Мир, созданный химиками. От философского камня до графена

Образцов Петр

Глава 5

Яды вредные и полезные

 

 

Этот день — 22 апреля 1915 года — навсегда вошел в историю человечества. Именно тогда люди впервые применили отравляющий газ, чтобы убить себе подобных. Это произошло на Западном фронте Первой мировой войны, где около реки Ипр со стороны немецких позиций на англо-французские войска был выпущен смертельно ядовитый зеленоватый газ хлор.

 

Химия против жизни

Химическая атака оказалась чрезвычайно «результативной» — было отравлено 15 тысяч солдат, из которых 5 тысяч умерли, а из остальных 10 тысяч половина навсегда остались инвалидами. «Черный день на Ипре» считается началом химической войны, но это справедливо лишь отчасти. Если говорить о массированном «высоконаучном» применении отравляющих веществ в военных целях, то 22 апреля 1915 — действительно историческая дата. Однако использование химических поражающих факторов с целью уничтожения живой силы и боевой техники врага началось гораздо раньше. Еще спартанцы в V веке до н. э. бросали в костры серу, дающую при сгорании сернистый ангидрид. При благоприятном направлении ветра достигался ощутимый отравляющий эффект.

В том же веке в битве при Делии (424 год до н. э.) якобы была использована огнеметная труба, выплевывавшая на противника горючую смесь серы, нефти и растительного масла. Правда, неясно, как именно достигалось выбрасывание смеси. Зато совершенно достоверно, что при осаде крепостей в Средние века на осаждающих сыпались не только стрелы и камни, но и горшки с горючими веществами типа природного битума или просто нефти.

Самым знаменитым примером такого рода является «греческий огонь», который византийцы еще в VII веке н. э. применяли против арабов в морских сражениях. Состав «греческого огня» тщательно скрывался и точно до сих пор не известен, хотя большинство компонентов описаны в летописях. Известно, что «греческий огонь» было почти невозможно погасить водой и даже песком. Отсюда следует, что в состав «огня» должно входить не только топливо, но и окислитель. Топливом были нефть и сера, византийцы могли добавлять еще и какую-нибудь смолу, а единственным известным тогда окислителем была калиевая селитра. В кое-каких источниках сообщается, что «греческий огонь» не только не боялся воды, но даже наоборот, смесь загоралась при соприкосновении с водой. Веществ, «горящих» в воде, мы знаем сейчас достаточно много, но византийские алхимики, скорее всего, использовали негашеную известь CaO, которая при гашении водой выделяет большое количество тепла.

CaO + H2O = Ca(OH)2

При этом легковоспламеняющаяся нефть или сера могли и загореться. Так что состав «греческого огня» таков: нефть, сера, селитра, негашеная известь. Выделение большого количества тепла при гашении извести использовали в более поздние века алхимики, фокусники и мошенники, уверяя, что умеют поджигать дрова — не может быть! — водой. А делается это так: в камин помещаются нетолстые сухие дровишки, пересыпанные негашеной известью. Неплохо бы добавить и чего-нибудь легковоспламеняющегося, например того же спирта. Если затем поливать водой всю эту конструкцию, то она легко загорается.

Однако неоднократные попытки воспроизвести по рецепту византийцев негаснущую в воде смесь к успеху не привели. То ли не так смешивали, то ли не так применяли. Можно предположить, что византийцы использовали смесь легких и тяжелых сортов нефти. Тяжелая нефть обеспечивает устойчивое горение, хотя и с трудом загорается, а легкая энергично горит и поджигает тяжелую фракцию. Кроме того, при горении легкой нефти выделяется так много тепла, а деревянные корабли так легко вспыхивают, что арабы, возможно, просто не успевали гасить свои палубы и мачты, поливая их водой.

В данном случае также возникает вопрос о механизме забрасывания «греческого огня» на корабль противника. Простейшим вариантом может быть катапульта, стреляющая горшками с горючей смесью.

Пишут о каких-то бронзовых сифонах, но их устройство остается неясным. Хотя простецкие насосы тогда уже были известны.

Отметим, что византийцы поливали «греческим огнем» не только арабов, но и наших далеких предков. В 941 году при помощи этого секретного оружия была одержана победа над флотом князя Игоря, который подошел к Константинополю.

Но вернемся в нашу эпоху. Та первая атака с использованием хлора была проведена простейшим способом — немцы подвезли к фронту почти 6 тысяч баллонов с хлором, дождались ветра в сторону англо-французских окопов и открыли вентили. Это, конечно, не самый удачный вариант использования химического оружия: в первый раз все удалось, но потом уже союзническая авиация тщательно следила за поставками баллонов с хлором. Англичане поступили хитрее. Были разработаны специальные газометы, представлявшие собой вариант минометов и стрелявшие на 2–3 километра минами с жидким отравляющим веществом — дифосгеном и хлорпикрином. Вскоре последовало использование снарядов с четыреххлористым оловом SnCl4 и треххлористым мышьяком ASCI3, а в 1917 году немцы применили снаряды с твердым дифенилхлорарсином, раздражающим верхние дыхательные пути. К тому времени уже изобрели противогаз (в России — великий химик Николай Дмитриевич Зелинский), но дифенилхлорарсин проникал через адсорбент противогаза. Пришлось установить дополнительный фильтр.

Новый этап развития химического оружия в Германии связан с синтезом несимметричного дихлордиэтилсульфида S(CH2CH2Cl)2 — жидкого отравляющего вещества общеядовитого и кожно-нарывного действия. По традиции немцы снова использовали его под бельгийским городом Ипр, потому это вещество французы и назвали «иприт». Англичане же называли его горчичным газом, поскольку оно пахло горчицей. Иприт легко проникал сквозь кожу, и военнослужащих пришлось одевать в защитные одежду и обувь.

Всего за годы Первой мировой войны было применено 125 тысяч тонн отравляющих веществ, при этом пострадали более миллиона человек, из которых 100 тысяч умерли.

По Версальскому договору Германии было запрещено применять и разрабатывать химическое оружие. Публично осуждали его и победители, что не помешало им начать широкомасштабные исследования в этой области. В России уже в 1921 году будущий маршал Тухачевский травил газами восставших, ограбленных коммунистами крестьян Тамбовской губернии (Антоновский мятеж). Он довольно быстро подавил восстание, убив тысячи несчастных граждан своей собственной страны.

Впрочем, белогвардейцы тоже применяли химическое оружие (снаряды с ипритом и фосгеном COCI2). Атаман Войска Донского генерал Петр Краснов использовал это оружие против красноармейцев и гражданских лиц во время обороны Царицына. Но это все-таки была война, хоть и Гражданская, с фронтом и тылом, а не истребление голодающих крестьян.

Следующим примером применения химического оружия стала война между Италией и Абиссинией (Эфиопией). Из общих потерь проигравшей войну Абиссинии — 750 тысяч человек — треть приходится на потери от отравляющих веществ, которые итальянцы сбрасывали на африканских православных христиан в авиационных бомбах. Эту войну итальянцы выиграли, в отличие от последующих войн — с Албанией и Грецией, — которые они позорно провалили. Тогда им пришлось обращаться за помощью к Гитлеру.

Сами же гитлеровцы не решились использовать химическое оружие, хотя тайно накопили громадное количество отравляющих веществ, сумев изобрести при этом такие чудесные яды, как зарин, зоман и табун. Еще в самом начале войны англичане и американцы через нейтральные страны предупредили немцев: в ответ на их возможное использование химического оружия на германские города посыплются десятки тысяч тонн таких же веществ, что в условиях большой плотности населения Германии сразу приведет к окончанию войны. Но, по некоторым сведениям, немцы все-таки тайно использовали отравляющие вещества на оккупированной территории СССР — против засевших в катакомбах Крыма и Одессы партизан и окруженных частей Красной армии.

Своеобразным химическим оружием, пожалуй, можно считать дымовые завесы, которые ставили корабли во время той войны. Дым безвреден, однако играет важную роль в военных действиях. Наверное, это химическое оружие — единственное, которое широко применялось во Второй мировой войне и будет применяться и впредь.

 

Этническое оружие

В послевоенные годы отравляющие людей вещества практически не использовали. В советской литературе приводятся свидетельства о применении химического оружия в Корейской войне 1950–1953 годов, но эти свидетельства малоубедительны. Зато позже, во время войны в Индокитае (1960-е годы), американцы интенсивно использовали химическое оружие, правда, не против людей, а против вьетнамской природы. Прежде всего, надо упомянуть дефолианты — вещества, вызывающие опадение листьев в джунглях и демаскирующие северо-вьетнамские войска (от латинского folium — лист). Сам по себе дефолиант сравнительно мало вреден для человека, однако в нем впоследствии нашли примеси сильнейшего яда диоксина.

Вызванные диоксином отравления привели к инвалидности и смерти десятков тысяч вьетнамцев, а также и сотен американских солдат, случайно попавших под обработку джунглей дефолиантом CS. В связи с этим ученые занялись созданием отравляющих веществ избирательного действия, так называемого этнического оружия. Имеется в виду такое химическое оружие, которое действует на «желтых» вьетнамцев, но не действует на «белых» американцев, поскольку биохимия представителей разных рас несколько отличается. Такое оружие даже было создано, но применить его не удалось: чисто «белых» в американской армии не обнаружилось, эта нация образовалась путем смешения людей самого различного происхождения.

Надо добавить, что страшный яд диоксин найден и в некоторых видах косметико-гигиенической продукции. Сей факт заставляет задуматься о необходимости использования антимикробного хлорсодержащего средства триклозан, в качестве примеси иногда содержащего диоксин.

Сейчас около четверти продающегося в мире туалетного мыла содержит триклозан. Однако надо ли уничтожать все микробы на руках? Специалисты считают, что совершенно не обязательно. Наша микрофлора противостоит вредному воздействию попадающих на руки и лицо «чужих» микробов, и если «своих» убить, то эти «чужие» радостно набросятся на свежие поверхности кожи. Средства с триклозаном могут быть полезны, например, гинекологам или хирургам; стоит вымыть руки мылом с триклозаном также после общения с домашними животными и при уходе за инфекционными больными. Даже если производитель гарантирует отсутствие диоксина, использовать хлорсодержащие бактерициды нужно с большой осторожностью, поскольку они способны вызывать дерматиты у лиц с чувствительной кожей.

Последним, кто использовал химическое оружие в XX веке, причем против граждан своей страны — курдов, был иракский правитель Саддам Хусейн. Его главный специалист по отравлению курдских крестьян даже получил прозвище Али-химик. А еще в токийском метро в 1995 году распылили ядовитый зарин фанатики секты «Аум Синрикё» («Учение истины»). Тогда погибли десять пассажиров, а около пяти тысяч сильно отравились.

Несмотря на явно продолжающиеся во всем мире разработки нового химического оружия, основная проблема с этим оружием — его уничтожение. На планете накоплено огромное количество отравляющих веществ, особенно в России, а оказалось, что уничтожить эти вещества едва ли не труднее, чем синтезировать. Строительство заводов по уничтожению химоружия вызывает постоянные протесты окружающего населения, проблема утилизации отходов до конца не решена, и нам еще не раз придется читать в газетах сообщения об отравлении мирных граждан случайно разлившейся ядовитой смесью или о взрыве заржавевшего снаряда с ипритом времен последней мировой войны (это произошло, например, осенью 2005 года в Саратовской области).

Один из заводов по уничтожению запасов химического оружия находится в г. Шиханы Саратовской области, и занимаются там сжиганием ядов, в том числе нервно-паралитического действия. Но и до сих пор уничтожили не всё. Кстати, крупный предприниматель Иван Кивелиди в 1995 году был отравлен редким нервно-паралитическим ядом, который, как выяснило следствие, был произведен (или просто похищен со склада) именно в Шиханах. Об эффективности этого яда говорит тот факт, что Кивелиди отравился, всего лишь подержав в руке телефонную трубку, намазанную ничтожным количеством вещества. Предприниматель даже не заметил следов яда на трубке, но это еще не все: упавшую на пол трубку подобрала секретарша и тоже скончалась. Но и на этом дело не закончилось! Отравился и эксперт, вскрывавший тело Кивелиди. Могучая все-таки эта наука — химия.

 

Благородные и простонародные яды

Сначала определение. Их много, можно воспользоваться, например, вот таким: яды — вещества, отличающиеся высокой токсичностью и способные часто в ничтожных количествах вызывать тяжелые нарушения жизнедеятельности или даже смерть живого организма. Даты изобретения ядов не существует — просто потому, что первыми используемыми человеком ядами были вещества природного происхождения и отравлялись ими еще наши далекие предки, по внешнему виду сильно отличавшиеся от химиков в белых халатах. Первые природные яды, наверное, были еще и одним из инструментов эволюции: выжили и дали потомство те из питекантропов, что не лопали все подряд.

Прошли века, и люди стали относиться к ядам с сознанием дела. Отбор и выделение природных ядов зафиксированы в исторических документах. О вытяжке сильнодействующего яда из какого-то травянистого растения написано на шумерских клинописных табличках, придворные врачи китайских императоров в начале первого тысячелетия уже точно знали, какой порошок следует подсыпать неугодному министру. В Египте жрецы Тутанхамона использовали для умерщвления рабов белену, стрихнин, опий и даже синильную кислоту, которую получали из косточек миндаля и персиков. В Древней Индии также знали белену, применялись и местные разновидности поганок.

Ядами «с успехом» пользовались и древние греки, и древние римляне. Первое массовое (и умышленное) отравление в Риме произошло еще в IV веке до н. э. В Греции приговоренный к смерти за «поклонение новым богам и развращение молодежи» древнегреческий философ Сократ (470–399 годы до н. э.) должен был выпить раствор яда растительного происхождения — экстракт болиголова или подобного растения, содержащего алкалоиды кониин или цикутотоксин. Выпив знаменитую чашу с цикутой, философ умер от паралича окончаний двигательных нервов.

Изобретением в области ядов может считаться изготовление ядовитого вещества из неядовитых компонентов. Еще в IV веке до н. э. в Персии знали минерал аурипигмент (сульфид мышьяка AS2S3), который после обжига превращается в белый оксид мышьяка AS2O3. Однажды, когда Александр Македонский был в Персии, ему рассказали об этом сильнейшем яде. Огромное количество ядов получили алхимики — производные ртути, свинца, мышьяка. В виде уже упомянутого оксида мышьяк весьма уважали отравители Средневековья. Дело в том, что это вещество не обладает ни вкусом, ни запахом, ни цветом, и поэтому подмешать его в пищу жертве ничего не стоит. Мышьяком пользовались члены знаменитого семейства Борджиа (XV век). Существует версия, что и Наполеон был отравлен мышьяком. В доказательство приводят результаты спектрального анализа волос императора, умершего в ссылке на острове Святой Елены. При этом некоторые историки полагают, что Наполеона отравил кто-то из приближенных, понемногу, но постоянно добавляя мышьяк в пищу пленника. Другие же ученые считают, что отравление было случайным. Действительно, спальня Наполеона была отделана обоями, покрашенными зеленой краской на основе мышьяка — так называемая шеелева зеленка, арсенид меди CU3AS. Это соединение предложил использовать в качестве краски знаменитый шведский химик Карл Шееле, не догадываясь о возможных последствиях. В сыром помещении завелись грибки, которые постепенно разлагали краску, и мышьяк выделялся в атмосферу помещения. Впрочем, ни одна из версий не считается доказанной, поскольку, например, нет строгих доказательств, что проанализированные на спектрометре волосы принадлежали именно Наполеону Бонапарту. Но зато точно известно, что император был в некотором смысле отомщен: Карл Шееле умер, отравившись им же открытой синильной кислотой.

Соединения мышьяка чрезвычайно ядовиты. Описан случай, когда от них практически вымерла целая венгерская семья, построившая себе дом на склоне горы, где за 80 лет до этого виноградари регулярно промывали свои опрыскиватели виноградной лозы. Опрыскивание содержащими мышьяк препаратами применялось против болезни винограда — филлоксеры — и было давно прекращено из-за частых случаев профессионального «рака виноградарей». Члены того несчастного семейства еще и пили воду из колодца, вырытого на этом участке склона.

Благодаря ядовитым свойствам мышьяка, точнее, оксида AS2O3, его активно используют в стоматологии — для удаления зубных нервов. Непосредственный контакт оксида мышьяка с тканями приводит к их гибели, но протекает практически безболезненно. На обнаженную пульпу зуба наносят кусочек пасты из оксида величиной с булавочную головку, и через сутки-двое нерв погибает.

 

Ртутная история

В 1950-е годы в небольшом поселке около бухты Минамата в Японии произошла страшная трагедия — жители этого селения отравились ртутным соединением метилртутью. В бухту попадали без очистки отходы от расположенного поблизости завода по производству полимеров с использованием в качестве катализатора соединений ртути. Попавшая в воду ртуть накапливалась в организме рыб, которые настолько ослабевали, что их можно было ловить простым сачком. Чем радостно и занялись жители поселка, только вот потом стали умирать — от ртутного отравления, причем симптомы его были настолько специфичны, что появился даже термин «болезнь Минамата». Ртуть поражает головной мозг, нарушается координация движений, возникает слепота, больные дергаются и напоминают «живых кукол». Дети больных родителей рождаются уродами.

Ртуть обладает огромной силой. Она может даже изменить историю. Например, слабое сопротивление инков и соседних племен Южной Америки ничтожному количеству конкистадоров некоторые историки всерьез объясняют ртутным отравлением. А еще ртуть помогает обрести самый ценный в мире металл — золото. Намывающие золотые крупинки из речного песка старатели не подвергаются при этом особым опасностям, если не считать разбойников и налоговой инспекции. Однако с помощью лотка добывается лишь очень незначительное количество золота, а большая его часть извлекается из руды химическими методами. И есть какая-то злая ирония в том, что для отделения драгоценного «желтого дьявола» от пустой породы приходится использовать крайне ядовитую ртуть или цианиды.

До недавних пор считалось, что ртутный метод добычи золота был придуман в Европе еще в начале первого тысячелетия, но получил распространение только в XII веке, хотя в Турции находили золото, полученное по этой технологии, за несколько тысячелетий до новой эры. Огромное количество золота инков, вывезенного конкистадорами из Америки в XVI веке, полагали старательским, а ртутную технологию добычи золота якобы завезли в Америку именно испанцы. (В Испании существует огромное месторождение ртути Альмаден — здесь и сейчас добывается три четверти всей ртути в мире.)

Однако ученых всегда удивляло, что старательского индейского золота было слишком много. Чтобы решить проблему, южноамериканские геологи проанализировали 7 образцов золотой фольги из поселения Уакала-Вентана культуры Сикан в Перу (VIII–XIV века), а также из Колумбии и Эквадора. Методом индуктивно-связанной плазмы они установили, что во всех образцах содержится значительное количество ртути, то есть индейцы с успехом применяли ртутный метод добычи золота задолго до появления конкистадоров.

Этот метод состоит в следующем. Жидкой ртутью обрабатывают золотосодержащую руду, при этом образуется сплав ртути и золота — так называемая амальгама. При промывке более тяжелая амальгама опускается на дно и отделяется от породы. Затем ее нагревают, испаряют ртуть и получают золото. Пары ртути чрезвычайно ядовиты, поэтому смертность на средневековых фабриках по амальгамации была очень велика, и сейчас этот метод применяют редко. Впрочем, очень вредна и остаточная ртуть в золотых изделиях индейцев, поэтому инкская аристократия и правители империи были вялыми, как рыба в Минамата, и почти не сопротивлялись оккупантам.

 

Ртуть и сифилис

Будучи ядовитой для человека, ртуть и ее соединения могут причинить изрядные неприятности и разного рода микробам, а многих из них просто убить. Поэтому соединения единственного жидкого при комнатной температуре металла издавна применялись в качестве лекарств, правда, далеко не всегда успешно. Самым известным примером является излечение сифилиса.

Вообще венерические болезни известны давно. Античные врачи описали часть из них (прежде всего — гонорею), обратив внимание на то, что эти болезни возникают, как правило, после сексуальных связей, и назвали их в честь богини любви Венеры. Сейчас больше всего говорят про СПИД — из-за трудностей лечения и высокой смертности, но еще совсем недавно самым «важным» являлся сифилис, или люэс (от латинского lues — зараза). Этой болезни посвящено множество анекдотов, а фамилия клинициста Вассермана, придумавшего тест на сифилис, стала нарицательной: «…у Иванова все качества отрицательные, только реакция Вассермана положительная». Положительная — значит, болен сифилисом. Сифилис попал даже в поэзию; к примеру, о нем написал в своем «Мексиканском дивертисменте» великий поэт Иосиф Бродский:

…О том, что слитая в миску Богу Солнца людская кровь укрепляет в последнем мышцу; что вечерняя жертва восьми молодых и сильных обеспечивает восход надежнее, чем будильник. Все-таки лучше сифилис, лучше жерла единорогов Кортеса, чем эта жертва.

Кстати, тут Бродский допустил неточность: пушки единороги — чисто русское изобретение, и использовались они только в старой русской армии, у конкистадора Кортеса их быть не могло. В Россию сифилис проник с Запада и длительное время назывался «французской (или галльской, или польской) болезнью». А во Францию и другие страны Европы его занесли наемные солдаты французского короля Карла VIII, который был вынужден заключить мирный договор с Неаполитанским королевством после вспышки массового заболевания в войсках. Солдаты, набранные из Франции, Германии, Италии, Швейцарии, Англии, Польши и Испании, разъехались по домам и распространили «французскую болезнь» по всей Европе. В 1499 году были зафиксированы первые случаи заболевания сифилисом в России. На Восток болезнь также пришла из Европы, и арабы называли ее «болезнью христиан».

Правильнее было бы называть сифилис не «французской», а «испанской болезнью», потому что, согласно наиболее правдоподобной теории, испанские моряки заразились сифилисом от индейцев Америки во время экспедиций Христофора Колумба в конце XV века и во время завоевания Эрнандо Кортесом империи ацтеков в начале XVI века. Считается, что сами индейцы получили эту болезнь из-за своего некрасивого увлечения скотоложством, от больных спирохетозом лам. Ламы живут не в Северной Америке, куда приплыл Колумб, а в Южной, так что надо полагать, что индейцы занимались любовью с какими-то другими домашними животными.

Впрочем, существует и другая точка зрения. Описания некоторых болезней учеными древности — Гиппократом, Галеном, Плутархом и Авиценной — подозрительно похожи на симптомы протекания сифилиса. Язвы, афты, кондиломы и прочая гадость, о которых они писали, сходны с сифилитическими поражениями. Есть и другие данные — якобы за 1000 лет до н. э. в Индии лечили какую-то болезнь препаратами ртути — не сифилис ли? А в Китае за 2600 лет до н. э. были описаны сифилитический шанкр и сифилис новорожденных. И наконец, археологи время от времени находят захоронения людей доколумбового периода с характерными сифилитическими поражениями костей (гуммозные поражения, размягчение костной ткани).

И тем не менее болезнь приобрела поистине эпидемический характер только в конце XV века. В начале следующего века европейская волна «галльской болезни» накрыла Африку, Индию, Иран и Китай, так что все доисторические сведения о сифилисе в этих странах особого значения уже не имеют. Само название «сифилис» этому венерическому заболеванию дал итальянский врач и философ из Вероны Джироламо Фракасторо. В 1530 году появилась его поэма «Сифилус, или Галльская болезнь». В этой поэме богиня любви Венера наградила пастуха Сифилуса тяжелой болезнью за насмешки над богом Гелиосом, который иссушает поля. Впрочем, пастух Сипил или Сифил встречается и у Овидия в «Метаморфозах», и болен он тем же самым.

Больных сифилисом в обществе презирали, их наказывали плетьми и изгоняли из городов. Лечить сифилис не умели вплоть до начала XX века, когда в 1905 году немецкие ученые выделили и описали возбудитель сифилиса — бледную трепонему из отряда спирохет. В 1903 году наш Илья Ильич Мечников в лаборатории Пастера привил сифилис двум шимпанзе, а вскоре удалось впервые заразить кролика, и с тех пор кролики являются основными животными для изучения сифилиса и средств борьбы с этой болезнью. В 1908 году Мечников получил вторую среди российских ученых, после Ивана Петровича Павлова, Нобелевскую премию за работы по иммунитету.

На возбудитель губительно действуют дезинфицирующие вещества, например карболка (см. главу 17) и сулема (дихлорид ртути HgCl2) в разведении 1 к 1000. Лечили сифилис различными мазями, содержащими соединения ртути — оксид ртути HgO, салицид ртути, каломель (однохлорид ртути Hg2Cl2). Все эти вещества были найдены эмпирическим путем, а первым сознательно разработанным препаратом для лечения сифилиса стал сальварсан. Это соединение, производное арсенобензола, вообще можно считать веществом, с которого началась химиотерапия.

Одного укола разведенного сальварсана в вену хватало для уничтожения всех трепонем. Однако применять сальварсан было очень непросто, поскольку этот порошок не растворялся в воде. Кроме того, он был довольно дорог, и позволить себе лечиться сальварсаном мог только состоятельный пациент. Причем в курс лечения входила и последующая поездка «на воды» для выведения из организма остаточного мышьяка. Среди таких состоятельных пациентов был Владимир Ульянов-Ленин, которого в 20-х годах прошлого века активно лечили, в том числе и сальварсаном. Это дало основания для распространения слухов о венерическом заболевании Ульянова. Справедливости ради отметим, что никаких доказательств этой теории нет.

В 1929 году Александр Флеминг открыл пенициллин (см. главу 15), который в конце Второй мировой войны начали широко применять в медицинской практике, в частности и для лечения сифилиса.

В настоящее время «галльскую болезнь» успешно лечат антибиотиками, в том числе классическим пенициллином, а для профилактики все еще применяется сулема.

Однако сифилис — далеко не единственная болезнь, которую лечили производными ртути. Этот металл издавна привлекал особое внимание алхимиков и фармацевтов, причем средневековые фармацевты рекомендовали применять разные ртутные мази и настои чуть ли не от всех известных тогда болезней, включая рак. Самыми знаменитыми сифилитиками были Казанова, Франц Шуберт, Шарль Бодлер, Винсент Ван Гог, его брат Тео и знаменитый гангстер Аль Капоне. На симптомы сифилиса подозрительно похожи описания болезни Моцарта, Бетховена и Шопена, Гейне, Тулуз-Лотрека, Мопассана, Эдгара По и Фридриха Ницше. Исследователи считают, что именно люэсом были вызваны их истощение, глубокое изменение личности и ранняя смерть.

 

Свинцовая империя

Некоторые историки, как мы уже говорили, считают, что падение империи инков было вызвано отравлением ртутью. Отравляющим воздействием другого металла часто объясняют и бесславный конец Римской империи. В дома древнеримской знати вода подавалась по водопроводным трубам из нержавеющего металла свинца. Повышенное содержание свинца в питьевой воде приводило к хроническому сатурнизму — свинцовому отравлению (от латинского saturnus — свинец). Прежде всего поражается мозг — древний римлянин тупел, терял моральные ориентиры, впадал в разврат и вскоре окончательно деградировал. Руководить обороной империи от натиска варваров вскоре стало некому, да и незачем — величие империи перестало быть главным в жизни древнеримских императоров и их присных.

Впрочем, существует и климатическая теория, объясняющая падение Рима резким и долголетним изменением климата, глобальным потеплением в V веке новой эры и многолетней засухой. Но о глобальном потеплении — в главе 16, а здесь стоит упомянуть еще об одном виде свинцового отравления, которое до последнего времени грозило изрядному количеству наших граждан — да и не наших тоже. Речь идет о незаконном использовании антидетонационной присадки к бензину, которой для сокрытия ядовитых веществ присвоили псевдоним «этил». На самом деле эта присадка представляет собой весьма летучее, жидкое при нормальной температуре органическое соединение свинца тетраэтилсвинец (C2H5)4Pb, или ТЭС. Это вещество прекрасно проявило себя в деле снижения детонационных свойств бензина: при простом добавлении буквально пробирки ТЭС в бак с низкооктановым бензином его октановое число повышалось сразу на несколько единиц, так что бензин, предназначавшийся для грубых советских грузовиков, уже годился и для интеллигентных «Жигулей». Частным образом ТЭС легко приобретали на одном из украинских заводов. Имея канистру этой волшебной жидкости, можно было лет десять превращать дешевый бензин в дорогой.

Однако ТЭС чрезвычайно ядовит, потому что свинец в этом веществе находится в отлично усвояемой органической форме, а не в виде, скажем, куска металла. Проблема ядовитости ТЭС усугубляется его летучестью, так что надышаться ядовитым свинцовым паром при заливке бензина с ТЭС в бак ничего не стоит. Еще хуже обстояло дело, когда шоферы были вынуждены отсасывать ядовитый бензин из баков, чтобы на трассе Якутск — Магадан поделиться с незадачливым товарищем, не полностью заправившимся топливом перед путешествием. Раньше на наших заправках даже висел грозный плакат «Этил — яд!», но как не помочь коллеге, который может и замерзнуть. Отравление ТЭС может быть и хроническим, и скоротечным, прежде всего поражается нервная система, происходит расстройство психики, в конце концов коллапс и exitus letalis. Именно из-за использования ТЭС крайне не рекомендуется собирать грибы-ягоды вблизи автомобильных магистралей, весь свинец переходит в выхлоп и осаждается на обочине.

 

Нестойкий яд и стойкий Распутин

Подлинного расцвета искусство приготовления ядов достигло тогда, когда ими всерьез заинтересовались военные. Мы уже говорили о химическом оружии, но кое-что можно добавить. Наибольшее количество человек, умерших в результате химического отравления за всю историю человечества, погибли из-за другого изобретения замечательных германских химиков — «Циклона Б». Собственно говоря, они изобрели не синильную кислоту HCN, а предложили новый способ ее применения. Сама кислота в чистом виде была получена, как уже отмечалось, шведским химиком Карлом Шееле в 1782 году. Он и умер, попробовав это вещество на вкус. Неудобства с хранением, перевозкой и использованием газообразных веществ очевидны, и изобретатели «Циклона Б» нашли подходящий адсорбент для этой газообразной кислоты — пористые гипсовые гранулы. Эти гранулы с поглощенной кислотой упаковывались в жестяные банки и отправлялись по месту использования — в «газвагены» фашистских концлагерей, специальные помещения для умерщвления заключенных. При нагревании банки выделялась газообразная кислота, которая способствовала «окончательному решению еврейского вопроса» в нацистской Германии. Разумеется, не только еврейского — еще и цыганского, и славянского, и антифашистского вопросов. Об этом мы еще поговорим в главе 12.

Но есть в мире справедливость. Негодяи Гиммлер, Геринг и сам Гитлер покончили жизнь самоубийством, отравившись солями этой же синильной кислоты — цианидами. Чуть-чуть раньше цианидами пытались отравить авантюриста и фаворита императорской семьи Григория Распутина (1864–1916). Отравители использовали посыпанные порошком цианистого калия кремовые пирожные. Несмотря на то что сластена Распутин съел несколько штук этих пирожных, яд на него практически не подействовал, и заговорщикам пришлось застрелить «Гришку». Потом его, как выяснилось впоследствии, все еще живого бросили под лед реки Мойки. Ошибка отравителей состояла в незнании химии. Дело в том, что цианиды вступают в реакцию с сахаром, содержащимся в креме пирожных, а сахар переводит яд в безвредную форму. Поэтому с давних пор при опасности отравления цианидами на каком-нибудь аристократическом обеде возможным жертвам рекомендовалось держать за щекой кусочек сахара. Если сказать более точно, то под действием желудочного сока сахар распадается на фруктозу и глюкозу, а глюкоза взаимодействует с синильной кислотой и цианидами с образованием нетоксичного циангидрина глюкозы:

Впрочем, в истории убийства Распутина есть и другая теория: цианистый калий был насыпан задолго до прихода «Гришки» и успел гидролизоваться во влажном петербургском воздухе.

KCN + H2O = KOH + HCN

А летучая синильная кислота улетела. Эта кислота содержится в семенах миндаля, абрикоса, персика, вишни и некоторых других растений, но, чтобы отравиться (чего делать, вообще-то говоря, не надо), нужно съесть около сотни очищенных ядрышек абрикоса. Это было известно еще древнегреческим жрецам, которые наловчились извлекать кислоту из косточек и листьев персика. Тогда же возникло выражение «персиковая казнь».

 

Великий ДДТ

Самым знаменитым ядовитым веществом, применение которого было запрещено через несколько десятилетий после открытия, был ДДТ — дихлордифе-нилтрихлорметилметан, или, как раньше говорили, просто дуст. Синтезированный еще в позапрошлом веке, ДДТ оказался прекрасным инсектицидом — он исправно уничтожал мух, малярийных и обычных комаров, вшей и саранчу. В 1948 году химик Пауль Мюллер за открытие инсектицидного свойства ДДТ получил Нобелевскую премию. Использование ДДТ привело к поразительным результатам. Например, в итальянском Неаполе впервые была остановлена зимняя эпидемия тифа, разносчиками которого являются вши. В Индии в 40-е годы прошлого века от малярии умирало до 3 миллионов человек в год, после применения ДДТ — ни одного. В этой же стране уничтожение москитов с помощью ДДТ избавило индийцев от лейшманиоза, крайне опасного заболевания. По некоторым оценкам, использование ДДТ спасло жизнь около 500 миллионов человек. Химики всегда знали, что на теплокровных, включая человека, оно не действует — по крайней мере в тех концентрациях, которые используются при борьбе с насекомыми. Так что помещение ДДТ в эту главу, казалось бы, не совсем уместно.

Однако в начале 60-х годов прошлого века появились первые свидетельства о накоплении ДДТ в организмах различных живых существ. После распыления над «малярийным» водоемом это вещество, убивая личинки разносчиков болезни, поглощается и микроорганизмами, например фитопланктоном. Фитопланктоном питаются всякие рачки, а рачками — рыбы. Понятно, что рыбу ест в основном человек. На каждой стадии перехода ДДТ из одного организма в другой его концентрация возрастает обычно в 10 раз, соответственно в филе трески находится уже в 10 тысяч раз больше ДДТ, чем было в личинках. Это уже очень много, и биологи быстро установили, что и снижение плодовитости некоторых птиц, и прямое отравление различных видов животных и людей связано с ДДТ.

Поэтому вскоре использование ДДТ было запрещено. Сначала в Новой Зеландии, потом в СССР и во многих других странах. Экологи торжествовали победу, запрещение ДДТ стало первой победой зеленых над проклятой «химией» и зловредными учеными, стремящимися загрязнить наши чистейшие реки и озера, зеленые поля и голубое небо. И тут вдруг — кто бы мог подумать! — в Узбекистане и Малайзии объявилась малярия, в Сибири — клещевой энцефалит, а в Индии — старый знакомый лейшманиоз. И не просто появились — вспышки этих заболеваний, особенно малярии, в первые же годы после запрета ДДТ унесли сотни тысяч жизней. А к сегодняшнему времени количество жертв борцов за чистоту природы составило несколько миллионов человек. Гораздо больше, чем погибло бы из-за поедания рыбки с этим инсектицидом.

Экологи выяснили, что после обработки ДДТ колоний чаек в Калифорнии произошла инверсия пола: из яиц появлялось в 4 раза больше самочек, чем самцов. Конечно, это ужасно. У меня нет окончательного ответа, надо ли продолжать использовать ДДТ для предотвращения гибели миллионов людей или же строго-настрого запретить это делать, только бы бедные самочки не страдали от недостатка самцов. В качестве первого приближения можно посоветовать опрыскивание эмульсиями ДДТ опасных в эпидемиологическом отношении водоемов, а колонии чаек оставить в покое.

 

Ядовитая помойка

Человек очень часто сам создает себе проблемы. Яркий пример тому — мусорные свалки, красиво именуемые полигонами.

Захоронение твердых бытовых отходов на полигонах предполагало создание довольно сложных конструкций, исключающих попадание этих отходов в грунтовые воды, вымывание их дождем и возгорание. Однако в большинстве случаев наши полигоны — обыкновенные свалки, слегка присыпаннные землей. Отходы склонны к самопроизвольному возгоранию, частенько их намеренно поджигают, и при этом в воздух могут выделяться чрезвычайно ядовитые, смертельно опасные химические соединения. Их источник — полимеры, которые мы выбрасываем в мусорные ведра: полиэтиленовые пакеты, различные поливинилхлоридные пленки и одноразовая посуда, пластиковые бутылки, обувь на синтетической подошве и так далее. При горении полимеров образуются хлороводород HCl, пресловутые диоксины и даже синильная кислота HCN.

Всё это вещества первого, высшего класса опасности, раньше они использовались как компоненты химического оружия.

По сравнению с дымом от горящих свалок гарь от горящих лесов и торфяников — детские игрушки. При интенсивном горении свалки в воздух поднимаются к тому же и мелкодисперсные соединения тяжелых металлов, в изобилии присутствующие в отходах и также чрезвычайно опасные. Надо иметь в виду, что при первых же признаках появления дыма от горящих свалок — а в России множество людей живут рядом с огромными помойками — надо сразу же закрыть все окна и по возможности не покидать помещение.

Конечно, можно обвинять химиков в создании таких вредных полимерных материалов, хотя горожане — главные производители мусора давно могли бы научиться выбрасывать пластик в отдельные мусорные баки. Этот пластик можно потом переработать или при необходимости сжечь, но не на полигоне, а на специальном мусоросжигательном заводе с высокой температурой горения, при которой все ядовитые соединения догорают до конца, то есть до безвредных углекислого газа и воды. Но опыт показывает, что заставить нашего человека вести себя по-европейски невозможно. И даже не только нашего. Миллионы тонн выброшенных пластиковых пакетов и бутылок десятилетиями гниют и на заграничных свалках, которые занимают сотни тысяч гектаров плодородной земли, а в Тихом океане даже образовался огромный, размером с Бельгию, плавучий остров из таких отходов.

Пищевые и многие другие бытовые отходы на свалках благополучно поедает микроб, но полиэтилен, полипропилен, полистирол, полиэтилентерефталат и прочие пластики он переварить не в состоянии. Однако те же химики могут решить проблему уничтожения полимерных бытовых отходов, синтезируя съедобные для микробов материалы. И определенные достижения есть — например, в Японии выпускают столовую посуду из модифицированного крахмала. Такие тарелки и чашки — в сущности, из обычной картошки — охотно поедают микробы, а при желании их могут есть и люди (ну если уж очень голодны). Этакие вангоговские «Едоки картофеля» на современный лад.

Однако из такого полимера невозможно изготовить бутылки для питьевой воды, пива и прочих жидкостей, а именно они составляют большую часть неразлагающегося мусора. Сейчас их формуют из полиэтилентерефталата (ПЭТФ), а «картофельные» и прочие съедобные полимеры не в состоянии удовлетворить предъявляемым к ПЭТФ-бутылкам требованиям — выдерживать давление газа, быть легкими и совершенно инертными к содержимому. Но в конце концов американские химики сумели получить съедобный для микробов полимер из отходов растениеводства, например стеблей кукурузы или соломы. Для этого им потребовалось разработать органические катализаторы, ведущие реакцию синтеза в нужном направлении. Эти катализаторы безвредны и в принципе их можно использовать даже при изготовлении полимерных капсул для лекарств, растворяющихся в желудочном соке.

Мало того, выброшенные бутылки из пластмассы можно использовать как сырье для новых бутылок, то есть проводить рециклизацию. Но для этого, разумеется, опять требуется сортировка мусора, то есть ядовитый дым горящих свалок развеется не скоро.

Действие многих сильнейших ядов основано на ингибировании (подавлении) активности ферментов человеческого организма. Так происходит потому, что функционирование организма, то есть самоё жизнь, определяется и регулируется ферментами. О них в следующей главе.