот вопрос. Галактики сейчас движутся по инерции, и их скорость тормозится тяготением.
К этому вопросу, о причинах, приведших к расширению Вселенной, мы вернемся в последней главе.
Наконец, еще одно замечание. Иногда приходится слышать утверждение, что вследствие расширения Вселенной расширяется все на свете: не только галактики разбегаются, но и сами галактики расширяются, расширяются отдельные звезды, наша Земля — вообще все тела. Это, конечно, неверно. Разбегание галактик вообще никак не влияет на отдельные тела. Как в разлетающемся облаке газа отдельные молекулы не расширяются, точно так же и в расширяющейся Вселенной гравитационно связанные тела — галактики, звезды, Земля — не подвержены космологическому расширению. Разумеется, они могут и расширяться и сжиматься, но это вызывается внутренними причинами — процессами, которые происходят внутри этих тел.
Расширяется ли Вселенная?
Вывод о расширении Вселенной далеко не сразу получил всеобщее признание. Уж очень грандиозна сама идея эволюции всего окружающего мира. И эта идея ведет ко многим удивительным и далеко идущим следствиям, например, что в далеком прошлом, когда началось расширение, Вселенная была не похожа на сегодняшнюю. Как отмечено в начале главы, такая идея вызывала много возражений, отчасти в силу инертности человеческого мышления, отчасти в силу предвзятых псевдофилософских соображений. Казалось, гораздо привычнее и спокойнее представление о неэволюционирующей, стационарной Вселенной. Все это породило многочисленные попытки дать какое-то иное объяснение наблюдаемому «красному смещению» в спектрах далеких галактик, отличное от объяснений его эффектом Доплера. Тогда можно было бы считать галактики не удаляющимися друг от друга, а Вселенную не расширяющейся.
Очень хорошо это умонастроение отражено в памфлете «Здравый смысл и Вселенная» канадского писателя-юмориста и ученого-экономиста С. Ликока.
«В течение последних лет, точнее со дня обнародования этой ужасной гипотезы (о расширении Вселенной. — И. Н.)… мы, кто как мог, пытались жить в этой расширяющейся Вселенной, каждая часть которой с кошмарной скоростью улетает от всех остальных частей! Это напоминает нам того отчаявшегося влюбленного, который вскочил на коня и поскакал, как безумный, в разных направлениях. Идея была величественная, но создавала какое-то ощущение неудобства».
Попытки «отстоять» стационарность Вселенной иногда встречаются и до сих пор. Что же имеет место в действительности? Нет ли какого-то физического процесса, не связанного с разбеганием галактик, но также вызывающего покраснение квантов света — фотонов?
В принципе такие механизмы существуют.
Чтобы квант краснел, он должен отдавать энергию. Это может происходить, когда квант, длительно путешествуя в космосе, сталкивается с электронами межзвездной среды, а в некоторых вариантах гипотезы — сталкивается с другими фотонами в межгалактическом пространстве. Во всех подобных гипотезах фотон при взаимодействии теряет не только энергию, но и изменяет направление своего движения. Значит, постепенно кванты света, летящие от галактики точно на нас, приобретают движение по расходящимся траекториям. Изображения далеких галактик должны становиться размытыми, нечеткими.
Ничего подобного не наблюдается. Уже по этой причине этот эффект не может объяснить «красное смещение». Нет надобности говорить, что при этом потребовалась бы фантастическая плотность межгалактической среды, появились бы другие наблюдаемые эффекты.
В качестве другого мыслимого механизма покраснения фотонов предлагали гипотетический процесс постепенного распада фотонов с испусканием каких-то частиц. Советский физик М. Бронштейн еще в 30-е годы показал, что если бы такой процесс и существовал (потом выяснилось, что его нет), то вероятность распада фотона была бы обратно пропорциональна частоте. Значит, чем больше длина волны фотона, тем быстрее он должен «краснеть». Кванты радиоволн должны бы краснеть быстрее квантов видимого света. Таким образом, красное смещение спектральных линий в радиоспектрах галактик было бы больше, чем в видимой области спектра. В 60-х годах были проведены точные наблюдения смещения радиолинии с длиной волны 21 сантиметр. Эта линия хорошо видна в радиоспектрах холодного межзвездного газа во многих других галактиках.
У всех 30 галактик, для которых проводились наблюдения, красное смещение в радиодиапазоне оказалось точно таким же, как для волн света, видимого глазом.
Следовательно, предположение о покраснении квантов по причине их старения полностью отпадает.
Единственным возможным объяснением космологического красного смещения является эффект Доплера, вызванный расширением Вселенной.
Подчеркнем здесь еще раз, что нестационарность Вселенной была предсказана теоретически до ее экспериментального обнаружения, и открытие красного смещения только подтвердило это предсказание. Удивляться надо не существованию красного смещения и расширению Вселенной (нестационарность ее есть прямое следствие фундаментальных законов физики), а поразительной живучести консервативных взглядов.
Если бы наблюдения показали отсутствие систематического смещения линий в спектрах галактик, то есть отсутствие нестационарности Вселенной, то это означало бы, что законы тяготения нуждаются в уточнении, что какая-то неизвестная универсальная сила во Вселенной мешает тяготению сделать Вселенную нестационарной.
Любопытно, что на самой заре современной космологии, еще до А. Фридмана и Э. Хаббла, попытка введения такой новой силы была сделана А. Эйнштейном. Об этом рассказывается в следующей главе. Нам остается только добавить, что некоторые современные астрофизики указывают на возможность наличия у отдельных квазаров и галактик наряду с космологическим красным смещением, вызванным расширением Вселенной, еще добавочного красного смещения, вызванного другими причинами, например, сильным гравитационным полем или даже неизвестными еще процессами. В принципе такие явления, конечно, возможны. Однако автору кажется, что наблюдения, приводимые в поддержку этих идей, не имеют доказательной силы и могут быть объяснены естественным путем.
Глава 2. Механика Вселенной
Вселенная в прошлом
Факт расширения Вселенной означает то, что в прошлом она была совсем не похожа на то, что мы видим сегодня. Раз галактики удаляются друг от друга, то в прошлом они должны были практически соприкасаться, а еще раньше не было отдельных галактик. Поделив расстояние между галактиками на скорость их удаления, получаем время, прошедшее с начала расширения. Мы говорили, что галактики на расстоянии миллиона световых лет (1019 километров) удаляются со скоростью около 25 километров в секунду. После деления первого числа на второе получаем 13 миллиардов лет. Так как для вдвое более далеких галактик и скорость удаления вдвое больше, то и для них после деления мы получим то же самое число.
Значит, все галактики начали разлетаться 13 миллиардов лет назад. Мы помним, однако, что в определении расстояния до галактик могут быть некоторые ошибки. Поэтому в оценке времени, прошедшего с начала расширения, тоже есть некоторая неопределенность. Можно сказать, что эта эпоха отстоит от нас в прошлом на 10–20 миллиардов лет.
В расчетах мы принимали, что галактики движутся с постоянными скоростями. В действительности скорость расширения тормозится тяготением. Однако учет этого обстоятельства мало меняет числа, приведенные выше.
Интересно сопоставить найденное нами время, прошедшее с начала расширения, с возрастом отдельных объектов во Вселенной. Например, возраст так называемых шаровых звездных скоплений в Галактике оценивается в 10–14 миллиардов лет. Возраст нашей Земли и Солнца около 5 миллиардов лет.
Мы видим, что и возраст нашей планеты и, по-видимому, возраст скоплений звезд лишь немногим меньше времени, прошедшего с начала расширения Вселенной.
Итак, в прошлом, 10–20 миллиардов лет назад, вблизи момента начала расширения плотность вещества во Вселенной была гораздо больше сегодняшней. Отдельные галактики, отдельные звезды и т. д. не могли существовать как изолированные тела. Вся материя находилась в состоянии непрерывно распределенного однородного вещества. Лишь позже, в ходе расширения, оно распалось на отдельные комки, что привело к образованию отдельных небесных тел. К этому вопросу мы еще вернемся.
Сразу же возникает целый ряд других вопросов: насколько достоверен вывод о начале расширения, о состоянии огромной плотности всего вещества (как говорят, о сингулярном состоянии), какие процессы протекали в этом сверхплотном веществе, что заставило вещество Вселенной расширяться, наконец, что было до начала расширения, до момента сингулярности?!
Разумеется, все это чрезвычайно важно и интересно, и мы по мере изложения разберем эти проблемы.
Гравитация пустоты
Начало истории научной идеи о гравитации пустоты, или, на современном научном языке, — вакуума, которую мы изложим в этом параграфе, связано все с тем же конфликтом между традиционной верой в неизменность Вселенной и ее нестационарностью, неумолимо вытекающей из теории тяготения.
Закон всемирного тяготения гласит, что любые материальные тела притягивают друг друга. А гравитирует ли вакуум? Этот вопрос в современной физике был поставлен А. Эйнштейном еще в 1917 году. Что такое гравитация вакуума? Почему возник такой вопрос? Какие данные физических экспериментов или астрономических наблюдений заставили его поставить эту проблему? Оказывается, никаких прямых данных не было, а точнее говоря, именно отсутствие в ту пору данных о движении галактик привело А. Эйнштейна к мысли о гравитации вакуума.
Дело обстояло следующим образом. Вскоре после создания общей теории относительности он попытался построить на ее основе математическую модель Вселенной. Это происходило до работ А. Фридмана, до открытия Э. Хабблом красного смещения в спектрах галактик, и им владела идея стационарности, неизменности мира: «Небеса длятся от вечности к вечности». Однако мы видели, что закон тяготения требует нестационарности Вселенной.
Чтобы уравновесить силы тяготения и сделать мир стационарным, надо ввести силы отталкивания, не зависящие от вещества. Исходя из таких соображений, А. Эйнштейн ввел космическую силу отталкивания, которая делала мир стационарным. Ускорение, которое космическая сила отталкивания должна сообщить телам, универсально, оно не зависит от масс тел, а только от расстояния, их разделяющего.
А. Эйнштейн показал, что сила отталкивания должна быть пропорциональна расстоянию между телами. Коэффициент пропорциональности называют космологической постоянной. Чтобы в межгалактических просторах уравновесить силу тяготения обычной материи силами отталкивания, космологическая постоянная должна бы быть очень мала.
Мы позже остановимся вкратце на возможных физических причинах возникновения сил отталкивания. Сейчас только скажем, что эта причина связана с квантовыми процессами, происходящими в вакууме.
В принципе силы отталкивания, если они, конечно, существуют в природе, можно было бы обнаружить в достаточно, точных лабораторных опытах. Однако малость величины космологической постоянной делает задачу ее лабораторного обнаружения совершенно безнадежной. Действительно, легко подсчитать, что при свободном падении тела на поверхность Земли добавочное ускорение, сообщаемое силами отталкивания, на 30 порядков (!) меньше самого ускорения свободного падения. Даже в масштабе Солнечной системы или всей нашей Галактики эти силы ничтожно малы по сравнению с силами тяготения… Так, нетрудно подсчитать, что ускорение, сообщаемое Земле тяготением Солнца, равно 0,5 см/с2. В то же время ускорение космического отталкивания между Землей и Солнцем в 1022 раз меньше! Разумеется, это отталкивание (если оно есть вообще) никак не сказывается на движении тел Солнечной системы и может быть обнаружено только при исследовании движений самых отдаленных наблюдаемых галактик.
Так в уравнениях тяготения Эйнштейна появилась космологическая постоянная, описывающая силы отталкивания вакуума. Действие этих сил столь же универсально, как и сил всемирного тяготения, то есть оно не зависит от физической природы тела, на котором проявляется, поэтому логично назвать это действие гравитацией вакуума, хотя обычно под гравитацией понимают притяжение, а здесь мы имеем отталкивание.
Через несколько лет после работы А. Эйнштейна была создана, как мы уже знаем, теория Фридмана. После чего А. Эйнштейн стал склоняться к мысли, что космологическую постоянную не следует вводить в уравнения тяготения, если их решение для всего мира можно получить и без этой постоянной.
После открытия красного смещения в спектрах галактик, доказывающего расширение Вселенной, какие-либо основания предполагать, что в природе существуют космические силы отталкивания, отпали. Правда, решение, описывающее расширяющийся мир, можно получить и для уравнений с космологической постоянной. Для этого достаточно предположить, что силы тяготения и отталкивания не компенсируют точно друг друга; тогда преобладающая сила приведет к нестанционарности. Это было отмечено еще в пионерских работах А. Фридмана. Наблюдения красного смещения во времена Э. Хаббла были недостаточно точны, чтобы определить, какое решение осуществляется в природе: с космологической постоянной или без нее. Тем не менее многие физики с неприязнью поглядывали на космологическую постоянную в уравнениях, поскольку она осложняла теорию и ничем не была оправдана. Сам А. Эйнштейн и многие другие физики предпочитали писать уравнения тяготения без нее, и он даже назвал введение космологической постоянной в свои уравнения «самой грубой ошибкой в своей жизни».
Мы увидим в дальнейшем, что то, что он считал своей ошибкой, на самом деле являлось первым шагом к пониманию природы физических взаимодействий элементарных частиц, к пониманию природы пустоты — физического вакуума. Но в начале нашего века его отказ от космологической постоянной казался естественным.
Однако космологи 30-х годов не отказались столь поспешно от космологической постоянной. Для сохранения ее у них были серьезные основания. Вспомним, что первые определения постоянной Хаббла давали значения, завышенные раз в десять. Если бы мы с ее помощью рассчитали время, прошедшее с начала расширения Вселенной, то получили бы всего 1–2 миллиарда лет вместо правильного значения около 10–20 миллиардов лет. Два миллиарда лет — срок очень короткий. Во-первых, он оказывался даже меньше возраста Земли. Во-вторых, что гораздо более существенно, возраст звезд и звездных систем тогда ошибочно оценивался в десять тысяч миллиардов лет, то есть на четыре порядка больше времени расширения Вселенной.
Сегодня мы знаем, что время с начала расширения занижено примерно в 10 раз, а возраст звезд, наоборот, завышен более чем на два порядка. И с сегодняшней точки зрения никакого противоречия между этими возрастами нет. Однако в 30-е годы указанное различие рассматривалось как серьезное противоречие.
Для приведения в соответствие времени расширения Вселенной с возрастом звезд была привлечена космологическая постоянная. Так идея универсального космического отталкивания начала переживать период «второй молодости».
Посмотрим, как введение космологических сил отталкивания может привести к резкому изменению времени расширения Вселенной.
Предположим, что космологическая постоянная отлична от нуля. Пусть мир расширяется от состояния очень высокой плотности. Так как вначале плотность вещества велика, силы тяготения, пропорциональные плотности и тормозящие расширение, много больше сил отталкивания.
В ходе расширения рано или поздно плотность упадет настолько, что силы тяготения и отталкивания сравняются. В этот момент мир по инерции будет расширяться без ускорения, с постоянной скоростью. Если эта скорость очень мала, то очень долго будет поддерживаться почти полное равенство сил тяготения и отталкивания и, следовательно, период почти полной остановки расширения, или, как его называют, задержки расширения, будет длительным. Затем плотность вещества все же постепенно упадет и силы тяготения станут меньше сил отталкивания. Теперь мир уже будет расширяться ускоренно под действием сил отталкивания. Подбирая параметры модели, можно сделать задержку расширения очень длительной. Согласно этой гипотезе задержка в расширении была в прошлом. Сегодня мир расширяется ускоренно.
Так, введение космологической постоянной растягивает время расширения Вселенной и может привести его в соответствие с возрастом звезд.
Оценки постоянной Хаббла были пересмотрены в 50-х годах. Еще раньше, в конце 30-х годов, было установлено, что превращение водорода в гелий является основным источником энергии звезд, а в 50-х годах построена современная теория звездной эволюции. Все противоречия с возрастами отпали, отпала и необходимость в космологической постоянной. Уже во второй раз!
А в 1967 году начался период «третьей молодости» идеи о космологической постоянной. К этому времени астрономы открыли и исследовали необычайные объекты — квазары, о которых мы кратко говорили в первой части.
Квазары до сих пор хранят множество тайн и нерешенных проблем. Мы остановимся здесь лишь на двух особенностях квазаров. Во-первых, они обладают огромной светимостью и видны с расстояний даже больше, чем далекие галактики. Чем дальше квазар, тем должен быть меньше его видимый блеск на небе, ослабленный этим расстоянием. В то же время квазары должны подчиняться законам расширения Вселенной и чем дальше, тем с большей скоростью удаляться от нас, а значит, сильнее должно быть в их спектрах «красное смещение».
Итак, при изучении квазаров, ожидалось, что чем меньше их видимый блеск, тем сильнее красное смещение.
Ничего подобного не обнаружили! Для объяснения этого американские ученые В. Петросян, Э. Сальпетер и П. Шекерс предположили, что возможной причиной отсутствия зависимости между видимым блеском квазаров и красным смещением в их спектрах могут явиться космические силы отталкивания. Поясним это.
Американские ученые подчеркивали, что квазары, как правило, наблюдаются на огромных расстояниях, гораздо дальше, чем самые далекие галактики, доступные телескопам. Когда мы наблюдаем квазары с большим красным смещением, то есть на больших расстояниях, мы видим свет, давно испущенный. Если он покинул квазары в эпоху, соответствующую задержке расширения Вселенной в теории с космологической постоянной, то и у более близкого, и у более далекого квазара красное смещение будет почти одним и тем же. Это происходит потому, что наблюдения относятся к периоду, когда мир почти не расширялся.
Действительно, пусть свет покинул квазар в эпоху задержки расширения. Он долго идет в почти не расширяющейся Вселенной и поэтому не краснеет. Когда этот луч находится еще на пути к нам, из более близкого квазара выходит луч, который затем одновременно с первым уже в нашу эпоху достигнет наблюдателя на Земле. Оба луча идут вместе в почти стационарной Вселенной и не краснеют. Свет обоих квазаров одинаково покраснеет позже — после окончания эпохи задержки расширения, уже в расширяющейся Вселенной. Следовательно, и относительно близкий, а потому яркий квазар, и далекий — слабый будут обладать почти одинаковым красным смещением. В результате многие квазары будут обладать похожими красными смещениями в спектрах, а видимый блеск их будет весьма различным, и никакой зависимости между этими величинами не окажется.
Аргументы в пользу картины расширения Вселенной с длительной задержкой в прошлом (а значит, в пользу существования космологической постоянной) приводили советские астрофизики И. Шкловский и Н. Кардашев, использовавшие другие особенности в спектрах квазаров.
Была ли в действительности задержка в расширении Вселенной в прошлом? Ответ могли дать только новые наблюдения.
Со времени дискуссии этой проблемы прошло почти двадцать лет. Проведено много новых наблюдений квазаров. Постепенно аргументы в пользу задержки расширения начали «рассасываться», как говорят астрономы-профессионалы на своем жаргоне. Новые наблюдения показали, что отсутствие зависимости между видимым блеском квазаров и красным смещением связано с тем, что истинная светимость их очень и очень разнообразна. Их никак нельзя рассматривать как «стандартные свечи» (в отличие от ярчайших галактик в скоплениях) и поэтому нельзя ожидать проявления рассматриваемой зависимости. Точно так же, как если бы мы взяли свечи самой разной истинной яркости, то их видимый блеск никак не характеризовал бы их расстояние от нас.
Отпали и другие аргументы в пользу расширения с задержкой, а с ними отпала и необходимость в существовании космологической постоянной. Отпала уже в третий раз!
Но, как говорят, джинна, выпущенного из бутылки, нелегко загнать обратно. Идея о том, что космологическая постоянная не равна нулю, оказалась живучей.
Ясно одно, что если космологическая постоянная и отличается от нуля, то очень мало. Но доказать, что она точно равна нулю, путем наблюдений, конечно, очень трудно. Может быть, действительно существуют космические силы отталкивания?
Это заставляет физиков задуматься над природой таких сил. Подробнее мы будем говорить об этом в разделе «Почему Вселенная такая». Сейчас отметим только, что энергия взаимодействия виртуальных частиц вакуума (об этом мы говорили в главе «Черные дыры и кванты» в 1-й части) приводит к тому, что в пустоте может быть все время хоть и малая, но отличная от нуля плотность энергии. Свойства вакуума таковы, что вместе с плотностью энергии должны появиться и натяжения (как могут быть натяжения в упругом теле). Вот присутствие этих натяжений и приводит, как можно показать, к возникновению универсальных гравитационных сил отталкивания, о которых мы говорили.
Подчеркнем, что физикам далеко еще не все ясно с природой вакуума.
В последнее время развитие теории физики элементарных частиц делает вероятным заключение о том, что в нашу эпоху и в обозримом прошлом силы гравитации вакуума вряд ли играли заметную роль в эволюции Вселенной. Но вот вблизи самого начала расширения, в первые мгновения, возможно, их роль была определяющей, свойства вакуума там были совсем другие. Об этом, как уже сказано, мы поговорим далее, а здесь заметим, что настало, по-видимому, время «четвертой молодости» идеи о космологической постоянной.
Наверное, у читателей осталось чувство какого-то скептицизма по отношению к специалистам, которые то находят аргументы в пользу идеи о гравитации вакуума, то находят аргументы против нее, то опять за, и так много раз. Не подрывают ли такие колебания веру в надежность научных исследований, веру в науку? О похожей ситуации высказался в уже цитированном памфлете С. Ликок: «Не подумайте, что я высказываю неверие в науку или неуважение к ней (в наши дни это было бы так же чудовищно, как во времена Исаака Ньютона не верить в Святую Троицу). Но все же… Так что подхватывайте свои книжки, следите за развитием науки и ждите следующего астрономического конгресса».
Ну что ж, если оставить шутки, то в истории науки такое положение известно. К какой-нибудь научной идее подходят с разных сторон, на разном уровне развития физики, с разной степенью вооруженности. Штурмуют сложнейшую проблему много раз, пока не решат ее. И, как правило, за ней появляются проблемы еще более глубокие и сложные.
Загадка вакуума относится к такого рода проблемам.
Будущее расширяющейся Вселенной
Итак, вероятно, космологическая постоянная не влияет сегодня на расширение Вселенной. Будем считать ее равной нулю, как это полагал А. Эйнштейн, и посмотрим, как будет протекать расширение в будущем.
Расширение Вселенной протекает с замедлением из-за тяготения, и для будущего есть две возможности. Если тяготение слабо тормозит расширение, то в будущем оно будет продолжаться неограниченно. Расстояние между скоплениями галактик неограниченно увеличивается. Силы тяготения во Вселенной зависят от средней плотности вещества. (Средней называется плотность, если «размазать» все небесные тела, все облака газа, все галактики равномерно по пространству.) Чем больше средняя плотность, тем больше силы. Значит, при достаточно малой средней плотности масс расширение будет продолжаться вечно. Но возможно, что плотность вещества сегодня достаточно велика, а значит, велико замедление расширения. В результате расширение прекращается в будущем и сменяется сжатием.
Ситуация здесь полностью аналогична той, когда ракета, разогнанная до определенной скорости, должна покинуть небесное тело. Так, скорость в 12 километров в секунду достаточна, чтобы покинуть Землю и улететь в космос, ибо эта скорость больше второй космической скорости для Земли. Однако эта скорость недостаточна для того, чтобы покинуть поверхность Юпитера, где вторая космическая скорость, как мы писали, 61 километр в секунду.
Тело, брошенное на Юпитере со скоростью 12 километров в секунду вверх, после подъема снова упадет на него.
Значит, во Вселенной при нынешней ее скорости расширения (нынешней постоянной Хаббла) есть критическое значение плотности вещества, отделяющее один случай от другого.
Вычисления показывают, что это критическое значение — десять атомов водорода в среднем в одном кубическом метре (или равное количество другого вещества). Если истинное значение плотности во Вселенной больше этого, то расширение сменится в будущем сжатием, если меньше, то расширение вечно.
Что имеет место в действительности?
Оказывается, ответить на этот вопрос не так-то просто. Для этого надо учесть все виды материи во Вселенной, ибо все они создают поле тяготения.
Учесть вещество, входящее в звезды, галактики, светящийся газ можно (хотя это трудная задача). Но, возможно, имеется много труднонаблюдаемой материи между галактиками, которая не излучает (или плохо излучает) свет и не поглощает его.
Учет таких масс, как их называют — скрытых масс, крайне труден.
Поэтому точного и полного ответа на поставленный вопрос нет до сих пор.
Можно сказать лишь следующее. Если учитывать только светящиеся галактики, то средняя плотность вещества во Вселенной в тридцать раз меньше критического значения.
Если бы не было труднонаблюдаемых форм материи, то расширение Вселенной продолжалось бы неограниченно.
Проблема скрытой массы
Астрономы имеют серьезные основания подозревать, что в пространстве между галактиками может быть много труднонаблюдаемых форм материи — много скрытой массы. Может быть, невидимые ореолы скрытой массы окружают даже отдельные галактики.
Одним из поводов для такого подозрения являются результаты измерений масс скоплений галактик. Измерения проводятся следующим образом.
Правильные скопления имеют симметричную форму, распределение галактик в них плавно спадает от центра к краю, и поэтому есть все основания считать, что скопления находятся в равновесном состоянии, когда энергия движений галактик уравновешена силой взаимного тяготения всех масс, входящих в скопление. В этом случае, как мы уже говорили в главе о способах измерения масс, можно определить силу тяготения, а значит, и полную массу всех видов материи, входящих в скопление, ибо все они участвуют в создании поля тяготения.
Такое определение, выполненное, например, для скопления галактик в созвездии Волосы Вероники, приводит к значению 2 · 1015 масс Солнца.
Но можно определить массу скопления и другим путем. Для этого надо подсчитать полное число всех галактик, входящих в скопление, и помножить на массу средней галактики. Если так сделать, то получается масса раз в десять меньше, чем при определении первым способом.
Значит, в скоплении должна быть невидимая масса между галактиками, которая и создает дополнительное поле тяготения и учитывается в первом способе, но не входит в галактики и не учитывается во втором способе.
Подобные же результаты получаются и при исследовании других скоплений галактик.
Конечно, при применении обоих способов возможны неизбежные ошибки. Но вряд ли эти ошибки столь велики, что могут объяснить все расхождение в результатах. Тщательный анализ показывает, что «свалить» всю вину за получение парадоксально большой массы в скоплениях на подобные ошибки крайне трудно. Полученные выводы заставляют со всей серьезностью отнестись к поискам скрытой массы, причем не только в скоплениях галактик, но и между скоплениями. В какой форме может существовать скрытая масса? Может быть, это межгалактический газ? Ведь объем пространства между галактиками гораздо больше объема пространства, приходящегося на галактики! Поэтому межгалактический газ, концентрация которого хотя и много меньше, чем у газа внутри галактик, может в результате все же давать гигантские массы.
Подчеркнем, что межгалактический газ является не единственным кандидатом в скрытые массы. Эти массы могут быть обусловлены и другими видами материй. Такую возможность мы разберем далее. Теперь же вернемся к газу и посмотрим, как его можно обнаружить!
Прежде всего напомним, что газ во Вселенной в основном состоит из водорода. Следовательно, чтобы установить наличие газа в межгалактическом пространстве, надо искать водород. В зависимости от физических условий газ может быть в нейтральном и ионизованном состояниях.
Начнем с оценки возможного количества нейтрального водорода.
Если свет от далекого источника идет через газ с нейтральными атомами водорода, то происходит поглощение атомами излучения на определенных частотах. По этому поглощению можно пытаться обнаружить нейтральный водород на огромных просторах между скоплениями галактик. В качестве источников света используются далекие квазары. Предпринятые попытки показали, что межгалактического водорода в нейтральном состоянии крайне мало. По массе его, по крайней мере, в десятки тысяч раз меньше, чем светящегося вещества в галактиках.
Таким образом, межгалактический газ, если он и есть, должен быть ионизованным, а значит, и сильно нагретым. Как показывает анализ, для этого необходимы температуры больше миллиона градусов. Не следует удивляться, что, несмотря на такую температуру, этот газ практически невидим. Дело в том, что плотность его очень мала, газ прозрачен, излучает мало видимого света. Но все же эта ионизованная высокотемпературная плазма испускает достаточно много ультрафиолетового излучения и мягких рентгеновских лучей.
Горячий газ можно искать по ультрафиолетовому излучению. Есть и другие способы поисков горячего газа между скоплениями.
Однако все методы оказались не очень чувствительны. Горячий газ между скоплениями галактики до сих пор не обнаружен. Вопрос о количестве такого газа, о том, больше ли его усредненная плотность, чем усредненная плотность вещества, входящего в галактики, остается открытым.
Обратимся теперь к газу в скоплениях галактик. Радионаблюдения показывают, что нейтрального водорода в скоплениях ничтожно мало. Однако с помощью рентгеновских телескопов, установленных на спутниках, был обнаружен горячий ионизованный газ в богатых скоплениях галактик. Оказалось, что этот газ нагрет до температуры в миллион градусов. Его полная масса может доходить до 1013 масс Солнца. Число внушительное, но мы видели выше, что полная масса скопления в созвездии Девы гораздо больше — превышает 1015 масс Солнца. Таким образом, наличие горячего газа в скоплениях никак не исчерпывает проблемы скрытой массы.
Несколько лет назад у этой пресловутой проблемы выявился еще один аспект.
В последнее время появляется все больше сторонников идеи о том, что галактики могут быть окружены огромными массивными коронами слабо светящихся объектов, которые по их свечению обнаружить крайне трудно. Это могут быть, например, звезды низкой светимости. Масса короны должна влиять на движение карликовых галактик — спутников основной галактики. Именно по этому влиянию и пытаются обнаружить в настоящее время короны галактик. Возможно, что учет этих корон существенно изменит оценку масс галактик в скоплениях и решит проблему скрытой массы. Однако в настоящее время вопрос о коронах галактик еще не решен.
Нам остается еще разобрать вопрос об экзотических кандидатах на роль скрытой массы, таких, как нейтрино, гравитационные волны, а также другие виды материи. К подобным экзотическим возможностям мы вернемся в главе «Нейтринная Вселенная».
Пока же подведем итог.
Общая масса светящейся материи недостаточна, чтобы ее тяготение затормозило расширение Вселенной и обратило его в сжатие. О скрытой массе мы пока знаем слишком мало. Если она и есть, то ее примерно столько, чтобы сделать общую плотность материи во Вселенной равной критической, может быть, чуть больше.
Вероятнее всего, нашей Вселенной предстоит расширение неограниченное или очень большое время в будущем.
Кривое пространство
Мы сейчас увидим, что вопрос о средней плотности материи во Вселенной имеет решающее значение не только для проблемы будущего Вселенной, но и для проблемы ее протяженности. Возможно, эта фраза вызовет настороженность у читателя. Как может возникнуть у материалиста вопрос о протяженности Вселенной? Разве не ясно, что пространство Вселенной продолжается во все стороны вплоть до бесконечности?
Казалось бы, любое иное мнение ведет к представлению о существовании какой-то границы материального мира, за которой начинается нечто нематериальное. На протяжении длительной истории науки только бесконечно простирающееся во все стороны пространство представлялось единственно приемлемым для всякого стихийного материалиста. Аргументы, доказывающие это, были четко сформулированы еще гениальным философом древнего Рима Лукрецием Каром две тысячи лет назад. Он писал в поэме «О природе вещей»:
С тех пор подобные аргументы о бесконечности и безграничности пространства аккуратно повторялись на протяжении веков.
С сегодняшней точки зрения такое представление кажется наивным. Первый удар по старым взглядам был нанесен теоретическим открытием возможности геометрии, отличной от геометрии Эвклида, которая изучается в школе. Это было сделано великими математиками прошлого века Н. Лобачевским, Я. Боян, Б. Риманом, К. Гауссом.
Что такое неэвклидова геометрия? Если обратиться к планиметрии, то, оказывается, понять это чрезвычайно просто: эвклидова геометрия изучает свойства геометрических фигур на плоской поверхности, неэвклидова геометрия изучает свойства фигур на искривленных поверхностях, например, на сфере или, скажем, на седлообразной поверхности. На таких искривленных поверхностях уже не может быть прямых линий и свойства геометрических фигур иные, чем на плоскости. Прямые линии заменяются здесь линиями, которые являются кратчайшими расстояниями между точками. Они называются геодезическими линиями. На сфере, например, геодезические линии — это дуги больших кругов. Примером их могут служить меридианы на поверхности Земли. На сфере мы можем чертить треугольники, стороны которых являются геодезическими, рисовать окружности, можем изучать их свойства. Все это легко себе представить. Трудности с представлением возникают, когда мы обращаемся уже не к двумерной поверхности, а к неэвклидову трехмерному пространству. В таком пространстве свойства призм, шаров и других фигур отличаются от тех, что мы изучали в школе. По аналогии с поверхностями мы можем сказать, что такое пространство искривлено. Однако эта аналогия вряд ли поможет нам представить наглядно искривленное трехмерное пространство. Мы живем в трехмерном пространстве, выпрыгнуть из него не можем (так как вне пространства ничего нет), поэтому нельзя спрашивать: «В чем изгибается наше реальное пространство?» Суть кривизны пространства заключается в изменении его геометрических свойств по сравнению со свойствами плоского пространства, где справедлива геометрия Эвклида.
Читатель, наверное, помнит из раздела о черных дырах, что общая теория относительности приводит к заключению об искривленности пространства в сильных полях тяготения, об изменении его геометрических свойств.
Когда мы обращаемся к огромным просторам Вселенной, то чем больший масштаб рассматриваем, тем больше охватываемая масса вещества и тем сильнее поле тяготения. В больших масштабах мы должны обращаться к теории Эйнштейна, должны учитывать искривление пространства.
И здесь мы сталкиваемся с удивительным обстоятельством. Чтобы понять суть нового явления, вернемся снова к искривленным двумерным поверхностям.
Возьмем кусочек плоскости. Если мы будем добавлять к нему соседние части плоскости все большего размера, то получим всю плоскость, неограниченно простирающуюся в бесконечность.
Выделим теперь на поверхности шара маленький кусочек. Если он очень мал, мы даже не заметим его искривленность. Добавим теперь к этому кусочку соседние, охватывая все большие области. Теперь искривленность уже заметна. Продолжая эту операцию, мы увидим, что наша поверхность из-за кривизны замыкается сама на себя, образуя замкнутую сферу. Нам не удалось продолжить искривленную таким образом поверхность неограниченно до бесконечности. Она замкнулась. Сфера имеет конечную площадь поверхности, но не имеет границ. Плоское существо, ползущее по сфере, никогда не встретит препятствия, края, границы. Но сфера не бесконечна!
Мы наглядно видим, что из-за замкнутости поверхность может быть безгранична, но не бесконечна.
Вернемся к трехмерному пространству. Оказывается, его искривленность может быть подобна искривленности сферы. Оно может замыкаться само на себя, оставаясь безграничным, но конечным по объему (подобно тому, как сфера конечна по площади).
Конечно, наглядное представление здесь крайне трудно. Но такое может быть. Теперь нам понятно, что аргументы в строфах Лукреция Кара направлены против ограниченности пространства каким-либо барьером, но не против конечности объема пространства — ведь пространство может быть безграничным, но конечным по объему.
Модели Вселенной, построенные А. Фридманом, показывают, что такой случай может иметь место в действительности. Для этого средняя плотность вещества во Вселенной должна быть больше критической. В этом случае пространство оказывается конечным, замкнутым; такую модель называют закрытой.
Если средняя плотность материи во Вселенной равна критической, то геометрия пространства эвклидова. Такое пространство называют плоским. Оно простирается во все стороны до бесконечности и объем его бесконечен.
Наконец, если плотность матери меньше критической, то геометрия пространства тоже искривленная. Но в этом случае геометрия подобна уже не геометрии на сфере, а геометрии на седлообразной поверхности. Это пространство так же неограниченно простирается во все стороны, не замыкается. Его объем бесконечен. Такую модель Вселенной называют открытой. Каков же наш мир?
Напомним, что до сих пор неизвестна надежно средняя плотность вещества в пространстве, неизвестно, больше она критической или меньше.
Поэтому неизвестно, открыта ли наша Вселенная или закрыта.
Идея возможности закрытого мира с замкнутым пространством, конечно, очень необычна. Как и идея эволюции Вселенной, эта идея с трудностями пробивала себе дорогу. Возражения против нее отчасти были обусловлены все той же инертностью мышления и предвзятыми соображениями, а отчасти недостаточной образованностью сторонников утверждения, что только бесконечный объем пространства совместим с материализмом.
Я помню один из таких жарких споров в мои студенческие времена, проходивший на 6-м Всесоюзном совещании по вопросам космогонии в Москве.
Вот цитата из выступления одного из философов на том совещании: «В самом деле, если предположить, что Вселенная конечна в пространстве, то сразу же мы сталкиваемся с необходимостью ответить на такие неразрешимые вопросы: как можно представить себе конечную в объеме Вселенную, что лежит за ее пределами…»
Как видите, аргументация здесь гораздо примитивнее, чем у Лукреция Кара и основана только на обращении к здравому смыслу, что, как уже давно известно, не является аргументом в споре.
Никаких идеалистических выводов из факта, возможности замкнутости пространства, конечно, не следует.
Материализм исходит из факта объективности пространства, из того, что материя может существовать только в пространстве. «В мире нет ничего, кроме движущейся материи, и движущаяся материя не может двигаться иначе, как в пространстве и во времени» (В. И. Ленин). Установление же конкретных свойств пространства, и, в частности, бесконечен его объем или конечен, — дело естественных наук.
Характерна в этом отношении реплика академика В. Гинзбурга на одной из научных дискуссий: «Не количеством кубических сантиметров определяется идеология!»
Подобные споры ушли в прошлое, и дело за наукой — определить истинную структуру мира.
Искривленность пространства определяется степенью отличия плотности материи от критического значения. Чем сильнее отличие, тем больше искривление. Наблюдения показывают, что если плотность материи и отличается от критической, то не очень сильно и искривленность сказывается только на огромных расстояниях во многие миллиарды световых лет. В замкнутом пространстве Вселенной кратчайшая линия — геодезическая — оказывается замкнутой, подобно большому кругу на сфере (например, подобно экватору). Скользя вдоль такого пути, мы возвращаемся в исходную точку, точно так же, как, двигаясь по экватору и обойдя Землю, приходим в исходный пункт нашего путешествия.
Возможно, будущие наблюдения покажут, что плотность материи больше критической и Вселенная замкнута. В этом случае объем Вселенной конечен, но все же огромен, размеры Вселенной колоссальны. Длина «экватора» — геодезической линии, охватывающей всю Вселенную, — никак не меньше нескольких десятков миллиардов световых лет, а вероятно, гораздо больше.
Конечно, есть не меньшие основания ожидать, что плотность материи во Вселенной не превышает критическую и объем Вселенной бесконечен.
В следующем разделе мы увидим, что различие между открытой и закрытой Вселенной не столь драматично, как это кажется с первого взгляда.
Горизонт
Вселенная начала расширяться около 15 миллиардов лет назад. Значит, во Вселенной не может быть объектов более старых, чем 15 миллиардов лет, не может быть источников, которые светят дольше 15 миллиардов лет. Это обстоятельство ведет к важнейшему следствию — к наличию горизонта видимости во Вселенной. Чем дальше от нас находится галактика, тем больше времени потребовалось свету, чтобы достичь наблюдателя. Свет, который сегодня достигает наблюдателя, покинул галактику в далеком прошлом. Вселенная начала расширяться около 15 миллиардов лет назад. Свет, вышедший из какого-либо источника даже вскоре после начала расширения мира, успеет пройти лишь конечное расстояние во Вселенной — около 15 миллиардов световых лет. Точки пространства Вселенной, лежащие от нас на этом расстоянии, называют горизонтом видимости. Области Вселенной, лежащие за горизонтом, сегодня принципиально ненаблюдаемы. Мы не можем увидеть более далекие галактики: какими бы телескопами мы ни наблюдали, свет от галактик из-за горизонта просто не успел до нас дойти. Красное смещение света неограниченно нарастает, когда мы наблюдаем объект, лежащий все ближе и ближе к горизонту. На самом горизонте оно бесконечно. Таким образом, мы можем видеть только конечное число звезд и галактик во Вселенной.
До создания теории расширяющейся Вселенной попытки рассмотрения бесконечного пространства, равномерно в среднем заполненного звездами, наталкивались на любопытный парадокс. Он заключается в следующем. В бесконечной Вселенной, заполненной звездами, луч зрения рано или поздно встретит светящуюся поверхность звезды. В этом случае все ночное небо должно сиять, как поверхность Солнца и звезд.
Парадокс получил название фотометрического, и многие выдающиеся умы пытались его разрешить.
После создания теории расширяющейся Вселенной парадокс разрешился сам собой. В расширяющейся Вселенной для каждого наблюдателя есть горизонт видимости. Поэтому он видит конечное число звезд, весьма редко разбросанных в пространстве. Наш взор, как правило, скользит мимо них и вплоть до горизонта, не упираясь ни в одну звезду. Поэтому ночное небо между звездами — темное. К тому же жизнь звезд ограничена.
Горизонт видимости делает для нас не столь существенной разницу между закрытым и открытым миром. В обоих случаях мы видим ограниченную часть Вселенной с радиусом около 15 миллиардов световых лет. В замкнутом мире свет не успевает обойти мир к настоящему времени, и, конечно, невозможно увидеть свет от нашей собственной галактики, обошедшей весь мир. Увидеть «собственный затылок» невозможно в замкнутой Вселенной. Даже за весь период расширения от сингулярного состояния до смены расширения сжатием свет успевает пройти только половину замкнутого пространства и лишь на фазе сжатия сможет закончить полный обход мира…
Горизонт видимости для каждого наблюдателя свой, где бы он ни был во Вселенной. Все точки однородной Вселенной равноправны. С течением времени горизонт каждого наблюдателя расширяется, к наблюдателю успевает доходить свет от все новых областей Вселенной. За 100 лет радиус горизонта увеличивается на одну стомиллионную долю своей величины.
Еще одно замечание. Вблизи самого горизонта мы в принципе должны видеть вещество в далеком прошлом, когда плотность его была гораздо больше сегодняшней. Отдельных объектов тогда не было, а вещество было непрозрачным для излучения. К этому вопросу мы еще вернемся.
Глава 3. Горячая Вселенная
Физика начáла расширения
В предыдущих главах мы познакомились с механикой расширения Вселенной. Но механика не исчерпывает всего, что нас интересует. На разных этапах расширения Вселенной в ней протекали различные физические процессы. Мы знаем, что 15 миллиардов лет назад, в начале расширения, плотность материи во Вселенной была огромна. Естественно, что тогда протекали физические процессы, совсем непохожие на те, что мы наблюдаем сегодня. Они в прошлом определили сегодняшнее состояние мира и сделали возможным, в частности, существование жизни.
Физика процессов в начале расширения вызывает огромный интерес. Но можем ли мы что-либо сказать об этих процессах? Ведь речь идет буквально о первых мгновениях расширения, а все это происходило 15 миллиардов лет назад!
Оказывается, можем.
Дело в том, что происходившие в первые секунды с начала расширения процессы имели столь важные последствия для сегодняшней Вселенной, оставили столь явные «следы», что по ним можно восстановить характер самих процессов.
Важнейшими из них были ядерные реакции между элементарными частицами, проходившие при большой плотности. Такие реакции возможны лишь в самом начале расширения, когда плотности огромны. Конечно, никаких нейтральных атомов и даже сложных атомных ядер тогда не было, химические элементы образовались позднее в результате ядерных реакций. Но до этого, в еще более ранней Вселенной, был период, когда образовались сами элементарные частицы. Здесь речь идет уже о временах, исчисляемых невообразимо малыми мгновениями — 10–43 секунды, когда плотности были больше 1093 г/см3. Такая плотность в невообразимое число раз больше плотности атомного ядра, которая «всего» 10–15 г/см3. Наверное, столь обескураживающие числа вызывают невольную улыбку у читателя. Разве можно что-либо узнать о процессах в таких условиях, которые абсолютно невоспроизводимы в земных лабораториях?
Много лет назад, когда мы писали научную монографию с академиком Я. Зельдовичем и приводили в ней классификацию процессов, протекавших в подобных условиях чудовищных плотностей, мы вспомнили пародию Аркадия Аверченко: «История мидян темна и неизвестна, ученые делят ее тем не менее на три периода: первый, о котором ничего не известно; второй — о котором известно почти столько же, сколько о первом, и третий, который последовал за двумя предыдущими».
За прошедшие с тех пор почти двадцать лет физика шагнула далеко вперед, и теперь даже о процессах формирования элементарных частиц в расширяющейся Вселенной уже можно кое-что сказать.
Что же касается ядерных реакцией, происходивших с первой по трехсотую секунды после начала расширения, то о них можно поведать почти все с полной определенностью. Дело в том, что следствием ядерных реакций явилось образование химических элементов во Вселенной.
Расчет ядерных реакций дает возможность предсказать химический состав вещества, из которого формируются галактики, звезды, межзвездный газ. Сравнение предсказания с наблюдениями позволяет выявить эти реакции, а главное — выяснить физические условия, в которых они происходили. Мы оставим до дальнейших параграфов выяснение вопроса об экзотических процессах при 1093 г/см3, и посмотрим сначала, как протекали ядерные реакции во Вселенной в первые секунды и к чему они привели.
Холодное или горячее начало?
Есть две принципиальные возможности для условий, в которых протекало начало расширения вещества Вселенной. Это вещество могло быть либо холодным, либо горячим. Мы увидим, что следствия ядерных реакций при этом в корне отличаются друг от друга. Исторически первым еще в 30-е годы нашего века была рассмотрена возможность холодного начала. Тогда ядерная физика находилась еще в зачаточном состоянии, не было теории, которая могла бы надежно рассчитать ядерные реакции. В этих условиях принималось, что вещество Вселенной было сначала в виде холодных нейтронов.
Позже выяснилось, что такое предположение приводит к противоречию с наблюдениями.
Дело заключается в следующем. Нейтрон — нестабильная частица. В свободном состоянии он распадается за время около 15 минут на протон, электрон и антинейтрино. Поэтому в ходе расширения Вселенной нейтроны стали бы распадаться, стали бы возникать протоны. Возникший протон стал бы соединяться с еще оставшимся нейтроном, давая ядро атома дейтерия. Затем дейтерий стал бы соединяться с дейтерием и так далее. Реакция усложнения атомных ядер стала бы быстро идти и продолжаться до тех пор, пока не образовалась бы альфа-частица — ядро атома гелия. Более сложные атомные ядра, как показывают расчеты, практически не возникали бы. Таким образом, все вещество превратилось бы в гелий. Этот вывод резко противоречит наблюдениям. Известно, что молодые звезды и межзвездный газ состоят в основном из водорода, а не из гелия.
Таким образом, наблюдения распространенности химических элементов в природе отвергают гипотезу о холодном начале расширения Вселенной.
В 1948 году появилась работа Г. Гамова, Р. Альфера и Р. Хермана, в которой предлагался «горячий» вариант начальных стадий расширения Вселенной. Предполагалось, что в начале расширения температура вещества была весьма велика.
Основная цель авторов гипотезы горячей Вселенной заключалась в том, чтобы, рассматривая ядерные реакции в начале космологического расширения, получить наблюдаемое в настоящее время соотношение между количеством различных химических элементов и изотопов.
Почему первоначально предполагалось, что все химические элементы должны образоваться в начале расширения Вселенной? Дело в том, что в 40-е годы ошибочно считали, что время, протекшее с начала расширения, составляет 1–4 миллиарда лет (вместо 15 миллиардов лет по современным оценкам). Как мы знаем, это было связано с заниженными оценками расстояний до галактик и поэтому с завышением постоянной Хаббла. Сравнивая это время (1–4) · 109 лет с возрастом Земли — порядка (4–6) · 109 лет, авторы предполагали, что даже Земля и планеты (не говоря уже о Солнце и звездах) сконцентрировались из первичного вещества, и все химические элементы образовались на ранней стадии расширения Вселенной, ибо больше они нигде не успевали образоваться.
Теперь мы знаем, что время расширения Вселенной 15 · 109 лет. Земля образовалась не из первичного вещества, а из вещества, прошедшего стадию ядерных реакций (нуклеосинтеза) в звездах. Теория нуклеосинтеза в звездах успешно объясняет основные законы распространенности элементов в предположении, что первые звезды образовались из вещества, состоящего главным образом из смеси водорода и гелия. Вещество из старых звезд первого поколения, обогащенное тяжелыми элементами, выбрасывалось в пространство. Из этого вещества возникали новые звезды, планеты. Таким образом, необходимость объяснения происхождения всех элементов (в том числе и тяжелых — железа, свинца и т. д.) на ранней стадии расширения Вселенной отпала. Но суть гипотезы горячей Вселенной оказалась правильной.
Многие исследователи отмечали, что содержание гелия в звездах и газе нашей Галактики гораздо больше, чем это можно объяснить нуклеосинтезом в звездах. (Подробнее об этом говорится далее.) Следовательно, синтез гелия должен происходить на раннем этапе расширения Вселенной. Но все же основным веществом Вселенной и сейчас является водород.
В теории, предложенной Г. Гамовым и его соавторами, оказывается, что расширяющееся вещество Вселенной превращается в смесь, большая часть которой составляет водород (70 процентов) и меньшая — гелий (30 процентов). Из этого вещества позже и формируются звезды и галактики. Почему же в теории горячей Вселенной все вещество не превращается в гелий, как это было в варианте начала в виде холодной нейтронной жидкости?
Все дело именно в том, что вещество было горячим. В горячем веществе имеется много энергичных фотонов. Имеются там также протоны и нейтроны, которые стремятся соединиться в дейтерий. Однако фотоны разбивают дейтерий, который образуется при слиянии протона и нейтрона, обрывая в самом начале цепочку реакций, ведущую к синтезу гелия. Когда Вселенная, расширяясь, достаточно охлаждается (до температуры меньше миллиарда градусов), то некоторое количество дейтерия уже сохраняется и приводит к синтезу гелия. Мы подробно рассмотрим этот процесс далее.
Теория горячей Вселенной дает определенные предсказания о содержании гелия в дозвездном веществе. Как уже упоминалось, распространенность гелия должна быть около 30 процентов по массе.
На гипотезе Гамова исследования разных вариантов начала расширения Вселенной не закончились. В начале 60-х годов были сделаны попытки вернуться к модернизированному варианту холодной Вселенной, который предсказывал превращение всего вещества не в гелий (как в прежнем варианте), а в чистый водород. При этом предполагалось, что остальные элементы формировались гораздо позже уже в звездах.
Первоначально теории горячей и холодной Вселенной связывались с попытками дать полное объяснение распространенности химических элементов в дозвездном веществе. Попытки выяснить, какая теория верна, сначала направлялись в основном по пути анализа наблюдений распространенности химических элементов. Однако такие наблюдения и в особенности их анализ очень сложны и зависят от многих предположений. Если бы теории можно было проверять только по распространенности химических элементов во Вселенной, то выявить истину было бы сложно. Ведь не так-то просто разобраться, сколько гелия и других элементов синтезировано в ядерных процессах в звездах, а сколько осталось от процессов в ранней Вселенной.
К счастью, есть другой способ проверки. Теория горячей Вселенной дает важнейшее наблюдательное предсказание, которое является прямым следствием «горячести». Это предсказание существования во Вселенной в нашу эпоху электромагнитного излучения, оставшегося от той эпохи, когда вещество в прошлом было плотным и горячим.
В процессе космологического расширения вещества температура его падает, падает и температура излучения, но все же и к настоящему моменту должно остаться электромагнитное излучение с температурой (в разных вариантах теории) от долей градуса до 20–30 градусов по Кельвину (физики говорят — кельвинов).
Такое излучение, которое должно остаться с древних эпох эволюции Вселенной, если она действительно была горячей, получило название реликтового. Это название было впервые предложено советским астрофизиком И. Шкловским. Электромагнитное излучение со столь малой температурой представляет собой радиоволны с длиной волны в сантиметровом и миллиметровом диапазонах. Решающим экспериментом по проверке того, была ли Вселенная горячей или холодной, являются, следовательно, поиски такого излучения. Если оно есть, Вселенная была горячей, если его нет — холодной.
Как было открыто реликтовое излучение
История открытия реликтового излучения весьма поучительна. Уже в первых работах Г. Гамова, Р. Альфера, Р. Хермана было отмечено, что во Вселенной должно остаться от ранних эпох реликтовое излучение с температурой около 5 градусов абсолютной шкалы Кельвина.
Казалось бы, это предсказание должно было обратить на себя внимание астрофизиков, а те, в свою очередь, должны были заинтересовать радиоастрономов, с тем чтобы попытаться обнаружить предсказанное излучение.
Но ничего подобного не произошло. Историки науки и специалисты до сих пор гадают, почему никто не пытался сознательно искать реликтовое излучение. Прежде чем обращаться к этим догадкам, давайте проследим цепь фактических событий, приведших к самому открытию.
В 1960 году в США была построена радиоантенна, предназначенная для приема отраженных сигналов от спутника «Эхо». К 1963 году эта антенна уже была не нужна для работы со спутником, и два радиоинженера, Р. Вилсон и А. Пензиас, в лаборатории компании «Белл» решили использовать ее для радиоастрономических наблюдений. Антенна представляла собой 20-футовый рупорный отражатель. Вместе с новейшим приемным устройством этот радиотелескоп был в то время самым чувствительным инструментом в мире для измерения радиоволн, приходящих из космоса с широких площадок на небе. Телескоп предназначался в первую очередь для измерения радиоизлучения, рождающегося в межзвездной среде нашей Галактики. Эта работа должна была быть интересной, но в общем-то ординарной среди большого количества радиоастрономических наблюдений. Во всяком случае, А. Пензиас и Р. Вилсон не собирались искать никакое реликтовое излучение, да и о самой теории горячей Вселенной они тогда и слыхом не слыхивали.
Первые измерения проводились на длине волны 7,35 сантиметра.
Для точного измерения радиоизлучения Галактики необходимо было учесть все возможные помехи. Такие помехи могут быть разного рода. Так, их вызывает рождение радиоволн в земной атмосфере, радиоизлучает также и поверхность Земли. Кроме того, помехи вызываются движением электрических частиц в антенне, в усилительных электрических цепях и приемнике. Все возможные источники помех были тщательно проанализированы и учтены.
Тем не менее А. Пензиас и Р. Вилсон с удивлением констатировали, что, куда бы их антенна ни была направлена, она воспринимает какое-то излучение постоянной интенсивности. Это не могло быть излучением нашей Галактики, ибо в этом случае интенсивность его менялась бы в зависимости от того, смотрит ли антенна вдоль плоскости Млечного Пути или поперек. Кроме того, в этом случае ближайшие к нам галактики, похожие на нашу, тоже излучали бы на длине волны 7,35 сантиметра. Но такого их излучения обнаружено не было.
Оставалось две возможности: либо это «шумят» какие-то неучтенные помехи, либо это излучение, приходящее из далеких просторов космоса. Подозрения пали на возможные помехи в антенне. Так возникла «загадка антенны». Предоставим далее слово одному из авторов измерений, Р. Вилсону, рассказывающему, как они проверяли возможность помех, возникающих в антенне. «Таким образом, антенна у нас оставалась единственным возможным источником избыточного шума… Большая часть потерь антенны происходила в ее горловине маленького диаметра, которая была сделана из химически чистой меди. Мы исследовали подобные волноводы в лаборатории и внесли исправления в расчеты потерь за счет неидеальности поверхностных условий, которую мы обнаружили в таких волноводах. Остальная часть антенны была сделана из склепанных алюминиевых листов, и, хотя мы не ожидали здесь каких-либо неприятностей, мы не могли исключить возможности потерь в местах склепки. Чтобы проверить это, мы поместили пару голубей в той небольшой части рупора, где она соприкасается с теплой кабиной. Вскоре они подобно своим городским собратьям покрыли всю внутренность белым веществом. Мы выпустили голубей и почистили внутренность антенны, но получили лишь небольшое уменьшение температуры антенны.
В течение этого времени проблема температуры антенны оставалась нерешенной.
Весной 1965 года, закончив измерения потока, мы основательно почистили 20-футовый рупорный рефлектор и положили алюминиевые ленты на склепанные стыки. В результате температура антенны даже несколько повысилась. Мы также разобрали горловину антенны и проверили ее, но обнаружили, что она в порядке. Значит, избыточное излучение, фиксируемое радиотелескопом, не связано с помехами в антенне. Оно приходит из космоса, причем со всех сторон с одинаковой интенсивностью».
Дальше события, приведшие к разгадке проблемы, связаны со случайностями. П. Пензиас во время беседы со своим приятелем Б. Берке о совершенно других вопросах случайно упомянул о загадочном излучении, принимаемом их антенной. Тот вспомнил, что он слышал о докладе П. Пиблса, работавшего под руководством известного физика Р. Дикке. В этом докладе П. Пиблс якобы упоминал об остаточном излучении ранней Вселенной, которое сегодня должно иметь температуру около 10 градусов Кельвина.
А. Пензиас позвонил Р. Дикке, и обе группы встретились. Р. Дикке и его коллегам П. Пиблсу, П. Роллу и Д. Уилкинсону стало ясно, что А. Пензиас и Р. Вилсон обнаружили реликтовое излучение горячей Вселенной. В это время группа Р. Дикке, работавшая в Принстоне, собиралась сама начать готовить аппаратуру для подобных измерений на длине волны 3 сантиметра, но не успела начать измерения. А. Пензиас и Р. Вилсон уже сделали свое открытие.
О дальнейшем Р. Вилсон говорит: «Мы договорились об одновременной публикации двух писем в „Астрофизическом журнале“: одного из Принстона о теории и другого из лабораторий „Белл“ о наших измерениях избытка антенной температуры. В нашем письме Арно и я не должны были касаться любого обсуждения космологической теории происхождения фонового излучения, поскольку мы не участвовали в этой работе. Однако мы считали, что результаты наших измерений не зависят от теории и представляют самостоятельный интерес. Тем не менее нам было приятно, что тайна шума, появляющегося в нашей антенне, среди всех прочих объяснений может быть связана с таким важным космологическим явлением. Однако наше настроение в этот период можно было назвать осторожным оптимизмом».
Эти статьи были опубликованы летом 1965 года.
Первые наблюдения А. Пензиаса и Р. Вилсона показали, что температура реликтового излучения составляет около 3 градусов Кельвина.
В последующие годы многочисленные измерения были проведены на различных длинах волн — от десятков сантиметров до долей миллиметра.
Наблюдения показали, что спектр реликтового излучения соответствует формуле Планка, как это и должно быть для излучения с определенной температурой. Эта температура примерно равна 3 градусам Кельвина.
Так случайно было сделано замечательное открытие нашего века, доказывающее, что Вселенная в начале расширения была горячей. За это открытие А. Пензиасу и Р. Вилсону была присуждена в 1978 году Нобелевская премия по физике.
Почему реликтовое излучение не открыли раньше?
Вернемся теперь к проблеме, относящейся к истории науки, но которой живо интересуются и специалисты — физики и астрофизики. В своей книге «Первые три минуты» известный американский физик С. Вайнберг пишет следующее: «Я хочу попытаться разрешить здесь историческую проблему, которая в равной степени представляется мне загадочной и поразительной. Обнаружение в 1965 году фона космического микроволнового излучения (так иногда называют реликтовое излучение. — И. Н.) было одним из самых важных научный открытий двадцатого века. Почему оно произошло случайно? Или, другими словами, почему не было систематических поисков этого излучения задолго до 1965 года?»
Напомним, что само предсказание существования во Вселенной излучения с температурой несколько градусов было сделано в конце 40-х — начале 50-х годов — за 15 лет до открытия А. Пензиаса и Р. Вилсона.
Может, все дело в том, что тогда не было достаточно чувствительных радиотелескопов, способных его обнаружить? Мы увидим далее, что это, по-видимому, не так. Такого же мнения придерживается и С. Вайнберг. Но дело даже не в этом.
В истории физики много примеров, когда предсказание нового явления делалось задолго до появления технических возможностей его обнаружения. И тем не менее, если предсказание было обоснованным и важным, то физики всегда о нем помнили. Когда появлялись возможности — предсказание проверялось. С. Вайнберг приводит пример предсказания в 30-е годы существования антипротона — античастицы ядра атома водорода. Тогда физики не смели и мечтать о возможности обнаружить его в эксперименте. Но в 50-е годы, когда появились соответствующие возможности, был построен специальный ускоритель в Беркли для проверки этого предсказания.
Однако до середины 60-х годов радиоастрономы даже не знали о реликтовом излучении и о возможности его обнаружения.
Почему так получилось?
С. Вайнберг называет три причины. Первая — это то, что теория горячей Вселенной создавалась Г. Гамовым и его сотрудниками для того, чтобы объяснить распространенность в природе всех химических элементов их синтезом в самом начале расширения Вселенной. Это оказалось неверным, как мы уже говорили в предыдущем разделе, — тяжелые элементы синтезированы в звездах. Только самые легкие элементы ведут свое происхождение с первых мгновений расширения. Были в первых вариантах теории и другие некорректности. Потом все это было исправлено, но в конце 40-х и в 50-е годы неточности подрывали доверие к теории в целом.
Вторая причина — плохая связь между теоретиками и экспериментаторами. Первые не представляли, может ли реликтовое излучение быть обнаружено с помощью имеющихся наблюдательных средств; вторые не слышали о том, что такое излучение следует искать.
Наконец, третья причина психологическая. Физикам и астрофизикам было очень трудно поверить, что расчеты, относящиеся к первым минутам с начала расширения Вселенной, действительно соответствуют истине. Уж очень велик был контраст между промежутками времени — несколько первых минут и десятки миллиардов лет, отделяющие ту эпоху от нашей.
Еще одну причину, на мой взгляд самую важную, указывает А. Пензиас в своей лекции, прочитанной при вручении Нобелевской премии. Дело в том, что в первых работах Г. Гамова и его сотрудников и в последующих работах, хотя и было сказано о наличии реликтового излучения, но не было указано, что его можно хотя бы в принципе обнаружить. Боле того, Г. Гамов и его коллеги, по-видимому, считали, что это сделать вообще нельзя! Вот что говорит А. Пензиас: «Что же касается обнаружения реликтового излучения, то, по-видимому, они считали, что в первую очередь это излучение проявит себя как увеличение плотности энергии. Этот вклад в приходящий на Землю общий поток энергии должен быть замаскирован космическими лучами и суммарным оптическим излучением звезд. Обе эти составляющие имеют сравнимые плотности энергии. Мнение о том, что действия трех составляющих с приблизительно равными энергиями нельзя разделить, можно найти в письме Г. Гамова, написанном Р. Альферу в 1948 году (не опубликовано: любезно представлено мне Р. Альфером): „Температура космического пространства, равная 5°K, объясняется современным излучением звезд (С-циклы). Единственно, что мы можем сказать, это то, что оставшаяся от исходного тепла Вселенной температура не выше 5°K“. Они, по-видимому, не осознавали того, что своеобразные спектральные характеристики реликтового излучения должны выделять его среди других эффектов».
В следующем этапе этой истории довелось участвовать мне самому. Получилось так, что начало моих занятий физической космологией пришлось на первую половину 60-х годов, незадолго до открытия реликтового излучения. Я тогда только что закончил аспирантуру Московского университета под руководством А. Зельманова. Мой учитель интересовался главным образом механикой движения масс в космологических моделях без упрощающих предположений об их однородном расположении. Его меньше интересовали вопросы конкретной физики процессов в расширяющейся Вселенной. О теории горячей Вселенной я тогда почти ничего не знал.
Незадолго до окончания аспирантуры я заинтересовался следующим вопросом. Мы знаем, как изучают галактики разных типов на разных длинах волн электромагнитного излучения. Если задаться определенными предположениями об эволюции галактик в прошлом и учесть покраснение света от далеких галактик из-за расширения Вселенной, то можно рассчитать, сколько излучения от галактик на каждой длине волны будет сегодня во Вселенной. При этом надо учитывать, что светят не только звезды, многие галактики интенсивно излучают радиоволны метровой и дециметровой длины.
Я принялся за соответствующие расчеты. К тому времени, закончив аспирантуру, я пришел работать в группу академика Я. Зельдовича, где прежде всего интересовались именно физикой процессов во Вселенной.
Все расчеты были выполнены вместе с А. Дорошкевичем. В результате мы получили расчетный спектр излучения от галактик, то есть того излучения, которое должно заполнять сегодняшнюю Вселенную, если учитывать только излучение, родившееся, когда возникли галактики и стали светить звезды. В этом спектре излучения очень интенсивна должна быть область метровых радиоволн (так как радиогалактики сильно излучают такие волны) и область видимого света (звезды дают его очень много), а в области сантиметровых, миллиметровых и еще несколько более коротких электромагнитных волн излучение должно быть пониженным.
Так как в группе, в которой мы работали (а тогда она состояла всего из трех человек — нашего руководителя, А. Дорошкевича и меня), усиленно обсуждались варианты горячей и холодной Вселенной, то в статье, которую мы с А. Дорошкевичем подготовили для печати, мы к излучению галактик добавили гипотетическое излучение, оставшееся от ранней Вселенной, если она в действительности была горячей. Это излучение горячей Вселенной должно иметь длины волн порядка сантиметров и миллиметров и приходилось как раз на ту область длин волн, где излучение от галактик понижено! Поэтому реликтовое излучение (если Вселенная была горячей!) в этой области длин волн должно во многие тысячи и даже миллионы раз превышать излучение известных источников во Вселенной.
Значит, его можно наблюдать! Несмотря на то что общее количество энергии в реликтовом излучении сравнимо с энергией света от галактик, волны реликтового излучения имеют совсем другую длину волны в поэтому могут быть обнаружены. Вот что говорит в своей нобелевской лекции А. Пензиас о нашей с А. Дорошкевичем работе.
«Первое опубликованное признание реликтового излучения в качестве обнаружимого явления в радиодиапазоне появилось весной 1964 года в краткой статье А. Г. Дорошкевича и И. Д. Новикова, озаглавленной „Средняя плотность излучения в метагалактике и некоторые вопросы релятивистской космологии“. Хотя английский перевод появился в том же году, но несколько позже, в широко известном журнале „Советская физика — Доклады“, статья по-видимому, не привлекла к себе внимания других специалистов в этой области. В этой замечательной статье не только выведен спектр реликтового излучения как чернотельного радиоволнового явления, но также отчетливо сконцентрировано внимание на двадцатифутовом рупорном рефлекторе лабораторий „Белл“ в Кроуфорд Хилл как на наиболее подходящем инструменте для его обнаружения!»
Наша статья осталась не замеченной наблюдателями. Ни А. Пензиас и Р. Вилсон, ни Р. Дикке и его сотрудники до опубликования своих статей в 1965 году о ней ничего не знали, о чем А. Пензиас неоднократно с сожалением мне говорил.
Рассказанное еще не исчерпывает недоразумений, связанных с открытием реликтового излучения.
Оказывается, реликтовое излучение могло быть открыто еще в 1941 году! Канадский астроном Э. Мак-Келлар был одним из тех, кто установил существование молекул в межзвездном пространстве. Способ, которым исследовался межзвездный газ, был следующим. Если свет какой-либо звезды на пути к нам проходит сквозь облако межзвездного газа, то атомы и молекулы этого газа вызывают поглощение света звезды на строго определенных длинах волн. Так возникают в спектре линии поглощения межзвездного газа.
Положение линий в спектре зависит от того, какой элемент или какая молекула вызывали поглощение, а также еще от того, в каком состоянии находятся атомы или молекулы.
В 1941 году Э. Мак-Келлар анализировал линии поглощения, вызываемые в спектре звезды Σ Змееносца межзвездными молекулами циана (соединения углерода и азота). Он пришел к выводу, что эти линии (в видимой глазом области спектра) могут возникать только при поглощении света вращающимися молекулами циана. Причем вращение их должно возбуждаться излучением с температурой около 2,3 Кельвина. Ни сам Э. Мак-Келлар, ни кто другой, конечно, не подумали тогда о возможности того, что вращение молекул вызывается реликтовым излучением. Да и сама теория горячей Вселенной тогда еще не была создана!
Только после открытия реликтового излучения были опубликованы в 1966 году три работы: И. Шкловского, Дж. Филда и Р. Тадеуша, в которых показано, что возбуждение вращения межзвездных молекул циана, наблюдавшееся по спектру звезды в созвездии Змееносца, вызвано реликтовым излучением.
Таким образом, еще в 1941 году было обнаружено хоть и косвенное проявление реликтового излучения — его влияние на состояние вращения в межзвездных молекулах циана.
Но и это еще далеко не конец истории.
Вернемся к проблеме технической возможности открытия реликтового излучения. Возникает вопрос: когда техника уже позволяла это сделать? С. Вайнберг пишет: «Трудно ответить точно, но мои коллеги-экспериментаторы говорят мне, что наблюдения могли быть проведены задолго до 1965 года, возможно, в середине 50-х, а может быть, даже и в середине 40-х годов». Так ли это?
Осенью 1983 года мне позвонил сотрудник института общей физики Т. Шмаонов, с которым я до этого не был знаком, и сказал, что он хотел бы побеседовать по вопросам открытия реликтового излучения. Мы встретились в тот же день, и Т. Шмаонов рассказал мне, как он в середине 50-х годов под руководством известных советских радиоастрономов С. Хайкина и Н. Кайдановского проводил измерения радиоволн, шедших из космоса, на длине 3,2 сантиметра. Эти измерения проводились с помощью рупорной антенны, подобной той, которая была использована много лет спустя А. Пензиасом и Р. Вилсоном. Т. Шмаонов со всей тщательностью изучил возможные помехи. Конечно, в его распоряжении тогда не было еще столь чувствительных приемников, которые были потом у американских радиоастрономов. Результаты измерений Т. Шмаонова были опубликованы в 1957 году в его кандидатской диссертации и в советском журнале «Приборы и техника эксперимента». Вывод из этих измерений был таков: «Оказалось, что абсолютная величина эффективной температуры радиоизлучения фона… равна 4° ± 3°K». Т. Шмаонов отмечал независимость интенсивности излучения от направления и от времени. Хотя ошибки измерений Т. Шмаонова велики и говорить о какой-либо надежности цифры 4°K не приходится, мы понимаем теперь, что Т. Шмаонов измерял именно реликтовое излучение. К сожалению, ни сам Т. Шмаонов, ни его руководители, ни другие радиоастрономы, которым были известны результаты его измерений, ничего не знали о возможности существования реликтового излучения и не придали должного значения результатам этих измерений. Их довольно быстро забыли. Когда в 1963 и в 1964 годах после выполнения наших с А. Дорошковичем вычислений мы ходили к многим советским радиоастрономам с вопросом: не известны ли им результаты каких-либо измерений фонового радиоизлучения на сантиметровых или более коротких волнах? — никто из них не вспомнил об измерениях Т. Шмаонова!
Забавно, что даже сам автор измерений не придал им должного значения не только в 50-х, что легко объяснить, но даже после опубликования открытия реликтового излучения в 1965 году А. Пензиасом и Р. Вилсоном. Правда, в то время Т. Шмаонов работал уже совсем в другой области. Только в 1983 году в результате полуслучайных разговоров было обращено внимание на старые измерения, и Т. Шмаонов выступил по этому поводу с докладом на Бюро отделения общей физики и астрономии АН СССР. Это было спустя 27 лет после самих измерений и 18 лет после опубликования результатов А. Пензиаса и Р. Вилсона.
Но даже это еще не все. Когда автор заканчивал эту книгу, он узнал, что были еще измерения японских радиоастрономов в начале 50-х годов, когда якобы также обнаружили фоновое излучение. Эти работы, так же как и работы Т. Шмаонова, ни тогда, ни многие годы спустя не обратили на себя внимания и не были практически никому известны.
Вот как причудлива фортуна. И тем не менее вся эта история весьма поучительна. Увидеть какое-либо явление — еще не значит его открыть. Надо осознать значение обнаруженного, надо правильно его объяснить. Конечно, тут играют роль и стечение многих обстоятельств, и просто удача. Но успех никогда не приходит совершенно случайно. Он требует огромного труда, больших знаний, настойчивости и в самой работе, и в доведении ее результатов до сознания других.
Путешествие в далекое прошлое
Реликтовое излучение не возникло в каких-либо источниках, подобно свету звезд или радиоволнам, родившимся в радиогалактиках. Реликтовое излучение существовало с самого начала расширения Вселенной. Оно было в том горячем веществе Вселенной, которое расширялось от сингулярности.
Если подсчитать общую плотность энергии, которая сегодня содержится в реликтовом излучении, то она окажется в 30 раз больше, чем плотность энергии в излучении от звезд, радиогалактик и других источников, вместе взятых. Можно подсчитать число фотонов реликтового излучения, находящихся в каждом кубическом сантиметре Вселенной. Оказывается, что концентрация этих фотонов 500 штук в см3.
Напомним, что средняя плотность обычного вещества во Вселенной около 10–30 г/см3. Это значит, что, если бы мы «размазали» все вещество равномерно в пространстве, то в одном кубическом метре был бы всего один атом водорода — наиболее распространенного элемента Вселенной. В то же время в кубическом метре содержится около миллиарда фотонов реликтового излучения.
Таким образом, кванты электромагнитных волн, эти своеобразные частички, распространены в природе гораздо больше, чем обычное вещество. Реликтовых фотонов в миллиард раз больше, чем тяжелых частиц протонов. Если мы учтем, помимо водорода, и другие химические элементы, в состав ядер которых входят не только протоны, но и нейтроны, то это практически ничего не изменит в нашей оценке, так как водород — главный элемент в природе. Итак, 109 реликтовых фотонов на одну тяжелую частицу.
Мы знаем, что сегодня в каждом кубическом сантиметре межгалактического пространства около 500 фотонов, летящих с предельной скоростью во всех направлениях. Каждый фотон имеет свою энергию, соответствующую его частоте. При температуре 3° Кельвина большинство фотонов имеет энергию 10–15 эрг каждый. Значит, в каждом кубическом сантиметре имеется энергия реликтового излучения, равная произведению 10–15 эрг на 500, то есть 5 · 10–13 эрг. Согласно закону Эйнштейна каждой энергии соответствует масса. Энергии 5 · 10–13 эрг соответствует масса 5 · 10–34 грамма. Таким образом, в каждом кубическом сантиметре в наши дни есть 5 · 10–34 грамма реликтового излучения.
Напомним, что обычного вещества на каждый кубический сантиметр приходится в среднем 10–30 грамма. Значит, по массе вещества в две тысячи раз больше, чем реликтового излучения. Поэтому, хотя по числу штук фотонов гораздо больше, по общей массе обычное вещество сильно преобладает над реликтовым излучением. Масса реликтового излучения пренебрежимо мала.
Проследим, что было и с теми, и с другими частицами в прошлом.
В обозримом прошлом ни те ни другие частички не рождались и не исчезали. Здесь необходимы некоторые уточнения. Первое из них относится к реликтовым фотонам. Сегодняшняя Вселенная практически прозрачна для реликтового излучения. Ясно, что реликтовые фотоны в современной Вселенной в подавляющем большинстве не взаимодействуют с веществом и не могут из-за этого меняться в числе. В далеком прошлом, когда плотность вещества была велика, была велика и температура. Вещество Вселенной было ионизовано и являлось почти однородной плазмой. Оно тогда было непрозрачным для излучения. Реликтовые фотоны активно взаимодействовали с веществом. Но сколько фотонов в какой-то малый промежуток времени поглощалось в толще вещества, столько же этим горячим веществом и рождалось! Существовало, как говорят, равновесие между излучением и веществом. Поэтому и в этот период соотношение — миллиард реликтовых фотонов на один протон — оставалось справедливым.
Второе уточнение относится к протонам.
В своем далеком прошлом, в самые первые мгновения после начала расширения, во Вселенной было так горячо, что при температуре больше десяти тысяч миллиардов градусов столкновение частиц рождало протоны и их античастицы — антипротоны, нейтроны и антинейтроны. Ко всему этому мы еще вернемся. Пока мы не обращаемся к экзотическим первым мгновениям, можно считать, что и реликтовые фотоны и тяжелые частицы являются не рождающимися и не исчезающими.
Помня это, отправимся в прошлое. В прошлом плотность числа и тех и других частиц была, конечно, больше, чем сейчас, и возрастали эти плотности при углублении в прошлое в одинаковое количество раз. Значит, остается неизменным их отношение: один протон на миллиард фотонов.
Но между фотонами и тяжелыми частицами есть огромная разница. Масса тяжелых частиц все время неизменна. А энергия фотонов с расширением Вселенной уменьшается из-за красного смещения. Раз меняется энергия, значит, меняется и масса каждого фотона (эта масса целиком связана с энергией его движения). Раньше каждый фотон был энергичнее, а значит, и тяжелее.
В некоторый момент в прошлом суммарная масса миллиарда потяжелевших фотонов, приходящихся на один протон, сравнивается с массой этого протона.
В этот момент в прошлом в каждом кубическом сантиметре масса обычного вещества и масса реликтового излучения сравниваются. Произошло это, когда плотность вещества (и равная ей тогда плотность излучения) была 10–20 г/см3, температура излучения и вещества тогда была около 6 тысяч градусов. Реликтовое излучение было не радиоволнами, а видимым светом. Конечно, в эту эпоху не было отдельных небесных тел, они возникли существенно позже. А еще раньше?
Еще раньше масса реликтового излучения превосходила массу обычного вещества!
Вот такое было совершенно необычное состояние. Его называют эрой фотонной плазмы.
То, о чем мы будем говорить в последующих строках, покажется кадрами из фантастического фильма. Мы подойдем к моменту начала расширения на ничтожные доли секунды — меньше одной стотысячной доли — и встретимся с совершенно необычными процессами.
На ранних стадиях расширения основную долю массы физической материи во Вселенной составляет свет и, анализируя эту стадию, мы можем на время забыть о ничтожной доли примеси к квантам света частиц обычного вещества, того вещества, которое играет основную роль в наше время, из которого состоят звезды, планеты и мы сами.
Продолжим путешествие в прошлое к сингулярности. Например, через одну секунду после начала расширения температура была десять миллиардов градусов. При меньшем времени температура еще больше. При такой огромной температуре происходят процессы рождения и аннигиляции элементарных частиц. Например, процессы рождения пар электронов и позитронов при столкновении энергичных фотонов и аннигиляции пар электронов и позитронов с превращением в кванты света — фотоны.
Для рождения пары электронов и позитронов надо затратить энергию, равную как минимум сумме масс этих частиц, умноженную на квадрат скорости света (формула E = MC2). Следовательно, такие процессы могут идти лишь при температуре выше десяти миллиардов градусов, когда много квантов света обладает подобными энергиями. Столкновения электронов и позитронов могут вести к рождению нейтрино и антинейтрино, возможна также и обратная реакция — столкновение нейтрино и антинейтрино рождает пару электрон — позитрон. Когда температура еще выше, возможно рождение более тяжелых частиц: протонов и антипротонов, нейтронов и антинейтронов, мезонов и других.
При температурах выше десяти тысяч миллиардов градусов существовало примерно в равных количествах множество сортов частиц (и в равных количествах их античастиц), в том числе и с большой массой. По мере расширения температура падала, и энергии частиц не хватало для рождения пар тяжелых частиц и античастиц, например, таких, как протон и антипротон. Эти частицы «вымирали».
При дальнейшем уменьшении температуры «вымирают» разные виды мезонов.
Очень важное событие происходит при времени около 0,3 секунды после начала расширения. В этот момент присутствуют кванты света, электроны и позитроны, нейтрино и антинейтрино (для простоты мы говорим только об одном сорте нейтрино — об электронных нейтрино).
При высокой температуре нейтрино и антинейтрино превращаются в электроны, позитроны и обратно.
Однако нейтрино — частицы, очень слабо взаимодействующие с другими объектами, для них даже плотное вещество прозрачно. И вот при 0,3 секунды после начала расширения все вещество Вселенной, включая и электроны и позитроны, становится прозрачным для нейтрино, они перестают взаимодействовать с остальным веществом. В дальнейшем их число не меняется, и они сохраняются вплоть до наших дней, только их энергия должна упасть из-за красного смещения при расширении точно так же, как температура квантов электромагнитного излучения.
Таким образом, в нашу эпоху во Вселенной, помимо реликтового электромагнитного излучения, должны существовать реликтовые нейтрино и антинейтрино. Энергия этих частиц должна равняться примерно энергии квантов сегодняшнего реликтового электромагнитного излучения, и концентрация их также примерно совпадает с концентрацией реликтовых квантов.
Экспериментальное обнаружение реликтовых нейтрино представляло бы огромный интерес. Ведь для нейтрино Вселенная прозрачна, начиная с долей секунды после начала расширения. Обнаружив реликтовое нейтрино, мы могли бы непосредственно заглянуть в далекое прошлое Вселенной, информацию о которой несут эти частицы.
К сожалению, обнаружение нейтрино столь низких энергий, какими должны быть реликтовые нейтрино, пока практически невыполнимая задача.
В связи с этим напомним, что на наших глазах рождается нейтринная астрономия. Мы стоим на пороге систематического исследования потоков нейтрино, рождающихся при ядерных реакциях вблизи центра Солнца. Эти нейтрино позволяют непосредственно заглянуть в центр Солнца, так как вся масса Солнца для них абсолютно прозрачна. Нейтринное «просвечивание» Солнца позволит уточнить наши знания о его внутреннем строении. Точно так же в будущем астрофизикам предстоит осуществить нейтринное «просвечивание» нашей Вселенной.
Итак, мы посмотрели, что было во Вселенной с веществом и излучением в первую секунду. Как ни фантастична кажется возможность рассчитывать процессы в первую секунду с начала расширения, но современная физика позволяет это делать с полной надежностью.
Первые пять минут
В известной песенке поется:
Первые пять минут в жизни нашей Вселенной… Они определили основные ее особенности, в том числе и те, которые проявились миллиарды лет спустя, в наше время.
Процессы, которые последовали за уже рассмотренными нами первыми мгновениями и которые происходили в эти минуты, полные драматизма и действия грозных ядерных сил, определили существенные черты химического состава сегодняшней Вселенной.
Благодаря этим процессам звезды обладают достаточным запасом ядерной энергии. Поэтому то, что звезды светят, также есть следствие разгула стихий Вселенной в первые пять минут расширения.
Звезды и другие небесные тела возникли из небольшой примеси обычного вещества, о которой мы на время «забыли», рассматривая в предыдущем разделе фотоны и пары частиц — античастиц.
Вернемся теперь к этой небольшой примеси обычного вещества, которое находится в первые доли секунды после начала расширения в «кипящем котле» нейтрино и антинейтрино, электронов и позитронов и световых квантов. Оказывается процессы, в которых участвует обычное вещество, чрезвычайно чувствительны к тем условиям, которые господствовали в первые секунды расширения. Эти процессы обусловили химический состав вещества, из которого много позже, уже в эпоху, близкую к нашей, формировались галактики и звезды. Поэтому химический состав звездного вещества служит чувствительнейшим индикатором физических условий в начале космологического расширения.
Рассмотрим процессы, в которых участвует обычное вещество. В каком состоянии оно находится?
Прежде всего при температуре свыше 10 миллиардов градусов не может быть нейтральных атомов — все вещество полностью ионизовано и является высокотемпературной плазмой. Более того, при подобной температуре не могут существовать сложные атомные ядра. Сложное ядро было бы моментально разбито окружающими энергичными частицами. Поэтому тяжелыми частицами вещества оказываются нейтроны и протоны. Эти частицы подвергаются воздействию «кипящего котла» энергичных электронов, позитронов, нейтрино и антинейтрино.
Взаимодействие с этими частицами заставляет нейтроны и протоны быстро превращаться друг в друга. Эти реакции устанавливают равновесие между нейтронами и протонами. Когда температуры достаточно велики, больше ста миллиардов градусов, концентрации нейтронов и протонов будут примерно равны.
В ходе расширения Вселенной с понижением температуры становится все больше протонов и меньше нейтронов. Равенство концентраций нарушается, потому что масса нейтрона больше массы протона и образование протона энергетически более выгодно, а значит, вероятность образования протона больше, чем нейтрона. Если бы реакции продолжались и после нескольких секунд с начала расширения, то через несколько десятков секунд количество нейтронов стало бы ничтожным.
Но скорость реакции резко зависит от температуры. С убыванием ее уменьшается скорость этих реакций, и они почти прекращаются после первых секунд расширения. Относительное содержание нейтронов «застывает» на значении около 15 процентов от всех тяжелых частиц.
После этого, когда температура падает до миллиарда градусов, становится возможным образование простейших сложных ядер. Теперь энергии квантов и других частиц не хватает для того, чтобы разбивать сложное ядро. Все имеющиеся нейтроны захватываются протонами, давая сначала дейтерий, а потом реакции с участием дейтерия приводят в конце концов к ядрам атома гелия. Образуется также очень небольшое количество изотопа гелия-3, дейтерия и лития.
Более сложных ядер в этих условиях практически совсем не образуется. Дело в том, что образование таких элементов в сколько-нибудь значительных количествах может происходить в результате парных столкновений ядер и частиц, уже имеющихся. Это значит, что образование более сложных ядер может начинаться при столкновении ядер гелия-4 с нейтронами, протонами или с теми же ядрами гелия-4. Но эти столкновения не ведут к образованию сложных ядер с относительной атомной массой 5 или 8, потому что таких устойчивых ядер нет!
Указанные причины ведут к тому, что синтез элементов в начале расширения ограничивается только легкими элементами и заканчивается примерно через 300 секунд после начала расширения, когда температура падает ниже миллиарда градусов и энергия частиц уже недостаточна для ядерных реакций. Реакции, приведшие к образованию гелия, подобны тем, что происходят при взрыве водородной бомбы. Образование элементов тяжелее гелия происходит в звездах уже в нашу эпоху. В звездах вещество находится достаточно долго, и даже не очень быстрые реакции успевают пройти. Синтез элементов тяжелее железа происходит во взрывных процессах (во вспышках сверхновых звезд). Газ, прошедший стадию нуклеосинтеза в звездах, затем частично выбрасывается из них в окружающее пространство при медленном истечении с поверхности звезд и при взрывах. Из этого газа потом формируются звезды последующих поколений и другие небесные тела.
Вернемся к синтезу легких элементов в начале космологического расширения. Так как почти все нейтроны пошли на создание атомов гелия, то нетрудно подсчитать, сколько образуется гелия. Каждый нейтрон входит в состав ядра гелия-4 в паре с протоном, поэтому доля гелия по весу будет равной удвоенной концентрации нейтронов, то есть 30 процентов.
Итак, по истечении примерно пяти минут с начала расширения вещество состоит на 30 процентов из ядер атомов гелия и на 70 процентов из протонов — ядер атома водорода. Такой химический состав вещества остается в дальнейшем неизменным, вплоть до образования галактик и звезд, когда процессы нуклеосинтеза начинают идти в недрах звезд.
Подтверждают ли наблюдения вывод о химическом составе дозвездного вещества?
Сколько гелия в природе?
Гелия очень мало на Земле. Но это связано со специфическими свойствами этого элемента и с теми условиями, в которых формировалась и эволюционировала Земля. Гелий, будучи очень летучим и инертным газом, покинул вещество Земли. Однако астрономы видят его повсюду, хотя он и очень трудно наблюдаем обычными средствами спектрального анализа.
Его обнаруживают в горячих звездах, в больших газовых туманностях, которые окружают молодые горячие звезды, во внешних оболочках Солнца, в космических лучах — потоках частиц большой энергии, приходящих к нам на Землю из космоса. Гелий оказался в самых далеких от нас объектах Вселенной — квазарах.
Весьма примечательно, что где бы его ни обнаруживали, почти всегда его по массе около 30 процентов, а стальные 70 процентов составляет водород. Примесь других химических элементов невелика. Доля их меняется от объекта к объекту, а доля гелия удивительно постоянна.
Вспомним, что именно эти 30 процентов гелия предсказываются в первичном веществе теорией горячей Вселенной. Если большая часть гелия была синтезирована в первые минуты расширения Вселенной, а другие, более тяжелые элементы синтезируются значительно позже в звездах, то именно так и должно быть — гелия везде около 30 процентов, а других элементов по-разному, в зависимости от местных условий их синтеза в звездах и последующего выбрасывания газа из звезд в космическое пространство.
Во время ядерных реакций в звездах гелий тоже синтезируется. Но доля таким образом образовавшегося гелия мала по сравнению с образовавшимся в начале расширения Вселенной.
А нельзя ли все же предположить, что все наблюдаемые 30 процентов гелия образовались тоже в звездах?
Нет, это решительно невозможно. Прежде всего при образовании гелия в звездах выделяется большая энергия, заставляющая звезды интенсивно светить. Если бы такое количество гелия было в прошлом образовано в звездах, излученный ими свет с высокой температурой должен был бы наблюдаться во Вселенной, чего на самом деле нет.
К этому можно добавить, что наблюдения самых старых звезд, которые заведомо формировались из первичного вещества, показывают, что в них гелия тоже 30 процентов. Значит, практически весь гелий Вселенной был синтезирован в самом начале расширения мира.
Так химический анализ вещества сегодняшней Вселенной дает прямое подтверждение правильности нашего понимания процессов, которые протекали в первые секунды и минуты после начала расширения всего вещества.
Триста тысяч лет эры фотонной плазмы и наша эра
В первые 100 секунд расширение в расширяющейся плазме происходил еще один вид процессов. Дело в том, что по прошествии 10 секунд от сингулярного состояния температура во Вселенной упала до нескольких миллиардов градусов. До этого во Вселенной было много электронов и позитронов, рождавшихся при энергичных столкновениях частиц. Теперь энергия столкновения уже недостаточна для их рождения. Электроны и позитроны, сталкиваясь друг с другом, аннигилируют, превращаясь в фотоны. Вся энергия, которая содержалась в электронах и позитронах, переходит в фотоны реликтового излучения.
Проходят минуты, температура продолжает падать с расширением. Закончилась аннигиляция электронов и позитронов, затухли ядерные реакции в веществе.
Это были последние активные процессы, происходившие в горячей ранней Вселенной. В ней стало слишком холодно (холоднее миллиарда градусов!), и бурные процессы стали невозможны.
Закончился буйный фейерверк жизни молодой Вселенной, и наступил длительный период спокойствия. Он продолжался около 300 тысяч лет.
Напомним, что в этот период расширяющаяся плазма все же очень горяча и полностью ионизована. Она непрозрачна для реликтового излучения, которое по массе превосходит непрозрачную плазму. В этой смеси плазмы и света имеются небольшие колебания, которые можно назвать «фотонным звуком», так как упругой силой, их вызывающей, является давление света.
Вот и все интересное, что было в эту «тихую» эпоху.
Так продолжалось до того времени, когда температура упала примерно до четырех тысяч градусов. Эта температура уже достаточно низка, и ионизованная плазма начинает превращаться в нейтральный газ. Казалось бы, событие это не столь уж важное, но оно явилось поворотным в дальнейшей судьбе Вселенной.
До этого момента ионизованный газ был совершенно непрозрачен для реликтового излучения. После превращения газа (а это в основном водород) в нейтральный, он практически совершенно прозрачен для подавляющей части фотонов реликтового излучения. С этого момента реликтовое излучение отделилось от вещества. Вся Вселенная для него прозрачна. Фотоны распространяются сквозь вещество, которое становилось все более разреженным из-за расширения и все более холодным, практически не поглощаясь.
Ну и почему же это так важно? — может спросить читатель. Дело в том, что только теперь из этого остывшего нейтрального газа могут формироваться небесные тела.
За эрой фотонной плазмы наступает эра формирования структуры Вселенной.
Можно считать, что началом современной эпохи в истории Вселенной был процесс образования отдельных гигантских по размерам комков в первоначальном, почти однородном веществе, комков, из которых впоследствии возникли галактики и их скопления. Образование комков происходило под действием сил гравитации, и весь процесс получил название «гравитационной неустойчивости».
Еще у И. Ньютона были высказывания о том, что однородное вещество должно собраться в комок или в отдельные комки под влиянием взаимного тяготения частичек. И. Ньютон писал: «Если бы все вещество нашего Солнца и планет и все вещество Вселенной было равномерно рассеяно по всему небу и каждая частица обладала бы врожденным тяготением ко всему остальному и если бы все пространство, по которому было рассеяно это вещество, было бы тем не менее конечным, то все вещество на наружной стороне этого пространства благодаря своему тяготению стремилось бы ко всему веществу, находящемуся внутри пространства, и как следствие упало бы в середину полного пространства и образовало бы там одну большую сферическую массу. Однако если бы вещество было равномерно рассеяно по бесконечному пространству, оно никогда не собралось бы в одну массу; часть его могла бы собраться в одну массу, а часть — в другую, так что образовалось бы бесконечное число больших масс, разбросанных на больших расстояниях друг от друга по всему этому бесконечному пространству. Так могли образоваться Солнце и неподвижные звезды». Значит, однородное вещество стремится под действием тяготения распасться на отдельные комки. Это «стремление» имело место с самого начала расширения однородного вещества Вселенной. Но оно почему-то не распалось! Действительно, если бы такой процесс произошел в самом начале расширения Вселенной, то ничего похожего на галактики и звезды при этом не возникло бы. Ведь вещество было чудовищно плотным. Возникшие в нем комки должны были быть еще плотнее. Такого во Вселенной мы не наблюдаем. Во всяком случае, не наблюдаем в больших количествах. Галактики обладают скромной средней плотностью. Значит, они возникли в эпоху сравнительно близкую к нам, когда расширяющееся вещество Вселенной стало достаточно разреженным. Только тогда проявилась гравитационная неустойчивость. До этого что-то мешало «сработать» этому механизму. Это «что-то» было давлением реликтового излучения.
Давление реликтовых фотонов огромно. Если где-то случайно возникал сгусток плазмы вместе с фотонами реликтового излучения, то силы тяготения, конечно, стремились усилить этот сгусток, в полном соответствии с описанием И. Ньютона. Но этим силам противостояли мощные силы давления фотонов, для которых плазма была непрозрачной. Они распихивали сгусток, и гравитационная неустойчивость не могла проявиться.
Только после превращения горячей плазмы в нейтральный газ стало возможным проявление гравитационной неустойчивости. Газ теперь прозрачен для реликтового излучения. Возникший комок газа в ходе сжатия силами тяготения не испытывает сопротивления давления фотонов, они свободно выходят из зарождающегося сгустка. Только силы газового давления могут оказывать сопротивление. Но это давление гораздо слабее фотонного, и если сгусток достаточно велик по размеру, то силы газового давления не могут побороть тяготение. Проявляется гравитационная неустойчивость.
Прежде чем познакомиться с тем, как конкретно проявляется гравитационная неустойчивость, нам придется обратиться к еще одной загадке, вставшей на пути исследователей.
Глава 4. Нейтринная Вселенная
Нейтрино
Нейтрино! Эта частица уже не раз преподносила сюрпризы физикам, и от нее ждали новых. Но того, что случилось в 1980 году, не ожидал никто… Картина, представшая перед мысленным взором ученых, казалась более чем фантастической.
Однако попытаемся изложить все по порядку.
Первым сюрпризом было само изобретение этой частицы швейцарским физиком В. Паули в 1930 году. Именно такое слово — «изобретение» употребляет один из создателей современной нейтринной физики, академик Б. Понтекорво, описывая теоретическое предсказание существования нейтрино.
Вспоминая то время, он пишет: «Трудно найти ситуацию, где бы слово „интуиция“ так соответствовало характеру научного достижения, как в случае предсказания нейтрино В. Паули.
Во-первых, 50 лет назад были известны только две „элементарные“ частицы — электрон и протон, и даже идея, что для лучшего понимания природы необходимо ввести новую частицу, была сама по себе революционной…
Во-вторых, предлагавшаяся частица, нейтрино, должна была обладать совершенно экзотическими свойствами, и в особенности — огромной проникающей способностью».
В. Паули «изобрел» эту удивительную частицу для того, чтобы объяснить, куда девается часть энергии, выделяемая при радиоактивном распаде ядер с испусканием электронов. Такой распад называют бета-распадом.
Дело в том, что когда определяют энергию продуктов бета-распада радиоактивных элементов, например трития в гелий, то измерения показывают, что после распада суммарная энергия всех частиц, которые непосредственно регистрируются приборами, разная в разных актах распада трития. Происходит явное нарушение закона сохранения энергии, часть энергии все время куда-то исчезает.
Даже такие корифеи физики, как, например, Н. Бор, стали говорить, что в этих процессах действительно не сохраняется энергия. И вот тут-то В. Паули совершил свое «изобретение». Он предположил, что никакого нарушения закона сохранения энергии не происходит, а просто в процессе распада, кроме регистрируемых приборами частиц, рождаются частицы еще одного сорта. Эти гипотетические частицы очень слабо взаимодействуют с обычным веществом и поэтому свободно улетают из лаборатории, не регистрируясь физическими приборами. Улетевшие частицы и уносят с собой недостающую энергию, создавая видимость ее уничтожения. Таинственные частицы получили название нейтрино.
С тех пор прошло более полувека, и, как уже говорилось, нейтрино много раз озадачивало физиков. Так, оказалось, что нейтрино не просто слабо взаимодействует с веществом, как это первоначально предположил В. Паули, а фантастически слабо. Оно совершенно свободно проходит, скажем, сквозь Землю, и не только сквозь Землю, но и сквозь Солнце, звезды, сквозь любые тела Вселенной как сквозь пустоту, как свет сквозь оконное стекло.
Именно поэтому зарегистрировать такие частицы чрезвычайно трудно. Только в 1956 году они были непосредственно обнаружены по ядерным превращениям, ими вызываемым.
Дальнейшие исследования показали, что нейтрино (вместе с его античастицей — антинейтрино. Мы не делаем в нашем рассказе разницы между ними, называя их единым термином нейтрино) бывают, по крайней мере, трех сортов — электронные, мюонные и тау-нейтрино. Каждый сорт участвует только в определенных, специфических для него реакциях.
Не станем перечислять здесь другие удивительные особенности нейтрино. Отметим только, что своеобразие их свойств было настолько загадочным, что, с одной стороны, физики только удивленно разводили руками, не в силах понять глубинные причины этого своеобразия, а с другой стороны, они почти с мистическим благоговением верили (точнее, это подсказывала им научная интуиция), что столь странная частица должна играть особую роль во Вселенной. Вот, что говорили известные физики около двух десятилетий назад.
Д. Уилер, бывший президент Американского физического общества: «В настоящее время нет никакого объяснения тому, почему нейтринные взаимодействия так слабы по сравнению с электромагнитными взаимодействиями и почему они так сильны по сравнению с гравитационными».
Любопытно, что только одна эта фраза выделена Д. Уилером в отдельную главу (!) его работы «Нейтрино, гравитация и геометрия». Для сравнения укажем, что, например, первая глава этой работы содержит более ста страниц со сложнейшими формулами.
Академик М. Марков, внесший большой вклад в развитие нейтринной физики: «Современнику трудно гадать, какое истинное место займет нейтрино в физике будущего. Но свойства этой частицы столь элементарны и своеобразны, что естественно думать, что природа создала нейтрино с какими-то глубокими, пока для нас не всегда ясными „целями“».
Несколько дальше мы увидим, что это за «цели».
Открытия последнего времени, о которых пойдет речь, заставляют с еще большим вниманием отнестись к нейтрино и по-новому оценить сочетание трех великих сущностей — гравитации, нейтрино и Вселенной.
Если гравитация — главная сила, управляющая движением материи во Вселенной, то нейтрино согласно последним данным, по-видимому, главная частица Вселенной. Именно о нем, о нейтрино, нужно думать прежде всего, когда мы пытаемся понять, что есть Вселенная.
Свойства Вселенной
Из предыдущих глав читатель уже знает некоторые важнейшие свойства окружающего нас макромира, надежно установленные наукой. Приведем здесь еще раз некоторые из этих бесспорных фактов, необходимых для нашего обсуждения.
Прежде всего мы помним, что расширение Вселенной начиналось со сверхплотного состояния и вещество тогда было чрезвычайно горячим. От этой эпохи осталось остывшее реликтовое излучение.
Далее, надежно установлено, что в масштабах миллиардов световых лет нет заметных неоднородностей в распределении плотности вещества в пространстве, нет сверхсверхскоплений галактик. Это значит, что в таких больших масштабах нет отдельных структурных единиц Вселенной. Этот факт особенно надежно установлен по наблюдению реликтового излучения; если бы существовали неоднородности с размерами порядка миллиарда световых лет или более, то с разных направлений на небе реликтовое электромагнитное излучение приходило бы к нам с разной интенсивностью. Дело в том, что повышенная плотность ведет к повышенному полю тяготения. Фотоны реликтового излучения, выходя из этого поля тяготения, тратят дополнительную энергию, то есть «краснеют», и значит, излучение с этих направлений имеет чуть меньшую интенсивность. А такого различия интенсивности реликтового излучения не наблюдается, и, следовательно, иерархическая лестница структуры Вселенной не простирается в бесконечность. То есть в очень больших масштабах, начиная с участков размером примерно в сотни миллионов световых лет, Вселенная однородна.
Напомним еще, что наблюдения выявили характерные особенности крупнейших структурных единиц Вселенной — сверхскопления галактик. Оказалось, что в таких образованиях галактики и их скопления сосредоточены в тонких слоях, образующих стенки ячеек, внутренность которых практически пуста. Можно сказать, что распределение галактик во Вселенной напоминает пчелиные соты. В ребрах «сот» плотность галактик особенно велика.
Итак, некоторые важные факты строения и эволюции Вселенной установлены надежно: это расширение Вселенной, ее первоначальное горячее состояние и нынешняя ячеистая структура.
Нерешенные проблемы
Среди этих проблем непременно придется назвать механизмы возникновения структуры Вселенной.
Как, когда и почему возникла нынешняя структура Вселенной? Почему крупнейшие структурные единицы Вселенной — крупные скопления галактик и сверхскопления — имеют именно такие, а не другие масштабы и форму? Последние пятнадцать лет астрофизики-теоретики в содружестве с наблюдателями пытались ответить на эти вопросы, но до последнего времени нельзя было сказать, что главные этапы процесса образования галактик и их скоплений выяснены.
Дело в том, что нечто очень важное оставалось неизвестным. Подозрение о том, что в наших знаниях о Вселенной есть какой-то существенный пробел, зародилось сравнительно давно, еще тогда, когда в астрофизике возникла так называемая проблема скрытой массы, о которой мы говорили в одной из предыдущих глав.
Напомним, что эта проблема была четко сформулирована в начале 70-х годов и состоит она в следующем. Движение галактик в их скоплениях происходит таким образом, что приходится предполагать наличие в пространстве между галактиками какой-то невидимой массы. Она своим тяготением влияет на движущиеся объекты, но больше никак себя не проявляет. Такая же невидимая масса окружает, вероятно, и большие галактики, о чем можно судить по движению карликовых галактик и других объектов вокруг них. Эта невидимая масса и получила название труднонаблюдаемой, или скрытой, массы, и о природе ее практически ничего не было известно. Наблюдения показывали, что скрытой массы в областях скопления галактик, должно быть раз в 20 больше, чем видимой массы, сосредоточенной в самих галактиках. Если масса всех галактик в типичном их скоплении составляет около 3 · 1013 масс Солнца, то масса невидимой материи оказывается около 1015 масс Солнца. Некоторые специалисты считали, правда, что наблюдения, в которых проявляется тяготение скрытой массы, недостаточно надежны, и споры вокруг этого вопроса то утихали, то разгорались вновь вплоть до самого последнего времени.
Нейтрино во Вселенной
Теперь мы возвращаемся к главному герою нашего повествования — к нейтрино. К сказанному в начале главы добавим следующее. До последнего времени считалось общепринятым, что нейтрино не имеют массы покоя и, подобно фотону, всегда движутся со скоростью света.
Давно и внимательно изучались процессы, в которых участвуют нейтрино и которые могут играть важную роль в астрофизике.
Было, в частности, установлено, что нейтрино в просторах Вселенной очень много, почти столь же много, как и реликтовых электромагнитных квантов — реликтовых фотонов. Как мы видели в предыдущей главе, дело в том, что нейтрино, как и фотоны, должны остаться во Вселенной с того начального периода расширения, когда горячее плотное вещество имело очень высокую температуру и было непрозрачным не только для света, но и для нейтрино. Тогда происходили быстрые реакции превращения друг в друга нейтрино, электронов, электромагнитных квантов и других элементарных частиц. Эти процессы могут быть надежно рассчитаны методами современной физики, и результаты расчетов показывают, что после первых десятков секунд с начала расширения Вселенной фотонов в единице объема было примерно втрое больше, чем нейтрино (вместе с антинейтрино).
Это отношение для реликтовых фотонов и нейтрино остается практически неизменным и во время последующей эволюции Вселенной, вплоть до наших дней. Мы не можем сегодня каким-либо прямым способом регистрировать реликтовые нейтрино, так как уж очень мала их энергия: при нулевой массе покоя нейтрино его энергия составляет около 5 · 10–4 электронвольт (эВ). Однако астрофизики могут предсказать, сколько их должно быть. Как уже отмечалось, в каждом кубическом сантиметре содержится около 500 реликтовых фотонов. Реликтовых нейтрино должно быть втрое меньше, то есть около 150 частиц в кубическом сантиметре.
Напомним также, что каждый реликтовый фотон имеет энергию и соответствующую массу 10–36 грамма, и, таким образом, плотность массы реликтового электромагнитного излучения составляет около 5 · 10–34 г/см3. Это примерно в 2000 раз меньше, чем средняя плотность обычного вещества во Вселенной.
Из сказанного можно сделать вывод, что плотность массы реликтового электромагнитного излучения пренебрежимо мала. То же самое можно было бы сказать и о нейтрино: средняя плотность его массы (это, разумеется, не масса покоя, а масса, определяемая энергией частицы) еще меньше, чем плотность электромагнитного излучения, — она составляет около 1,5 · 10–34 г/см3. Таким образом, ролью реликтовых нейтрино в сегодняшней Вселенной можно и вовсе пренебречь — они не только имеют ничтожную суммарную массу, но еще и практически не взаимодействуют с остальным веществом Вселенной.
По крайней мере, такое мнение о роли нейтрино в нынешней Вселенной существовало у большинства специалистов до весны 1980 года.
Нейтринный эксперимент
Весной 1980 года группа исследователей из Института теоретической и экспериментальной физики АН СССР, возглавляемая В. Любимовым и Е. Третьяковым, опубликовала результаты многолетних экспериментов, которые указывают на отличие массы покоя электронных нейтрино от нуля. (Напомним, что для краткости мы говорим только об электронных нейтрино. А как упоминалось, существует еще два сорта нейтрино — мюонные и тау-нейтрино.) Вероятное значение массы покоя электронных нейтрино, найденное в этих экспериментах, составляет примерно 6 · 10–32 грамма или, в других единицах, 35 эВ. Это, в частности, значит, что электронные нейтрино не обязаны, как считалось раньше, двигаться со скоростью света, они могут двигаться с любой скоростью, меньше световой, а также находиться в состоянии покоя.
Хочется подчеркнуть огромную сложность экспериментов по определению массы покоя нейтрино и тот факт, что сами экспериментаторы не считают массу нейтрино окончательно установленной. Эта величина еще будет проверяться и перепроверяться. Однако если полученный результат подтвердится, то следствия из него будут чрезвычайно серьезными, особенно для астрономии. Скорее всего поэтому теоретики не стали дожидаться окончательных результатов в проверке величины массы нейтрино и активно стали исследовать то, что нужно будет изменить в наших представлениях о Вселенной с учетом у нейтрино массы покоя. Кстати, появляются сообщения о других экспериментах, говорящих об отличии массы покоя нейтрино от нуля, причем не только для электронных, но и для других сортов нейтрино.
Следует напомнить, что возможные последствия для астрофизики, вытекающие из гипотезы о существовании у нейтрино массы покоя, рассматривались задолго до обсуждаемых экспериментов. Еще в 1966 году советские физики С. Герштейн и Я. Зельдович рассмотрели вопрос о том, как бы сказывалась значительная масса покоя нейтрино на расширении всей Вселенной. Венгерские физики Г. Маркс и О. Шалаи также изучали возможные космологические следствия предположения о ненулевой массе покоя нейтрино.
Но все это были, так сказать, первые прикидки, анализ разных возможностей. Ситуация резко изменилась после прямого эксперимента советских физиков.
Теоретики, вооруженные указанием экспериментаторов, поднялись на настоящий штурм проблемы.
Нейтринная Вселенная
Согласно данным, полученным в ИТЭФе, нейтрино в 20 тысяч раз легче электрона и в 40 миллионов раз легче протона. Почему же теоретики считают, что эта легчайшая, ни с чем не взаимодействующая частица должна играть определяющую роль во Вселенной?
Ответ прост: во Вселенной очень много реликтовых нейтрино. В кубическом сантиметре их в среднем почти в миллиард раз больше, чем протонов, и, несмотря на ничтожную массу, в сумме нейтрино оказываются главной составной частью массы материи во Вселенной. Нетрудно подсчитать, что если масса покоя электронных нейтрино равна 6 · 10–32 грамма, то только их средняя плотность (не учитывая нейтрино других сортов) составляет примерно 10–29 г/см3, а это примерно в 10–30 раз превышает плотность всего другого «не нейтринного» вещества. И значит, именно тяготение нейтрино должно быть главной действующей силой, определяющей законы расширения Вселенной сегодня. Обычное вещество по массе, а значит, и по гравитационному действию составляет только 3–10 процентов «примеси» к основной массе Вселенной — к массе нейтрино. Можно поэтому смело сказать, что Вселенная состоит в основном из нейтрино, что мы живем в нейтринной Вселенной. Именно этот вывод мы имели в виду, когда в начале главы говорили о фантастической картине, открывшейся перед глазами ученых.
Полученный вывод имеет еще одно интересное следствие.
Важнейшим вопросом, касающимся эволюции Вселенной, является вопрос о том, будет ли вечно продолжаться ее расширение. Ответ, как мы знаем, зависит от того, чему равна средняя плотность материи во Вселенной: если она больше критического значения, то тяготение этой материи через какое-то время затормозит расширение Вселенной и заставит галактики сближаться друг с другом — Вселенная сменит расширение на сжатие; если же плотность меньше критического значения, то тяготение материи недостаточно для того, чтобы остановить расширение, и Вселенная будет расширяться вечно.
Критическая плотность, по современным данным, равна, как говорилось, 10–29 г/см3. Еще недавно считалось, что основную долю плотности во Вселенной составляет обычное вещество, для которого плотность равна примерно 3 · 10–31 г/см3. Это означало, что плотность меньше критической и Вселенная должна расширяться вечно. Теперь же есть веские основания считать, что плотность только реликтовых электронных нейтрино примерно равна критической 10–29 г/см3. Следует вспомнить, что, помимо реликтовых электронных нейтрино есть еще мюонные и тау-нейтрино. Об их массе покоя ничего не известно из прямых экспериментов, однако из теории и косвенных экспериментов следует, что если отлична от нуля масса покоя электронных нейтрино, то, вероятно, отлична от нуля и масса покоя других сортов нейтрино. Причем, вероятно, массы покоя других сортов нейтрино не меньше массы покоя электронных нейтрино. Если мы учтем это, то средняя плотность материи во Вселенной окажется больше критической. А это значит, что в далеком будущем, скорее всего через многие миллиарды лет, расширение Вселенной сменится сжатием, и причиной этого «сильнейшего» вывода оказалась «слабейшая» из частиц — нейтрино.
Происхождение галактик
Вернемся к вопросу о происхождении структуры Вселенной, В начале ее расширения вещество представляло собой почти однородную расширяющуюся горячую плазму. Почему же эта однородная плазма на некотором этапе распалась на комки, которые развились в небесные тела и их системы? Как появились зачатки скоплений галактик?
Согласно мнению большинства специалистов подобный процесс происходит из-за гравитационной неустойчивости: маленькие случайные начальные уплотнения вещества своим тяготением стягивают вещество и за счет этого усиливаются — сгущаются и разрастаются. Эти сгустки вещества при определенных условиях могут вырасти в большие комки, дающие начало скоплениям галактик. Основы теории, описывающей этот процесс, были сформулированы еще в 1946 году советским физиком, ныне академиком Е. Лифшицем.
Теперь мы можем считать, что во Вселенной тяготение нейтрино оказывается важнейшим фактором, и именно это тяготение надо прежде всего учитывать при анализе роста неоднородностей вещества под действием гравитационной неустойчивости.
Общая картина роста неоднородностей представляется следующей. В самые первые мгновения после начала расширения Вселенной были случайные, очень маленькие неоднородности в распределении плотности материи в пространстве. Мы знаем, что спустя всего одну секунду после начала расширения плотность вещества уже недостаточно велика, чтобы препятствовать свободному полету сквозь него нейтрино всех сортов. Нейтрино в этот период имеют еще очень большую энергию и летят со скоростью, очень близкой к скорости света. При этом, естественно, идет выравнивание неоднородностей, создается более равномерное распределение нейтрино. Однако происходит это только в малых пространственных масштабах в районах, сравнительно малых по линейным размерам нейтринных сгущений.
Действительно, из сравнительно мелких сгущений нейтрино успевают вылететь и перемешаться с другими нейтрино достаточно быстро, усредняя, сглаживая все неоднородности. И чем больше проходит времени, тем больше (по линейному размеру) неоднородности нейтрино успевают «рассосаться». Так будет продолжаться до тех пор, пока нейтрино, теряющие энергию вследствие расширения Вселенной, не станут двигаться со скоростью заметно меньшей, чем скорость света. Расчеты показывают, что примерно через 300 лет после начала расширения скорость нейтрино упадет настолько, что они уже не будут успевать вылетать из комков большого размера. И такие комки, плотность в которых сначала лишь немного превышает среднюю, могут усиливаться тяготением, сгущаться и расти, пока среда не распадется на отдельные сжимающиеся облака из нейтрино.
Можно подсчитать, какой будет масса таких нейтринных облаков. Поскольку главным образом только первые 300 лет происходило выравнивание плотности и нейтрино двигались с околосветовой скоростью, мы приходим к выводу, что выравнивание успело произойти в участках с размерами, не превышающими 300 световых лет. В больших масштабах, в нейтринных сгустках большего размера, повышенная плотность нейтрино сохранялась, ибо нейтрино не успело из них вылететь. Затем скорость движения нейтрино резко падала, взаимное их тяготение приводило к увеличению повышенной плотности, и эти сгущения дали начало нейтринным облакам. Следовательно, масса этих облаков определится количеством нейтрино, находившихся в сфере радиусом 300 световых лет через 300 лет после начала расширения Вселенной.
Расчет показывает, что типичная масса такого нейтринного облака выражается только через фундаментальные константы природы: h — постоянную Планка, с — скорость света, G — постоянную тяготения и m — массу покоя нейтрино. Первые три константы известны, и если принять, что масса покоя нейтрино действительно равна 35 эВ = 6 · 10–32 грамма, то окажется, что масса типичного нейтринного облака составляет примерно 1015 солнечных масс.
Так обстоит дело с массой нейтринных облаков. А какова будет их форма? Еще 10 лет назад Я. Зельдович показал, что в такого рода процессах возникающие облака должны быть очень сильно сплюснуты, что по форме они должны быть похожи на блины. Соединение множества таких «блинов», хаотично расположившихся в пространстве, даст в совокупности картину гигантских невидимых нейтринных сот.
Итак, к нашему времени в пространстве должна возникнуть ячеистая структура невидимых нейтринных облаков. А что же обычное вещество? В какие пространственные структуры соберется оно?
В начале расширения обычное вещество (это все вещество Вселенной, кроме нейтрино) тоже было распределено в пространстве почти равномерно. Масса этого обычного вещества, как мы знаем (или, точнее, как мы сейчас имеем основание считать), во много раз меньше суммарной массы нейтрино, и в начальной стадии расширения Вселенной это вещество находилось в виде горячей плазмы.
Но, как мы видели в предыдущей главе, по прошествии трехсот тысяч лет после начала расширения обычное вещество настолько охлаждается, что из состояния плазмы превращается в нейтральный газ, давление которого резко падает, — это происходит спустя миллион лет после начала расширения. Затем холодный нейтральный газ начинает сгущаться в поле тяготения возникающих нейтринных облаков, стягиваясь к их центральной части. И именно из этого сгущающегося нейтрального газа постепенно возникают скопления галактик, галактики и звезды. Так как обычного вещества по массе в 30 раз меньше, чем нейтрино, то в невидимом нейтринном «блине» с массой в 1015 солнечных масс образуется большое скопление галактик, масса которого в 30 раз меньше, то есть составляет 3 · 1013 солнечных масс.
Полученные наблюдательной астрономией данные о массах и форме больших скоплений галактик хорошо согласуются с данными, полученными из подобных теоретических построений.
Реальность и фантастика
Таким образом, огромное море нейтрино, собранных в облака, в которых они движутся со скоростью порядка 1000 километров в секунду, по-видимому, представляет собой то самое «нечто», которое раньше не учитывалось при исследовании Вселенной и без которого невозможно было объяснить многие важные ее черты.
Как говорят астрофизики-теоретики, теперь, после того как появилось основание ввести массу покоя нейтрино, многое непонятное ранее встало на свои места. Хорошо по этому поводу сказал советский астрофизик А. Дорошкевич, перефразируя известный афоризм: «Если бы масса нейтрино оказалась равной нулю, то пришлось бы выдумать какую-либо другую частицу с массой покоя, отличной от нуля, и слабо взаимодействующую с остальными частицами».
Хочется верить, что придумывать новую частицу нам уже не придется, так как полученные советскими физиками данные о массе покоя нейтрино, пусть даже с некоторыми уточнениями, уже в недалеком будущем получат надежное подтверждение.
Все же из осторожности, которая уместна, когда рассуждения касаются всей Вселенной, заметим следующее.
Та «запасная» частица, о которой говорил в своем полушутливом замечании А. Дорошкевич, уже есть в арсенале гипотез современной физики. Более того, таких частиц несколько! Назовем здесь для примера фотино-частицу, подобную фотону, но обладающую массой, гравитино — аналогичную гравитону, но также обладающую массой. Так что если прав окажется А. Дорошкевич, то Вселенная устроена еще более диковинным образом и окажется не нейтринной, а либо, скажем, фотинной, либо гравитинной, либо еще какой-нибудь… инной.
Истина здесь еще далеко не установлена, и многое из того, о чем мы рассказываем, является передним краем науки. Поэтому мы и старались отделить твердо установленные факты от еще только решаемых проблем.
Летом 1982 года известный английский физик-теоретик С. Хоукинг собрал в Кембридже узкое международное рабочее совещание для обсуждения процессов, происходивших во Вселенной до истечения первой секунды с начала расширения. Мы об этих процессах будем говорить дальше. Как-то поздним вечером после напряженной и интересной работы мы прогуливались с академиком М. Марковым по узким улочкам этого старинного и, наверное, самого знаменитого в мире научного центра. Наш разговор невольно обратился к тому, насколько фантастична, многообразна и интересна картина Вселенной, которую мы знаем сегодня. Насколько богаче она той механистической картины движения неделимых шариков, что представлялась И. Ньютону, творившему в этом городе несколько веков назад.
Я напомнил М. Маркову его пророчество о роли нейтрино во Вселенной (приведенное в начале главы), и сказал, что то, что мы, специалисты, обсуждаем сегодня на наших встречах, гораздо фантастичнее выдумок, встречающихся в научно-фантастической литературе. Академик М. Марков ответил, что научно-фантастической художественной литературы не бывает. Любая художественная литература (настоящая) всегда посвящается людям, их душам. При этом писатель может прибегнуть к фантастическим ситуациям, и тогда это литература фантастическая (хорошая или плохая). Любые потуги на «научность» являются дилетантством, и литература перестает быть литературой, не превращаясь даже в подобие науки. А вот настоящая наука всегда фантастична! И для ее понимания, а тем более для ее развития необходимо незаурядное воображение, оперирующее тем не менее строгими формулами, опирающимися на надежный фундамент знаний. «Трудно и интересно быть ученым», — заметил М. Марков.
Что же касается фантастической литературы, то оказалось, что академик не только является большим ее любителем, но и сам пишет в этом жанре. Когда мы вернулись в Москву, он дал мне почитать свою фантастическую повесть.
Возвращаясь от фантазий к реальности, давайте подведем некоторый итог нашего путешествия к первым секундам расширения Вселенной. Мы оказались свидетелями бурных процессов горячей Вселенной, настоящего фейерверка, приведшего к рождению миров и к современной Вселенной.
Сегодня мы живем во Вселенной с развитой структурой, с системами миров. В звездах идет направленный процесс переработки водорода в гелий и более тяжелые элементы. Запасы ядерного горючего огромны, их хватит на десятки миллиардов лет. А что потом? Звезды не могут быть вечным атрибутом Вселенной, они погаснут. Один из известных космологов, Ж. Леметр, писал: «Эволюцию мира можно сравнить со зрелищем фейерверка, который мы застали в момент, когда он уже кончается: несколько красных угольков, пепел и дым. Стоя на остывшем пепле, мы видим медленно угасающие солнца и пытаемся воскресить исчезнувшее великолепие начала миров».
Означает ли это, что будущее Вселенной должно походить на какое-то пепелище, оставшееся после великого пожара?
Конечно нет! Мы еще обсудим будущее Вселенной. Но прежде чем это сделать, нам придется еще раз приблизиться к сингулярному началу расширения Вселенной. Но этот раз мы подойдем к сингулярности гораздо ближе, и здесь нам не обойтись без крыльев научной фантазии (не фантастики!), той самой фантазии, о которой говорил академик М. Марков.
Глава 5. У границ известного
Почему вселенная такая?
Что происходило во Вселенной вблизи самой сингулярности при температурах гораздо выше 1013 кельвинов, рассмотренных нами в предыдущих разделах?
Мы уже познакомились раньше с тем общим методом, которым пытаются выяснить, что происходит вблизи самого начала космологического расширения. Для этого находят «следы» тех процессов, которые тогда происходили. Выше говорилось, что ярким «следом» процессов, происходивших в первые секунды после начала расширения, является химический состав дозвездного вещества — наличие 30 процентов гелия, возникшего в ту далекую эпоху. Теперь надо попытаться отыскать по возможности столь же явные «следы» еще более «древних» процессов.
Оказывается, что этими «следами» являются фундаментальные свойства Вселенной. Начнем с перечисления их, а затем посмотрим, следствием каких процессов они являются и как современная наука пытается объяснить возникновение этих загадочных свойств Вселенной. Мы увидим, что объяснение это поистине удивительно.
Первое загадочное свойство — это огромное количество фотонов реликтового излучения по сравнению с числом тяжелых частиц. Вспомним, что отношение этих чисел есть миллиард к единице. Почему такая гигантская разница?
Вторая загадка — почему Вселенная в больших масштабах очень однородна? Однородность, как мы знаем, надежно устанавливается по наблюдениям реликтового излучения, приходящего к нам с разных сторон и имеющего одинаковую интенсивность (не зависящую от направления). Это означает, что в прошлом, в момент, когда плазма превратилась в нейтральный газ и поэтому стала прозрачной и когда вышли реликтовые фотоны, наблюдаемые нами сегодня, точки, далеко разнесенные в пространстве, имели одинаковую температуру. Для той эпохи каждая такая точка лежала тогда вне горизонта видимости, очерченного вокруг другой точки. Поэтому точки были причинно не связаны, не могли за время расширения Вселенной обменяться сигналами. Как же в таком случае у них получились одинаковые температуры, если одна точка не может даже знать, какая температура у другой? Эта проблема получила название «проблемы горизонта».
Третья загадка — почему сегодня, спустя 10–20 миллиардов лет после начала расширения, плотность материи во Вселенной достаточно близка к критическому значению, а геометрические свойства пространства близки к свойствам плоского пространства? Ведь если в какой-то момент есть отличие плотности вещества от критического значения, то с течением времени отличие это увеличивается. Действительно, равенство плотности критическому значению означает точный баланс скорости расширения и сил тяготения. Если же этот баланс хоть немного нарушен, скажем, в пользу тяготения, то торможение расширения все сильнее будет нарушать баланс с течением времени. Поэтому, если сегодня плотность материи отличается от критической не более чем в несколько раз, то в прошлом тяготение и скорость должны были быть сбалансированы с ювелирной точностью. Можно подсчитать, что спустя секунду после начала расширения баланс мог нарушаться не более чем на одну десятитысячную миллиардной доли процента! Откуда взялась эта ювелирная балансировка?
Наконец, еще одна загадка — почему, несмотря на удивительную однородность Вселенной в очень больших масштабах, в меньших масштабах все же были в прошлом отклонения от однородности, небольшие первичные флуктуации, давшие затем начало галактикам и их системам? Это проблема возникновения первичных флуктуаций, и не каких-либо, а таких, которые в эпоху, близкую к нашей, привели к возникновению отдельных миров.
Ключ к решению этих проблем дали успехи физики элементарных частиц.
Проследим, как этим ключом отпираются запоры, охраняющие сокровенные тайны.
Известны четыре вида физических взаимодействий: сильные (или ядерные), электромагнитные, слабые (обусловливающие, например, радиоактивный распад) и гравитационные. Согласно современным представлениям эти виды взаимодействий проявляются как разные только при сравнительно малых энергиях, а при больших — объединяются в единое взаимодействие. Так, при энергиях порядка 102 гигаэлектронвольт (ГэВ), что соответствует температуре 1015 кельвинов, объединяются электромагнитные и слабые взаимодействия. При энергиях около 1014 ГэВ или температуре 1027 кельвинов происходит так называемое «великое объединение», когда сливаются сильные, слабые и электромагнитные взаимодействия. Наконец, при энергиях около 1019 ГэВ или температуре 1032 кельвинов, вероятно, к ним присоединяется и гравитационное взаимодействие («суперобъединение»).
Оставим пока в стороне возможность последнего объединения всех сил и гравитации и рассмотрим, к каким следствиям для космологии ведет теория «великого объединения».
Начнем с первой из перечисленных выше проблем. Читатель, возможно, был несколько удивлен, почему первая проблема считается загадкой. Что тут необыкновенного, если на миллиард реликтовых фотонов приходится одна тяжелая частица?
Необычность этого станет очевидной, если мы отправимся в прошлое к температурам 1013 кельвинов, когда, как мы знаем, все время рождалось и аннигилировало огромное количество пар частиц и античастиц. Среди них были и электроны и позитроны, были протоны и антипротоны, нейтроны и антинейтроны. Причем рожденных таким образом частиц каждого сорта было примерно столько, сколько реликтовых фотонов. «Кипящий котел», который мы рассматривали, содержал примерно одинаковое число частиц всех сортов и их античастиц.
Если бы число тяжелых частиц и античастиц (их называют барионами) было в точности одинаково для каждого сорта, то в ходе расширения они бы все проаннигилировали, превратившись в реликтовые фотоны и нейтрино, и во Вселенной, кроме реликтового излучения и нейтрино, вообще бы ничего не осталось! Не осталось бы вещества, из которого потом формировались звезды и планеты и мы с вами.
Но почему-то число частиц и античастиц было не в точности одинаково, но и не сильно отличалось друг от друга. На каждые миллиард пар частиц-античастиц приходилась одна «лишняя» тяжелая частица! Миллиард пар с понижением температуры проаннигилировали, а эта «лишняя» частица осталась. Из таких оставшихся частиц и возник весь окружающий нас сегодня мир — мир звезд, планет, газа.
Опять мы видим какую-то странную ситуацию: миллиард пар и одна лишняя частица. Откуда она взялась и почему одна на миллиард?
В этом и состоит проблема. До недавнего времени считалось, что если «лишней» частицы не было с самого начала, то она и не может возникнуть ни в каких реакциях. Считалось, что неизменным остается «барионный заряд» — так называют разность числа тяжелых частиц и античастиц. Теория «великого объединения» показала, что это не так, есть реакции, которые нарушают закон сохранения барионного заряда. Но в этих реакциях участвуют сверхтяжелые частицы. Это так называемые сверхтяжелые хиггсовские и калибровочные частицы. Такие сверхтяжелые частицы могут рождаться только при очень больших энергиях, поэтому и реакции с изменением барионного числа могут успешно идти только при очень больших энергиях. Для простоты изложения, чтобы показать главную идею, мы будем говорить об одной сверхтяжелой частице — сверхтяжелом X-бозоне. Масса этой частицы в энергетических единицах равна энергии «великого объединения» — 1014 ГэВ (в 1014 раз тяжелее протона), то есть X-бозоны могут эффективно рождаться при столь больших энергиях, соответствующих температуре 1027 кельвинов. Такие температуры были во Вселенной при 10–34 секунды после начала расширения. В это время (и при еще более высоких температурах) реакции с изменением барионного числа были столь же интенсивны, как и другие реакции.
Следующим важным обстоятельством является отсутствие симметрии между частицами и античастицами. Это означает, что темпы реакций с частицами и соответствующих реакций с античастицами, вообще говоря, несколько различны.
Теперь мы можем объяснить возникновение в ходе расширения горячей Вселенной одной «лишней» частицы на миллиард пар частиц-античастиц.
При температурах выше 1027 кельвинов во Вселенной была сверхгорячая смесь всех фундаментальных частиц и точно такого же количества их античастиц, находящихся в термодинамическом равновесии. Никакого избытка «лишних» частиц не было. Если бы не было различия между свойствами частиц и античастиц и не было реакций с несохранением барионного числа, то при расширении Вселенной и падении температуры все пары тяжелых частиц и их античастиц проаннигилировали бы (ведь их одинаковое число!) и во Вселенной не осталось бы к нашему времени ни нейтронов, ни протонов — все превратилось бы в легкие частицы. Не было бы в сегодняшней Вселенной обычного вещества.
Но в действительности происходит следующее. Когда температура падает ниже 1027 кельвинов, темп всех процессов с X-бозонами и их античастицами анти-X оказывается медленнее, чем темп расширения Вселенной. Эти частицы не успевают аннигилировать или распадаться, и их концентрация оказывается «замороженной». Только позже, когда пройдет достаточно времени, они будут распадаться. Этот процесс и является теперь ключевым для дальнейшего.
X-бозон, как и его античастица анти-X, могут распадаться с нарушением барионного заряда, причем X-частица и X-античастица распадаются не совсем одинаково. В результате, как показывает расчет, и возникает маленький избыток частиц над античастицами. Расчеты эти еще не очень точны, но они показывают, что число возникающих лишних частиц, вероятно, близко к одной на миллиард пар частиц-античастиц. Частицы и античастицы проаннигилируют в ходе расширения Вселенной, превратясь в конце концов в фотоны, которые вместе с имевшимися там фотонами и составят реликтовое излучение (напомним, что во Вселенной остаются также нейтрино), а избыток барионов останется. Вот он-то и является обычным веществом сегодняшней Вселенной. Ясно, что число фотонов по сравнению с «лишними» частицами будет приблизительно в миллиард раз больше.
Так решается первая проблема.
Обратимся теперь к трем другим. Согласно теории «великого объединения», во Вселенной при температуре порядка 1027 кельвинов и больше было поле (его называют скалярным полем), которое обладало свойствами вакуума, рассмотренными нами в разделе «Гравитация пустоты». В частности, у этого поля было огромное «отрицательное давление» — натяжение, равное плотности энергии самого поля. Такое поле получило название «ложного вакуума». Отличие его от истинного вакуума, помимо всего прочего, в том, что соответствующая плотность «ложного вакуума» фантастически огромна — около 1074 г/см3. Мы знаем, что плотности вакуума соответствует космологическая постоянная в уравнениях тяготения Эйнштейна. В ту эпоху такая постоянная (ее можно назвать вслед за «ложным вакуумом» — «ложной постоянной») также была огромна.
В начале расширения, при временах меньше 10–34 секунды, температура во Вселенной была выше 1027 кельвинов. Плотность «ложного вакуума» была 1074 г/см3, но плотность горячих реальных частиц и античастиц обычной материи была еще выше. Поэтому тогда никак не проявлялись гравитационные свойства «ложного вакуума» и расширение Вселенной проходило по обычным законам. В ходе расширения плотность обычной материи уменьшалась и при 10–34 секунды после начала расширения сравнялась с плотностью «ложного вакуума». Мы уже видели в разделе «Гравитация пустоты», насколько необычны гравитационные проявления вакуума. Его гравитация вместо притяжения вызывает отталкивание. Так случилось и в «эпоху 1034» секунды. Гравитационное отталкивание вакуума заставляет мир расширяться ускоренно. Плотность «ложного вакуума» постоянна, она не уменьшается со временем, поэтому ускорение расширения тоже постоянно. Скорость расширения (скорость удаления друг от друга двух произвольных элементов среды) непрерывно нарастает (вместо затухания с течением времени, как это имеет место без гравитации вакуума под действием тяготения обычной материи), и очень быстро все размеры во Вселенной невероятно растягиваются и становятся огромными. Эта стадия ускоренного расширения получила название «раздувающейся» Вселенной. За период с 10–34 секунды по 10–32 секунды с начала расширения все размеры во Вселенной увеличились в 1050 раз!
Но состояние «раздувающейся» Вселенной неустойчиво. Температура и плотность обычной материи стремительно уменьшаются при таком расширении. Вселенная становится переохлажденной. Плотность обычной материи становится совершенно пренебрежимой по сравнению с плотностью «ложного вакуума». В это время становится возможным фазовый переход из состояния «Ложного вакуума» с огромной плотностью, в конце концов, в состояние, когда вся плотность массы (и соответствующая плотность энергии) «ложного вакуума» переходит в плотность массы обычной горячей материи, а плотность истинного вакуума равна нулю или очень мала. Это означает, это из энергии, заключенной прежде в «ложном вакууме», возникает огромное количество частиц и античастиц обычной материи, обладающих большой энергией. Вселенная вновь разогревается до температуры около 1027 кельвинов.
Деталей этого перехода мы здесь касаться не будем. Отметим только, что разогрев Вселенной происходит спустя, вероятно, 10–32 секунды после начала расширения. За короткое время, с 10–34 секунды по 10–32 секунды, Вселенная невероятно ускоренно «раздувается» из-за гравитационного отталкивания «ложного вакуума». Так, если без стадии «раздувающейся» Вселенной эти расстояния до Вселенной увеличились бы всего в 10 раз, то при наличии такой стадии продолжительностью с 10–34 секунды по 10–32 секунды мир за то же время расширится в 1050 раз! После этого начинается расширение согласно законам теории горячей Вселенной, с которой мы уже знакомы.
Процессы синтеза гелия и другие процессы, описанные нами, протекают много времени спустя после стадии «раздувающейся» Вселенной (сравните: 1 секунда — 300 секунд для синтеза гелия и 10–34–10–32 секунды для стадии «раздувающейся» Вселенной!) так, как описано в соответствующих разделах.
Стадия «раздувающейся» Вселенной сразу решает вторую проблему из перечисленных в начале этого раздела — проблему горизонта. Действительно, возьмем точки, которые вначале, до стадии «раздувания», лежат очень близко друг к другу внутри общего горизонта видимости для того момента. Между ними возможен обмен сигналами, выравнивание температуры и другие процессы. Затем, в результате стремительного растяжения в ходе «раздувания» точки оказываются разнесенными на гигантские расстояния. В нашу эпоху они лежат на огромных расстояниях, заметно превышающих расстояния до горизонта, если не учитывать стадии «раздувающейся» Вселенной. Поэтому после «раздувания» эти точки действительно не смогут обменяться сигналами, но до «раздувания» это было возможно.
Переход плотности «ложного вакуума» в плотность обычной материи в конце стадии «раздувающейся» Вселенной решает третью проблему. «Антигравитация» «ложного вакуума» заставляет возникающую из него обычную материю расширяться точно со «сбалансированной» скоростью. Можно сказать, что плотность вакуума в точности соответствует критической плотности для той эпохи и после фазового перехода плотность материи, естественно, тоже будет равна критической с огромной точностью.
Обратимся теперь к четвертой проблеме — к проблеме возникновения небольших первичных флуктуаций плотности, которые должны были существовать в среде сразу после окончания стадии «раздувающейся» Вселенной. Такие неоднородности должны возникнуть в результате рассматриваемых процессов уже в силу квантовой природы материи. Действительно, распад «ложного вакуума» в обычную материю можно сравнить с процессом квантового распада радиоактивного вещества. В таких процессах всегда возникают небольшие неоднородности. Так, при радиоактивном распаде вещества одни его части распадаются чуть раньше, другие чуть позже. Подобно этому квантовый распад «ложного вакуума» в одних местах произошел чуть раньше, в других чуть позже, и это привело к тому, что переход к расширению при действии тяготения образовавшейся горячей материи происходил в разных местах в несколько различные моменты времени, что и повлекло за собой возникновение небольших неоднородностей плотности. Это есть не что иное, как первичные звуковые колебания, которые потом, после длительной эволюции, и привели к возникновению галактик.
Так, теория «раздувающейся» Вселенной объясняет основные особенности окружающего нас мира.
Но эта теория дает целый ряд других интереснейших предсказаний.
Мы уже говорили, что исчезновение состояния «ложного» вакуума можно сравнить с фазовым переходом.
Явление фазового перехода нам знакомо, например, по процессу отвердения жидкости, превращения ее в твердое, кристаллическое состояние. При кристаллизации жидкости возможно возникновение в разных местах кристалликов с разной ориентацией осей кристаллической решетки. В результате в затвердевшей жидкости возникают разные области — домены, соприкасающиеся друг с другом.
Согласно новейшим результатам анализа процессов в ранней Вселенной, в ходе фазового перехода в «раздувающейся» Вселенной возникают тоже соприкасающиеся домены с разными свойствами. На границах доменов возникают всякие экзотические частицы и образования. Например, там могут появляться так называемые магнитные монополи. Это частицы, несущие изолированный магнитный заряд, подобно тому, как электроны или протоны несут изолированный электрический заряд. Только магнитный монополь должен быть сверхтяжелым, в 1016–1017 раз тяжелее протона! Такие частицы не могут создаваться в современной Вселенной, для их образования не хватает энергии. Магнитные монополи экспериментально пока не открыты. Но на границах доменов в «раздувающейся» Вселенной их должно быть много. Давайте проследим, что будет с возникшим доменом в ходе дальнейшей эволюции Вселенной.
Домены рождаются в «эпоху 10–34 секунды» после начала расширения. И размер каждого домена около 10–34 световой секунды, или около 10–24 сантиметра. Затем, в эпоху «раздувания» Вселенной, его размер увеличивается в 1050 раз, то есть до 1026 сантиметров (напомним, что это уже 10 миллионов световых лет!).
Стадия «раздувающейся» Вселенной заканчивается к 10–32 секунды. После этого Вселенная расширяется по более привычным законам, тормозясь обычным тяготением. Размеры в ней к нашему времени увеличиваются еще примерно в 1025 раз. Значит, размер домена будет примерно 1051 сантиметров. Это колоссальное число — около 1033 световых лет. Напомню, что размер наблюдаемой области Вселенной «всего» около 1010 световых лет! Никакой сигнал, выпущенный во Вселенной после стадии «раздувания», не успевает пройти больше 1010 световых лет. Это горизонт видимости, о котором мы говорили.
Следовательно, если домены как следствие фазовых переходов в далеком прошлом Вселенной существуют, то они огромны. Мы живем в одном из таких доменов, где-то внутри его. Стенки, отделяющие «наш» домен от других, лежат от нас, вероятно, на расстоянии около 1033 световых лет! Внутри домена распределение вещества в больших (по нашим меркам) масштабах однородно. На стенках множество монополей и другой «экзотики». А за стенкой — другой мир.
Не правда ли, мы пришли к интереснейшей и удивительной картине?
Наша однородная Вселенная в невероятно больших масштабах далеко за горизонтом видимости снова оказывается неоднородной! Та Вселенная, о которой мы говорили, есть «только» наш домен.
Как не обратиться здесь к опыту истории астрономии. Все системы мира, созданные в разные эпохи, претендовали на описание всего мира, всей Вселенной, но на деле оказывались моделью конкретных астрономических систем. Система мира Аристотеля и Птолемея правильно отображала особенности Земли как небесного тела — ее шарообразность, движение Луны вокруг Земли. Все остальное в системе оказалось ошибочным. Система мира Коперника была моделью Солнечной системы. Вселенная Гершеля — модель нашей Галактики. Теперь, вполне возможно, свойства мира скоплений галактик также описывают «только» наш домен.
Поистине неисчерпаемы свойства окружающей нас материи, и столь же неисчерпаемо могущество человеческого ума, познающего ее свойства.
Все вопросы этого раздела мы обсуждали на рабочем совещании в Кембридже, о котором говорилось выше. Из осторожности надо еще раз подчеркнуть, что рассказанное — самый передний край, на котором ведет бой современная наука. Многое еще может уточняться, многое неизвестно.
Так, неизвестно, что было еще ближе к сингулярности. Ясно только, что при временах меньше чем 10–45 секунды после сингулярности распадалось на кванты время и пространство. Но что, как и почему происходило — об этом пока только догадки.
А что было до начала расширения? Об этом достоверно ничего не известно. Можно было бы привести кое-какие догадки. Но это пока еще не наука. И летать на крыльях фантазии без твердого управления наукой в книге, конечно, можно, но это уже в книге совсем иного рода, чем данная.
На крыльях времени
В научном творчестве каждого физика, в особенности физика-теоретика, время от времени наступают периоды, когда кажется, что в твоей области нет больше интересных задач. Про нашего физика-теоретика Л. Ландау рассказывают, как он в молодости жаловался, что подобно хорошим девушкам, которые все уже заняты или вышли замуж, все хорошие, стоящие задачи уже решены и вряд ли можно найти что-нибудь достойное среди оставшихся. Он, конечно, сам опроверг свое шутливое замечание; им поставлено и решено много замечательных задач. Подобно тому как на смену вышедшим замуж симпатичным девушкам приходят в этот мир другие, еще более симпатичные, так и на смену решенным проблемам встают новые, еще более увлекательные.
Вспоминается такая полоса в моей жизни: мне казалось тогда, что я занимаюсь неперспективными проблемами. Я как-то поделился об этом с одной из коллег. Разговор перекинулся на будущее отдельных небесных тел. И она предложила интересную задачу о расчете остывания нейтронных звезд в экзотических условиях очень отдаленного будущего Вселенной. Эта совместно выполненная нами работа, совместный анализ работ других ученых об отдаленном будущем и составляет основу нашего дальнейшего рассказа.
Мы изучаем прошлое, чтобы лучше понять настоящее и будущее, а близкое и отдаленное будущее человечества, будущее разума во многом зависит от будущего природы, от судеб Земли, Солнца Галактики, Вселенной.
Изучение будущего Вселенной принципиально отличается от изучения прошлого. Прошлое оставило свои следы, и, обнаруживая их, мы проверяем правильность своих представлений. Картина будущего — это всего экстраполяция, прямая проверка здесь невозможна. И тем не менее сегодня фундамент физических и астрофизических знаний настолько прочен, что позволяет с достаточной уверенностью рассматривать отдаленное будущее Вселенной.
Оно зависит прежде всего от того, будет ли она вечно расширяться. Рассмотрим сначала будущее неограниченно расширяющейся однородной Вселенной с плотностью, не превышающей критического значения. Какие же процессы произойдут в этой неограниченно расширяющейся Вселенной?
Первый из таких процессов сейчас ни у кого не вызывает сомнений — звезды в будущем погаснут. Солнце закончит свою активную эволюцию через несколько миллиардов лет и превратится в белый карлик размером с Землю, который будет постепенно остывать.
Звезды массивнее Солнца проживут еще меньше и в зависимости от массы в конце концов превратятся либо в нейтронные звезды с поперечником всего в десятки километров, либо в черные дыры.
Наконец, возможен катастрофический взрыв в конце жизненного пути звезды с полным ее разрушением. Так, по-видимому, взрываются некоторые звезды, называемые сверхновыми.
Звезды менее массивные, чем Солнце, живут дольше, но и они рано или поздно превращаются в остывшие карлики.
В наше время возникают и новые звезды из межзвездной среды. Однако настанет время, когда необходимые запасы ядерной энергии и вещества будут исчерпаны, новые звезды рождаться не будут, а старые превратятся в холодные тела или черные дыры.
Звездная эра эволюции Вселенной закончится примерно через 1014 лет. Этот срок огромен, он в 10 тысяч раз больше времени, прошедшего от начала расширения Вселенной до наших дней.
А теперь о судьбе галактик.
Звездные системы — галактики — состоят из сотен миллиардов звезд. В центрах галактик, вероятно, находятся сверхмассивные черные дыры, о чем свидетельствуют бурные процессы в галактических ядрах, наблюдаемые астрофизиками. Для будущего галактик существенны очень редкие в наше время события, когда какая-либо звезда в результате гравитационного взаимодействия с другими звездами приобретает большую скорость, покидает галактику и превращается в межгалактического странника. Звезды постепенно будут покидать галактику, а ее центральная часть будет понемногу сжиматься, превращаясь в очень компактное звездное скопление. В таком скоплении звезды будут сталкиваться друг с другом, превращаясь в газ, и этот газ в основном будет падать в центральную сверхмассивную дыру, увеличивая ее массу. Звезды также будут разрушаться приливными силами, пролетая слишком близко от этой черной дыры.
Конечный этап — это сверхмассивная черная дыра, поглотившая остатки звезд центральной части галактики, и рассеивание около 90 процентов всех звезд внешних частей в пространстве. Процесс разрушения галактик закончится примерно через 1019 лет, все звезды к этому времени давно погаснут и потеряют право именоваться звездами. Для дальнейших процессов определяющей является предсказываемая современной физикой нестабильность ядерного вещества. Имеется в виду, что протон хотя и очень долго живущая, но все же нестабильная частица. Теория «великого объединения», которая предсказывает бурные процессы в эпоху с 10–34 секунды по 10–32 секунды после начала расширения Вселенной, предсказывает и необходимость распада протона (а также и нейтрона в составе сложных ядер, который в этих условиях также считался стабильным). Среднее время его жизни оценивается примерно в 1032 лет. Конечный продукт распада протона — один позитрон, излучение в виде фотона, нейтрино и, возможно, одна или несколько электронно-позитронных пар. Хотя распад протона еще не наблюдался непосредственно, мало кто из физиков сомневается в неизбежности такого процесса.
Итак, примерно через 1032 лет ядерное вещество полностью распадется. Из мира исчезнут даже погасшие звезды. Но распад ядерного вещества уже задолго до этого срока начнет играть важную роль в эволюции Вселенной. Позитроны, возникающие при распаде нуклонов (это общее название протонов и нейтронов), аннигилируют с электронами, превращаясь в фотоны, которые вместе с фотонами, прямо возникающими при распаде нуклона, нагревают вещество. Только нейтрино свободно покидают звезду и уносят около 30 процентов всей энергии распада.
Процесс распада будет поддерживать температуру умерших звезд и планет на уровне хоть и низком, но все же заметно отличном от абсолютного нуля. Так, белые карлики, остыв за 1017 лет до температуры 5 кельвинов, будут потом сохранять эту температуру из-за выделения энергии при распаде вещества внутри их. Нейтронные звезды остывают за 1019 лет до температуры около 100 кельвинов, после чего распад вещества в них будет поддерживать эту температуру.
Спустя 1032 лет все ядерное вещество полностью распадется, звезды и планеты превратятся в фотоны и нейтрино.
Несколько иная судьба у рассеянного в пространстве газа, который останется после разрушения галактик (по массе он может составить около одного процента всего вещества Вселенной). Ядерное вещество этого газа тоже, разумеется, распадется через 1032 лет. Однако в этом случае позитроны, возникающие при распаде, уже не будут аннигилировать с электронами — из-за крайней разреженности газа вероятность встречи этих частиц чрезвычайно мала, и в результате образуется разреженная электронно-позитронная плазма.
К этому времени, то есть через 1032 лет, во Вселенной останутся еще черные дыры, возникшие из массивных звезд после их угасания, и сверхмассивные черные дыры, образовавшиеся в центрах галактик (об их судьбе мы скажем немного позже).
Что же будет происходить во Вселенной после распада ядерного вещества?
В ту далекую эпоху во Вселенной будут присутствовать фотоны, нейтрино, электронно-позитронная плазма и черные дыры. Основная часть массы окажется сосредоточенной в фотонах и нейтрино. Ибо именно в эти виды материи превратится обычное вещество после распада. Начнется эра излучения. Правда, надо помнить, что это излучение, чрезвычайно сильно остывшее.
С расширением Вселенной плотность массы излучения быстро будет падать, так как уменьшается и плотность числа частиц, и энергия каждого кванта (а значит, и его масса). В отличие от излучения средняя плотность обычной материи в виде электронно-позитронной плазмы и черных дыр убывает только из-за уменьшения их концентрации при расширении Вселенной. Значит, плотность этих видов материи убывает медленнее, чем плотность излучения. Поэтому ко времени 1033 лет плотность материи уже будет определяться главным образом массой, заключенной в черных дырах. Ее будет гораздо больше, чем в электронно-позитронной плазме. Если масса покоя нейтрино не ноль, как мы это разбирали выше, то значительная доля массы останется также в нейтрино. На смену эре излучения придет эра черных дыр!
Но и черные дыры не вечны. В поле тяготения вблизи черной дыры происходит, как мы знаем, рождение частиц; причем у черных дыр с массой порядка звездной и больше возникают кванты излучения. Такой процесс ведет к уменьшению массы черной дыры, она постепенно превращается в фотоны, нейтрино, гравитоны. Но процесс этот чрезвычайно медленный. Скажем, черная дыра с массой в 10 масс Солнца испарится за 1069 лет, а сверхмассивная черная дыра, масса которой еще в миллиард раз больше, — за 1096 лет. И все же постепенно все черные дыры превратятся в излучение, и оно вновь станет доминирующим по массе во Вселенной, снова наступит эра излучения. Однако это излучение несравненно более холодное, чем излучение в эпоху распада вещества. Вследствие расширения Вселенной плотность излучения, как уже говорилось, падает быстрее плотности электронно-позитронной плазмы, и через 10100 лет станет доминирующей именно эта плазма и, кроме нее, во Вселенной не останется практически ничего.
На первый взгляд картина эволюции Вселенной в отдаленном будущем выглядит весьма пессимистически из-за постепенного распада, деградации, рассеяния.
К возрасту Вселенной 10100 лет в мире останутся практически только электроны и позитроны, рассеянные в пространстве с ужасающе ничтожной плотностью: одна частица будет приходиться на объем, равный 10185 объемам всей видимой сегодня Вселенной. Означает ли это, что в будущем замрут все процессы, не будет происходить активных движений физических форм материи, невозможно будет существование каких-либо сложных систем, а тем более разума в какой бы то ни было форме?
Нет, такой вывод был бы неверен. Конечно, с нашей сегодняшней точки зрения все процессы в будущем будут чрезвычайно замедленны, но ведь и пространственные масштабы тогда будут иными. Напомним, что в самом начале расширения Вселенной, когда температура была примерно 1027 кельвинов, происходили процессы рождения вещества, текли бурные реакции, продолжительность которых исчислялась 10–34 секунды, а пространственные масштабы были порядка 10–24 сантиметра. С точки зрения подобных масштабов и сверхбыстрых процессов сегодняшние события во Вселенной, в том числе и наша жизнь, это нечто невероятно медленное и чрезвычайно растянутое в пространстве. По мнению известного американского физика Дайсона, в любом отдаленном будущем возможны будут сложные формы движения материи и даже разумная жизнь, правда, в непривычных формах, и «пульс жизни будет биться все медленнее, но никогда не остановится».
Наша пытливая мысль залетела в невообразимо далекое будущее. В таких длительных полетах всегда можно столкнуться с чем-то непредусмотренным. Пока у нас речь шла о процессах, которые вытекают из надежно установленных физических законов, однако в будущем возникнут физические условия, недоступные нам в эксперименте (сверхнизкие температуры, малые плотности и т. д.), и вполне возможно проявление сил, возникновение процессов, совершенно нам пока неизвестных. А эти силы и процессы могут в корне изменить ситуацию.
Вот один из таких возможных процессов — распад вакуума, его превращение в расширяющейся Вселенной в реальное вещество. В прошлом, в упоминавшуюся уже эпоху 10–34 секунды после начала расширения, вакуум — «ложный вакуум», как мы его называли, — вероятно, уже распался, порождая частицы и античастицы больших энергий. Эта энергия соответствовала температуре 1027 кельвинов, а плотность вещества составляла 1074 г/см3.
В современном вакууме (в том, что в просторечии называется пустотой), тоже, возможно, заключена некоторая плотность энергии. Но, как мы видели в разделе «Гравитация пустоты», она если и есть, то очень мала и соответствует плотности массы не более чем 10–28 г/см3, а может быть, даже существенно меньше. Обнаружить такую плотность даже в астрономических наблюдениях крайне трудно. Теория полагает возможным, что плотность массы вакуума в далеком будущем скачком перейдет в реальные частицы и античастицы, давая начало новым физическим процессам. Родившееся при этом вещество будет, конечно, разреженным, но все же несравненно более плотным, чем оставшееся к тому времени рассеянное вследствие расширения Вселенной «наше» вещество. Подобный «фазовый переход» вакуума может быть чрезвычайно существенным для судеб Вселенной. Так, в принципе этот переход может остановить расширение Вселенной и сменить его сжатием. Вновь возникший при этом «сверхистинный вакуум» будет обладать гравитационными свойствами притяжения, а не отталкивания, как «ложный вакуум». Ясно, что если расширение Вселенной сменится сжатием, то при этом вся нарисованная нами картина будущего Вселенной изменится в корне.
И еще одно замечание. Рисуя будущее Вселенной, мы предполагали, что нейтрино всех сортов не обладают массой покоя, то есть представляют собой излучение. Предполагалось также, что эти частицы подобно фотонам имеют массу только потому, что всегда движутся со световой скоростью, а их масса покоя равна нулю. Но, как мы видели в главе «Нейтринная Вселенная», возможно, масса покоя нейтрино не равна нулю.
Влияния этого факта на будущие судьбы Вселенной могут быть двоякого рода. Если масса покоя нейтрино очень мала, скажем, в сотни тысяч раз меньше массы электрона, то тяготение, создаваемое этой частицей в масштабах Вселенной, тоже очень мало и не оказывает сегодня никакого действия на темпы расширения. Однако в отдаленном будущем плотность массы нейтрино будет падать не так быстро, как плотность массы фотонов, а так же, как плотность массы обычных частиц, и в электронно-позитронной плазме будет постоянная малая примесь нейтрино (и антинейтрино), имеющих массу покоя.
Если же окажется, что масса покоя нейтрино близка к предсказываемому верхнему возможному пределу (примерно 0,00005 массы электрона), то суммарная масса всех этих частиц во Вселенной получится чрезвычайно большой, а средняя плотность вещества превысит критическую (10–29 г/см3), и в будущем тяготение нейтрино остановит расширение Вселенной. Это может случиться гораздо раньше, чем распадется все ядерное вещество, и даже раньше, чем погаснут все звезды. Тогда в будущем Вселенную ожидает сжатие, разрушение при этом небесных тел, возникновение вновь сверхплотного сверхгорячего вещества со сверхбурными физическими процессами.
Как видите, в любом возможном сценарии эволюции Вселенной ее будущее представляется захватывающе интересным и многообразным.
Правда, во всех вариантах в отдаленном будущем Вселенная будет совсем не похожа на окружающую нас сегодня. Либо это состояние очень разреженное и холодное, либо очень плотное и горячее.
Ну что же. Мы это должны четко понимать. Вселенная эволюционирует непрерывно. Прошлое ее было весьма своеобразным и не похожим на настоящее. Будущее также будет весьма отличным от всего, что мы видим сегодня. Надо также четко понимать, что при этом в будущем нет ничего фатально неизбежного для разумной жизни в широком смысле этого слова. За ничтожный (по сравнению с эволюцией Вселенной) период цивилизации человеческая мысль овладела многими тайнами природы, заставила ее законы служить человеку.
Если мы будем достаточно благоразумны, чтобы сберечь жизнь на Земле в нашу эпоху бурных социальных потрясений (а мы в Советском Союзе верим, что так будет, и боремся за это), то трудно вообразить, какого научного могущества мы достигнем через сто, тысячу, миллион, а тем более миллиарды лет. Человек (опять же в широком смысле слова) научится использовать для своего блага все законы эволюции Вселенной, научится управлять ими. Было бы наивно полагать, что Вселенная приготовила на все времена для человечества благодатные «тепличные» условия для существования. «Мы не должны ждать милости от природы. Взять их у нее — наша задача». Эти слова известного естествоиспытателя, — гордые слова, достойные человечества. Конечно, при осуществлении подобных задач в масштабах Вселенной совершенно по-новому обернутся проблемы охраны природы и другие. Но несомненно то, что будущее общество найдет способы их решить.
Подходя к концу нашего повествования, хотим еще раз напомнить, что, конечно же, серьезные изменения во Вселенной (по сравнению с нынешним ее состоянием) во всех случаях могут начаться очень не скоро не только в житейских, но и астрономических масштабах, как минимум через десятки, а может быть, тысячи миллиардов лет. Это во много раз больше нынешнего возраста видимой нами Вселенной, которой никак не больше 10–20 миллиардов лет от начала расширения.