Вода и жизнь на Земле

Новиков Юрий Владимирович

Сайфутдинов Маламагомед Магомедович

Вода и человек

 

 

Загрязнение воды и здоровье

Вода может оказывать на здоровье людей не только положительное, но и отрицательное влияние. Прежде всего это связано с качеством употребляемой воды: ее органолептическими свойствами, определяемыми цветом, вкусом и запахом, а также химическим и бактериальным составом. Влияние качества воды на здоровье человека было отмечено еще в глубокой древности. Например, Гиппократ рекомендовал употреблять кипяченую воду.

Еще до открытия существования болезнетворных микроорганизмов с водным фактором связывали многие эпидемии заразных кишечных заболеваний. После работ Пастера, Коха и других ученых стало известно эпидемиологическое значение воды в распространении таких инфекционных заболеваний, как холера, брюшной тиф, дизентерия, парафиты. Впоследствии была установлена возможность передачи через воду и других инфекционных заболеваний — туляремии, лептоспироз, инфекционного гепатита.

Фекалии человека и фекально-бытовые сточные воды являются основным источником патогенных микроорганизмов, распространяемых водой. Фекальное загрязнение воды ухудшает ее качество, а патогенные микроорганизмы, попадающие в нее с выделениями теплокровных животных, могут явиться причиной роста заболеваемости кишечными инфекциями. Среди патогенных микроорганизмов чаще других обнаруживаются сальмонеллы, шигеллы, лептоспиры, пастереллы, вибрионы, микобактерии, энтерозирусы человека, амебные цисты и личинки нематод. Сальмонеллы нередко встречаются в сточных водах, в воде рек, ирригационных систем и колодцев и в приливной морской воде. Другие патогенные микроорганизмы в воде находятся реже.

Быстрый рост городов приводит к непрерывному увеличению количества хозяйственно-бытовых стоков в водоемы. Биологическая очистка сточных вод не обеспечивает эффективного снижения микробного загрязнения — требуется еще дезинфекция стоков. Однако она не всегда осуществляется, и в результате в водоемах обнаруживаются возбудители кишечных инфекций.

Отрицательно влияет на процессы самоочищения воды и химическое загрязнение водоемов в результате спуска туда промышленных стоков, вызывающих торможение окислительных процессов и отмирание микроорганизмов. Неблагоприятными факторами, нарушающими процессы самоочищения, является спуск термальных сточных вод крупных тепловых электростанций, а также увеличение поступления биогенных элементов (азота, фосфора и др.).

Причины инфекционных заболеваний водного происхождения различны. И в первую очередь это — неудовлетворительный контроль за очисткой воды, загрязнение водосборной и распределительной (резервуары, сеть, трубы) систем, употребление воды поверхностных водоемов без очистки. Вода — один из специфических факторов передачи кишечных инфекций, и в первую очередь тифо-паратифозных заболеваний. При этом эпидемические вспышки возникают не только при непосредственном использовании для питья загрязненной воды, но и при косвенном ее участии: мытье посуды, оборудования, а также рук, приготовлении некоторых блюд. Так, Дьюмас и др. описали вспышку брюшного тифа, охватившую 197 человек. Они установили, что все семьи, члены которых заболели брюшным тифом, пользовались молоком, полученным с одной и той же фермы, где молочную посуду мыли необезвреженной водой из реки. Мобест сообщил о вспышке тифо-паратифозных заболеваний на корабле, вызванной тем, что члены экипажа употребляли сухое молоко, которое приготовляли в котлах, промывавшихся загрязненными водами гавани.

В 1925 г. в с. Лепино (недалеко от Москвы) вспыхнула эпидемия брюшного тифа. При обследовании выяснилось, что все заболевшие пользовались для питьевых и хозяйственных нужд водой из р. Медвянки, которая протекала через населенный пункт и была сильно загрязнена. При исследовании воды, взятой из этой реки, была выделена брюшнотифозная палочка. Затем заболевания распространились среди жителей деревень, находившихся ниже по течению реки; переболело более 100 человек. Только в двух населенных пунктах не было больных. Жители этих поселков пользовались водой из других источников.

Ранее всего связь водного фактора с распространением заболеваний стала очевидной в отношении холеры. Первая водная эпидемия холеры отмечена в Лондоне в 1854 г. В 1892 г. в Гамбурге, жители которого получали воду из реки через плохо устроенный водопровод, вспыхнула большая эпидемия холеры. Заболело 18 тыс. человек, проживающих во всех частях города. При этом умерло 8,605 тыс. человек. В 1908 г. водная эпидемия холеры потрясла Петербург, заболели 20,835 тыс. человек, из них 4 тыс. умерло. Подобные эпидемии наблюдались в Ростове-на-Дону (1908 г.), в ряде приволжских городов (1910 г.) и других населенных пунктах.

Возможность передачи вирусов водным путем лучше всего была продемонстрирована на примере возбудителей инфекционного гепатита. Самая большая вспышка вирусного гепатита водного происхождения зарегистрирована в Дели (Индия) в 1955–1956 гг. и включает более 20 тыс. клинических случаев.

По подсчетам специалистов, 800 млн. человек на земном шаре страдают от болезней, вызванных нехваткой питьевой воды. Среди них желудочно-кишечные заболевания, катары, болотная лихорадка и т. п. Всемирная организация здравоохранения совместно с другими международными организациями разработала программу «Здоровая вода для всех к 1990 году». Для осуществления этого грандиозного проекта понадобится 140 млрд. долларов.

По данным Всемирной организации здравоохранения, только 11 % жителей Азии обеспечены водой удовлетворительного качества; еще меньший процент людей живет в домах, имеющих водопровод и канализацию. В некоторых странах начали внедрять методы вторичного использования сточных вод и переработки отходов в удобрения. Однако, как правило, сточные воды все еще спускаются в реки и моря без предварительной очистки.

В реки и озера нашей планеты, воду которых мы потребляем, ежегодно сбрасывается до 7000 млрд. м3 неочищенных стоков. Особенно интенсивно загрязняют пресноводные источники крупные города.

«Клоака № 1», «крупнейшее помойное ведро Западной Европы» — так сегодня именуют некогда воспетый в легендах Рейн. Индустриальные комплексы на его берегах все больше загрязняют воду. Ежегодно она несет в море около 20 млн. т солей, 13 тыс. т окислов цинка, около 2 тыс. т окислов меди и другие отходы. Их список содержит до тысячи наименований. Поэтому в ФРГ запрещено употреблять в пищу рыбу из Рейна и купаться в нем.

Серьезность проблемы, вызываемой растущим загрязнением главной водной артерии, подчеркивается тем, что из нее от Базеля до Амстердама водоочистительные станции поставляют питьевую воду для 20 млн. людей. Меры властей прирейнских стран, по признанию печати, не в силах остановить катастрофическое развитие событий.

Для древних римлян Тибр — одна из крупнейших итальянских рек — был символом жизни, плодородия. В античной скульптуре Тибр изображался в виде мужчины, держащего рог изобилия. Однако если сегодняшние скульпторы решили бы изобразить великую реку, используя символы древних, то из этого рога вместо плодов должна была высыпаться мертвая рыба, больные птицы, отравленные фрукты и овощи.

При существующем уровне отравления воды Тибра, пишет итальянская печать, никакая форма жизни в реке просто невозможна. Столичные власти заявляют, что делают все возможное, чтобы спасти Тибр. С 1970 г. закон преследует тех, кто сбрасывает в реку промышленные отходы. Но степень отравления Тибра продолжает возрастать.

На промышленных предприятиях сточные воды образуются в результате использования воды в технологическом процессе.

Более половины потребляемой воды расходуется промышленностью. Так, для производства 1 т стали требуется 25 м3 воды, резины — 4000, синтетического бензина — 50–90, уксуса — 100, соды — 300, искусственного шелка — 400, нитроцеллюлозы — 750, бумаги — 1000 м3.

Огромное количество воды потребляют современные крупные теплоэлектростанции. Только одна станция мощностью в 300 тыс. кВт расходует до 120 м3 воды в секунду или более 300 млн. м3 в год. Для получения 1 л нефти требуется 10 л воды, а на производство одной консервной банки овощей — 40 л; при убое скота и разделке туш тратится 500 л воды на одну голову; на 1 м3 молока затрачивается 5 м3 воды; на 1 т сахара при его производстве уходит 100 м3 воды. Только одной овощеконсервной промышленностью страны на технологические нужды ежегодно расходуется свыше 80 млрд. л воды.

Количество и степень загрязнения сточных вод зависят от вида перерабатываемого сырья и различных добавочных продуктов, уровня технологических процессов промышленных предприятий и ряда других факторов. Так, основными загрязнителями сточных вод предприятиями нефтяной промышленности является нефть и нефтепродукты. В сточных водах нефтеперерабатывающих заводов содержатся также серная кислота и сульфаты, сернистые щелочи и сероводород, смолы, растворимые газы и жирные кислоты.

Химическая промышленность в современных условиях представляет собой сложный комплекс производств. Их сточные воды содержат многочисленные примеси органических и неорганических соединений. К основным видам, дающим стоки, содержащие неорганические соединения, относятся заводы по производству минеральных удобрений, серной кислоты и соды. Сточные воды с органическими загрязнениями образуются в производствах нефтехимии, синтетического каучука, пластмасс, искусственного волокна, фармакологических, лакокрасочных, целлюлозно-бумажных, гидролизных и др. В производстве синтетического каучука вода используется в качестве растворителя, сорбента, компонента возгонки и разделения химических смесей и в других операциях, где происходит непосредственное соприкосновение с обрабатываемым сырьем. Здесь в основном сточные воды загрязняются спиртами, стиролом, этилбензолом, дивинилом, некалем и др.

Производственные сточные воды искусственного волокна загрязнены капролактамом, ацетоном, ацетилцеллюлозой, смолой, аммиаком, едким натром, содой, которые служат сырьем и вспомогательными продуктами. Сточные воды предприятий целлюлозно-бумажной промышленности характеризуются содержанием кислот, щелочей различных органических соединений древесины.

Нефть и нефтепродукты придают воде привкусы и запахи. Особенно чувствительна к нефтепродуктам рыба. Незначительное количество нефти придает мясу рыб неустранимые привкус и запах.

Фенолами загрязняются сточные воды коксохимических заводов, а также нефтехимических и других предприятий. При наличии фенолов в водоисточнике образуются хлорфенольные запахи в процессе хлорирования питьевой воды. Фенолы являются сильным нервным ядом для рыб, влияют на их запах и вкусовые качества.

Некаль, содержащийся в сточных водах производства синтетического каучука, уже в незначительных количествах ухудшает органолептические свойства воды: она приобретает специфический запах и для питья не пригодна.

Одним из самых распространенных загрязнений водоемов являются синтетические поверхностно-активные вещества (СПАВ). Эти вещества за рубежом называют детергентами. Они широко используются в различных отраслях народного хозяйства и в быту в качестве моющих средств. СПАВ плохо задерживаются на канализационных очистных сооружениях, способствуют появлению в воде обильной пены; придают воде запах и усиливают токсическое действие других загрязнителей воды.

В сточных водах могут содержаться не только специфические промышленные загрязнители, но и азот и фосфор. Эти химические вещества являются хорошей питательной средой для водорослей. Бурное развитие этих водорослей ниже места спуска таких сточных вод делает воду водоемов непригодной для хозяйственно-питьевых целей, вызывает гибель рыб вследствие попадания водорослей в их жабры и резкого снижения в водоеме содержания кислорода в период отмирания этих водорослей и их разложения с понижением температуры воды в осенне-зимний период.

На производствах черной и цветной металлургии вода используется для охлаждения металлургических печей и полученного металла, в качестве транспортирующей среды, для промывки и растворения реагентов, для обогащения сырья, топлива, очистки доменного газа и т. д. Здесь сточные воды загрязнены главным образом взвесью пустой породы, флотореагентами, ионами цветных и тяжелых металлов. Флотореагенты, в качестве которых в основном используются пенообразователи, придают воде неприятные запахи. Соединения тяжелых металлов отрицательно влияют на процессы самоочищения в водоемах, вызывают отравления гидробионтов (рыб и других).

В Японии за последние 20 лет сотни жителей р. Минамата отравились ртутью. Завод, принадлежащий химической компании «Тиссо», сбрасывал через канализацию в морской залив сточные воды, содержащие органические соединения ртути. Установлено, что эти соединения накапливались в рыбе, крабах и устрицах. При употреблении в пищу таких продуктов возникали симптомы поражения центральной нервной системы, у заболевших возникали параличи, потери слуха, зрения и др. Дети рождались парализованными, слепыми и глухими.

Помимо болезни «минамата» в Японии зарегистрирована еще болезнь «итай-итай» — отравление кадмием, который попадал в организм с загрязненной водой и пищей. Болезнь характеризуется появлением у больных острых болей в паховой и поясничной областях, в позвоночнике и суставах. Наблюдались деформации костей таза, нижних и верхних конечностей, нередко сопровождавшиеся сложными переломами.

Жители одного из районов бразильского штата Байя называют дьявольским недугом болезнь, которая сопровождается нестерпимыми болями во всем теле и приводит к размягчению костей. Как установлено, эта болезнь у населения возникает в результате использования воды р. Субае, куда сбрасываются промышленные отходы, содержащие свинец, кадмий и другие вредные для здоровья вещества. Основной источник загрязнения реки — это завод по производству свинца, принадлежащий иностранной компании.

Субае не единственный в Бразилии гибнущий водоем. Принадлежащие местным и иностранным владельцам химические, металлургические, сахарные заводы, текстильные и целлюлозно-бумажные фабрики губят все живое в реках и озерах во многих штатах страны.

До недавнего времени считалось, что главным источником загрязнения поверхностных вод пестицидами являются сточные воды промышленных предприятий, производящих эти ядохимикаты. Однако систематические наблюдения, проводившиеся в последние 15–20 лет различными контрольно-наблюдательными и научно-исследовательскими учреждениями СССР и других стран мира, показали, что определенные количества пестицидов поступают в водные объекты также и со стоком с сельскохозяйственных и лесных угодий, на которых они широко используются по целевому назначению. В связи с этим сельско- и лесохозяйственная деятельность стран, производящих и применяющих пестициды, стада рассматриваться как один из основных антропогенных факторов, влияющих на качество воды в природных водоисточниках.

Масштабы выноса пестицидов поверхностным и дренажным стоком с сельскохозяйственных угодий в водные объекты зависят от многих факторов, из которых важнейшими являются следующие: количество, способ и форма применения пестицидов; персистентность пестицидов, их растворимость в воде, способность сорбироваться почвой и мигрировать по ее профилю; тип почвы, степень ее эрозии и заселенности микроорганизмами; время между внесением пестицидов и выпадением стокообразующих осадков или сбросом возвратных вод орошения; объем и интенсивность выпадения осадков, объем поверхностного и подземного стока.

В соответствии с двумя последними факторами существенное влияние на вынос пестицидов с сельскохозяйственных угодий оказывает и вид землепользования. Наибольший вынос пестицидов наблюдается с орошаемых полей, в связи с чем на них применяются наименее персистентные пестициды.

Качество воды в реках и озерах подвержено изменению и под влиянием минеральных удобрений, которые во время дождя смываются в водоемы. По проведенной оценке в Швейцарии в результате интенсивного использования минеральных удобрений на сельскохозяйственных угодьях количество фосфора и азота, которые попали в открытые водоемы с обработанных полей, равно количеству всех загрязнений, внесенных неочищенными сточными водами.

Состав поверхностного стока зависит от санитарного состояния водосборной площади. Дождевые и талые воды характеризуются резким колебанием химического состава, имеют высокую бактериальную загрязненность, содержат яйца гельминтов. В некоторых случаях поверхностные стоки мало отличаются от хозяйственно-бытовых канализационных сточных вод. В ливневых водах содержатся большие концентрации нефтепродуктов.

Сброс так называемых термальных вод тепловыми электростанциями становится достаточно серьезным фактором влияния на санитарное состояние водоема. Основными водопотребителями на тепловой электростанции являются конденсаторы паровых турбин. Расход воды для мощных теплоэлектростанций достигает 100 м3/с и более. Как правило, после использования воду возвращают в реку подогретой до 30 °C. Известно, что в подогретой воде уменьшается содержание растворенного кислорода и она стимулирует развитие вредных синезеленых водорослей. Все эти изменения служат причиной ухудшения качественных показателей воды, используемой населением.

В такой воде не может находиться рыба и другие живые организмы.

Загрязнение водоемов происходит также со стоками с судов речного и морского флота. Особенно опасны сбросы промывных вод танкеров и подсланевых вод судов, загрязненных нефтью и маслами. Водоемы загрязняются в результате утечки нефти при ее погрузке и разгрузке, а также во время транспортировки. Известно, что при работе подвесных лодочных моторов в воду попадают летучие и нелетучие нефтепродукты, токсические и канцерогенные вещества. Расчеты показывают, что при работе двигателя в течение 190 ч (средняя норма за навигацию) в воду поступает до 10 кг нефтепродуктов. Объясняется это тем, что в отличие от судовых дизельных двигателей лодочный мотор имеет подводный выхлоп и, кроме того, работа мотора обычно не регламентирована в части выбросов.

Проблема защиты водоемов от загрязняющего действия маломерного флота, общая численность которого в стране уже превышает несколько миллионов единиц, не менее серьезна, сложна и актуальна, чем широко известная проблема автомобиля и городской среды.

Источником загрязнения водоемов является не только сброс сточных вод, но и затонувшая в процессе молевого сплава древесина. В результате загнивания этой древесины происходит повышенное потребление кислорода. Вода с пониженным содержанием кислорода оказывает губительное действие на рыб.

Необходимо также учитывать загрязнение водоемов при их рекреационном использовании. В период массового отдыха в водоем поступают значительные количества органики и биогенных веществ, причем в дни с пиковой рекреационной нагрузкой эти количества соизмеримы с количеством загрязнений, поступающим с очищенными бытовыми сточными водами города на 25–30 тыс. человек.

Массовый отдых является одной из причин ухудшения бактериологического состава воды. Это особенно неблагоприятно, если водохранилище одновременно служит источником питьевого водоснабжения населения.

 

Вода, которую мы пьем

Чтобы жить, человеку требуется в сутки, как уже говорилось, 2–3 л воды. В климатических условиях средней полосы нашей страны суточная потребность в воде составляет примерно 2,3–2,7 л.

В районах с жарким климатом потребность в воде увеличивается до 3,5–5 л в сутки. В Средней Азии при температуре воздуха 39–40° и низкой влажности людям, работающим на открытом воздухе, необходимо 6–6,5 л воды.

Значение воды не исчерпывается употреблением ее для питья и приготовления пищи. Вода тратится и на другие нужды: поддержание чистоты тела, жилых домов, культурно-просветительных и лечебных учреждений, для оздоровительных и спортивных мероприятий, для поливки зеленых насаждений, борьбы с уличной пылью и др. (табл. 10).

Расход воды на душу населения — один из основных показателей благосостояния народа. В Москве самый высокий в мире уровень потребления воды. И качество ее также занимает одно из первых мест. Если на жителя Лондона или Копенгагена приходится 250 л, Парижа — 450, то на каждого москвича — 700 л воды в сутки.

Об увеличении потребления воды говорят следующие цифры. В 1890 г. в Москве на одного человека расходовалось в сутки всего 11 л воды, в 1914 г. — 66, в 1922 г. — 119, в 1959 г. — 570, в 1979 г. — 700 л. Потребление воды на каждого жителя столицы продолжает увеличиваться. В перспективе суточное потребление воды возрастет до 1 тыс. л на человека.

Однако чрезвычайно важно не только количество воды, но и ее качество. Советские медики впервые установили предельно допустимые концентрации посторонних примесей в питьевой воде, которые вошли в государственный стандарт Советского Союза. Этот стандарт стал первым в Европе нормативом качества воды. Наш стандарт — самый строгий в мире, по нему контролируется качество водопроводной воды. Стандартная вода должна быть безопасной в эпидемическом отношении и безвредной по химическому составу.

В СССР в дополнение к ГОСТу на питьевую воду существует ГОСТ на выбор водоисточника, чего нет за рубежом и что обесценивает надежность водоснабжения.

Таблица 10. Нормативы хозяйственно-питьевого водопотребления

Степень благоустройства районов жилой застройки Водопотребление на одного человека, л/сут
Здания с водопользованием из водоразборных колонок (без канализации) 30—50
Здания с внутренним водопроводом и канализацией (без ванн) 125—150
Здания с водопроводом, канализацией, ваннами и водонагревателями, работающими на твердом топливе 150—180
То же, с газовыми нагревателями 180—230
Здания с водопроводом, канализацией и системой централизованного горячего водоснабжения 275—400

Известно, что водопровод принес горожанам не только радость. В конце XVIII — начале XIX в. газеты всего мира сообщали трагические новости о вспышках эпидемии холеры и брюшного тифа во многих городах Европы. Выяснилось: причиной тому стал поток плохо очищенной или совсем не обеззараженной воды из водопровода.

В 1892 г. знаменитый бактериолог Роберт Кох сделал важное открытие. Если в миллилитре воды можно насчитать не более 100 безвредных бактерий, она не опасна. При таком голодном пайке болезнетворным микробам-паразитам не выжить. Но если критическая сотня преодолена, надо срочно бить тревогу. Кох впервые в мире дал объективный критерий оценки качества воды. Этим нормативом пользуются до настоящего времени.

Прямое определение болезнетворных микробов — дело весьма сложное и трудоемкое. Поэтому вопрос о доброкачественности воды в бактериальном отношении решают косвенным методом: путем определения количества кишечных палочек в 1 л воды. Кишечная палочка — это микроб, постоянно обитающий в кишечнике человека и животных. Кишечная палочка не является возбудителем какого-либо заболевания, она безвредна для человека. Однако ее присутствие в воде свидетельствует о загрязнении выделениями людей и животных и о возможности заражения воды болезнетворными бактериями.

Чем больше кишечных палочек находится в воде, тем больше вероятность одновременного присутствия в ней болезнетворных микробов. Если нет кишечных палочек или их очень мало, то в воде нет и других микробов, вызывающих инфекционные заболевания. Согласно ГОСТ 2874—73 в 1 л питьевой воды допускается не более трех кишечных палочек, т. е. так называемый коли-индекс должен быть не более 3. Обратная величина (количество кубических сантиметров воды, в котором находится одна кишечная палочка) называется коли-титром. Безупречная в бактериальном отношении вода должна иметь коли-титр не менее 300.

Большую роль при оценке качества питьевой воды играют ее органолептические свойства: запах, вкус, прозрачность и цветность, которые человек определяет с помощью органов чувств. Питьевая вода не должна иметь постороннего запаха, привкуса, мутности и цвета, даже если вещества, их вызывающие, сами по себе безвредны. Человек обладает защитной реакцией — чувством отвращения к воде с необычным запахом и вкусом.

Содержащиеся в природной воде взвешенные вещества портят ее вкус. Кроме того, они служат благоприятной средой для развития болезнетворных бактерий. Поэтому нормы строго ограничивают содержание взвесей в воде. В водопроводной воде допускается их не более 1,5 мг/л.

В природной воде содержатся минеральные соли. Вода считается хорошей, если минерализация не превышает 1000 мг/л. Воды с большим содержанием солей относятся к соленым и не пригодны для питья. Очень малая минерализация воды (до 100 мг/л) тоже ухудшает вкус воды, а лишенная солей (дистиллированная) вода вообще считается вредной. Она способна нанести здоровью человека непоправимый ущерб (нарушается пищеварение и деятельность внутренней секреции).

ГОСТ 2874—73 отличается от прежнего еще и тем, что выделяет в отдельную группу химические включения, которые раньше всего обнаруживают органы чувств — обоняние, зрение. Так, микрочастицы меди придают воде некоторую мутность, железа — красноту. Однако повышенное содержание солей железа в воде придает ей неприятный болотистый вкус. После стирки в такой воде на тканях остаются ржавые пятна. Такие же пятна появляются на посуде, раковинах и ваннах. Допустимое содержание железа в воде — до 0,3 мг/л.

В малых концентрациях медь обнаруживается в подземных водах. Она не является кумулятивным ядом. Концентрация меди 1,5 мг/л ощутима на привкус. Предельно допустимая концентрация принята на уровне 1 мг/л.

В природных подземных водах цинк встречается в небольших концентрациях. Суточная потребность цинка не превышает 18 мг. Хронические отравления цинком не известны. При концентрации цинка 30 мг/л вода приобретает молочный вид, при 10 мг/л — она мутная. Металлический привкус исчезает при 5 мг/л. Эта концентрация является предельно допустимой.

Иногда в питьевой воде встречается много солей соляной и серной кислот (хлориды и сульфаты), придающие воде соленый и горько-соленый привкус. Употребление такой воды приводит к нарушению деятельности желудочно-кишечного тракта. Вода, содержащая более 350 мг/л хлоридов и более 500 мг/л сульфатов, считается неблагоприятной для здоровья.

С содержанием в воде солей кальция и магния тесно связано другое ее качество — жесткость. Вода, сильно насыщенная солями, причиняет много неудобств: в ней труднее развариваются овощи и мясо, уменьшается их питательная ценность, при стирке увеличивается расход мыла, накипь портит чайники и котлы, засоряет водопроводные трубы.

Высокая температура воздуха в жарком климатическом поясе приводит к усилению влагоотдачи внепочечным путем (потение, саливация), к обезвоживанию организма, а следовательно, и к повышению концентрации мочи, что, в свою очередь, может способствовать камнеобразованию. Вода повышенной жесткости распространена именно в южных районах страны. Эксперименты показали, что потребление жесткой питьевой воды животными, содержащимися в условиях повышенной температуры внешней среды (30°), вызывает еще большее увеличение камнеобразования у подопытных животных.

Избыточное содержание в питьевой воде солей кальция и магния нарушает каллоидно-кристаллоидное равновесие мочи и способствует возникновению мочекаменной болезни. В реальных жизненных условиях заболевание мочекаменной болезнью чаще всего, вероятно, вызывается не какой-либо одной причиной, а несколькими. Однако солевой состав питьевых вод — один из факторов, способствующих развитию этой болезни.

Таким образом, жесткость питьевой воды на уровне 7 мг*экв/л не вызывает возражений. Исследования показали, что употребление воды с жесткостью на уровне 7 и 10 мг*экв/л не оказывает влияния на липидный обмен при длительном введении холестерина и, следовательно, не может способствовать развитию атеросклеротических изменений артерий. Допустимый уровень общей жесткости равен 7 мг*экв/л (А. А. Гаголи, 1972 г.).

В природных подземных водах марганец содержится в виде бикарбонатов и других хорошо растворимых солей. Вместе с тем перманганат калия (KMnO4) применяют в практике водоснабжения как реагент: он хорошо устраняет посторонние привкусы и запахи, обусловленные различными органическими соединениями, а также снижает содержание железа и марганца. Перманганат калия употребляют и как альгицидное средство, обеспечивающее гибель водорослей, которые забивают фильтры или вызывают появление запахов и привкусов в воде. Помимо дезодорирующего и альгицидного действия, перманганат калия проявляет бактерицидный эффект.

В технологическом процессе семивалентный марганец переходит в двухвалентную и четырехвалентную форму. Четырехвалентный марганец практически нерастворим в воде и задерживается на фильтрационных установках, а остаточные количества двухвалентного марганца могут обнаруживаться в питьевой воде.

Изучение влияния семивалентного иона марганца на органолептические свойства воды вскрыло ведущий признак в этом отношении — изменение окраски воды. По этому признаку пороговой, определенной в столбе воды высотой 20 см, является концентрация перманганата калия 0,1 мг/л. При концентрации марганца в воде 0,5 мг/л опущенная в нее ткань после стирки приобретает слабо выраженный коричневый оттенок. При концентрации 0,1 и 0,05 мг/л разницы между контрольными и обработанными образцами ткани не было. Допустимое остаточное количество марганца в воде при полном переходе из семивалентного состояния в четырех- и двухвалентное и с учетом его неблагоприятного действия на белье не должно превышать 0,1 мг/л (по иону Mn).

Токсичность марганца не зависит от валентности иона. Недействующей концентрацией всех соединений марганца (по влиянию на здоровье людей) является концентрация 2 мг/л в пересчете на ион Mn. Более высокие концентрации марганца вызывают изменения со стороны высшей нервной деятельности, усиливают накопления фосфора в костях, уменьшая его выделения с мочой. Кроме этого, происходит снижение активности ферментов холинэстеразы и церулоплазмина крови. При цитогенетических исследованиях обнаружено увеличение процента митотической активности клеток костного мозга (C. А. Шиган, Б. Г. Витвицкая, 1971).

На водопроводных станциях в качестве коагулянта широко применяется сернокислый алюминий. При коагуляции избыточными дозами этого коагулянта мутность воды может возрастать. При содержаний остаточного алюминия в воде на уровне 0,5 мг/л мутность воды не изменяется. Избыточные концентрации алюминия придают воде неприятный вяжущий привкус. Пороговые концентрации определены на уровне 0,6–0,8 мг/л.

Пороговая концентрация, установленная по изменению вкуса воды, для хлористого алюминия равна 0,5 мг/л по Al. Эта же концентрация не изменяет прозрачность воды. Предельно допустимая концентрация остаточного содержания алюминия в питьевой воде равна 0,5 мг/л (А. А. Петина, 1965 г.).

Для защиты водопроводных труб от коррозии и умягчения жестких вод применяются гексаметафосфат и триполифосфат натрия. При внесении в водопроводную воду указанных веществ в ней образуются малорастворимые соединения кальция и магния, которые сорбируются отлагающимися на стенках труб коррозионными образованиями, в результате чего последние уплотняются и изолируют металл от воды.

Гексаметафосфат и триполифосфат натрия в концентрациях, которые предполагается использовать для постоянной обработки питьевой воды (10–20 мг/л), не влияют на ее запах, привкус, цветность и активную реакцию. Оба вещества в концентрации выше 5 мг/л при нагревании и кипячении водопроводной воды образуют стойкую муть. Вещества не обладают выраженной токсичностью и кумулятивными свойствами. Лимитирующий показатель вредности гексаметафосфата и триполифосфата натрия при нормировании их в питьевой воде — органолептический: образование мути при нагревании. В качестве гигиенического норматива принята концентрация обоих веществ на уровне 3,5 мг/л.

В ряде случаев наличие в воде тех или иных микроэлементов привлекало к себе внимание как возможная причина массовых заболеваний неинфекционной природы.

В частности, повышение или уменьшение количества поступающего в организм микроэлемента нарушает нормальное течение физиологических процессов и приводит к возникновению патологических состояний.

Интенсивное изучение фтора начато в 30-х годах, когда была установлена взаимосвязь его содержания в питьевой воде и поражении зубов у местных жителей. Затем был вскрыт другой интересный факт: при содержании фтора в питьевой воде 1 мг/л выявлена наименьшая распространенность кариеса. Это обстоятельство, а также изучение физиологической потребности во фторе и явилось обоснованием для искусственного обогащения питьевой воды препаратами фтора.

В нашей стране фторирование питьевой воды осуществляется в 86 городах, где около 13 млн. жителей постоянно получают фторированную воду.

Ценные наблюдения были проведены в Мончегорске. Данные местных стоматологов свидетельствовали о том, что кариес у детей встречался здесь в два-три раза чаще, чем в других районах страны. Через десять лет после введения в строй фтораторной установки врачи провели повторное обследование. Число кариозных зубов у детей семилетнего возраста, родившихся и постоянно проживающих в Мончегорске, сократилось на 58 %. Одновременно резко уменьшилось количество детей, страдающих так называемым множественным кариесом. Сходные данные получены и в английском г. Бирмингеме.

Сокращение распространенности и интенсивности кариеса после длительного использования фторированной воды дает и определенный экономический эффект. В частности, в Мончегорске подсчитано, что общая экономия при санации школьников и дошкольников за счет уменьшения объема лечебных мероприятий и расхода пломбировочных материалов составила за 1976 г. 33,643 тыс. руб. Иными словами, 1 руб. затрат на фторирование дает 6,2 руб. экономии государственных средств. Кроме того, уменьшение объема высвобождает врачей-стоматологов и вспомогательный персонал, что позволяет повысить качество лечения зубов, сконцентрировать усилия на профилактике.

При повышенных концентрациях фтора развивается другой недуг (особенно у детей) — флюороз. Зубы темнеют, крошатся и ломаются. Признак флюороза — пятнистость зубной эмали. Чтобы предупредить это заболевание, при централизованном водоснабжении устанавливают обесфторивающие установки. При водоснабжении небольших населенных пунктов для уменьшения количества фтора в воде используют метод смешения подземных вод из богатых фтором водоносных горизонтов с водой, имеющей незначительную концентрацию фтора. Оптимальное для человека содержание фтора составляет в среднем 0,7–1,5 мг/л, причем его концентрация в воде должна поддерживаться на уровне 70–80 % от нормативов, принятых для каждого из четырех климатических районов страны (первый и второй климатические районы — 1,5 мг/л, третий — 1,2 мг/л, четвертый — 0,7 мг/л).

Из других микроэлементов, вызывающих заболевания у человека, можно назвать свинец и мышьяк. Опасны случаи отравления свинцом при использовании свинцовых труб для водопровода. В Советском Союзе применение свинцовых труб запрещено законом.

Отравления мышьяком известны при употреблении питьевой воды в районах разработки полиметаллических руд с повышенным содержанием в них мышьяка. В Канаде в 1934 г. наблюдались отравления при использовании для питья воды из колодцев, которые питались водой из известняков, содержащих мышьяковистое железо.

В принятом в СССР стандарте для питьевой воды установлена предельно допустимая концентрация мышьяка (0,05 мг/л).

Г. Н. Красовский и др. (1978 г.) изучили влияние свинца на организм. Для установления безопасных концентраций свинца в воде с учетом его общетоксического, гонадотоксического и мутагенного эффектов, исследователи провели кратковременные и длительные эксперименты. Наименьшей концентрацией свинца, при которой проявлялись общетоксический и гонадотоксический эффекты, оказалась доза 0,05 мг/л. Свинец можно рассматривать как слабый мутаген: доза в 0,05 мг/л вызывает незначительное увеличение хромосомных аберраций. Концентрация свинца 0,03 мг/л таких изменений не дает.

В некоторых водоисточниках Прибалтики, Украины, Западной Сибири, Казахстана отмечено повышение содержания бора — свыше 2–6 мг/л. Как известно, бор относится к соединениям, обладающим широким спектром действия на различные системы и функции организма, в том числе и на центральную нервную систему. A. Л. Борисов установил выраженный гонадотоксический эффект бора в условиях перорального поступления в течение 30 дней. Лимитирующим показателем вредности при допустимой концентрации бора в питьевой воде является его влияние на здоровье населения.

Гигиеническим нормативом считается концентрация бора, равная 0,5 мг/л.

В последнее время на водопроводных станциях в качестве коагулянта широко применяется сернокислый алюминий. При коагуляции избыточными дозами этого вещества может возрастать мутность воды, причем она сохраняется даже при концентрации 0,5 мг/л, которая считается предельно допустимой для питьевой воды. Избыточные концентрации алюминия придают воде неприятный вяжущий привкус.

Качества питьевой воды длительно сохраняются благодаря ее обогащению ионами серебра (в концентрации 0,05—0,4 мг/л). Не удивительно, что использование серебра в фармакологической практике породило понятие о его безвредности. Между тем в литературе описаны поражения организма, вызванные препаратами серебра и именуемые аргириями. В хронических опытах на животных концентрации ионов серебра на уровне 5 мг/л и 0,5 мг/л снижали иммунологическую активность организма (по показателю фагоцитоза); отмечались изменения сосудистой, нервной и глиозной ткани головного и спинного мозга. Эти дозы нарушали условнорефлекторную деятельность крыс. Концентрации серебра 0,05 мг/л и 0,005 мг/л подобных изменений не вызывали. Употребление воды с концентрацией серебра 20 мг/л оказывает неблагоприятное воздействие на процессы синтеза и распада аминокислот, что может отрицательно сказываться на синтезе белков и ферментов.

Для определения мутагенного эффекта была исследована вода, в которой содержалось азотнокислое серебро (0,02 мг/л). В результате была установлена предельно допустимая концентрация ионов серебра в воде — 0,05 мг/л.

Долгое время присутствие в воде нитратов рассматривали как косвенный признак бытового загрязнения, так как нитраты являются конечным продуктом распада органических веществ, попадающих в водоисточник главным образом с загрязнением. Например, в загрязненных колодцах их содержание достигает 100 мг/л и более. Однако повышенные концентрации нитратов были обнаружены и в природных подземных водах, в которых нитраты образуются в результате восстановительных процессов, протекающих в почве и воде.

При включении в ГОСТ 2874—73 «Вода питьевая» допустимого содержания нитратов опирались на результаты отечественных и зарубежных исследований о возникновении водно-нитратной метгемоглобинемии. Согласно современной теории, нитраты в кишечнике человека восстанавливаются в нитриты под влиянием обитающих там бактерий. Всасывание нитритов ведет к образованию метгемоглобина и к частичной инактивации гемоглобина. Таким образом, в основе заболевания лежит та или иная степень кислородного голодания, симптомы которого проявляются в первую очередь у детей, особенно грудного возраста, которые болеют этой формой преимущественно при искусственном вскармливании (разведении сухих молочных смесей водой, содержащей нитраты) или при употреблении этой воды для питья. Дети старшего возраста менее подвержены этому заболеванию, так как у них сильнее выражены компенсаторные механизмы. Проявление болезни у них менее тяжелое.

Употребление воды, содержащей 2—11 мг/л нитратов, не вызывает повышение в крови уровня метгемоглобина, тогда как использование воды с концентрацией 50— 100 мг/л резко его увеличивает, причем растет и число лиц с повышенным содержанием метгемоглобина. Повышение уровня метгемоглобина в крови тем больше, чем моложе ребенок (X. Ш. Капанадзе, 1961 г.). При поступлении нитратов с питьевой водой в концентрации 105 мг/л в организме теплокровных животных снижается иммунологическая реактивность и нарушается способность к формированию условнорефлекторной деятельности. Меньшие концентрации нитратов в питьевой воде (не превышающие 40 мг/л) этих изменений не вызывали (А. В. Иванов и др., 1975).

Концентрация нитратов на уровне 10 мг/л (в пересчете на N) является безопасной и принята в качестве предельно допустимой в питьевой воде.

Бериллий довольно широко распространен в природе. Он содержится в минералах, горных породах, живых организмах, а также в некоторых природных водах. Бериллий является ядом общетоксического действия с высокой степенью кумуляции, приводящим к поражению дыхательной, нервной и сердечно-сосудистой систем. Он оказывает угнетающее действие на некоторые ферменты организма и состояние красной крови. Характерной особенностью бериллия является длительный латентный период проявления интоксикации и отсутствие прямой корреляции между дозой действующего вещества, продолжительностью контакта и реакцией организма. Изучение хронического влияния малых концентраций бериллия определило его пороговую концентрацию, вызывающую функциональное нарушение эритропоэза в костном мозгу, изменения состояния красной крови и условнорефлекторной деятельности белых крыс. Она оказалась равной 0,002 мг/л. В качестве допустимого содержания бериллия в питьевой воде была предложена концентрация 0,0002 мг/л, которая не действовала вредно на организм животных (Л. А. Сажина, 1965 г.).

Молибден встречается в почвах, растениях, организме животных, а также в природных водах. В некоторых районах Армянской ССР подземные воды выявили повышенное содержание молибдена. Миграция молибдена в водах часто происходит в виде иона молибденовой кислоты. Молибден выделяется из организма довольно быстро и его кумулятивные свойства выражены слабо. Молибден: оказывает угнетающее влияние на активность костной фосфатазы, вызывает уменьшение содержания меди в организме. При избытке молибдена у животных и человека усиливается синтез ксантиноксидазы и образование мочевой кислоты, что у людей ведет к заболеванию «молибденовой подагрой». При хронической затравке животных молибден вызывает выраженные функциональные сдвиги в организме, в частности, увеличение количества сульфгидрильных групп в сыворотке крови и печени, а также уменьшение количества витамина С в печени. В качестве допустимого содержания молибдена в питьевой воде предложена концентрация на уровне 0,5 мг/л (Т. А. Асмангулян, 1965 г.).

В некоторых географических областях (биогеохимических провинциях) отмечено повышенное содержание селена. Например, в открытых водоемах биогеохимических селеновых провинций США содержание селена достигает 0,2 мг/л, а в подземных водах — до 9 мг/л. Здесь зарегистрированы заболевания людей и животных, вызванные повышенным содержанием селена во внешней среде. Селен входит в VI группу периодической системы элементов и по своим химическим свойствам занимает промежуточное положение между серой и теллуром. Согласно современным представлениям, селен обладает политропным действием на организм с преимущественным поражением печени, почек, костного мозга и центральной нервной системы. В основе токсического действия селена лежит блокада тиоловых групп ряда биологических субстратов — таких, как глютатион, цистеин и др.

Детальные исследования процесса влияния селена на животных показали, что его концентрация, равная 0,0001 мг/л, не вызывает статистически достоверных изменений ни по одному экспериментальному тесту. Эта же доза селена не выявила структурных изменений внутренних органов животных и при хроническом действии. В результате доза 0,0001 мг/л была принята в качестве гигиенического норматива селена в питьевой воде (H. П. Плетникова, 1970 г.).

Стабильный стронций — Sr — распространен в природных водах, причем его концентрации колеблются в широких пределах (от 0,1 до 45 мг/л). При действии больших концентраций стронция изменения в организме проявляются в первую очередь со стороны минерального обмена и ферментативных процессов в костной ткани. Он не обладает резко выраженными кумулятивными свойствами, но имеет довольно широкий спектр действия при длительном поступлении в организм.

В конце 70-х годов советские ученые провели комплексное гигиеническое исследование по оценке влияния стабильного стронция питьевых вод в условиях хронического эксперимента на животных и при обследовании больших контингентов детей и подростков, проживающих в гидрогеохимическом регионе с повышенным содержанием стронция в подземных водах. В результате исследователи пришли к выводу: длительное употребление питьевой воды, содержащей стронций на уровне 7,0 мг/л, не вызывает функциональных и морфологических изменений как на уровне тканей и органов, так и целостного организма человека. Эта величина была рекомендована в качестве норматива стабильного стронция для питьевой воды.

Радиоактивный химический элемент уран относится к VI группе периодической системы. Он является самым тяжелым из химических элементов, принимающим участие в строении земной коры, и обладает сравнительно повышенным распространением среди элементов конца таблицы Д. И. Менделеева. По образному выражению В. И. Вернадского, уран является составной частью биосферы, находится во всех растительных и животных организмах в ультрамикроскопических количествах, его относят к нормальным компонентам протоплазмы клеток.

В связи с большим периодом полураспада (2,47—4,51 109 лет) уран обладает малой радиоактивностью. Так, 2800 кг природного урана по радиоактивности равны 1 г Ra226, что составляет 1 кюри.

Токсичность соединений урана находится в прямой зависимости от их растворимости. Все соединения его при контакте с биологическими средами переходят в раствор, но по скорости этого процесса они делятся на легкорастворимые (например, азотнокислые и углекислые соли) и малорастворимые (например, окислы урана). Экспериментальные исследования показали, что при длительном воздействии на уровне 60 мг/л уменьшается содержание аминокислот и хлоридов в моче, что свидетельствует о нарушении канальцевой реабсорбации под влиянием урана. При хроническом влиянии урана в концентрациях 6 и 60 мг/л у белых крыс замечены задержка полового созревания и нарушение ритма полового цикла.

Уровень активности щелочной фосфатазы сыворотки крови экспериментальных животных возрос к 11-му месяцу затравки ураном в концентрациях 6 и 60 мг/л, что связано с ее поступлением в кровь из внутренних органов. Увеличение активности кислой фосфатазы отмечено в гемогенате селезенки кроликов, получавших уран на уровне 30 мг/л. Таким образом, изменения со стороны ферментных систем — первое звено в реакции на хронические воздействия малых концентраций элемента.

При воздействии урана на уровне 30 и 60 мг/л у животных уменьшалось содержание нуклеиновых кислот в тканях почек, печени и селезенки по сравнению с контрольными животными. Это указывает на угнетение обмена нуклеиновых кислот. К моменту исследования накопление урана в почках белых крыс, получавших его на уровне 60 мг/л, составляло 0,004 мг, причем доза облучения тканей почек равнялась 7 мбэр/нед. Эти данные также подтверждают: уран оказывает воздействие на организм как химический токсический элемент.

Последующие исследования позволили определить дозу урана, не вызывающую изменений в организме животного. Ею оказалась концентрация 1,7 мг/л, принятая в дальнейшем в качестве норматива для питьевой воды.

В настоящее время на водопроводных станциях очистки воды в качестве флокулянта используется полиакриламид (ПАА). В связи с этим возникла необходимость разработки норматива остаточного количества этого вещества в питьевой воде. ПАА — высокомолекулярный синтетический линейный мономер, в котором часть амидных групп замещена на группы алюминиевой и кальциевой солей полиакриловой кислоты. Он не обладает запахом и привкусом, хорошо растворяется в воде. ПАА относится к веществам с низкой токсичностью и невыраженными кумулятивными свойствами. Концентрацию ПАА в 30 мг/л можно рассматривать как пороговую, при которой происходят первоначальные изменения адаптационных реакций организма. Концентрация 2 мг/л не вызывала изменений у подопытных животных ни по одному из использованных тестов, поэтому может рассматриваться как недействующая. Она считается предельно допустимой в питьевой воде (Н. А. Рахманина, 1967 г.).

Допустимые концентрации химических веществ, являющихся промышленными и сельскохозяйственными загрязнениями водоисточников, не должны превышать нормы, установленные Министерством здравоохранения СССР для источников централизованного водоснабжения. В настоящее время утверждены предельно допустимые концентрации для 633 вредных веществ в воде водоемов.

Одним из важных результатов теоретической и экспериментальной разработки принципов гигиенического нормирования является установление принципа суммации действия малых концентраций веществ (с одинаковым характером действия), присутствующих в воде. При обнаружении в воде нескольких веществ (за исключением фтора, нитратов, радиоактивных веществ,) сумма концентраций, выраженная в долях от максимально допустимых концентраций каждого вещества в отдельности, не должна превышать единицы. В стандарте подробно указано, как, где и когда проводить лабораторно-производственный контроль качества питьевой воды. Предусмотрен также и общегосударственный контроль, который осуществляют санитарно-эпидемиологические службы Министерства здравоохранения СССР.

Без всякого преувеличения можно сказать, что высококачественная вода — одно из непременных условий сохранения здоровья людей. Вкусная вода — истинный земной дар. И на охране ее стоит государственный стандарт.

 

Фабрики питьевой воды

Любой школьник знает, что такое водопровод и для чего он служит. Без него немыслима жизнь ни одного города, фабрики, завода. А вот когда люди начали заниматься проблемой «доставки» воды непосредственно к себе в жилища?

История водопровода насчитывает несколько тысячелетий. Еще в Древнем Египте рабы вырывали довольно глубокие колодцы, снабженные простейшими механизмами для подъема воды. Вода подавалась во дворец фараона и его придворных по глиняным, деревянным или даже металлическим (медным или свинцовым) трубам. В античном мире сооружались водопроводы длиной в несколько десятков километров. До наших дней сохранились еще акведуки, «сработанные рабами Рима». В Западной Европе лишь с XII–XIII вв. начинают появляться водопроводы в виде открытых лотков, деревянных труб или каменных подземных каналов.

На Руси водопроводные сооружения появились раньше, чем в Европе. Так, в летописях XI–XII вв. уже упоминается водопровод, построенный для «Ярославова дворища». Московские князья пили воду из р. Москвы или Неглинной, за которой надо было спускаться с высокого холма. Слуг у князей было достаточно, чтобы обеспечить себя водой, но как быть, если враг у стен города? Для этого случая в начале XIV в. по приказу Ивана Калиты проложили от реки в глубь берега, за стены Кремля, дубовую трубу и подвели воду к глубокому колодцу-тайнику, из которого уже было нетрудно достать воду бадейками.

Когда начали строить Кремль из кирпича, в башнях стали устраивать тайники-водопроводы. Тайники были построены под Свибловой башней (позднее она стала называться Водовзводной) и под Собакиной (ныне Арсенальной).

В начале XVII в. был построен новый кремлевский водопровод. Это было уже довольно сложное сооружение. Вода сначала самотеком поступала по специальной галерее в колодец (диаметром 5 м), находившийся в подвале Свибловой башни. С помощью «водяного взвода» (подъемной машины с конным приводом, построенной часовым мастером Христофором Головеем) вода подавалась в бак на башне, откуда по свинцовым трубам проводилась в «водовозную палатку» (что-то вроде регулирующего резервуара). Отсюда вода уже распределялась по дворцам, поварням, поступала в царские баки. Этой же водой поливались сады в Кремле. Но все эти водопроводы строились для княжеских или царских дворов. Население же города обеспечивалось водой с помощью водовозов и водоносов.

Потребность в воде резко возросла в начале XIX в., когда в России усилился процесс роста городов, в которых развивалась промышленность, увеличивалась численность населения. Самотечные водопроводы стоили дорого, причем зачастую их постройка была просто невозможна из-за неподходящих топографических и гидрогеологических условий. В этой связи возникла необходимость бурения большого числа артезианских скважин и использования для питья подземной воды.

В 1804 г. завершилась постройка Мытищинского водопровода. Спустя полвека, в 1861 г., начал действовать Петербургский городской водопровод. Всего в дореволюционной России водопроводы имелись в 215 городах (около 20 % из общего числа).

Ныне в каждом городе нашей страны есть водопровод.

Выполнение планов жилищно-коммунального и промышленного строительства девятой и десятой пятилеток, повышение благоустройства жилищ и населенных мест вызвали существенное увеличение потребностей в воде и соответствующее развитие систем водоснабжения. К 1977 г. общая мощность систем водоснабжения населенных мест СССР возросла за 10 лет почти вдвое и составляет 73–74 млн. м3/сут в среднем. Примерно так же увеличился и фактический отпуск воды этими системами, достигший в среднем 60 млн. м3/сут (против 32 млн. в 1967 г.). Среднее удельное водопотребление на одного жителя в сутки в 1977 г. составляло 370 л (с учетом расхода воды промышленностью, получающей воду из городских водопроводов) и около 240 л — без учета этих расходов, т. е. собственно на хозяйственно-питьевые нужды населения.

С вводом в эксплуатацию канала Днепр — Донбасс существенно улучшилось водоснабжение промышленных районов Донбасса. Построены деснянский водопровод для Киева производительностью 560 тыс. м3/сут, система водоснабжения Кишинева, рассчитанная на подачу 200 тыс. м3/сут воды из Днестра. Сооружены две мощные системы подачи воды в Баку: Куринский водопровод (3,5 м3/сут) и Джейран-батанская система (3 м3/сут). В Казахской ССР за последние годы проведены значительные работы по улучшению водоснабжения сельских населенных пунктов. Закончено строительство Ишимского и Булаевского групповых водопроводов в северных областях Казахстана. Продолжается строительство Пресновского, Беловодского и Нуринского групповых водопроводов. Это позволило обеспечить централизованным водоснабжением более 700 населенных пунктов. В 1977–1980 гг. в Казахстане построено 28 групповых водопроводов сельскохозяйственного назначения общей протяженностью более 4 тыс. км.

Строится Новосибирский групповой водопровод. Общая протяженность его сетей составит 5 тыс. км. Он заменит десятки тысяч колодцев более чем в 600 селах и поселках 16 районов Новосибирской и Омской областей. Эту сеть напоят Новосибирское водохранилище, р. Иртыш, а также Нижне-Чулимское и Карасукское месторождения подземных вод.

Значительный прирост производительности водопроводов обеспечен за счет подземных источников водоснабжения. При этом увеличено искусственное пополнение запасов подземных вод. Водозаборы с инфильтрационными бассейнами и скважинами будут построены в Калуге, Курске, Сочи, Красноводске, некоторых городах Западной Сибири, Украины, Прибалтики и в других районах.

Особенно интенсивно развивалось водоснабжение столицы нашей Родины. В год Великой Октябрьской социалистической революции в город подавалось 170 тыс. м3/сут воды. Вода шла в основном в центральную часть города, большая часть населения пользовалась водой из 140 водоразборов.

В первые годы Советской власти начались работы по восстановлению и развитию водопровода. Водопроводные сети потянулись в рабочие районы Москвы. В восточной части города в 1929–1933 гг. для обеспечения населения водой были построены узлы артезианских скважин. Тогда же для покрытия дефицита воды в западной и центральной частях Москвы было решено в самые короткие сроки увеличить мощность Рублевской водопроводной станции до 260 тыс. м3/сут, начать строительство Черепковских очистных сооружений, плотины около Рублева и создать водохранилище на р. Истре. Уже в 1935 г. эта система обеспечила ежедневную подачу в город 450 тыс. м3 воды.

Однако проблема водоснабжения города в целом еще не была решена. Важным событием, определившим перспективу Московского водопровода, явился июньский Пленум ЦК ВКП(б) 1931 г. Пленум принял решение о строительстве канала Волга — Москва с пропускной способностью 75 м3/сут и трех водопроводных станций, позволяющих довести к 1945 г. общую производительность Московского водопровода до 1,86 млн. м3/сут.

В июле 1937 г. были введены в эксплуатацию канал Волга — Москва и Восточная водопроводная станция. С пуском этих сооружений в Москве была создана надежная система водоснабжения.

От московского Северного порта до Большой Волги (128 км) тянется трасса канала им. Москвы. Это гидротехническое сооружение — самое большое в мире. Наш канал длиннее Панамского на 47, Кильского — на 29, Манчестерского — на 71 км. Построен он советскими людьми за кратчайший срок — 4 года и 8 месяцев, в то время как Суэцкий канал сооружался 10, а Панамский — свыше 30 лет. Благодаря каналу, волжские воды подняли уровень р. Москвы и улучшили ее санитарное состояние.

Канал соединил многоводную Волгу с Москвой и сделал ее портом пяти морей: Белого, Балтийского, Азовского, Черного, Каспийского. История водотранспортного строительства не знает другого примера превращения города, стоявшего на мелководной реке, в порт пяти морей. За 40 лет по голубой артерии прошло 3,5 млн. судов, в своих трюмах они перевезли 300 млн. т грузов; насосные станции перекачали 54 млрд. м3 воды.

В 1935 г. был принят Генеральный план реконструкции столицы. Развитие всех отраслей городского хозяйства было поставлено на прочную основу. Частью первого генплана Москвы стал план развития системы водоснабжения.

Дальнейшее развитие водопроводно-канализационного хозяйства Москвы прервала Великая Отечественная война. В военные годы Московский водопровод надежно обеспечивал население и промышленность водой. За бесперебойное водоснабжение столицы и оборонной промышленности в военное время Рублевская водопроводная станция награждена орденом Ленина, Восточная станция — орденом Отечественной войны I степени; 12 работников Московского водопровода получили ордена и медали.

Послевоенные годы для Московского водопровода стали периодом бурного развития: были созданы новые мощные источники, построены крупные водопроводные станции, в несколько раз увеличилась протяженность сетей и магистралей. Неуклонно возрастал технический уровень Московского водопровода.

В 1952 г. вступила в строй одна из крупнейших станций города — Северная. В последующие годы Восточная и Северная водопроводные станции за счет реконструкции и расширения очистных сооружений, насосных станций, совершенствования технологии, модернизации оборудования и строительства новых водоводов значительно увеличили свою производительность. Уже в середине 60-х годов Восточная и Северная станции подавали в город 2,2 млн. м3/сут воды.

В эти же годы происходит интенсивное развитие системы водохранилищ Москворецкого источника. Построены Можайское, Рузское и Озернинское водохранилища общей емкостью более 600 млн. м3. Создание новых водохранилищ позволило в 1964 г. открыть еще одну водопроводную станцию — Западную, значительно улучшившую водоснабжение южной и юго-западной частей города. В этот же период второе рождение получила первая Московская водопроводная станция — Рублевская. Одновременно шло интенсивное развитие водопроводных сетей и магистралей в городе, протяженность которых в настоящее время составляет более 6400 км.

Производительность Московского водопровода за 60 лет возросла в 30 раз и достигла в 1977 г. более 5,1 млн. м3/сут.

В том же году пущен в эксплуатацию новый блок очистных сооружений Северной водопроводной станции производительностью 600 тыс. м3/сут и на 170 тыс. м3/сут увеличена производительность Рублевской и Западной водопроводных станций.

Спустя год завершилось строительство первой очереди Ново-Западной водопроводной станции Москвы (около 400 тыс. м3/сут), расположенной неподалеку от Киевского шоссе, рядом с совхозом «Московский». Более сорока гектаров отведено для создания комплекса очистных сооружений, складов, водозаборов, трубопроводов — всего сложного хозяйства, которое призвано стать новым питьевым источником города. В Генеральном плане развития столицы Ново-Западная станция наряду с уже действующими Рублевской, Восточной, Северной занимает ключевое место в системе городского водоснабжения. Ее проект предусматривает подачу 800 тыс. м3/сут воды в новые жилые районы: Орехово-Борисово, Ясенево, Бирюлево, Чертаново, Зюзино. Пока эти районы снабжает старая, Западная водопроводная станция.

Впервые в отечественном гидростроении на Ново-Западной станции сооружены трехъярусные отстойники. Три резервуара-отстойника, где проводится одна из основных операций по очистке воды, размещены один над другим, как этажи. Это значительно сократило площади, необходимые для размещения сооружений. Новые конструктивные разработки применены на трубопроводах. Весьма эффектны корпуса Ново-Западной станции. Бело-голубые здания ее отстойников, смесителей, фильтров, насосных легки и нарядны. Внутри станции светлые, просторные залы управления. В настоящее время сооружается вторая очередь Ново-Западной, а готовые корпуса станции уже соединили с р. Москвой две нитки 17-километрового трубопровода. По этим трубам (диаметр каждой 1,5 м) речная вода, прежде чем добраться до сооружений станции, пройдет несколько стадий тщательной обработки, а затем уже чистым питьевым потоком направится в город.

Москва получает питьевую воду из 12 подмосковных хранилищ. Половина их расположена в системе канала им. Москвы, другая — в верховьях р. Москвы.

Суммарное водопотребление промышленных и жилых районов столицы составляет 5,1 млн. м3/сут. Из этого расхода 60 % покрывается за счет собственных водных ресурсов, т. е. рек, озер и водохранилищ, которые находятся па территории области, остальные 40 % пополняются за счет бассейна р. Волги и недавно введенной в эксплуатацию Вазузской гидротехнической системы. Расчеты показывают, что в перспективе водопотребление Москвы и Московской области значительно возрастет, а к 2000 г. почти удвоится.

На очереди создание еще одной системы — Ржевской. Новый гидротехнический узел обводнит преимущественно северные и северо-восточные районы области. В перспективе предусмотрено создание крупного Юхновского водохранилища, которое будет питать южную систему каналов и искусственных озер. Строительство части этой системы уже началось: сейчас ведутся гидротехнические работы на будущих Подольском и Верхне-Пахринском водохранилищах. Огромное значение имеет переброс южных вод из р. Оки и регулирование стока Верхне-Угринского района водосбора. Реорганизация водной системы совместно с современными методами санитарной охраны позволит не только обеспечить бесперебойную подачу воды населению, но и улучшить отдых трудящихся в живописных местах Подмосковья.

Чтобы напоить город водой, ее днем и ночью перерабатывают водопроводные станции. Сотни людей, тысячи механизмов трудятся над тем, чтобы город ни минуты не испытывал недостатка воды, которая горожанину дается удивительно легко — достаточно лишь повернуть ручку водопроводного крана. Не все представляют себе, какой долгий и сложный путь от плесов реки до городских квартир проходит вода, прежде чем станет чистой, питьевой.

Очистка воды начинается еще в водоеме. Иногда русло реки используют как естественный фильтр для очистки воды, поступающей в систему городского водопровода. Как известно, пласты песка и гравия обладают прекрасной фильтрующей способностью. На берегу закладывают глубокую шахту. В ней устанавливают мощные гидравлические домкраты, с помощью которых пронизывают специальными стальными трубами речное дно. Образуется так называемый лучевой водозабор.

Вода из поверхностного источника (реки и озера) через водозабор поступает в водоприемное сооружение — камеру с решетками и сетками, которые задерживают крупные загрязнения. Насосы, установленные в насосной станции первого подъема, забирают ее из водоприемника и подают на станцию очистки.

Поднятая насосами из речного водоприемника вода направляется в отстойники — огромные подземные сооружения. Она движется в них с очень малой скоростью, при этом песчинки и частицы глины оседают на дно. Но далеко не все загрязнения остаются в отстойниках. Самые мелкие частицы уходят вместе с водой.

Для их удаления построены медленные, или, как их раньше называли, английские фильтры. В этих сооружениях вода фильтруется через слой песка вниз очень медленно, со скоростью 5—10 см/ч. На поверхности фильтрующего слоя в процессе фильтрации образуется так называемая биологическая пленка (тонкая пленка из мелких водных организмов, растений и бактерий). Она задерживает самую мелкую взвесь и даже бактерии, находящиеся в воде. Значит, медленные фильтры не только делают воду прозрачной, но и частично дезинфицируют ее. Часть взвешенных частиц задерживается и в толще песка. Медленные фильтры дают воду высокой прозрачности и задерживают до 99 % микроорганизмов. Применяются они главным образом на малых водопроводах, не требуют никаких реагентов и просты в эксплуатации. Недостаток медленной фильтрации — большие размеры фильтров, что увеличивает их строительную стоимость, и несовершенный способ очистки от задержанной взвеси (снятие 1–2 см фильтрующего слоя через один-два месяца). Поэтому медленные фильтры в настоящее время, как правило, на городских водопроводах не строятся.

При фильтрации воды на скорых фильтрах проводят предварительную (до поступления в отстойники) химическую обработку воды — коагуляцию. Наиболее употребительным химическим реагентом для коагуляции служит сернокислый алюминий — продукт обработки белой глины (каолина) серной кислотой. Он представляет собой комья грязновато-белого цвета. Раствор коагулянта вводится в очищаемую воду автоматом в строго определенной дозе в смесителе — большом железобетонном подземном сооружении. В воде происходит химическая реакция, в результате которой взвешенные частицы укрупняются, слипаются, образуя крупные хлопья.

Из смесителя вода поступает в отстойники, где начинают образовываться, или, как принято говорить, созревать, хлопья. Хлопья все время перемещаются: то медленно уходят в сторону, то опускаются вниз, то опять поднимаются вверх. Оседая, хлопья захватывают и увлекают за собой мельчайшую взвесь. Во время отстаивания вода освобождается от взвеси, повышается ее прозрачность, снижается цветность; на дне отстойника образуется толстый слой ила.

Отстойники бывают горизонтальные и вертикальные. Горизонтальные представляют собой длинные прямоугольные железобетонные бассейны, в которых вода движется в горизонтальном направлении. Вертикальные отстойники — это большие цилиндрические резервуары из железобетона с коническим дном и центральной трубой. Вода в них опускается по центральной трубе, а затем медленно поднимается снизу вверх по всему кольцевому течению отстойника и переливается по периметру через желоба уже осветленной. Выпавшая взвесь собирается на дне отстойника, и ее регулярно удаляют.

После отстойников вода поступает на фильтры, где освобождается от оставшихся мельчайших, не осевших в отстойнике хлопьев и частичек мути. Фильтрация воды осуществляется на фильтрах разных систем, представляющих собой резервуары, заполненные зернистым материалом. Фильтрация еще более улучшает качество воды: в порах песка задерживаются остатки взвешенных частиц, вода интенсивнее освобождается и от микроорганизмов. Пройдя отстойники и фильтры, вода становится прозрачной, но для питья она не годится. Очистные сооружения задерживают 99 % бактерий, содержащихся в воде источника.

Подземную питьевую воду приходится очищать также от примесей железа.

Станция обезжелезивания воды имеет сложное оборудование. Мощные насосы из скважины поднимают воду на поверхность и подают на контактную вентиляторную градирню емкостью до 80 м3. С помощью так называемых колец Рашига здесь происходит процесс аэрации, т. е. удаление из воды углекислоты и насыщение ее кислородом. В контактном резервуаре идет процесс окисления железа. Отсюда вода поступает на безнапорные фильтры, в которых железо, содержащееся в воде, полностью задерживается.

Важным этапом обработки воды является обеззараживание, уничтожение болезнетворных микроорганизмов. Обеззараживание воды на водопроводных станциях производят с помощью хлорирования, озонирования или ультрафиолетовых лучей.

Наиболее, распространенный метод — хлорирование. Разработан электролитический способ получения хлора непосредственно на водопроводных станциях путем электролиза поваренной соли. Это позволяет избежать трудностей, связанных с транспортировкой и хранением больших количеств жидкого хлора.

Сущность обеззараживающего действия хлора заключается в угнетении обмена веществ, окисления веществ, входящих в состав протоплазмы клеток бактерий, в результате чего последние гибнут.

На водопроводные станции хлор поступает, как правило, в металлических баллонах в сжиженном состояний под давлением. Стандартные баллоны содержат 25–40 и 100 кг жидкого хлора. Хлор можно вводить в виде газа или хлорной воды. На водопроводных станциях хлор обычно добавляют в виде хлорной воды, чтобы уменьшить коррозионное действие хлора на трубы вблизи места его введения. Дозируют хлор специальные газодозаторы, называемые хлораторами.

В соответствии с планом Московский машиностроительный завод «Коммунальник» при Академии коммунального хозяйства им. К. Д. Памфилова освоил выпуск агрегатов для приготовления гипохлорита натрия — вещества, широко применяемого для обеззараживания и очистки воды. В отличие от жидкого хлора гипохлорит натрия несложно хранить, он прост в обращении, и производство его обходится гораздо дешевле. Гипохлорит натрия можно получать из раствора поваренной соли путем электролиза. Отсюда и название агрегата — электролизер.

Электролизер нового типа способен за сутки вырабатывать 25 кг активного хлора. Это значительно больше, чем давали аналогичные установки старого образца. Кроме того, принцип устройства позволяет также использовать его для непроточных водоемов: устанавливать в бассейнах, цехах, имеющих гальванические ванны, на животноводческих фермах, птицефабриках, предприятиях мясомолочной промышленности.

На небольших водопроводах для хлорирования используют хлорную известь. Об эффективном обеззараживании свидетельствует концентрация остаточного свободного хлора в воде не менее 0,3 мг/л и не более 0,5 мг/л при контакте не менее 30 мин.

В поисках более удобного способа обеззараживания питьевой воды ученые уже давно обратили внимание на озон — газ, который, как и хлор, является сильнейшим окислителем, а следовательно, и сильнейшим обеззараживающим средством. Микроорганизмы под его воздействием быстро гибнут. Это свойство не теряется и при растворении газа: достаточно ничтожной доли озона, чтобы все бактерии в воде были уничтожены. А раз так, нельзя ли применить озон для дезинфекции питьевой воды и может ли он конкурировать с хлором, когда речь идет о чистоте питьевой воды?

Оказалось, что может, и очень успешно. Микробиологи исследовали один из самых опасных вирусов — вирус полиомиелита. Выяснилось, что этот вирус погибает уже через 2 мин, если в 1 л воды растворить 0,5 мг озона. Доза ничтожная! А хлор справляется с этим весьма жизнестойким микробом только за 3 часа. Если же увеличить концентрацию озона, то абсолютно все виды бактерий погибают в течение минуты.

Но уничтожить микроорганизмы мало. Надо, чтобы питьевая вода была светлой и прозрачной. Озон обесцвечивает воду в 15–30 раз быстрее, чем хлор. К тому же озона требуется в несколько раз меньше. Попутно выяснилась и еще одна способность озона: он придает воде отчетливый голубой оттенок. Хлор и здесь явно проигрывает. Он окрашивает воду в не совсем приятный зеленовато-желтый цвет. Озон уничтожает также все запахи и привкусы речной воды.

Небольшие озонаторные установки испытывались в Донбассе, Ярославле, Челябинске и Горьком.

В Москве на Восточной водопроводной станции введена в строй первая очередь крупнейшей в мире озонаторной установки. Она способна очищать за сутки 1,2 млн. м3 питьевой воды. Восточная водопроводная станция обрабатывает волжскую воду, отличающуюся малой мутностью, относительно высокой цветностью, периодически возникающими запахами и привкусами высокой интенсивности. Как показали длительные исследования, выполненные в лабораторных и полупроизводственных условиях, присущие волжской воде; физико-химические, бактериологические и органолептические свойства могут быть с наибольшей эффективностью доведены до требуемых значений путем обработки воды озоном. Все это и послужило основанием для сооружения первой в нашей стране крупной озонаторной установки.

Озонаторная установка разместилась в трех зданиях. В одном из них находятся компрессоры, которые забирают из атмосферы около 10 тыс. м3 воздуха. Он очищается от пыли, охлаждается и избавляется от влаги, затем по трубам поступает на верхний этаж, где в просторном зале в два ряда стоят 18 озонаторов.

Эти аппараты из нержавеющей стали по форме напоминают цистерны. В них под воздействием электрических зарядов высокого напряжения вырабатывается озон. В час они дают 200 кг озона, который в смеси с воздухом идет на обработку воды.

При принятой технологической схеме вода обрабатывается озоном перед очистными сооружениями и обеззараживается после фильтров. В первом случае доза составляет 3 мг/л, во втором — 1 мг/л. Поэтому установка состоит из первичного и вторичного блоков. Общая производительность всей установки составляет 200 кг/ч озона, в том числе 150 кг/ч — для первичного озонирования и50 кг/ч — для вторичного. Производительность одного озонатора достаточно велика — 8,3 кг/ч.

Первичное озонирование происходит следующим образом. Вода, поступающая на обработку из водоемов первого подъема через распределительную камеру, направляется в смесительные бассейны. Озоно-воздушная смесь проходит через отверстия в пористых трубах и в виде мелких пузырьков поднимается вверх по всей площади бассейна, через 4-метровый слой воды. При этом в течение 10–12 мин озон находится в контакте с водой. Обработанная озоном вода теряет желтый цвет, неприятный вкус и запах. Затем она возвращается в распределительные камеры и по трубам идет уже в обычные очистные сооружения, где отстаивается и фильтруется.

Смесительные бассейны блока вторичного озонироваиия (всего их шесть) разделены поперечными струенаправляющими перегородками на три отсека. Во время обработки часть озона входит в контакт с водой и скапливается над ее поверхностью, под перекрытием этих бассейнов.

Озонаторная установка отличается высоким уровнем автоматизации. Автоматика контролирует содержание озона в воде и воздухе на всех этапах получения, транспортирования и обработки воды.

Жители Куйбышевского, Бауманского, Первомайского, Сокольнического, Волгоградского, Ждановского, Перовского, Пролетарского районов Москвы по достоинству оценили качество обработанной озоном воды. Эта вода не уступает по своим качествам ключевой.

Ультрафиолетовое, излучение, используемое на водопроводных станциях для обеззараживания воды, весьма эффективно и перспективно в связи с разработкой новых мощных источников излучения. При использовании ультрафиолетовых лучей в воду не вводятся посторонние вещества, не изменяются ее физико-химические и органолептические свойства. Установки для обеззараживания воды компактны, сравнительно просты в эксплуатации и легко могут быть автоматизированы. Для этого вида обеззараживания не требуются контактные емкости. Однако обеззараживать ультрафиолетовым излучением можно только воду, обладающую малой цветностью и не содержащую коллоидных и взвешенных веществ, которые поглощают и рассеивают ультрафиолетовые лучи. Эффект обеззараживания основан на прямом губительном воздействии ультрафиолетовых лучей на белковые коллоиды и ферменты протоплазмы микробных клеток. Ультрафиолетовое излучение может воздействовать не только на обычные бактерии, но и на споровые организмы и вирусы.

Московская вода по вкусовым качествам считается одной из лучших в мире.

За качеством воды установлен строгий контроль. Ее тщательно проверяют и в месте природного источника, и в процессе обработки, и перед поступлением в водопроводную сеть. Прежде чем подать воду в наш дом, ее отстаивают и фильтруют, обеззараживают, если надо, умягчают, осветляют, избавляют от запахов.

С ростом населения потребность в питьевой воде в различных странах мира резко возрастает. Ученые разрабатывают методы получения пресной воды из морской или из солоноватой воды.

В мире уже; эксплуатируется более 800 опреснителей, которые ежесуточно вырабатывают 1,7 млн. м3 пресной воды, 90 % которой расходуется на питьевые нужды. В нашей стране опресненной водой снабжается г. Шевченко с населением около 80 тыс., расположенный на п-ове Мангышлак, который таит в своих недрах природные ресурсы, но не имеет источников пресной воды. Город вырос на берегу Каспия на краю безводной пустыни. После изучения и проработки различных вариантов водоснабжения полуострова наиболее целесообразным и экономичным был признан вариант опреснения воды из Каспийского моря.

Город Шевченко — это единственный в стране и один из немногих крупных городов мира, который полностью живет на опресненной воде. Город еще очень молод, хотя и стал областным центром. При его проектировании и строительстве использовано все лучшее и передовое. Шевченко не только застроен великолепными современными многоэтажными зданиями, но имеет продуманную и совершенную систему водоснабжения. В городе проложены три водопроводные линии. По первой подается только питьевая вода, по второй — менее качественная техническая вода для ванных комнат и полива зеленых насаждений, по третьей — морская вода для канализации. Благодаря такой разумной и экономной системе водоснабжения каждый житель Шевченко расходует столько же воды, сколько жители таких крупных городов, как Москва, Ленинград и Киев.

Опресненная дистилляцией вода имеет неприятный привкус и запах; в ней почти полностью отсутствуют важные в гигиеническом отношении ингредиенты — кальций, фтор, бикарбонаты и др. Длительное употребление такой воды может вызвать неблагоприятные изменения в организме человека. Кроме того, дистиллят обладает агрессивными свойствами по отношению к конструкционным материалам, и при транспортировании по стальным трубопроводам загрязняется продуктами коррозии. Поэтому на станции приготовления питьевой воды дистиллят подвергают обработке до уровня, соответствующего требованиям стандарта на питьевую воду.

В 1970 г. в Шевченко введена в эксплуатацию первая промышленная станция приготовления питьевой воды производительностью 30 тыс. м3/сут. На станцию поступает охлажденный дистиллят. Здесь его хлорируют. Артезианскую соленую воду очищают от железа и сероводорода путем хлорирования и фильтрования через кварцевый песок. Дистиллят смешивают с артезианской водой в напорном смесителе. Смесь доочищают но такой схеме: дезодорация, стабилизация и обогащение кальцием, фторирование и обеззараживание. Дезодорация смеси производится на восьми загруженных углем напорных сорбционных фильтрах. При фильтровании через уголь вода освобождается от органических соединений, придающих ей привкусы и запахи. Сорбционные фильтры периодически регенерируются. Обогащение воды кальцием происходит при фильтровании ее через мраморную крошку. На станции установлено шесть напорных мраморных фильтров, диаметром 3 м каждый. Высота фильтрующего слоя — 3 м. Мраморная крошка в фильтрах периодически промывается обратным током очищенной воды. Профильтрованную воду хлорируют, фторируют, и только после этого она поступает в подземные резервуары для очищенной воды, откуда затем подается в водопроводную сеть города.

В городе много зеленых насаждений. А ведь каждое дерево выпивает 5—10 л воды в час, т. е. за год на одно дерево потребуется израсходовать 50—100 м3 поливной воды. В г. Шевченко на каждого жителя приходится почти 10 м2 зеленых насаждений, что больше, чем в некоторых столицах мира (Токио, Париж, Лондон и др.), не говоря уже о г. Эль-Кувейте, также живущем на опресненной воде.

Маленькое княжество Кувейт в Персидском заливе площадью 15,5 тыс. км2 славится богатыми месторождениями нефти и страдает от полного безводья. В Кувейте тонна нефти стоила намного дешевле тонны воды, привезенной из Ирака. В 1953 г. в Кувейте построен первый опреснительный завод, работающий на бесплатном попутном газе, прежде сжигавшемся в факелах на нефтепромыслах. Позже было введено в строй еще несколько опреснителей. Теперь Кувейт является крупнейшим в мире производителем опресненной воды. Построенные правительством 14 опреснительных заводов общей производительностью более 212 тыс. м3/сут полностью обеспечивают водой новый город Эль-Кувейт и все государство. В городе стала появляться зелень, но оплачивается она дорогой ценой; уход и полив каждого взрослого дерева или пальмы обходятся в 60—150 долларов в год.

Много опреснителей построено в районе Карибского моря на Малых Антильских и Багамских островах для водоснабжения населения и крупных нефтеперерабатывающих заводов. Работают опреснительные установки и во многих безводных и маловодных районах тропической зоны земного шара (Австралия, Ближний Восток, Северная Африка, Латинская Америка и др.), а в последние годы строятся уже и в увлажненной зоне — в Европе, Азии и Америке.

В окрестностях ливийской столицы вступила в строй первая очередь крупнейшего в Северной Африке теплоэнергетического комплекса. Он включает тепловую электростанцию мощностью 500 тыс. кВт и завод для опреснения морской воды производительностью 12 тыс. м3/сут. Вторая очередь комплекса действует с конца 1976 г. Введены в эксплуатацию еще два крупных электроагрегата, мощностью по 250 тыс. кВт каждый. Производительность установки по опреснению морской воды возросла почти вдвое.

Немногие суда, отправляясь в плавание, берут сейчас пресную воду. Гораздо выгоднее и удобнее получать ее непосредственно из морской воды с помощью испарительной установки, находящейся на борту корабля.

Японские ученые проводят эксперимент до промышленному опреснению морской воды. В г. Наганосу применен метод многоступенчатой дистилляции, основанный на способности воды закипать в условиях низкого атмосферного давления при температуре менее 100°. Насосы подают морскую воду на предприятие, где она проходит последовательно 50 камер, в которых давление постепенно понижается. Вода в них закипает при все более низких температурах, а образовавшийся пар конденсируется и превращается в пресную воду. С завершением строительства последней очереди этого предприятия, по расчетам специалистов, здесь будет производиться 100 тыс. т пресной воды в день.

Ученые давно искали пути использования дешевой солнечной энергии для опреснения воды. Ведь в природе этот процесс совершается с высокой эффективностью и в гигантских масштабах. Действительно, в южных районах, где солнечного тепла много, а пресной воды мало, для этого имеются благоприятные условия. Так, на широте Ашхабада сумма прямой солнечной радиации равна 1,866 Гкал/м2. Этого тепла достаточно для испарения слоя воды в 3 тыс. мм.

Хотя солнечное тепло и даровое, но гелиоопреснение обходится отнюдь не дешево и требует больших капиталовложений.

В СССР разработаны различные конструкции опреснителей (парникового типа и с концентраторами энергии, стационарные и переносные), подготовлен образец опытно-промышленного солнечного опреснителя площадью 2,4 тыс. м2 и производительностью 12 м3/сут.

В 1969 г. в Туркмении на отгонных пастбищах совхоза «Бахарден» на колодце Овез-Ших построена первая очередь этого опреснителя площадью 600 м2, а в Каракумах — вторая очередь площадью 1,8 тыс. м2. Теперь опреснитель обеспечивает водой две-три отары овец. В 1971 г. в Узбекистане сооружен еще один солнечный опреснитель парникового типа в совхозе «Шафрикан» Бухарской области. Как основной опреснитель площадью 600 м2, так и опреснители по 100 м2 других типов предназначены в основном для изучения и оценки технических и экономических возможностей гелиоопреснения.

Опреснить соленую воду можно также путем ее замораживания. Дело в том, что температура замерзания соленой воды ниже температуры замерзания воды пресной. При медленном охлаждении в соленой воде прежде всего образуются кристаллы пресного льда. Если полученный лед отделить от незамерзшей воды и расплавить его, то талая вода может быть вполне пригодной для питья.

Заморозить соленую воду можно при помощи природного холода или используя искусственное охлаждение. Метод естественного замораживания отличается низкой эффективностью и сезонностью работы, кроме того, может применяться только в определенной географической зоне. Поэтому замораживающий метод опреснения соленой воды разрабатывается преимущественно в расчете на искусственное охлаждение.

Первые опытные замораживающие опреснители были построены во Франции и мало чем отличались от обычных льдоделательных машин: тепло в них многократно передавалось через металлические теплообменные поверхности. Тепловая эффективность замораживающих опреснителей с теплообменом через стенку была очень низкой, поэтому расход электроэнергии в них достигал 60 кВт * ч/м3, и опресненная вода стоила дорого. Из-за низкой экономичности опреснители подобного типа не нашли практического применения.

Шведские химики успешно завершили эксперименты по опреснению морской воды. По их способу, воду смешивают с жидким бутаном, смесь быстро замерзает, и кристаллы соли легко отделяются. Затем лед растапливают в специальных цистернах для пресной воды. Бутан отделяют и используют снова. Энергетические затраты при этом методе сокращаются в 4 раза.

Опреснение соленых вод методом электродиализа основано на удалении ионов солей из раствора под действием поля постоянного электрического тока. Более 100 электродиализных опреснительных установок различного типа эксплуатируется в ряде районов Средней Азии, Казахстана, Украины, Северного Кавказа, Заволжья и т. д.

Известно, как трудно в степи с водой, особенно в знойную пору. Жажду испытывают люди, нечем напоить скот на отгонных пастбищах. Под землей же, на глубине нескольких метров, вода есть повсюду. Но, когда человек добирается до нее, его обычно ждет разочарование: вода солона и горька, пить ее невозможно. Как быть? Вот эту проблему и должны решить опреснительные установки, способные под воздействием электрического поля освободить воду от избытка солей.

Отделение ионов солей от воды можно наблюдать, если в ванну с соленой водой поместить катод и анод, соединенные с источником постоянного тока. Под действием разности потенциалов начинается перемещение ионов в соответствии со знаком их заряда, т. е. катионы передвигаются к катоду, а анионы — к аноду. При разряжении ионов на катодной пластине выделяется натрий, который мгновенно растворяется водой с образованием щелочи, и свободный водород в виде пузырьков газа. Одновременно на поверхности анодной пластины образуются кислород и хлор, и в результате взаимодействия атомарного хлора с водой — соляная кислота. Вблизи катода и анода вода становится соответственно щелочной и кислой.

Если разделить ванну ионопроницаемыми мембранами на три камеры, то соленая вода, находящаяся между мембранами, постепенно опресняется. Это происходит вследствие того, что в электродных камерах накапливаются ионы Н+ и ОН-, которые участвуют в переносе электричества через центральную камеру, где они соединяются, образуя воду. Ионы же Na+ и Cl-, перешедшие в электродные камеры, удаляются из них вместе с кислой и щелочной водой.

Однако вследствие диффузии происходит одновременно и беспорядочное перемещение ионов Н+ и ОН-, а также ионов солей, в результате чего последние снова возвращаются из анодной и катодной камер в центральную. Для исключения процесса диффузии, необходимо, чтобы ионопроницаемые мембраны обладали селективностью, т. е. способностью пропускать ионы с зарядом одного знака. Иными словами, положительно заряженные мембраны (анионоактивные), должны пропускать только анионы, а отрицательно заряженные (катионоактивные) — только катионы.

За последнее время благодаря достижениям химии был получен многочисленный ряд селективнопроницаемых мембран, обладающих большим сопротивлением диффузии и высокой электропроводностью. К их числу относятся гомогенные (поликонденсационные, внутриполимерные, привитые, активированные), гетерогенные и пропиточные ионитовые мембраны, нашедшие широкое распространение в современных электродиализных установках. Отличаясь своими физико-химическими свойствами в соответствии со способами их получения, перечисленные мембраны изготавливаются с фиксированными ионогенными группами, электрическое поле которых создает условия для избирательной ионопроводимости, т. е. исключает возможность пропускания через мембрану ионов, одинаково заряженных с фиксированными ионами в полимерной структуре (матрице) мембраны.

Получение селективных ионопроницаемых (ионообменных) мембран определило возможность применения многокамерных электродиализаторов со многими парами катионо- и анионоактивных мембран. Такие установки представляют собой ванны, состоящие обычно из 100–200 гидравлических камер, которые могут быть соединены последовательно или параллельно с горизонтальной или вертикальной циркуляцией воды. В настоящее время распространены преимущественно электродиализные ванны фильтропрессного типа. В этих ваннах мембраны, расположенные между катодом и анодом, разделены рамками из диэлектрика. Под действием электрического поля ионы, находящиеся в растворе, приходят в упорядоченное движение. Катионы движутся в одном направлении, а анионы — в противоположном. При этом селективнопроницаемые мебраны исключают возможность обратного поступления ионов в обессоленную воду. Таким образом, из нечетных камер ни анионы, ни катионы не могут пройти в соседние камеры вследствие того, что знак их заряда совпадает со знаком соответственно катионоактивных и анионоактивных мембран. В результате концентрация солей в воде одних камер (четных) начинает падать, т. е. происходит процесс опреснения, а в нечетных, наоборот, возрастает, что приводит к образованию рассола. Полученные обессоленная вода (дилюат) и концентрированный раствор отводятся из системы.

Кроме опреснения солоноватых вод, электродиализ может помочь при повторном употреблении воды для удовлетворения увеличивающегося водопотребления в промышленно развитых районах. Каждое использование воды городом повышает количество растворенных минералов примерно на 300 мг/л, поэтому при многократном пользовании водой возникает необходимость уменьшения ее солесодержания. Электродиализ в этом случае является наиболее эффективным процессом для удаления солей из воды с таким низким солесодержанием.

К настоящему времени разработаны надежные ионоселективные мембраны, а сам метод во многом технически эффективно разрешен, что может служить хорошей рекомендацией для него.

Электродиализные установки применяются не только для водоснабжения небольших водопотребителей, но и для крупных населенных пунктов, а также для промышленных и сельскохозяйственных производств. В Советском Союзе такие установки производительностью от 50 до 500 м3/сут успешно эксплуатируются на различных железнодорожных станциях. Сооружены также крупные установки производительностью 300 м3/сут на станции Моинты и производительностью 100 м3/сут на ТЭЦ станции Актогай. Установки опресняют воду с солесодержанием 2,1 г/л.

Большое внимание уделяется исследованию и разработке нового метода опреснения воды, который в нашей стране называют гиперфильтрационным, а за рубежом — обратноосмотическим.

Суть его заключается в следующем. Если два раствора с различными концентрациями разделены полупроницаемой пленкой, менее насыщенный раствор постепенно перетечет сквозь нее к более насыщенному. Но, если в объеме с более концентрированным раствором повысить давление, все происходит наоборот: растворитель уходит в объем с меньшей концентрацией вещества. Это явление так называемого обратного осмоса, на котором основана работа установок «Роса». При опреснении соленой воды этим методом чистая вода, являющаяся растворителем, находится под давлением и отделена от раствора полупроницаемой пленкой. В идеальном случае эта пленка пропускает только молекулы воды и не пропускает молекулы солей.

В США создано устройство, опресняющее морскую воду методом обратного осмоса. Морская вода подается под большим давлением в батарею, состоящую из большого числа пластмассовых трубок. Через стенки этих трубок по закону осмоса проникает только чистая пресная вода, а все растворенные в морской воде соли задерживаются. Батарея, состоящая из тысячи трубок, дает 10 тыс. л питьевой воды в сутки.

В ряде случаев питьевую воду необходимо длительно сохранять. С этой целью наиболее целесообразно применение серебра. В этом направлении интерес представляют фундаментальные работы академика АН УССР Л. А. Кульского, долгие годы тщательно изучавшего теорию и практику применения серебра в технологии обработки воды. Наиболее эффективен электрохимический метод приготовления серебряной воды (обогащение воды серебром при помощи электролиза), впервые разработанный им в 1930 г. и широко применяющийся в последнее время во многих странах. Постоянный электрический ток пропускается через пару погруженных в воду серебряных электродов; анод растворяется, и вода обогащается серебром. Полученная таким способом серебряная вода используется для дезинфекции питьевых и минеральных вод, консервирования некоторых продуктов питания, приготовления ряда фармацевтических препаратов и в лечебных целях.

В основе принципа действия аппаратуры для получения серебряной воды в соответствии с существующими методами насыщения воды серебром лежат контактирование воды с посеребренными поверхностями или ее обогащение серебром под действием электрического тока. Электролизная аппаратура обладает рядом преимуществ, и главные — дозирование и учет вводимого серебра — производятся по расходу электроэнергии. Такие установки компактны, обеспечивают высокую производительность и большую точность дозирования. Для введения серебра в воду, как правило, используется постоянный ток небольшого напряжения (до 20 В). Изменяя силу тока и время прохождения воды через аппарат, можно получать электролитические растворы серебра любой концентрации. Количество расходуемого серебра — ничтожно (0,05— 0,25 г на 1 м3 воды). При взаимодействии с органическими веществами и другими примесями воды серебро постепенно инактивируется, но его активность сохраняется в течение длительного периода. Серебро даже в сравнительно высокой концентрации не изменяет органолептических показателей воды. Следы серебра в воде вызывают гибель вегетативных форм бактерий, задерживают развитие спор, угнетают рост синезеленых водорослей, вирусов.

Использование серебра для обеззараживания воды не только увеличивает арсенал существующих реагентов, но и является одним из наиболее эффективных методов дезинфекции и консервирования питьевой воды.

Серебро, как уже отмечалось, обладает более высоким антимикробным аффектом, чем пенициллин, биомицин и другие антибиотики, и оказывает губительное действие на антибиотикоустойчивые штаммы бактерий. Вода, содержащая всего 1 мг/л серебра, хорошо инактивирует вирусы гриппа различных штаммов. Такая вода при последующем заражении сохраняет свою бактерицидность на протяжении многих месяцев. Даже при значительно меньших концентрациях, не превышающих 0,1–0,2 мг/л, она способна убивать многие патогенные организмы, вызывающие опасные водные эпидемии. Водные растворы серебра (привозе 0,1 мг/л) являются эффективным средством при обеззараживании питьевой воды от возбудителей холеры при концентрации последних в 1 мл до 1 млн, особей.

Весьма высокая бактерицидность серебряной воды была установлена и при заражении ее многими опасными кишечными возбудителями. Электролитические растворы серебра (серебряная вода) в концентрации 0,1, 0,2 и 0,5 мг/л обладают высокими бактерицидными свойствами и рекомендованы для обеззараживания воды, инфицированной возбудителями дизентерии, брюшного тифа, парафитов и сальмонеллезов.

Ионы серебра, адсорбируясь на поверхности клетки бактерии в результате взаимодействия электростатических сил (серебро + и протоплазма —), проникают внутрь и связываются с нуклеиновым ядерным веществом, образуя нуклеинаты. Этим они нарушают жизнедеятельность бактерий. Повышение температуры воды также оказывает положительное влияние на эффективность бактерицидного действия ионов, что свидетельствует о значительной роли химических процессов в этих явлениях. В прозрачной и бесцветной воде обеззараживающий эффект достигается за час-два при концентрациях электролитического серебра 0,2–0,4 мг/л, причем высокие питьевые качества воды сохранялись в течение всего 90-дневного периода наблюдения. Результаты были безупречны, и когда повторно загрязняли воду микробами и изменяли условия ее хранения — в различных по материалу и величине емкостях, при разной температуре. Выяснилось также, что для сохранения чистой питьевой воды достаточны меньшие концентрации серебра — 0,05 мг/л.

Было установлено, что без всякого вреда для здоровья можно всю жизнь употреблять воду, концентрация серебра в которой не превышает 0,05 мг/л. Это узаконено, как уже отмечалось, Государственным стандартом качества питьевой воды. Кратковременное же использование допускает и большие концентрации серебра — 0,1–0,2 мг/л. Так, общеизвестен эксперимент, когда испытатели целый год жили в условиях, приближенных к космическому полету; они употребляли воду, содержавшую 0,1 мг/л электролитического серебра. Каких-либо неблагоприятных последствий обнаружено не было. Качество же воды оставалось неизменно высоким.

Метод консервации воды серебром отлично зарекомендовал себя на морском флоте. Сегодня на морских судах установлены сотни ионаторов.

Известно, что для пищеблоков на судах дальнего плавания вода хранится в специальных питьевых танках. Но стационарные крупногабаритные, тяжеловесные резервуары непригодны для использования на спасательных шлюпках и рыбацких лодках. Для этих целей разработана технология консервирования аварийных запасов воды ионами серебра с хранением ее в полиэтиленовых мешочках, помещенных в герметично «закатанные» банки вместимостью 465 мл. Такая вода не теряет своих вкусовых свойств в течение двух лет, причем малогабаритная банка удобна для пользования. Бактериологический анализ этой воды не выявил наличия в ней бактерий. Другая картина наблюдалась в пробе воды, взятой из обычного анкерка — деревянного бочонка, в каком исстари хранится аварийный запас в спасательных шлюпках. Всего лишь после месячного рейса жидкость была мутной, появился привкус, да и запах оказался далеко не идеальный. Поэтому запасы в бочонках приходится часто обновлять, деревянную тару подвергать специальной обработке.

Серебро оказалось прекрасным консерватором минеральной воды. В настоящее время на Московском, Киевском, Ялтинском, Добропольском, Харьковском, Тальновском, Березовском, Феодосийском, Кисловодском, Днепропетровском и других заводах безалкогольных напитков минеральную воду обеззараживают и консервируют серебром. Это позволило увеличить пропускную способность складских помещений, улучшило бактериологические показатели минеральной воды. В последнее время появились бытовые ионаторы. К ним относятся переносной ионатор ЛК-25 (модель 1966 г.) и ионатор ЛК-27 (модель 1970 г.). Последний изготавливается Сумским заводом электронных микроскопов. Применение их, несомненно, оправдывает себя, но требует строгого соблюдения правил, изложенных в инструкциях.

Санитарно-гигиеническая оценка показала высокие качества и полную стабильность исходных физико-химических и бактериальных показателей питьевой воды, консервированной с помощью серебра, а космонавты отмечали ее хороший вкус.

 

Гидроэнергетика и орошение

Исключительно большое значение имеет вода как источник энергии. За несколько тысячелетий до нашей эры человек уже использовал проточную воду как движущую силу — на реках строили водяные мельницы. Однако промышленная гидроэнергетика получила развитие в XX в. И большую роль в этом процессе сыграла наша страна.

В 1926 г. вступил в строй первенец советской гидроэнергетики — Волховская ГЭС мощностью 58 тыс. кВт. вслед за Волховстроем были введены сотни гидроэлектростанций. В настоящее время Советский Союз занимает ведущее место в мире по запасам гидроресурсов.

Изменение режима рек, вызванное строительством ГЭС, не только не сокращает водных ресурсов, но, напротив, приводит к их аккумулированию в водохранилищах, которые по водному зеркалу часто соизмеримы с крупными озерами. Создание водохранилищ позволяет более рационально использовать водные ресурсы в различных отраслях промышленности, способствует широкому развитию обводнения в засушливых районах.

Только в СССР ныне насчитывается около 1000 водохранилищ объемом более 1 млн. м3. Аккумулированные в них запасы водной энергии оценивают в 775 млрд. кВт*ч, Три четверти из них находятся в восточной части страны, что имеет исключительно важное значение для осуществления намеченной партией программы развития производительных сил этого края. Мощные гидроузлы являются опорными пунктами быстрейшего освоения несметных природных богатств северо-восточных районов. Так, на электроэнергии Братской ГЭС работает крупнейший в Сибири Коршуновский горно-обогатительный комбинат, наращивают свои силы Братский алюминиевый завод и лесопромышленный комплекс. Усть-Илимская ГЭС становится энергетической базой другого индустриального комплекса, в который входят горно-обогатительные и целлюлозные комбинаты. Самая крупная в мире Саяно-Шушенская гидроэлектростанция мощностью 6,4 млн. кВт, первые агрегаты которой вступили в строй в десятой пятилетке, послужит основой для формирования Саянского территориально-производственного комплекса.

Как подчеркивалось в решениях XXV съезда партии, сооружение преимущественно крупных гидроузлов позволяет комплексно решать задачи производства электроэнергии, орошения земель, обеспечения водой городов и промышленных предприятий, развития судоходства и рыболовства, предотвращения наводнений. В этой связи важное значение имеет строительство Зейской, Бурейской и Колымской ГЭС на Дальнем Востоке, Днестровской ГЭС на Украине, Шульбинской ГЭС в Казахстане, Ингурской в Грузии, Шамхорской в Азербайджане, Курпсайской в Киргизии, Нурекской и Рогунской в Таджикистане. Одни из этих станций уже вступают в строй, на других работы только развертываются.

Огромно значение водохранилищ гидроэлектростанций и в водном хозяйстве страны. Построенные в бассейнах р. Волги, Днепра, Амударьи и Сырдарьи такие водохранилища создали предпосылки для орошения более 10 млн. га сельскохозяйственных земель. По водохранилищам осуществляется свыше 60 % всего объема водных перевозок в стране.

Какова главная задача гидроэлектростанций на Волге? Дело не только в том, что они вырабатывают 40 млрд. кВт*ч электроэнергии в год, не расходуя при этом ни грамма топлива. ГЭС еще играют роль регулятора, мобильного резерва. Нагрузка в сети Единой энергетической системы Европейской части СССР меняется, и порой очень быстро. Гидроэлектростанции отзываются почти мгновенно на резко возросшую потребность в электроэнергии.

Раньше главным показателем их работы было количество выработанной электроэнергии, киловатт-часы. Теперь показатель другой — готовность к несению нагрузки. Но, чтобы поддержать состояния высокой готовности, нужно весной, в паводок, аккумулировать определенное количество воды в водохранилище, поднять ее уровень хотя бы до минимальных отметок.

В настоящее время для покрытия пиковых нагрузок строят гидроаккумулирующие электростанции (ГАЭС). В вечерние часы в городе сильно возрастает потребление электроэнергии. Ему требуется столько электроэнергии, что специалисты говорят о вечерних часах «пик».

Но вот наступает разгрузка. И тепловые агрегаты, работающие на пределе в пиковые часы, вынуждены резко менять ритм. Оборудование болезненно переносит скачки в нагрузке от максимума до минимума, а «лечение» обходится дорого — только в Мосэнерго на ремонт блочного оборудования ТЭС в переменном режиме затрачивается около 15 млн. руб. ежегодно. Десятками тысяч тонн пережигается топливо. Причина та же — работа агрегатов в резкопеременном режиме. Крупные энергосистемы давно испытывают необходимость в своеобразном банке, куда бы можно было «положить» излишек, а при нужде обратится за помощью. Роль этих банков и отведена ГАЭС.

Несколько лет назад под Киевом вступила в строй первая подобная станция, правда, небольшая — у нее всего один агрегат. Сейчас сооружаются две крупные — Загорская в Подмосковье на р. Кунье и Кайшядорисская — на берегу Каунасского водохранилища.

Что же такое ГАЭС?

Технологически идея, на первый взгляд, проста: два сообщающихся бассейна расположены один над другим. Когда потребности в энергии снижены, например, глубокой ночью, вода из нижнего бассейна перекачивается в верхний. Это увеличивает энергопотребление и одновременно создает ее потенциальный запас. С наступлением часа «пик» воду из верхнего водохранилища спускают в нижнее, и агрегаты, еще недавно работавшие в насосном режиме, переключаются на режим простых гидроэлектростанций — турбинный.

Гибкие, способные к маневрированию станции — вот в чем главное достоинство ГАЭС. Как известно, нормативный срок окупаемости обычных ГЭС не менее восьми лет, а Загорская ГАЭС окупит затраты на ее сооружение в течение пяти с половиной лет.

Все агрегаты новой станции в конечном счете после освоения проектной мощности будут ежегодно давать столице 1,2 млрд. кВт*ч электроэнергии, тем самым значительно пополнят энерговооруженность города.

СССР — единственная в мире страна массового строительства мощных ГЭС на равнинных реках, где средние удельные размеры водохранилищ (поверхность затопления на единицу годовой выработки электроэнергии) в четыре раза выше, чем, например, в США. Один из основных экономических вопросов, связанных с этим строительством, было изъятие из сельскохозяйственного и других видов использования большой территории. Особое внимание при его решении пришлось обратить на проблему мелководных зон водохранилищ. Как известно, при максимальном уровне они покрыты водой, а при сработке ее запаса — осушаются. К тому же зоны эти очень велики, например, на Куйбышевском водохранилище они достигают 170 тыс. га, т. е. составляют около 40 % всей его площади.

Нелегко использовать в хозяйстве мелководные зоны. Годовой график их заполнения и осушения, обусловливаемый нуждами энергетики, ирригации, водоснабжения и транспорта, резко отличен от природного цикла весеннего затопления заливных лугов с быстрым спадом воды и последующим бурным ростом растительности на увлажненной и удобренной илом почве (этот цикл важен и для рыбного хозяйства: затопленные весной мелководья становятся нерестилищами, откуда после спада вешних вод мальки скатываются в реку). Потребители воды требуют значительно более длительного затопления мелководий и постепенного осушения их в течение осени и зимы. В результате разрастающиеся за лето на мелководье водоросли при осушке отмирают, загрязняя водохранилище гниющей массой. Эти неблагоприятные последствия можно устранить лишь частично, например выкашиванием и уборкой водорослей при осушке или изменением графика потребления воды с явным ущербом для ее использователей. Положение дополнительно усложняется тем, что в маловодные годы из-за недостатка воды происходит осушение зон, целый ряд лет находившихся под водой.

При строительстве новых водохранилищ предусматривается защита мелководий путем отсечения их от основного хранилища дамбами. Водохранилище Чебоксарской ГЭС затопило около 54 тыс. га сельскохозяйственных угодий. Здесь надо отдать должное проектировщикам, потому что под водой могло бы оказаться гораздо больше сельхозугодий. Специальная инженерная защита, предусмотренная проектом, сохранит от затопления почти 26 тыс. га земли, в том числе 15 тыс. га сельскохозяйственных угодий. Следует отметить, что в зоне затопления окажутся в основном так называемые неудобные земли — заболоченные, сильно изрезанные, используемые только под выпасами и сенокосами.

Несмотря на невысокую продуктивность отчуждаемых под водохранилище земель, предусматривается в качестве компенсации провести коренную мелиорацию залесенных и заболоченных участков, и ввести их в сельскохозяйственный оборот. В целом намечено вновь освоить свыше 20 тыс. га под пашню, повысить продуктивность старопахотных земель, а также лугов и пастбищ. Словом, предусмотрено все, чтобы в будущем новое море не нанесло ущерба сельскому хозяйству.

Чебоксарский гидроузел с экономической точки зрения очень эффективен. Он сразу решает несколько народнохозяйственных задач: производство электроэнергии, улучшение судоходства и водоснабжения населения, промышленных предприятий, орошение земель, развитие рыболовства в бассейне Волги. Такое комплексное использование гидроузла позволит окупить вложенные в него средства за 5–6 лет, т. е. вдвое быстрее обычного срока, допустимого для такого вида строительства.

В сентябре 1970 г., на год раньше установленного срока, заработала на полную мощность — 2,7 млн. кВт — самая крупная в Средней Азии Нурекская гидроэлектростанция — энергетическое сердце Южнотаджикского территориально-производственного комплекса. Воздвигнутый на бурной р. Вахше гидроузел имеет многоцелевое назначение. Его водохранилище емкостью 10,5 млрд. м3 образовано самой высокой в мире каменно-набросной плотиной высотой 300 м, перекрывшей Пулисангинское ущелье. Ежегодно здесь будут вырабатываться свыше 11 млрд. кВт*ч электроэнергии. Водохранилище позволит орошать свыше 0,5 млн. га хлопковых полей на землях Таджикистана, Узбекистана и Туркмении. По 30-километровому Дангаринскому тоннелю вахшская вода из водохранилища придет на поля знойной Гиссарской долины, где возделывается ценный длинноволокнистый хлопок.

Многоцелевое назначение энергоисполина на Вахше обеспечивает его высокую экономическую эффектность. За счет прибыли, уже полученной при выработке электроэнергии и повышении урожайности хлопка, гидроузел в 1980 г. полностью окупил все строительные затраты.

Опыт, накопленный при создании Нурекского гидроузла, поможет строителям Рогунской ГЭС — пятой станции вахшского каскада. Почти на 350 м возвысится плотина нового гидроузла, мощность которого достигнет 3,6 млн. кВт. Ежегодно он будет вырабатывать 13 млрд. кВт*ч дешевой электроэнергии, которая войдет в объединенную энергосистему Средней Азии и поможет дальнейшему развитию промышленности и сельского хозяйства республик Средней Азии. Новая станция позволит ежегодно экономить в среднем до 4 млн. т условного топлива. В Рогунское водохранилище соберется до 12 км3 влаги, необходимой для орошения полей всех Среднеазиатских республик, для создания новых хлопководческих районов. Только за счет регулирования стока Вахша Рогунским морем в зоне Каршинских степей, Амубухарского и Каракумского каналов прирост вновь орошаемых земель превысит 320 тыс. га. Рогунская ГЭС будет одной из самых высокоэффективных в СССР.

Сельское хозяйство является, как правило, одним из наиболее значительных водопотребителей. В системе водного хозяйства нашей страны — это самый крупный водопотребитель. И характерно, что около трех четвертей воды в сельском хозяйстве расходуется безвозвратно.

Для того чтобы составить мнение о водоемкости этой отрасли народного хозяйства, достаточно напомнить, что на выращивание 1 т пшеницы требуется за вегетационный период 1,5 тыс. т воды, 1 т риса — более 7 тыс. т, 1 т хлопка — около 10 тыс. т. Прежде чем в магазине появится банка консервов из овощей или фруктов, на нее будет истрачено 40 л воды. Подсчитано, что только для производства суточной нормы пищевых продуктов в расчете на одного человека требуется не менее 6 м3 воды. Большое ее количество расходуется в связи с развитием животноводства. Животноводческие комплексы на промышленной основе являются крупными потребителями доброкачественной воды.

Орошение и связанные с ним инженерно-технические мероприятия оказывают влияние на гидрологический цикл и водные ресурсы регионов. Во многих странах и целых районах мира орошение является основным потребителем воды и в маловодные годы обусловливает возникновение дефицита водных ресурсов. Особенно большое значение это имеет для аридных районов, где в настоящее время проживает большая часть человечества. К началу XX в. площадь орошения на Земле составляла ~ 40 млн. га, в том числе в Индии — 17 млн. га, России — 3 млн. га, США — 3 млн. га, Египте — 2,4 млн. га, Японии — 2 млн, га, Италии — 1,6 млн. га. Площадь орошаемых земель в мире достигла в 1975 г. ~ 250 млн. га, т. е. за 75 лет текущего столетия увеличилась более чем в 6 раз. Около 60 % всех орошаемых площадей сосредоточено в Китае, Индии, США и СССР.

Особенностью развития современного орошения является продвижение его на север, в районы достаточного и даже избыточного увлажнения; здесь орошение рассматривается как неотъемлемая часть системы агротехнических мероприятий, позволяющих получать высокие и устойчивые урожаи сельскохозяйственных культур независимо от метеорологических условий. В Европе нет ни одной страны, где в той или иной мере не было бы развито орошение; значительные орошаемые площади имеются, например, в Польше, Великобритании, ФРГ, Нидерландах. Все большее распространение в северных районах Европы приобретает так называемое двухстороннее регулирование водного режима почвы, предусматривающее сочетание осушения и орошения на мелиорируемых землях.

Развитие орошения засушливых земель прежде всего вытекает из необходимости обеспечения человечества продуктами питания. Несмотря на то что в настоящее время орошается немногим более 15 % всех обрабатываемых площадей мира, продукция с орошаемых полей составляет более половины всей сельскохозяйственной продукции в стоимостном выражении. В условиях высоких темпов роста населения и острого недостатка продуктов питания, который испытывают сейчас почти две трети жителей планеты, ирригации отводится все большая роль в повышении эффективности земледелия и животноводства. Поэтому и в перспективе можно предположить, что орошаемое земледелие в мире будет интенсивно развиваться. Например, в странах — членах СЭВ предполагается увеличить орошаемые площади через 15–20 лет почти в 3 раза, в отдаленной перспективе — в 4 раза по сравнению с современным уровнем. Согласно перспективному плану развития сельскохозяйственного производства (ФАО, 1969 г.) предполагается увеличить орошаемые площади за период 1962–1985 гг. в развивающихся странах Азии (без Китая) в 1,5 раза, Латинской Америки — 1,7 раза, Ближнего Востока и Северо-Восточной Африки — 1,2 раза, Южной Африки — 1,7 раза.

Более низкие темпы роста площадей орошаемых земель намечаются в отдаленной перспективе до 2000 г. в странах Западной Европы и США. Так, предполагается, что достигнутые в 70-х годах в США темпы ввода новых орошаемых площадей (~ 400–500 тыс. га/год) в период до 2000 г. будут постепенно снижаться до 100 тыс. га/год.

На основании систематизации и обобщения сведений, приведенных в литературе по отдельным странам и районам мира, материалов ФАО за последние годы динамика орошаемых площадей и предполагаемая перспектива их роста, по континентам и по земному шару в целом может быть охарактеризована данными табл. 11.

Следует отметить, что данные этой таблицы приближенные, поскольку сведения по многим странам, приведенные в различных источниках, довольно разноречивы, характеризуют разные годы и т. п. Особенно это относится к сведениям за наиболее ранние годы, а также к данным на перспективу. Последние следует рассматривать как возможный вариант, основанный на общих тенденциях развития ирригации и разработанных в отдельных странах мира перспективных планах.

Таблица 11. Площади орошаемых земель в мире за 1900–2000 гг. (И. А. Шикломанов, 1976)

Континент Площади орошаемых земель, млн. га
1900 г. 1940 г. 1950 г. 1960 г. 1970 р. 1985 г. 2000 г.
Европа 3,5 8 10 15 21 30 45
Азия 30 50 65 135 170 220 300
Африка 2,5 4 5 7 9 12 18
Северная Америка 4 9 13 17 25 32 35
Южная Америка 0,5 1,5 3 5 7 10 15
Австралия и Океания 0 0,3 0,5 1,0 1,6 2,2 3
Вся суша (округленно) 40 73 96 180 234 310 420

Как видно из табл. 11, большая часть орошаемых площадей (73 %) в 1970 г. была сосредоточена в Азии, где они занимают почти 30 % общей обрабатываемой сельскохозяйственной площади, затем следуют Северная Америка (25 млн. га, 10,7 %) и Европа (21 млн. га, 9,0 %). На 1985 г. предполагается увеличение орошаемых площадей в мире до 300–310 млн. га (в 1,3 раза), а к 2000 г. — до 410–420 млн. га (в 1,8 раза) по сравнению с современным уровнем. Наибольший рост орошаемых площадей ожидается в Европе (более чем в 2 раза к 2000 г.), что обусловлено в основном намечаемыми интенсивными планами развития ирригации в странах — членах СЭВ (особенно на ЕТС, где предполагается увеличить площади орошения в 5–6 раз).

За годы десятой пятилетки введено в эксплуатацию за счет государственных капитальных вложений 4 млн. га орошаемых земель, обводнено в пустынных, полупустынных и горных районах 37,6 млн. га пастбищ, увеличены площади орошаемого земледелия в районах юго-востока Европейской части РСФСР, на Северном Кавказе, юге Украины, в Молдавии, Казахстане, республиках Средней Азии и Закавказья.

В конце 70-х годов завершилось строительство второй очереди одной из крупнейших на Украине Северо-Рогачикской оросительной системы. Ежегодно зона гарантированных урожаев расширяется в республике на сто с лишним тысяч гектаров.

В Саратовской области построены крупные оросительные системы: Энгельсская, Духовницкая, первая очередь Приволжской и др. Подготовлена к сдаче оросительная система им. Гагарина, где применены новейшие средства автоматики и телемеханики. Полным ходом идет сооружение Балаковской, второй очереди Приволжской, крупнейшей в Поволжье — на 160 тыс. га — Комсомольской системы. В 1949 г. орошаемые площади занимали в области лишь 32 тыс. га, а в 1979 г. — 360 тыс. На этом огромном поле ежегодно выращивается 95 % овощей, 50 — картофеля, 35 — всех видов кормов. Поливной гектар дает урожай зерновых в три-четыре раза больший, чем на богаре.

В 1979 г. воды Кубани пошли по третьей очереди Большого Ставропольского канала — новостройки десятой пятилетки. Канал длиной 42,5 км мощно прорезал голубой трассой иссушенные земли степи.

Быстрая Кубань еще дальше продолжила свой путь, чтобы оросить дополнительно тысячи гектаров колхозных и совхозных земель. Первые две очереди уже окупили основные затраты на строительство прибавкой урожаев. Третья очередь уникальна в том отношении, что впервые пришлось решать ряд гидротехнических задач, вызванных необычайной сложностью рельефа трассы, составом грунтов. Строителям пришлось в одном месте взрывать породу, в другом — уплотнять. Одновременно создавалась и орошаемая сеть, рассчитанная на напор естественного тока воды и на применение новейших поливальных агрегатов. В отличие от предыдущих линий, ложе канала одето в трехслойную противофильтрационную рубашку из железобетонных плит, толя, полиэтилена. Закончив на год раньше намеченного срока третью очередь, строители приступили к прокладке нового 100-километрового отрезка Большого Ставропольского канала.

В 1980 г. вступил в строй Главный Каховский магистральный канал — основная артерия Каховской оросительной системы. Новая водная магистраль имеет важное значение для интенсификации сельскохозяйственного производства, создания в степной зоне Украины крупного района гарантированного производства зерна, овощей, мяса, молока и другой продукции сельского хозяйства.

Сооружение канала осуществлялось одновременно со строительством оросительных систем, и сейчас на его базе уже орошается 110 тыс. га засушливых земель Херсонской и Запорожской областей. Канал позволил завершить строительство первой очереди Каховской оросительной системы площадью 260 тыс. га.

Каховский канал — уникальное сооружение, воплотившее в себе лучший отечественный и зарубежный опыт гидротехнического строительства. По всей его 130-километровой трассе обеспечена надежная противофильтрационная защита, автоматически регулируется расход воды. Канал по пропускной способности является одним из самых крупных в стране. Его головная насосная станция мощностью 530 м3/с поднимает воду на высоту 24 м. Оросительные системы оснащены закрытыми трубопроводами и высокопроизводительными дождевальными машинами. На землях, орошаемых водами Каховского магистрального канала, большинство хозяйств получает с 1 га по 42–45 ц зерновых, 570–630 ц кормовых корнеплодов, 75–80 ц сена многолетних трав.

Большую роль в развитии экономики Туркменской ССР играет Каракумский канал им. В. И. Ленина, уже преодолевший тысячекилометровый рубеж. Рукотворная трасса искусственной реки коренным образом преобразила жизнь огромной территории. В 1979 г. из Каракумского канала орошалось более 450 тыс. га земель, на которых выращивается почти половина производимого в республике хлопка. На целинных землях построены современные совхозы с благоустроенными поселками, проложены сотни километров шоссейных дорог и линий электропередач. Решена одна из острейших задач по гарантированному водоснабжению обширной территории, промышленных предприятий и газопромыслов.

Приход воды по каналу в острозасушливую Прикаспийскую зону открывает большие перспективы для преобразования западных районов республики. 179-километровый «рукав» юго-западного участка Каракумского канала повернет от Казанджика к югу и даст воду району сухих субтропиков — единственному в нашей стране месту, где вызревают финики. Канал и водохранилище на 650 млн. м3 обводнят массивы пастбищ, а на Мешхед-Миссарианском плато оросят до 193 тыс. га туркменской целины. На новых землях расцветут финиковые и оливковые рощи, будут заложены плантации инжира, хурмы, грецкого ореха, миндаля, граната, крупные виноградники.

В 1980 г. приняла 1 млрд. м3 воды первая чаша руслового водохранилища. Всего в Туямуюнской излучине, по мере заполнения основного бассейна и наращивания бетонной плотины, разольется три водосборника, что позволит довести емкость хранилища до 8 км3. Туямуюнский гидроузел на Амударье в Узбекской ССР оросит 200 тыс. га новых и 300 тыс. старопахотных земель. Его гидротурбины ежегодно станут вырабатывать более 1 млрд. кВт*ч энергии. В водохранилище гидроузла будут разводить мальков для воспроизводства рыбных запасов Амударьи.

На карте крупных строек Казахстана значится ущелье Бартогай, расположенное в горах Заилийского Алатау на высоте более 1 тыс. м над уровнем моря. Здесь, в 140 км от Алма-Аты, в 1980 г. началось строительство гигантского водохранилища. Уже четко обозначились контуры каменно-земляной плотины, которая прервет стремительный бег р. Чилик. Ее воды по магистральному каналу длиной свыше 170 км достигнут пос. Чемолган. Новый гидротехнический узел оросит 270 тыс. га засушливых, но плодородных земель, улучшит водообеспеченность хозяйств Чиликского, Энбекшиказахского, Илийского, Талгарского и Каскеленского районов, где создана одна из крупнейших республике баз по производству фруктов, винограда и овощебахчевых культур.

Строительство Бартогайской оросительной системы — часть осуществляемой в республике обширной программы по повышению эффективности земледелия. За последние годы введены в эксплуатацию крупные Бадамское, Чарское, Карагалинское и другие рукотворные моря, накопившие десятки миллиардов кубометров влаги. Сооружаются и более мелкие хранилища, которые «перехватывают» вешние воды и потоки из моренных озер, образованных тающими ледниками. Все это позволило увеличить за пятилетку орошаемое поле Казахстана более чем на 300 тыс. га. Занимая всего около 5 % пашни, оно уже дало четверть всей продукции полеводства республики.

За годы десятой пятилетки в нашей стране введено в действие свыше 5 млн. га орошаемых и осушенных земель, В 1980 г. их было уже около 30 млн. га — 9 % общей площади пашни и многолетних насаждений. Мелиорация приобретает все большее значение, становится важным средством интенсификации сельскохозяйственного производства.

 

Богатство голубых гектаров

Исключительно большие водные ресурсы требуются для дальнейшего развития рыбного хозяйства. Многочисленны и разнообразны рыбохозяйственные водоемы нашей страны. Общая протяженность рыбохозяйственных рек составляет 300 тыс. км, а водное зеркало сотен тысяч прудов — приблизительно 300 тыс. га.

В 1978 г. было принято постановление ЦК КПСС и Совета Министров СССР «О мерах по дальнейшему развитию рыбоводства и увеличению вылова рыбы в пресноводных водоемах страны». В нем отмечается, что в результате осуществления ряда мер по охране и воспроизводству ценных видов рыб, регулированию промышленного рыболовства и защите водоемов от загрязнения за последние годы несколько возросли уловы рыбы в озерах, реках и водохранилищах. Наращиваются мощности специализированных товарных прудовых и озерных рыбоводных предприятий. Производство товарной рыбы на этих предприятиях увеличилось за последние 10 лет более чем в 3 раза.

Однако, указывалось в постановлении, объемы вылова рыбы в местных водоемах еще не позволяют удовлетворить потребности населения. Министерство рыбного хозяйства СССР, Министерство сельского хозяйства СССР, местные партийные и советские органы недостаточно обеспечивают использование больших резервов пресноводных водоемов — озер, рек, водохранилищ, прудов, мелиоративных систем и бассейнов-охладителей тепловых электростанций для пополнения рыбной продукцией продовольственных ресурсов страны.

В целях дальнейшего развития рыбоводства и увеличения вылова рыбы в пресноводных водоемах страны ЦК КПСС и Совет Министров СССР наметили увеличить к 1985 г. по сравнению с 1977 г. уловы рыбы в пресноводных водоемах в 2 раза и довести общий вылов до 924 тыс. т, в том числе рыбы, выращенной в прудах и озерных хозяйствах, до 504 тыс. т. Рыбопродуктивность прудов предлагалось повысить в среднем в 1,8 раза, а действующих товарных озерных предприятий — в 2 раза.

Во исполнение этих задач предусматривается осуществить техническое перевооружение всех прудовых предприятий, построить и реконструировать 150 тыс. га прудовых площадей, ввести в эксплуатацию 600 тыс. га озерных хозяйств. За счет проведения рыбоводно-мелиоративных работ планируется значительно увеличить вылов рыбы в озерах Ладожском, Чудском, Онежском, Ильмень, Севане, Чаны, Убинском, Байкале, Балхаше, Ханка.

Постановлением предусматривалось усилить научные исследования в области рыбоводства и рыболовства, в 1979–1982 гг. осуществить разработку научных основ рационального использования рыбных запасов внутренних водоемов страны, мероприятий по повышению рыбопродуктивности крупных озер и водохранилищ Северо-Запада, Сибири и Дальнего Востока, интенсификации промышленного рыбоводства.

ЦК КПСС и Совет Министров СССР, придавая большое значение механизации и автоматизации тяжелых и трудоемких работ при производстве рыбы, добычи ее в реках, озерах и водохранилищах, наметили увеличить выпуск машин и оборудования для рыбоводства, организовать серийное производство установок круглосуточного выращивания рыбы, машин и линий.

Постановлением предложено осуществить комплекс мер по защите природной среды, увеличению водности, охране вод и биологических ресурсов малых рек и других водоемов, а также по строительству плотин и зарыблению создаваемых при этом водохранилищ.

Большие работы по развитию рыбного хозяйства выполнены в РСФСР. Здесь разработаны и осуществляются комплексные мероприятия, направленные на крутой подъем продуктивности водоемов. Например, в республике в десятой пятилетке созданы озерные товарные хозяйства с площадью водного зеркала около 100 тыс. га и проведено зарыбление почти 700 тыс. га озер, не входящих в состав специализированных хозяйств, что позволяет увеличить в них вылов рыбы почти вдвое.

Многое сделано в дельте Волги. Блестящей серебряной косой вьется река по степи и, подбегая к Каспийскому морю, расплетается на великое множество рукавов, притоков и малых рек. Даже с высоты не охватишь взглядом ширь дельты. Весной и в начале лета паводок щедро заливает плоские равнины между протоками — их называют полоями. И чем обильнее залиты они водой, тем лучше для нереста рыбы, тем больше будет сазана, судака, леща и знаменитой красноперки.

За прошедшие десятилетия на берегах великой русской реки выросли большие города. Ее перегородили плотины могучих электростанций, живительную влагу требует и орошаемые земли дельты. Откуда они берут воду?

Конечно, из Волги. Вот и начала река, особенно в низовье, скудеть весенней водой, беднее стали и нерестилища рыб. Как помочь Волге превратиться вновь в обильное поле, с которого можно получать богатые урожаи ценные пород рыб, и при этом не нарушить интересы энергетики и сельского хозяйства?

Специалисты нашли выход: в 40 км севернее Астрахани, в восточной части дельты, появилось инженерное сооружение — вододелитель, который регулирует поступление воды в дельту, обеспечивает благоприятные условия для размножения рыбы на сотнях тысяч гектаров отмелиорированных естественных нерестилищ. Его комплексные испытания прошли успешно. Это — уникальное сооружение, подобного которому нет в мире. В инженерном отношении гидротехнические сооружения вододелителя более сложны, чем любая электростанция из каскада волжских ГЭС. Пропуская рыбу и суда через свои рыбоподъемники и судоходные шлюзы, он направляет при этом необходимое количество воды на нерестилища. При этом вододелитель — главное ядро целого комплекса сооружений. Построена также 80-километровая дамба, которая идет вдоль, а не поперек дельты. Таким образом, создана целая система сооружений со своими гидроузлами и судоходными шлюзами, обеспечивающими жизнедеятельность такого сложного организма, как дельта Волги.

Основная задача нового сооружения — обводнение искусственных нерестилищ в восточной части Астраханской дельты. Вододелитель при недостатке влаги пропускает по р. Бузан — притоку Волги — в восточную часть дельты: 10 тыс. м3 воды в секунду. Это позволяет создать более чем на 300 тыс. га восточной части волжской дельты половодье с управляемыми сроками, нужной продолжительностью подъема, пика и спада уровня воды — оптимальные условия нереста рыб и нагула молоди. С этой площади можно будет получать «урожаи» рыбы, равные тем, что дает вся дельта.

Ниже плотины Волжской ГЭС им. XXII съезда КПСС был построен завод по выращиванию молоди осетровых для пополнения водоемов. Первоначально он сооружался в расчете на выращивании менее 4 млн. штук молоди осетра и белорыбицы. В 1978 г. было выращено около 15 млн. Постепенно изменился и профиль предприятия. Размещение его оказалось как нельзя более удачным для развития молоди белуги, этой царь-рыбы Каспия.

Белуга — самая крупная и быстро растущая из осетровых — раньше всех идет и на нерест. Начинает откладывать икру в реке при температуре плюс 8 °C, в марте. Инкубация икры и выращивание белужат на заводе заканчивается в середине июня. Ежегодно шесть-семь миллионов белужат скатываются от заводского берега вниз по Волге.

В начале июля приходит на нерест севрюга. Рыбоводы отлавливают маточное стадо и до конца сезона успевают полностью заселить севрюжатами все пруды, а в некоторых вырастить молодь по два раза. В 1978 г. предприятие дало около 10 млн. мальков.

За последние годы на Нижней Волге возникла индустрия рыборазведения с хорошо отработанной технологией и кооперацией. Теперь, например, волгоградцы не выращивают молодь белорыбицы для Каспия. Мальки этой деликатесной рыбы — излюбленное блюдо хищников. Там, где крохотных белорыбиц выпускали в реку, заранее толклись у берега, надеясь на поживу, зубастые сородичи. Много нежных рыбок уничтожалось на пути к морю, в результате к местам постоянного обитания добирались лишь единицы. Выход был найден. Волгоградский завод, которому легче отлавливать маточные экземпляры, стал поставлять проинкубированную икру белорыбицы на Александровский завод, расположенный в дельте Волги. Но и александровцы, вырастив молодь, не выпускают ее теперь в реку, а вывозят прямо в море.

Рыборазводные заводы из года в год расширяют производство молоди и заселяют ценными породами рыб не только Каспий, но и другие естественные водоемы страны в центральных районах России.

Важнейшим объектом промысла становится бестер — искусственный гибрид белуги и стерляди, созданный советскими ихтиологами. В 1977 г. волгоградцы отправили на рыборазводные заводы Краснодарского края 7 млн. икринок бестера. Выращенная молодь выпущена в водоемы западной части Кубани.

В настоящее время Волга — крупнейший в стране район промышленного рыборазведения. В 1955 г., почти одновременно с Куйбышевской ГЭС, был введен в эксплуатацию первенец осетрового рыбоводства на Волге — Казанский завод. Затем к нему постепенно присоединились Бертюльский, Сергеевский, Житнинский, Александровский. Созданы две группы нерестово-выростных хозяйств общей площадью 10 тыс. га прудов.

За последние семь лет местные предприятия выпустили в реку 243 млн. штук молоди осетровых.

Люди буквально спасли от полного вымирания и белорыбицу. Рыба эта уникальна. Она обитает только в Волге, где поселилась с конца ледникового периода. На нерест белорыбица поднималась в р. Белую, приток Камы. Волжско-камский каскад гидроузлов затруднил нерест этой рыбы.

Помогли белорыбице сотрудники Каспийского научно-исследовательского института рыбного хозяйства. Они разработали биотехнику искусственного размножения белорыбицы и подращивания ее молоди. С тех пор в Волгу выпущено около 35 млн. штук молоди белорыбицы. В 1970 г., по подсчетам, заходило на нерест 200 особей, в 1972 — 3 тыс., в 1974 — 8 тыс., а в 1976 — более 200 тыс. экземпляров.

Люди научились помогать рыбе в период размножения установкой искусственных нерестилищ. Только в Куйбышевском водохранилище их делают от 400 до 600 тыс. Такая же работа проводится на всех водохранилищах.

Рыбоводы Украины подтвердили на практике выводы ученых о возможности выращивания в промышленных масштабах на 1 м2 водной поверхности около 100 кг рыбы за год. Лимановское хозяйство Харьковской области выпустило в водоем-охладитель электростанции 1,317 млн, штук молоди. Каждый малек весил 25 г. За сезон карп стал тяжелее в 15–20 раз. Выход товарной рыбы с 1 м2 тепловодного садка составил более 100 кг.

Много лет на Байкале шел интенсивный промысел омуля. Каждую путину в сети и неводы попадало до 80–90 тыс. ц этой рыбы. Постепенно сложилась ситуация, когда ни естественным размножением, ни искусственным разведением невозможно стало полностью восстановить омулевое стадо. Возникла необходимость крайней меры: полного запрета промышленного лова. На «отдых» Байкалу отвели семь лет.

Летом 1976 г. этот срок подошел к концу. Сначала была разведка, цель которой определить плотность омулевых стад и их распределение по Байкалу, получить данные о ходе воспроизводства омуля и установить такой режим рыболовства, который бы в дальнейшем не причинял ущерба экологическому балансу озера. Она показала, что кормовые угодья Байкала за прошедшие десять лет заметно оскудели. Это вызвано переменами в тепловом равновесии озера, связанными с общим похолоданием арктической зоны. Несомненный вред нанесло и загрязнение нерестовых рек отходами промышленных предприятий.

Ухудшение условий питания омуля явилось причиной того, что он начинает размножаться с опозданием на два-три года и откладывает в два раза меньше икринок, чем в предшествующие годы. Отсюда вывод: при массовом лове рыбы рассчитывать на быстрые темпы воспроизводства ценной породы оснований нет.

Вместе с тем разведка подтвердила расчет: временный запрет на промысел способствовал увеличению омулевых стад. Положительную роль сыграл комплекс мероприятий по искусственному разведению рыбы. Омуля в Байкале стало больше. Этот факт позволил ученым разработать предложения о возобновлении промышленного лова на Байкале. В 1979 г. поголовье омуля было полностью восстановлено.

Большую роль в восстановлении омулевого стада сыграли рыбоводные заводы. Отныне ежегодно в озеро выпускают по нескольку миллиардов искусственно выращенных мальков.

В настоящее время защищена от промышленных сточных вод р. Москва. И как следствие этого на городских водоемах зарегистрировано более 20 рыбных нерестилищ. И самое удивительное, что такие нерестилища появились и рядом с гигантским производственным комплексом «автограда»-ЗИЛа.

Долгий путь прошли малютки, прежде чем попали на берега р. Москвы. Балтийское море — опорный пункт ВНИИ прудового хозяйства на оз. Боровое — Серебряный Вор. По такому маршруту доставили в р. Москву 200 тыс. личинок — будущих судаков. Одна за другой порции «живого груза» перекочевали из полиэтиленовых мешков в речную воду. Как показали первые наблюдения ихтиологов, эксперимент проходит успешно.

Возвращается былое рыбное богатство в р. Москву, а скоро запасы эти превысят даже самые высокие показатели прошлых лет. Работники инспекции рыбоохраны наметили создать на Карамышевском водохранилище рыбоводное садковое хозяйство.

В 1979 г., в столичные водоемы удалось выпустить почти полмиллиона мальков, причем главными объектами внимания стали ценные виды, особенно почитаемые рыболовами, — жерех, лещ, судак. Получается так, что уже в обозримом будущем столичные водоемы смогут конкурировать с самыми популярными центрами любительского и спортивного рыболовства. Именно к этому стремятся работники всех служб, следящих за «здоровьем» рек и прудов. Часто можно увидеть за работой активистов общественного совета, созданного при городской инспекции рыбоохраны. И даже для самых юных энтузиастов — членов школьных отрядов «голубой патруль» — находится немало дел.

Конечно, не только рыбакам желательно оживление рек. Прежде всего оно означает, что все здоровее становится, несмотря на гигантский рост индустриальной мощи, экологическая среда города. И теперь равно приятны титулы «самой зеленой» и «первой по богатству рыбных запасов» среди крупнейших столиц мира, которыми по праву отмечена Москва.

На июльском (1978 г.) Пленуме ЦК КПСС товарищ Л. И. Брежнев подчеркивал, что для пополнения продовольственных ресурсов следует конкретнее заняться и производством рыбы за счет лучшего использования местных водоемов.

Интенсивно развивается прудовое рыбоводство в Узбекистане. 13 специализированных хозяйств добыли в 1979 г. 167 тыс. ц рыбы, к 1982 г. планируется увеличить улов еще на 100 тыс.

Быстро растет прудовое хозяйство Латвии. Только в рыбосовхозе «Нагли» площадь нагульных прудов в 1980 г. увеличилась на 350 га. Весной 1980 г. было получено 9 млн. годовиков и 2 млн. двухлеток карпа. Предполагается, что к осени совхоз получит не менее 2 тыс. т товарной рыбы, а на следующий год обеспечит молодью все пруды рыборазводящих хозяйств республики.

«Донрыбокомбинат» — высокоинтенсивное прудовое рыбное хозяйство. В среднем здесь 1 га голубой нивы дает свыше 26 ц продукции. В 1979 г. в магазины Донецкой области было поставлено 92 тыс. ц высококачественной рыбы.

Важным условием повышения продуктивности прудов явилось разведение ценных пород рыб — таких, как чешуйчатый и рамчатый карпы. Они хорошо используют естественную кормовую базу водоемов и быстро растут. Общий вес одного потомства чешуйчатого карпа достигает 50 т. Это вес кита.

На «Донрыбокомбинате» с успехом внедряют «уплотненные посадки рыб». С этой целью в пруды к карпам подсаживают растительноядных рыб — белого амура, белого и пестрого толстолобиков. Для разведения растительноядных рыб в «Донрыбокомбинате» на базе водоема-охладителя Мироновской ГРЭС построен инкубационный цех мощностью 150 млн. деловых личинок и специализированный питомник.

«Заселение» водохранилищ растительноядными рыбами дает быстрый весомый результат. Например, в рукотворные моря Украины еще осенью 1975 г. было выпущено 6,5 млн. толстолобиков-двухлеток весом 300–400 г. Ко времени отлова каждый из них весил в среднем более 3 кг. В водохранилища страны предполагается выпустить 23–25 млн. рыб-двухлеток. Это и другие мероприятия позволят увеличить вылов рыбы в таких водоемах на 31 %, доведя его в 1980 г. почти до 900 тыс. ц.

Западная Сибирь известна как кладовая нефти и газа. Но она всегда оставалась и хорошей рыбной кладовой. Длина рек только в одной Тюменской области равна 23 тыс. км, к тому же здесь около 300 тыс. озер, водное зеркало которых превышает 6,5 млн. га. Эту область по праву называют деликатесным рыбным цехом: она дает половину уловов всех ценных озерных рыб. К концу десятой пятилетки в области действовало около 18 товарных рыбных хозяйств, работали базы по сбору икры и инкубационные цехи на 10–12 млрд. икринок. В настоящее время здесь продолжаются работы по созданию прудовых и озерных питомников. В них уже выращивают 85 млн. годовиков сиговых, карпа, осетра и нельмы.

В нашей стране имеется свыше 200 тепловых, атомных электростанций и электроцентралей. Использование их сбросных вод открывает большие резервы для эффективного рыбоводства. Потенциальные возможности теплового рыбоводства оцениваются примерно в 1 млн. ц товарной рыбы.