Вопрос о дальнейшей судьбе Вселенной – несомненно, важная часть полной единой теории. Теория Фридмана – просто одна из её составляющих; единая теория обязана идти дальше. Из теории Фридмана следует только, что Вселенная, в зависимости от средней плотности вещества, будет либо расширяться вечно, либо прекратит расширение и начнёт сжиматься. Теория не говорит, как именно это будет происходить. Конечно, у нас есть кое-какие догадки, которые кажутся справедливыми, но, по правде говоря, это лишь предположения.

Итак, начнём с рассмотрения альтернатив, предлагаемых теорией Фридмана. Чтобы их легче было понять, прибегнем к аналогии. Предположим, что вверх подбрасывают шарик; его движение будет постепенно замедляться, затем он остановится и начнёт падать вниз. Высота его подъёма зависит от начальной скорости, а также от силы тяжести. Если бросить его с достаточно большой скоростью, то он, в принципе, может никогда не упасть на землю. Эта скорость называется скоростью убегания; о ней уже шла речь раньше.

Примерно так же обстоит дело и со Вселенной. Около 18 миллиардов лет назад произошёл Большой взрыв, в результате которого возникла Вселенная. Осколки разлетелись в разные стороны с неимоверной скоростью и по-прежнему летят в виде галактик. В этом случае нет какого-то объекта типа Земли, которая притягивала к себе шарик, но есть гравитационное взаимодействие всех галактик. Это притяжение замедляет расширение Вселенной, в результате чего замедляется и разбегание галактик. Наиболее удалённые по расстоянию, а значит, и по времени, замедляются больше всего.

Естественно, возникает вопрос: хватит ли этого замедления, чтобы разбегание галактик остановилось полностью? Иными словами, достаточно ли взаимного гравитационного притяжения для преодоления расширения? Легко видеть, что это зависит от напряжённости гравитационного поля, которая, в свою очередь, зависит от средней плотности вещества во Вселенной (количества вещества в единице объёма). Иначе этот вопрос можно сформулировать так: достаточно ли велика средняя плотность вещества во Вселенной, чтобы остановить её расширение? Пока дать определённый ответ невозможно, но, как мы видели раньше, похоже, что средняя плотность близка к так называемой критической.

Открыта или замкнута Вселенная зависит от того, насколько её плотность отличается от критической, равной примерно 0,5·10-30 г/см3. Если плотность больше этого значения, то Вселенная замкнута и в конце концов сожмётся в точку; если же меньше, то она открыта и будет расширяться вечно. Может показаться, что решить вопрос о замкнутости или открытости Вселенной совсем нетрудно, для этого нужно лишь измерить среднюю плотность и сравнить её с критической. К сожалению, здесь возникают трудности, и весьма серьёзные. Можно довольно точно оценить плотность видимого вещества, но она очень далека от критической – для того чтобы Вселенная была замкнутой, видимого вещества должно быть раз в 100 больше.

Известно, однако, что есть довольно много «невидимой материи» – небольших слабых звёзд, пыли, обломков камней, чёрных дыр и излучения. Обеспечивает ли она замкнутость Вселенной? На первый взгляд кажется, что нет, и такой вывод подтверждали исследования, проведённые в 70-х годах Готтом, Гунном, Шраммом и Тинсли. Однако после 1980 года был сделан ряд важных открытий, которые заставили пересмотреть отношение к этой проблеме.

Скрытая масса

Дополнительная масса, требующаяся для того, чтобы Вселенная была замкнутой, называется скрытой массой. Это не очень удачное название, поскольку вполне может оказаться, что её вообще нет. Однако имеются серьёзные свидетельства того, что она существует, но в странном, непривычном виде. Давно известно, что в галактиках есть много невидимого вещества, часть его относится к отдельным галактикам, а часть – к их скоплениям.

Рассмотрим эти случаи по очереди и начнём с отдельных галактик. Определить полную массу галактики довольно легко. Для этого вовсе не нужно рассчитывать средние массы звёзд, а затем суммировать их по всему пространству; это слишком трудно, а то и невозможно. Применяется другой метод, и чтобы понять его, рассмотрим вначале Солнечную систему. Известно, что планеты движутся вокруг Солнца по орбитам, параметры которых подчиняются трём законам, открытым Иоганном Кеплером несколько веков назад. Один из этих законов позволяет определить скорость планеты, если известна масса всего вещества, заключённого в пределы её орбиты (в случае Солнечной системы почти вся масса сосредоточена в Солнце). Закон, естественно, работает и в другую сторону – зная скорость планеты, можно определить полную массу объектов, находящихся внутри её орбиты.

Такой подход полностью применим и к галактикам. Наше Солнце, например, находится на расстоянии примерно 3/5 от центра Галактики. Измерив его орбитальную скорость, можно узнать массу всех звёзд, расположенных между нами и центром Галактики. Расчёт, конечно, не позволит вычислить полную массу Галактики, для этого потребуется какая-нибудь звезда на её периферии.

На самом деле для этого даже не нужна звезда, годится любой объект. Астрономы несколько лет назад измерили скорость внешних облаков водорода в соседних с нами спиралях галактик и обнаружили, что они движутся гораздо быстрее, чем должны были бы согласно принятой оценке массы галактики. Изучив эту проблему глубже, они пришли к выводу, что на окраинах этих галактик должно быть значительное количество вещества в форме гало. К удивлению учёных выяснилось, что масса таких гало превышает массу звёзд.

Из чего же они состоят? Ясно, что не из звёзд, иначе они были бы видны. Возможно, это очень слабые звёзды или обломки, пыль, газ. Если гало есть у всех галактик, то, конечно, масса их значительно возрастёт, а следовательно, увеличится и масса всей Вселенной. Но окажется ли этого достаточно, чтобы «замкнуть» Вселенную? Вычисления показали, что нет, но история на этом не кончается.

Большинство галактик во Вселенной образуют скопления; иногда в скопления входят только две-три галактики, но обычно гораздо больше. В наше скопление, например, их входит около 30. Научившись определять массу отдельных галактик, астрономы обратились к их скоплениям. Просуммировав массы отдельных галактик, они обнаружили, что их недостаточно для того, чтобы силы притяжения удерживали скопление вместе как единое целое. Тем не менее они явно не собирались распадаться – ничто не указывало на разлёт отдельных галактик. Некоторым скоплениям не хватало сотен собственных масс, чтобы удержать их вместе силами гравитационного притяжения: Даже добавление дополнительной массы, заключённой в гало, не спасало положения. Учитывая это, легко понять, почему учёные говорят о скрытой массе.

Если она действительно существует, то в какой форме? Очевидно, в такой, которую нелегко обнаружить. Это может быть, например, газообразный водород – либо нейтральный атомарный, либо ионизованный (т.е. получивший заряд в результате потери электронов). Однако при ближайшем рассмотрении оказывается, что нейтральный водород на эту роль не подходит. Он излучает на волне 21 см и соответствующие наблюдения показали, что как между ближними, так и между дальними галактиками водорода совсем немного.

Одно время считалось, что подойдёт ионизованный водород, поскольку фоновое рентгеновское излучение во Вселенной связывалось именно с ним. Однако позже выяснилось, что это излучение скорее всего вызывается квазарами. Тогда пришла очередь нейтронных звёзд, белых карликов и чёрных дыр, но и они в конце концов отпали. Чёрные дыры должны были бы быть сверхмассивными (иметь массу порядка галактической) или же встречаться очень часто, что маловероятно. Исследования показали, что хотя в центре многих, если не всех, галактик могут быть массивные чёрные дыры, нет свидетельств существования таких изолированных дыр в скоплениях, иначе была бы вероятность заметить их и в нашей Галактике.

В качестве возможных кандидатов рассматривались и фотоны, ведь энергия есть одна из форм существования материи. Однако и в этом случае расчёты показали, что их вклад явно недостаточен.

Создавалось впечатление, что во Вселенной просто недостаточно материи и потому она незамкнута. Тем не менее некоторые учёные были убеждены, что в конце концов недостающая масса найдётся. И вот наступила кульминация… В предыдущей главе говорилось, что весь дейтерий во Вселенной образовался через несколько минут после Большого взрыва. Хотя основная его часть быстро превратилась в гелий, некоторое количество всё же осталось, и если его измерить, то можно ответить на вопрос, замкнута ли Вселенная. Чтобы понять почему, посмотрим, что происходило в то время. Известно, что при соударении ядер дейтерия образуется гелий. Если плотность Вселенной была высока, то соударений было много и образовалось значительное количество гелия; если же плотность была низка, то осталось много дейтерия. Поскольку количество дейтерия во Вселенной со временем изменилось незначительно, измерение, его должно показать, замкнута ли Вселенная. Такие измерения, конечно же, были проделаны, и вот их результат – Вселенная не замкнута. В 70-е годы такой результат казался вполне убедительным, а когда аналогичные оценки были проделаны для гелия и совпали с данными по дейтерию, вопрос, казалось, был решён окончательно – Вселенная открыта.

Однако через несколько лет учёные нашли изъян в этой аргументации. Из неё следовало лишь то, что Вселенная не может оказаться замкнутой частицами, называемыми барионами. К барионам относятся и протоны и нейтроны, из которых состоит большинство известных нам объектов – звёзды, космическая пыль, водород и даже образовавшиеся в результате коллапса звёзд чёрные дыры. Может возникнуть вопрос: а есть ли что-нибудь кроме барионов? Да, это лептоны и так называемые экзотические частицы. Лептоны чересчур легки, чтобы заметно увеличить массу, а вот экзотические частицы в последнее время привлекают к себе большое внимание. Первыми в поле зрения попали нейтрино, и в течение какого-то времени астрономы были убеждены, что эта частица поможет «замкнуть» Вселенную. Нейтрино почти так же распространены, как фотоны, примерно миллиард на каждый атом вещества; долгое время считалось, что их масса покоя равна нулю. Конечно, массой они всё-таки обладают, ведь любая форма энергии имеет массу, но её явно не хватит, чтобы остановить расширение Вселенной.

Но вот в конце 70-х годов было высказано предположение, что нейтрино имеют массу покоя. Как бы мала она ни была, из теорий следовало, что в целом она может внести существенный вклад в массу Вселенной. Эксперимент по проверке этого предположения был выполнен группой учёных, в которую входили Ф. Рейнес, X. Собел и Э. Пасиерб. Они не измеряли массу непосредственно, а выбрали другой путь. Ранее было обнаружено, что фактически существует три типа нейтрино – один, связанный с электроном, другой – с более тяжёлой, хотя и подобной электрону частицей, называемый мюоном, а третий – с ещё более тяжёлой частицей, «тау», обнаруженной в 1977 году. Согласно теории, все три разновидности нейтрино могут превращаться друг в друга. Иными словами, они могут менять тип, но только в том случае, если их масса больше нуля. Рейнес, Собел и Пасиерб провели соответствующий эксперимент и пришли к выводу, что им удалось зарегистрировать переход от одного типа нейтрино к другому.

Однако другие учёные, попытавшиеся повторить эксперимент, не смогли подтвердить этот результат. Стало уже казаться, что Рейнес с коллегами допустили ошибку, но тут пришло известие о том, что группе советских учёных удалось измерить массу нейтрино непосредственно. Но и здесь не всё так просто. Многие пробовали проверить полученный в СССР результат, но пока безуспешно. Вопрос о массе покоя нейтрино до сих пор остаётся открытым.

Конечно, даже если у нейтрино не окажется массы покоя, есть другие экзотические частицы, и некоторые из них заслуживают пристального внимания. Так, предполагается, что гравитационное поле переносится гипотетическими частицами – гравитонами. Пока они не обнаружены, но некоторые учёные убеждены в их существовании. Из теории супергравитации следует, что гравитону должно сопутствовать гравитино; более того, из неё вытекает, что партнёры должны быть у всех частиц: у фотона – фотино, а у W – вино. Все такие частицы-партнёры имеют общее название «ино». Некоторые учёные полагают, что благодаря своей массе они могут внести существенный вклад в среднюю плотность вещества во Вселенной. Но если даже эти частицы не подойдут для уготованной им роли (или вообще не будут найдены), то есть ещё один кандидат, который пока, правда, существует только на бумаге. Его называют аксионом, и он сильно отличается от «ино», в частности он гораздо легче. Пока все эти частицы – лишь плод воображения учёных, но всё же они привлекают серьёзное внимание.

Другая частица, о которой в последнее время много разговоров, – магнитный монополь. Это очень массивная частица с одним магнитным полюсом. Каждый, кто знает, что такое магнит, скажет, что это невозможно. Известно, что при разрезании полосового магнита на две части получаются два магнита, каждый из которых имеет северный и южный полюсы. Разрезая такой магнит, мы будем получать тот же результат, сколько бы раз мы это не повторяли. Получить таким образом изолированный северный или южный магнитный полюс нельзя. Но ещё в 30-е годы Дирак предсказал, что такая частица должна существовать. Многие экспериментаторы бросились проверять его теорию, но поиски монополей ни к чему не привели, и постепенно интерес к ним угас. Но вот в 1974 году сотрудник Государственного университета Утрехта в Нидерландах Дж. Хофт и независимо от него советский учёный А. Поляков показали, что существование монополей следует из некоторых единых теорий поля. Это возродило интерес к монополям, и многие возобновили их поиск. Среди них был сотрудник Станфордского университета Блас Кабрера, который, проведя детальные расчёты, пришёл к выводу, что можно регистрировать примерно по одному монополю в год. Он построил установку и стал ждать. Наконец его терпение было вознаграждено: 14 февраля 1982 года установка зарегистрировала первый монополь. Сообщение взбудоражило научный мир, хотя и было встречено с изрядным скептицизмом, а так как второй монополь обнаружить не удалось, скептицизма не убавлялось. Более того, другие попытки обнаружить монополи результатов не дали.

Заслуживает упоминания ещё один, последний кандидат. Раньше мы забраковали чёрные дыры, потому что они образовывались при коллапсе барионного вещества. Однако к ним относятся только чёрные дыры, появившиеся при коллапсе звёзд, а принято считать, что должны существовать и другие чёрные дыры, так называемые реликтовые. Неплохими кандидатами считаются все чёрные дыры, которые образовались раньше дейтерия. Правда, они должны быть относительно невелики, но всё-таки на их массу можно рассчитывать. Ограничения накладывает также и испарение Хокинга; он показал, что все чёрные дыры, масса которых в момент образования была меньше 1015 г, к настоящему времени уже должны были испариться. Отсюда следует, что внимания заслуживают только те из них, масса которых составляет от 1015 до 1032 г. Поскольку примерно таков диапазон масс планет, их называют планетарными чёрными дырами.

Если учесть вклад всех перечисленных выше видов масс, то может показаться, что суммарной массы вполне достаточно для обеспечения замкнутости Вселенной. Однако сотрудник Чикагского университета Дэвид Шрамм с этим не согласен; из расчётов его группы следует, что средняя плотность вещества очень близка к пограничной – той, которая лежит на границе между замкнутой и открытой Вселенной.

Другие методы решения проблемы замкнутости Вселенной

Видимо, наиболее надёжным способом ответа на вопрос, замкнута или открыта Вселенная, является точное измерение её средней плотности, и в последнее время именно он привлекает наибольшее внимание. Но это отнюдь не единственный способ; можно, например, использовать диаграмму Хаббла. Если ускорение галактик одинаково до самых дальних окраин Вселенной, то на диаграмме получится прямая; если же галактики замедляются, линия будет искривлена. По степени этого искривления можно понять, достаточно ли замедление для прекращения расширения Вселенной.

Метод кажется довольно простым – достаточно построить график, охватывающий самые дальние, «приграничные» районы Вселенной, и определить степень искривления получившейся линии. Но как и при определении средней плотности, здесь тоже не обходится без трудностей. Уже отмечалось, что для удалённых районов Вселенной провести точные измерения очень трудно; кроме того, возникают и другие проблемы. Вглядываясь в космические дали, мы заглядываем в прошлое, а значит, видим галактики такими, какими они были давным-давно. При этом, естественно, возникают вопросы, связанные с эволюцией Вселенной: как эти галактики выглядят сегодня, насколько они изменились? Из многих теорий следует, что галактики (в особенности эллиптические) раньше были гораздо ярче, т.е. нам представляется, что они находятся ближе, чем на самом деле. Из других же теорий вытекает, что некоторые галактики могут расти, поглощая соседние, а потому сейчас они гораздо ярче, чем в прошлом, и значит кажутся нам расположенными дальше.

Исследование дальних границ Вселенной даёт много свидетельств процесса эволюции. За некоторым пределом наблюдаются уже только радиогалактики, а на самых окраинах видны только квазары. Попытка использовать эти объекты для нанесения точек на диаграмму Хаббла совершенно бессмысленна; такие точки оказываются далеко в стороне от прямой, соответствующей обычным галактикам. Более того, раз точно не известно, что такое квазары, вряд ли можно ожидать от них помощи. Поскольку они так далеки (и имеют небольшой возраст), то, вероятно, могут являться первичными формами галактик, хотя с таким представлением согласны очень немногие астрономы.

Ещё один метод решения нашей проблемы основан на так называемом подсчёте чисел. Как и в предыдущих случаях, основная идея проста, но, к сожалению, приводит к неоднозначным результатам. Нужно лишь подсчитать в заданном направлении, насколько хватит глаз, количество галактик или объектов других типов, а затем построить график зависимости числа зарегистрированных объектов от расстояния. Таким образом можно определить глобальную кривизну; если она положительна, Вселенная замкнута, а если отрицательна – открыта. В плоской Вселенной точки на построенном графике были бы распределены равномерно по всем направлениям и для всех расстояний. При положительной кривизне следует ожидать избытка точек в близких районах, а при отрицательной – напротив, их недостатка. Широкомасштабные исследования, проведённые в 70-х годах в Университете штата Огайо, казалось бы, продемонстрировали избыток точек, а значит, и замкнутость Вселенной, однако недавние проверки не подтверждают этого вывода.

Заслуживает упоминания и метод определения угловых размеров. Суть его состоит в тщательном измерении диаметра галактик конкретного вида; затем аналогичное измерение производится для другой галактики того же типа, расположенной гораздо дальше, но на известном расстоянии. Если пространство искривлено, то в измерение диаметра как бы вносится ошибка – его величина будет казаться больше при положительной кривизне и меньше при отрицательной.

Судьба замкнутой Вселенной

Вероятно, Вселенная так близка к «водоразделу», что, обсуждая её дальнейшую судьбу, приходится рассматривать как открытый, так и замкнутый варианты.

Для начала предположим, что Вселенная замкнута. В таком случае в течение 40-50 миллиардов лет ничего существенного не произойдёт. По мере увеличения размеров Вселенной галактики будут всё дальше разбегаться друг от друга, пока в какой-то момент самые дальние из них не остановятся и Вселенная не начнёт сжиматься. На смену красному смещению спектральных линий придёт синее. К моменту максимального расширения большинство звёзд в галактиках погаснет и останутся в основном небольшие звёзды, белые карлики и нейтронные звёзды, а также чёрные дыры, окружённые роем частиц – в большинстве своём фотонов и нейтронов. Наконец, через примерно 100 миллиардов лет начнут сливаться воедино галактические скопления; отдельные объекты сначала будут сталкиваться очень редко, но со временем Вселенная превратится в однородное «море» скоплений. Затем начнут сливаться отдельные галактики, и в конце концов Вселенная будет представлять собой однородное распределение звёзд и других подобных объектов.

В течение всего коллапса в результате аккреции и соударений станут образовываться и расти чёрные дыры. Будет повышаться температура фонового излучения; в конце концов она почти достигнет температуры поверхности Солнца и начнётся процесс испарения звёзд. Перемещаясь на фоне ослепительно яркого неба, они подобно кометам будут оставлять за собой состоящий из паров след. Но вскоре всё заполнит рассеянный туман и свет звёзд померкнет. Вселенная потеряет прозрачность, как сразу же после Большого взрыва. (В гл. 6 мы видели, что ранняя Вселенная была непрозрачной, пока её температура не упала до примерно 3000 K; тогда свет стал распространяться без помех.)

По мере сжатия Вселенная, естественно, будет проходить те же стадии, о которых рассказывалось в гл. 6, но в обратном порядке. Температура будет расти, и сокращающиеся интервалы времени начнут играть всё большую роль. Наконец галактики тоже испарятся и превратятся в первичный «суп» из ядер, а затем распадутся и ядра. Вселенная быстро проскочит через лептонную и адронную эпохи к хаосу. В эпоху адронов ядра развалятся на кварки. На этом этапе Вселенная станет крохотной и состоящей только из излучения, кварков и чёрных дыр. В последнюю долю секунды коллапс дойдёт почти до сингулярности, а затем произойдёт «большой пшик».

Отскок

Что случится во время «большого пшика», неизвестно, поскольку нет теории, которая годилась бы для описания сверхбольших плотностей, возникающих до появления сингулярности; можно лишь строить предположения. Большинство из них основано на идее «отскока» – внезапного прекращения сжатия, нового Большого взрыва и нового расширения. Одной из причин первоначального введения идеи отскока была возможность обойти неприятную с точки зрения многих астрономов проблему возникновения Вселенной. Если отскок произошёл один раз, то он мог случаться неоднократно, может быть, бесчисленное количество раз, поэтому не нужно и беспокоиться о начале времён.

К сожалению, при подробной проработке такой идеи оказалось, что и отскок не решает проблемы. В интервалах между отскоками звёзды излучают значительное количество энергии, которая затем концентрируется при достижении состояния, близкого к сингулярности. Эта энергия должна постепенно накапливаться, из-за чего промежуток времени между последовательными отскоками будет возрастать. Значит, в прошлом эти промежутки были короче, а когда-то, в пределе, промежутка не было вовсе, т.е. мы приходим к тому, чего старались избежать, – проблеме начала Вселенной. Согласно расчётам, от начала нас должно отделять не более 100 циклов расширений и сжатий.

Многие предпринимали попытки обойти эту проблему. Томми Голд, например, разработал теорию, согласно которой в момент наибольшего расширения время начинает течь вспять. Излучение устремится обратно к звёздам и Вселенная «омолодится». В таком случае она будет равномерно осциллировать между коллапсом и максимальным расширением.

Весьма интересную, но очень спорную теорию предложил Джон Уилер. Воспользовавшись идеей Хокинга, согласно которой фундаментальные константы «теряют» свои числовые значения при достаточно высоких плотностях, он показал, что цикл осцилляции не обязательно должен удлиняться. Из-за принципа неопределённости значения констант утрачиваются, когда Вселенная сжимается до почти бесконечной плотности. После возможного отскока и нового расширения эти константы могут получить совершенно иные значения. Продолжительность циклов в таких обстоятельствах также будет меняться, но случайным образом; одни циклы станут очень длинными, а другие короткими.

Судьба открытой Вселенной

В противоположность замкнутой, открытая Вселенная продолжает расширяться вечно. Основным отличием от процессов, описанных в предыдущем разделе, является разница во временах. Раньше речь шла о периодах в 50 или 100 миллиардов лет, а сейчас придётся рассматривать столь большие промежутки времени, что понадобятся числа с большим показателем степени, например, будут упоминаться интервалы до 10100 лет. Если трудно представить себе 100 миллиардов лет, то о таком числе и говорить нечего.

Первые события будут, конечно, аналогичны тем, которые происходят в замкнутой Вселенной. Звёзды постепенно постареют и, превратившись с течением времени в красных гигантов, либо взорвутся, либо медленно сколлапсируют и умрут. Некоторые из них, прежде чем погаснуть, столкнутся с другими звёздами. Такие столкновения очень редки, и с момента образования нашей Галактики (по крайней мере, в её внешних областях, где мы обитаем) их было совсем немного. Однако за триллионы и триллионы триллионов лет таких столкновений произойдёт множество. Часть из них лишь сбросит в пространство планеты, а в результате других звёзды окажутся на совершенно иных орбитах, некоторые даже вне пределов нашей Галактики. Если подождать достаточно долго, то нам покажется, что внешние области галактик испаряются.

Не выброшенные из галактик звёзды в результате столкновений, скорее всего, будут притягиваться к центру, который в конце концов превратится в гигантскую чёрную дыру. Примерно через 1018 лет большинство галактик будет состоять из массивных чёрных дыр, окружённых роем белых карликов, нейтронных звёзд, чёрных дыр, планет и различных частиц.

Дальнейшие события вытекают из современной единой теории поля, называемой теорией великого объединения; о ней речь пойдёт позже. Из этой теории следует, что протон распадается примерно за 1031 лет. Сейчас ведётся несколько экспериментов по обнаружению такого распада, а значит, и по проверке теории. Согласно ей, протоны должны распадаться на электроны, позитроны, нейтрино и фотоны. Отсюда следует, что в конце концов всё, что состоит во Вселенной из протонов и нейтронов (а их не содержат только чёрные дыры), распадётся на эти частицы. Вселенная превратится в смесь из них и чёрных дыр, и будет находиться в таком состоянии очень, очень долго. Когда-нибудь испарятся маленькие чёрные дыры, а вот с большими возникнут трудности. Фоновое излучение к тому времени будет очень холодным, но всё же его температура останется чуть выше, чем у чёрных дыр. Однако по мере расширения Вселенной ситуация изменится – температура излучения станет ниже, чем на поверхности чёрных дыр, и те начнут испаряться, медленно уменьшаясь в размерах; на это потребуется примерно 10100 лет. Затем Вселенную заполнят электроны и позитроны, которые, вращаясь друг вокруг друга, образуют огромные «атомы». Но постепенно позитроны и электроны, двигаясь по спирали, столкнутся и аннигилируют, в результате чего останутся только фотоны. Во Вселенной не будет ничего, кроме излучения.

Мы рассмотрели судьбу как открытой, так и закрытой Вселенной. Что её ждет, пока неизвестно. Если даже Вселенная когда-нибудь сколлапсирует, неизвестно, произойдёт ли потом «отскок». Единой теории придётся ответить и на эти вопросы.