Мир, созданный химиками. От философского камня до графена

Образцов Петр

Глава 7

Химия жизни

 

 

Это не про знаменитый журнал «Химия и Жизнь», а именно про то, как Химия создала Жизнь, поэтому прежде всего необходимо ответить на «убийственное» возражение против атеистической химической теории происхождения жизни без участия Демиурга (творца). Звучит оно так: самопроизвольное образование наследственной молекулы ДНК из атомов углерода, азота, водорода и кислорода имеет вероятность 10 в минус 100-й (или 1000-й, это не важно) степени. Времени такая самосборка потребовала бы намного больше, чем время существования Вселенной. Близкую вероятность, к слову, имеет акт создания слепой обезьяной, случайно тюкающей по клавиатуре, текста «Войны и мира». Это возражение можно назвать статистической невозможностью самозарождения жизни на основе химических реакций.

 

Невероятная вероятность

Однако вероятностный подход к тайне происхождения жизни не слишком надежен. Например, известно описание спора между юным прозелитом от статистики и профессором математики. Первый с горящими глазами уверял второго, что вероятность увидеть случайно идущих друг за другом 50 только лишь мужчин без появления женщин и детей — оба при этом смотрели в окно на улицу — есть ничтожная, исчезающе малая величина. Профессор лишь улыбался, а вскоре по улице прошел полк солдат.

Так и в нашем случае. Мы не знаем пока механизма самосборки ДНК, однако очень может быть, что вероятность этого процесса повышают какие-то неясные пока факторы. Например, некоторые геологи считают, что совместная адсорбция необходимых атомов на кусочках пористых минералов ускоряет реакцию соединения этих атомов в миллиарды раз.

Кроме того, давно известен эксперимент, проведенный в 1953 году аспирантом Чикагского университета Стенли Миллером. Он заполнил колбу парами аммиака NH3, воды, метана CH4 и водорода и пропускал через эту смесь, похожую по составу на атмосферу древней Земли, электрические разряды. И получил-таки набор аминокислот, кирпичиков для построения белков. Тех самых, энгельсовских. Совсем недавно этот опыт был повторен самой Природой в Читинской области: молния ударила в стог и произвела на свет смолистую субстанцию, содержащую в том числе аминокислоты. В принципе они могли бы соединиться в белки и стать основой жизни. Но есть и другие теории, сейчас последует их перечисление.

Прежде всего «и увидел Он, что это хорошо». Жизнь создала не какая-то там химия, а Бог, в разных религиях называющийся по-разному. Слабость этой теории — в отсутствии доказательств и ответа на вопрос «а кто (что) создал Бога?». Ссылки на принципиальную непознаваемость Верховного Существа и «не ваше дело обсуждать Господа!» как-то не удовлетворяют.

Интеллектуальным вариантом этого креационизма (от латинского creationis — творение) является утверждение, что Большой взрыв, приведший к созданию Вселенной, и есть акт творения, совершенный все тем же Творцом, то есть Богом. Однако ответа на приведенный вопрос и эта теория не дает. Кстати, роскошная библейская стилистика «и увидел Он… и сказал Он…» является всего лишь ошибкой переводчиков с древнееврейского. Никакого «и» там нет, это всего лишь пропуск между частями предложения, нечто вроде современного тире. Согласитесь, «Он увидел — это хорошо» звучит не очень по-божественному, хотя и более правильно. Остроумной пародией на креационизм является рассказ Станислава Лема о встрече профессора Донда с Творцом. Выясняется, что жизнь на Земле возникла из-за того, что у Творца подгорела яичница.

Существует и совсем странная теория, утверждающая, что жизнь была занесена на Землю с других планет, из Космоса. Удивительно, но естественный вопрос «а там она откуда взялась?» авторов теории совсем не смущает и, кажется, даже не очень интересует. Хотя совершенно ясно, что ответов на этот вопрос может быть только два — один креационистский (Господь и так далее), а другой атеистический: сама собой возникла в результате каких-то химических реакций.

Теория космического происхождения жизни появилась еще в конце XIX века, а через сто лет была развита и активно пропагандировалась американским физиком Карлом Саганом, который даже придумал проект поиска внеземных цивилизаций. Саган полагал, что жизнь не только зародилась вне Земли, но и достигла там стадии техногенной цивилизации, — а значит, «зеленый человечки» должны уметь принимать и отправлять радиосигналы. Однако «человечки» так и не отозвались, чем подтвердили «парадокс Ферми»: если во Вселенной бесконечное множество обитаемых миров, то почему же мы их не видим? Но неужели подтверждением существования внеземных разумных существ служит тот грустный факт, что они не желают идти с нами, дикарями с атомной бомбой, на контакт? Совсем недавно к такому мнению, которое автор этой книги высказал уже давным-давно, присоединился один заграничный ученый. Он считает, что внеземные цивилизации, скорее всего, прячутся от нас.

Другим способом преодоления статистической невозможности самозарождения жизни является теория коацерватов советского академика Александра Ивановича Опарина. Он предположил, что первоначально белки и другие сложные органические молекулы могли возникнуть в водной среде, в первичном океане планеты. И это действительно возможно, хотя бы под действием все тех же молний. Далее эти сложные молекулы могли объединяться в коацерваты, такие крупные органические образования, как клецки, плавающие в первичном бульоне-океане. Внутри капель-коацерватов, согласно этой теории, могли начаться реакции, приводящие к образованию еще более сложных веществ, причем часть из них покидала коацерват. То есть налицо основные признаки жизни — рост, развитие, размножение, обмен веществ. А поскольку все происходит в ограниченном объеме, то вероятности реакций резко возрастают и статистическая невозможность преодолена. Слабостью теории является ее полная умозрительность и отсутствие хоть каких-либо доказательств. А также личность самого Опарина, который активно поддерживал негодяя Лысенко и псевдоученую даму Лепешинскую, разработавшую уже совсем дурацкую теорию происхождения жизни. Хотя основное утверждение теории Опарина — все мы вышли из воды — большинство неверующих ученых принимают.

 

Не наше дело

В начале XVII века забавную теорию придумал алхимик Ван Гельмот. Причем подтвердил ее экспериментально! Ученый считал, что жизнь образуется сама по себе при подходящих условиях. Например, мыши появляются в корзине для грязного белья, в которую добавили немного пшена, а затем поместили ее в темное место. Эксперимент оказался удачным, кошка Ван Гельмота отлично поужинала. Самое забавное, что теория продержалась до конца XIX века, пока великий Пастер не доказал, что она не работает даже на уровне микроорганизмов: в пастеризованной (кипяченой) воде никакие микробы сами собой не появляются.

Но чтобы не ломать голову над проклятым вопросом о происхождении жизни, теоретики «стационарного состояния» нагло заявили, что жизнь, как и вообще Вселенная, была всегда — и обсуждать здесь нечего, потому что уяснить себе понятие вечности человек не в состоянии. При всей несерьезности этой теории у нее есть одно достоинство — действительно, о проблеме можно больше не думать и заняться наконец каким-нибудь полезным делом — хотя бы на майские праздники выбросить уже наконец новогоднюю елку.

 

Химия и мумия

Если с вопросом химического происхождения жизни ясно еще не все, хотя и очень многое, то проблема сохранения неживых тел с помощью химических веществ, по-видимому, уже окончательно решена. Еще древнеегипетские жрецы занимались бальзамированием покойных фараонов, разного рода придворных чиновников и даже простых граждан, не говоря уже о бальзамировании священных животных кошек и не столь священных собак. Причем количество мумий людей и животных, найденных в современном Египте, настолько велико, что на первой в Африке железной дороге Каир — Александрия паровозы первое время топили этими мумиями! Их было откопано или извлечено из пещер несколько миллионов. Но в данном случае речь идет не о мумифицировании, а о сохранении тела умершего в более или менее неизменном состоянии. Наилучших результатов в разработке бальзамирующих составов достигли советские, а позже российские ученые.

Наиболее наглядным примером является сохранение тела Владимира Ульянова-Ленина, которое не имеет никакого отношения ни к древнеегипетскому бальзамированию, ни к естественному мумифицированию тел в некоторых безводных регионах Земли, например в пустынях Южной Америки. В Древнем Египте тела фараонов защищали от воздействия внешней среды и разложения с помощью битума, кедрового масла и растительных смол. Использовались также соли натрия со щелочной реакцией, например природная сода Na2CO3. Знаменитый ледяной человек Этци мумифицировался в альпийском льду, а тело бурятского ламы Итигелова, по всей видимости, было минерализовано поваренной солью. Для бальзамирования же тела вождя был применен оригинальный метод с использованием глицерина C3H5(OH)3, формалина и уксуснокислого калия CH3COONa (ацетата калия).

Формалин, водный раствор газообразного вещества формальдегида CH2O с небольшой примесью метилового спирта CH3OH, хорошо известен как сильное дезинфицирующее средство, а также как фиксатор белков, предотвращающий самопроизвольный распад тканей. Формалин используют для дубления кожи, в нем хранят анатомические препараты. В Кунсткамере Санкт-Петербурга в емкостях с формалином еще с позапрошлого века хранятся, например, различные уроды.

Применение глицерина для бальзамирования было предложено в конце XIX века Н.Э Лясковским. Давно используется в составе бальзамирующих растворов и ацетат калия, который, во-первых, как и глицерин, способен удерживать воду, а во-вторых, также является дезинфицирующим и консервирующим средством. Именно эти вещества и были применены для бальзамирования тела В. И. Ленина. Однако не сразу. Для первого, временного, бальзамирования пригласили известного московского патологоанатома Алексея Абрикосова. Бальзамирование проводилось смесью формалина, хлорида цинка ZnCl2, этилового спирта, глицерина и воды. Вскоре было принято решение о долговременном бальзамировании, которое поручили заместителю директора Института химии Борису Збарскому и заведующему кафедрой анатомии Харьковского медицинского университета Владимиру Воробьеву, который задолго до этих событий придумал бальзамирование именно смесью формальдегида, глицерина и ацетата калия.

При бальзамировании тело В. И. Ленина вначале обложили смоченной в формалине ватой, а затем поместили в ванну с 3 %-м раствором формальдегида (сильно разбавленный формалин). Потом на теле были сделаны разрезы для глубокой пропитки мышечных массивов формалином, а затем и бальзамирующими растворами. Проводились и другие работы: Воробьев упорно и по многу часов отбеливал темные участки кожи на лице, кистях рук и на туловище, применяя иногда даже 30 %-ю перекись водорода (см. главу 13). Через некоторое время в ванну начали добавлять спирт, потом глицерин и ацетат калия. К концу июня тело находилось в жидкости, где было 240 литров глицерина, 110 килограммов ацетата калия и 150 литров воды. Результат был продемонстрирован делегатам конгресса Коминтерна 18 июня, и оказался просто блестящим. 1 августа 1924 года Мавзолей Ленина был открыт для посещения.

В 1939 году была организована Лаборатория при Мавзолее В. И. Ленина, руководителем которой назначили академика Бориса Збарского. В послевоенные годы сотрудники лаборатории провели бальзамирование Георгия Димитрова (Болгария), маршала Хорлогийна Чойбалсана (Монголия), Иосифа Сталина (СССР), Климента Готвальда (Чехословакия), Хо Ши Мина (Вьетнам), Агостиньо Нето (Ангола), Ким Ир Сена (КНДР).

С 1992 года Лаборатория при Мавзолее В. И. Ленина входит в состав Всесоюзного института лекарственных и ароматических растений (ВИЛАР) и называется Научно-исследовательский и учебно-методический центр биомедицинских технологий. Специалисты центра считают, что тело может находиться в отличном состоянии в течение еще хоть ста лет, а его захоронение в земле будет означать прекращение длительного и уникального биохимического эксперимента, длящегося уже почти 90 лет.

Но в чем, собственно, состоит научная ценность этого, прямо скажем, безнравственного эксперимента с публичным демонстрированием результата? Из самого описания метода бальзамирования следует, что ничего нового в нем нет. Метод маринования (консервирования) органических продуктов в уксусной кислоте и ее солях известен уже несколько столетий. Разве что опытным путем были подобраны наиболее подходящие концентрации давно известных веществ, и вот это уже представляет определенный интерес для химии неживого, хотя и гораздо меньший, чем для химии живого. А ведь существует и химия этих двух состояний одновременно!

 

Живые и сыпучие

Самым сильным доказательством химической природы жизни является существование вирусов. Эти загадочные существа-вещества являются той самой субстанцией, которая является одновременно и живой и неживой материей. Вирусы представляют собой молекулы ДНК в «сумке» из белка — это конструкции из нормальных, обычных «мертвых» молекул. Вирус можно выделить из питательного бульона, высушить, промыть, пересыпать в банку из темного стекла и поставить на полку. А через пару лет, когда понадобится, пол-ложки вирусного порошка снова перемешать с куриным бульоном и наблюдать буйный рост этой ставшей вдруг совершенно живой субстанции из ДНК и белка.

Скоро, совсем скоро биохимики и молекулярные генетики создадут искусственную жизнь. Белки делать умеем (инсулин синтезирован уже давно), молекулу ДНК уже расшифровали и, значит, смогут воспроизвести. Дальше как-то так склеят белки и ДНК и получат искусственный вирус, затем искусственную клетку, немного позже искусственных сколопендр, бегемотов и Адама с Евой. Если к тому времени физики научатся перемещаться во времени, то эту парочку можно будет переместить (как в фильме «Терминатор») в какой-нибудь XXI век до н. э. Тогда на планете Земля и возникнет жизнь. И наконец будет решена проблема ее происхождения.

 

Нет кислорода, и ладно

Однако жизнь может быть обнаружена и на других планетах, в том числе на планетах нашей Солнечной системы, казалось бы, совершенно непригодных для существования букашек-таракашек из-за жутких температур, неблагоприятного давления и недружественной бескислородной атмосферы. Доказательством этого служит, например, обнаружение и на самой Земле организмов, которым не требуется кислород.

Ученым и раньше были известны существа, способные обходиться без кислорода, этой основы жизни, но все они относились к одноклеточным, бактериям. Вместо кислорода для получения энергии в результате окисления они использовали серу, хлор, азот и даже водород, образующийся из воды под действием радиации вблизи залежей урановых руд. Но найденные совсем недавно, в 2010 году, членами итало-голландской экспедиции в Средиземном море лорициферы являются многоклеточными животными, которые пришлось выделить в отдельный тип — один из высших разрядов в классификации живого. Тип хордовые, например, содержит позвоночных животных — кошку, золотую рыбку, райскую птицу, автора и читателей этой книги, а лорициферы страшно далеки от народа. Но не только они, за последние несколько десятков лет на земле, но большей частью в море, обнаружены совершенно неожиданные существа.

Обычным многоклеточным животным кислород необходим для выработки энергии. Этот процесс происходит в специальных клеточных структурах — митохондриях. Но у лорицифер митохондрий в клетках нет, а поскольку без энергии никуда, им пришлось завести у себя другие структуры, которые называются гидрогеносомы (от латинского hydrogenium — водород). Согласно названию, цикл реакций в гидрогеносомах, протекающих с выделением нужной для лорицифер энергии, заканчивается образованием именно водорода.

Обнаружили эти странные существа лишь сейчас, и это неудивительно — ведь нашли их в глубоководной подводной впадине Л’Аталанте в 300 километрах к западу от острова Крит. Добраться до дна этой впадины не так-то легко, хотя она и находится в Средиземном море, вроде бы вдоль и поперек изученном.

Помимо практически полного отсутствия кислорода на дне впадины еще и значительно повышена соленость морской воды. Именно поэтому обнаружение множества лорицифер стало сенсацией — ну разве можно было представить, что и там кто-то живет! Однако природа побеспокоилась о заселении незанятой экологической ниши: если кислорода нет, приходится создавать бескислородных животинок. А если в таких жутких условиях кто-то все же ухитряется сносно существовать, можно надеяться, что жизнь будет обнаружена и на других планетах с экстремальными условиями существования.

В последние годы главными кандидатами на обнаружение углеродной формы жизни стали спутники Юпитера и Сатурна — соответственно Европа и Энцелад. Эти малые планеты покрыты толстым слоем водяного льда, под которым находится соленый океан жидкой воды. Температура и другие параметры океана на Европе ближе всего к подледным водоемам антарктических шельфовых ледников, то есть огромных полей льда, лежащих на прибрежном шельфе материка. Как-то в одном из таких ледников гляциологи пробурили глубокую скважину и опустили в нее видеокамеру. К своему немалому удивлению, они заметили, что практически в полной темноте, при близкой к нулю температуре здесь живут напоминающие креветок амфиподы (ракообразные) и крупные медузы. Медуза цапнула камеру одним из щупалец, но, будучи непрочным и студенистым, щупальце оторвалось и было поднято на поверхность, его размер соответствует медузе 30-сантиметровой длины.

А на Титане, спутнике планеты Сатурн, своеобразные формы бескислородной жизни уже почти обнаружены. Во всяком случае, наблюдения космического зонда «Кассини» позволяют выдвинуть такую гипотезу. Этот зонд, названный так в честь итальянского астронома XVII века, в 2004 году стал первым искусственным спутником Сатурна. Согласно программе исследований, приборы «Кассини» больше всего времени тратят на изучение именно естественного спутника Титана, который оказался удивительным образованием прежде всего потому, что на нем возможна жизнь. Разумеется, «зеленых человечков» там нет, но зато вполне могут существовать крайне необычные, не интересующиеся кислородом микроорганизмы. Для дыхания они используют водород, в земных условиях в естественном виде практически не встречающийся из-за своей взрывчатости. Тот самый водород, который выделяют земные лорициферы.

Проанализировав последние данные спектрометров «Кассини», ученые нашли новые подтверждения гипотезе о странных микроорганизмах. Если эти крошки используют водород, то на поверхности спутника его должно быть намного меньше, чем в верхних слоях. Так и оказалось: водорода на поверхности практически нет, и то же самое относится к ацетилену C2H2 — газу, которым эти микроорганизмы должны питаться. На земле ацетилен используют для высокотемпературной сварки, именно этот газ образуется при обработке карбида кальция водой (см. главу 1). Кроме того, если «нормальные» микроорганизмы в качестве продукта жизнедеятельности выделяют углекислый газ, то микроорганизмы Титана — метан CH4, которого в атмосфере спутника очень много.

Разумеется, обнаружение метана и отсутствие ацетилена и водорода вблизи поверхности не является строгим доказательством существования микробной жизни на Титане. Таким доказательством могло бы стать прямое наблюдение микроорганизмов, а еще лучше — забор проб с поверхности спутника и анализ их содержимого. «Кассини» такого сделать не может, хотя в свое время с этого аппарата был произведен сброс зонда «Гюйгенс», который передал на «Кассини» несколько сотен фотографий и данные различных приборов.

К сожалению, микроорганизмов «Гюйгенс» не обнаружил. Но это еще ничего не значит — в свое время биохимики уговорили генерального конструктора Сергея Королева установить на одном из лунных спускаемых аппаратов химическую микролабораторию для обнаружения внеземной жизни. Практичный Королев потребовал сначала выбросить прибор несколько поближе, в казахстанскую степь около космодрома Байконур. Жизни на Земле лаборатория не нашла, и прибор Королев на Луну не отправил. Генеральный конструктор вообще-то был очень жестким и строгим руководителем, но говорят, что в этом случае он не устроил разнос горе-биохимикам, а лишь долго смеялся.

 

Сероводородная планета

Казалось бы, трудно себе представить еще более неприемлемые условия для жизни, чем те, в которых живут люциферы. Но природа постаралась — так называемые вестиментиферы, этакие червеобразные существа длиной два-три метра с боковыми выростами, спокойно обитают на глубинах до четырех километров вблизи трещин океанской коры, из которых просачиваются горячие газы. Эти газы нагревают воду до 300 °C, причем в воде огромна концентрация сероводорода H2S, обычно считающегося ядом для всего живого. Но вестиментиферы поглощают сероводород и делятся им с бактериями, которые живут прямо в теле вестиментифер, где они этот сероводород окисляют и синтезируют питательные вещества для своего хозяина. Такой вот симбиоз, причем абсолютно хозяину необходимый — у вестиментифер даже нет кишечника, они во всем полагаются на бактерии.

Способ питания вестиментифер живо напомнил мне старую-старую пародию на повесть фантаста Ивана Ефремова «Сердце Змеи». В этой повести наши земные астролетчики встречают жителей планеты, которые дышат не кислородом, а фтором. Физический контакт людей с этими ребятами невозможен, суперокислитель фтор реагирует даже с кислородом (о фторе см. главу 15). А пародист заставил землян встретиться с жителями, ха-ха, сероводородной планеты. Как известно, сероводород H2S является мерзопакостным продуктом работы кишечника, и все это довольно смешно, хотя повесть Ивана Ефремова вполне читабельна.

Еще более оригинальным обменом веществ обладает бактерия, обнаруженная учеными американского космического агентства НАСА, в котором, оказывается, есть специальный отдел астробиологии. Пока никаких живых организмов вне Земли не найдено, сотрудники отдела пытаются найти что-то необычное на нашей планете. И вот удача: в калифорнийском соленом озере Моно им удалось обнаружить бактерию, в которой фосфор в ДНК заменен мышьяком.

Это сенсация, до сей поры нам были известны живые организмы, состоящие только из углерода, кислорода, водорода, азота, серы и фосфора, не считая микроэлементов. Но в озере Моно фосфора оказалось мало, зато много мышьяка. Этот элемент находится в одной с фосфором V группе таблицы Менделеева и похож на фосфор по своим химическим свойствам, так что такая замена вполне возможна. Другое дело, что соединения мышьяка часто являются сильными ядами, однако и здесь удивляться нечему. Углерод тоже образует смертельно опасные соединения, например угарный газ, однако является основным элементом жизни, так что «мышьяковистый» организм вполне может существовать и на других планетах с ядовитыми морями.

Но чем бы ни питались эти странные морские и озерные гады, какой бы способ получения энергии они себе ни придумали, их тела все равно состоят из белков, веществ, по определению, не живых, но без которых жизнь невозможна.

 

Белк

и

и б

е

лки

Есть такая кишечная бактерия эшерихия коли (E.coli), которую очень любят биохимики и генетики — с ней удобно проводить самые различные опыты, ведущие прямиком к замечательным открытиям. Так вот, установлено, что в клетке этой бактерии содержится около 3 тысяч различных белков. В организме же человека насчитывается около 5 миллионов белков. Эти пять миллионов выполняют самые разнообразные функции — каталитическую (ферменты), питательную (например, белки яйцеклетки), транспортную (перенос кислорода гемоглобином), защитную (антитела), сократительную (мышцы), структурную (коллаген соединительной ткани, кератин волос, кожи, ногтей) и гормональную (гормон гипофиза). Поразительно, что все белки состоят хоть и из большого количества, но простых структурных блоков — аминокислот, связанных друг с другом в так называемые полипептидные цепи. Из этих полипептидных цепей и сделаны белки.

Первая аминокислота была выделена из желатина еще в 1820 году, но полный аминокислотный состав белков был расшифрован только через сто с лишним лет — это довольно сложная работа. Оказалось, что белок с помощью различных ферментов, например пищеварительных, можно расщепить на аминокислоты. Именно это и происходит, когда правоверный мусульманин съедает пушкинский «ростбиф окровавленный» из говядины, а неверный — свиную рульку. Все аминокислоты представляют собой производные карбоновых кислот, у которых один атом водорода замещен на аминогруппу — NH2.

По правилам химической номенклатуры, атомы углерода маркируются греческими буквами альфа, бета, гамма и так далее, причем первым альфа-атомом является ближайший к карбоновой группе — COOH атом углерода. Разумеется, аминогруппа может заместить атом водорода у любого атома углерода, хоть альфа, хоть гамма, хоть омега. Однако выяснилось, что в состав природных белков входят только альфа-аминокислоты. Если угодно, это одна из загадок природы.

В составе белков открыто 20 различных альфа-аминокислот, все они различаются по составу радикала R. Эти 20 аминокислот делятся пополам на заменимые, которые могут синтезироваться в организме человека (и животных), и незаменимые, которые необходимо получать из пищи. В принципе совершенно не важно, из какой пищи — растительной или животной — можно и нужно получать незаменимые аминокислоты, однако давно известно, что в съедобных растениях слишком мало трех аминокислот, которые называются лизин, метионин и триптофан. Вегетарианцы могут не расстраиваться — недостаток этих аминокислот легко восполнить, например, из молока, творога и яиц. Особо строгие вегетарианцы, их называют веганами, которые яйца и молочные продукты не едят, могут добрать лизина, метионина и триптофана из орехов. Впрочем, в горохе и прочих бобах этих аминокислот несколько больше, чем в другой растительной пище.

У аминокислот имеется еще одно очень важное свойство. В главе 3 мы обсуждали понятие изомерии, то есть существование различных по строению, но одинаковых по составу веществ. Для аминокислот также известна изомерия, в данном случае это оптическая или стереохимическая изомерия. Например, для простейшей альфа-аминокислоты аланина (альфа-аминопропионовая кислота, если следовать терминологии) известны два изомера:

Первый из этих изомеров, различающихся расположением аминогруппы и водорода, называется L-аланином, а второй D-аланином. Оптическим этот вид изомерии назван потому, что они проявляют себя по-разному при облучении светом с особыми свойствами. Не вдаваясь в излишние подробности, скажем, что один изомер называется левым (L — от латинского laevus, левый), а второй правым (D — от латинского dextra, правый). И вот еще одна загадка природы: практически все встречающиеся в природе альфа-аминокислоты имеют L-конфигурацию и лишь на таких аминокислотах синтезируются белки в клетках живых организмов. Не очень понятно, почему именно такие «живые» аминокислоты выбрала природа. Может быть, это произошло случайно. Первые комочки живой протоплазмы опять-таки совершенно случайно содержали немного больше левовращающих аминокислот, именно к ним приспособились первые ферменты, а потом уже природе не хотелось ничего изменять. Гипотезу о сознательном выборе L-аминокислот неким Творцом обсуждать не будем, для этого есть Ветхий Завет. Любопытно только, что L- и D-аминокислоты отличаются не только по конфигурации, но и по вкусу! Наши «живые» L-аминокислоты горькие, а D-аминокислоты почему-то сладкие. Так что у нас вовсе не «сладкая жизнь», скорее нужно было назвать ее горькой. Впрочем, для большинства населения Земли, за исключением разве что «золотого миллиарда», это так и есть.

При образовании белков из набора аминокислот, а занимаются этим в клетке специальные ферменты (которые, как мы знаем, и сами-то белки), аминокислоты сцепляются друг с другом за счет реакции между карбоксилом — COOH и аминогруппой — NH2. Из двух аминокислот образуется дипептид, а когда присоединяется еще одна аминокислота — трипептид и так далее до полипептидов. Получающаяся длинная цепочка представляет собой первичную структуру белка, то есть описывающая, какие и в каком порядке в этом белке соединены аминокислоты.

Далее наступает очередь вторичной структуры. Великий Лайнус Полинг, предложение которого поедать в день по 100 граммов витамина С обсуждается в главе 7, установил, что полипептидная цепь может закручиваться в спираль и задерживаться в таком положении, когда между участками спирали возникают так называемые водородные связи — связи не чисто химические, слабые, но вполне достаточные для удержания цепи в спиралевидном состоянии. И это еще не все — полипептидная спиралевидная цепь не собирается существовать в виде этакой длинной пружинки — она начинает складываться, закручиваться и укладываться в некую пространственную фигуру, строго специфичную для каждого из миллионов природных белков. «Держат форму» все те же водородные связи, электростатическое притяжение, а также и некоторые химические связи, возникающие между различными участками пружинки. Получается третичная структура белка. А когда образуется комплекс из двух или более свернутых в пружинки и пространственные фигуры полипептидных цепей, то говорят о четвертичной структуре белка. Образовавшуюся молекулу называют мультимером.

Слово «белок» в русском языке означает не только свернутую некоторым образом полипептидную цепь, но и самый обычный белок яйца, чаще всего куриного, такую мутноватую жидкую субстанцию, заполняющую пространство между скорлупой и желтком яйца. В желтке, несмотря на название, тоже до 20 % белка. Внешние и физические свойства белка куриных яиц чаще всего переносят на свойства белков вообще, хотя в этом классе веществ встречаются весьма оригинальные персонажи. Например, удивительный белок фиброин (от латинского fibra — нить), из которого в основном состоят выделения шелкоотделительных желез гусениц шелкопрядов при завивке коконов. Шелковая нить может достигать километра, а шелковая ткань обладает высокой прочностью и очень красива. Знаменитый блеск шелковой ткани обусловлен строением фиброиновой нити — в сечении она трехгранна.

Но рекордсменом по прочности является белковая нить других живых существ, а именно пауков. Паучья паутина состоит из белков спидроинов (от английского spider — паук) и разрывается лишь при растяжении в пять раз, сочетая в себе свойства эластичности и высокой прочности. При одинаковой толщине трос из паутины прочнее стального в сотни раз, вот только где взять столько паутины? Решением проблемы может стать генная инженерия — канадские генетики уже вывели генно-модифицированных коз, в молоке которых содержатся спидроины. Однако из этих белков нужно еще научиться прясть нити, а это пока не удается, хотя кое-что из молока модифицированных козочек уже получают (см. главу 15).

Совершенно другими свойствами обладает белок кератин, из которого в основном состоят ногти и волосы людей, когти птиц и носорожьи рога. Это твердое вещество, нисколько не похожее на жидкость внутри куриного яйца. Но, пожалуй, самым необычным может считаться белок, входящий в название Института белка Российской академии наук. На сайте Академии наук — да, да, Академии наук! — появился Squirrel Institute, то есть «Институт белки». Премиленький зверек и не знал, что над его изучением работает целый академический институт во главе с уважаемым ученым. Переводчика следовало бы свернуть в пружинку.

Помимо белков и важнейших из них — ферментов, которые синтезируются в нашем организме, существуют не менее важные вещества, которые организм человека производить не умеет. Они нам крайне необходимы. Это витамины.