Красота и величие тёмного ночного неба всегда волнуют нас. Каждое светящееся пятнышко на нём – образ звезды, её свет, который давно, может быть задолго до нашего рождения, оторвался от светила. Человеку трудно представить себе необъятные просторы Вселенной; протекающие в ней сложные и мощные процессы приводят нас в трепет. Свет от некоторых видимых объектов шёл к Земле миллионы лет, а ведь расстояние от нас до Луны тот же луч света преодолевает меньше чем за две секунды.

Снимок Млечного Пути в направлении его центра, сделанный широкоугольным объективом

Наша Земля – всего лишь песчинка, затерявшаяся в бескрайнем пространстве, одна из девяти планет, обращающихся вокруг неприметной жёлтой звезды, называемой Солнцем. И всё же наша планета единственная в своём роде: ведь только на ней существует разумная жизнь. При виде звёзд (а каждая из них может оказаться солнцем) мы всегда задумываемся – нет ли и там жизни?

Наше Солнце – одна из примерно 200 миллиардов звёзд местного скопления – Галактики, которую мы называем Млечным Путём. На фоне тёмного неба Млечный Путь кажется едва заметной серебристой полоской, протянувшейся от края до края. Если бы можно было выбраться за пределы Галактики и взглянуть на это скопление звёзд со стороны, мы увидели бы размытый диск с утолщением в центре и спирально расходящимися рукавами. Наше Солнце расположено в одном из таких рукавов на расстоянии около 3/5 от центра.

В нашей Галактике большинство звёзд – обычные светила наподобие Солнца, но некоторые звёзды поражают воображение. Одни из них медленно пульсируют под воздействием волн, которые поднимаются из глубины и заставляют поверхность сжиматься и расширяться; другие пульсируют так быстро, что наш глаз этого не замечает. Третьи – сверхновые – взрываются с ошеломляющей силой, за считанные часы их яркость невероятно возрастает, во все стороны разлетаются гигантские газовые языки. Следы такого взрыва наблюдаются в Крабовидной туманности, где 970 лет назад (по земному времени) взорвалась сверхновая звезда, остатки которой продолжают расширяться.

Остатки старых сверхновых – облака газа, называемые туманностями, можно видеть во многих участках неба. Миллионы лет тяготение стягивает эти облака газа, обогащённые после взрыва атомами тяжёлых элементов, в новые звёзды. Через миллионы лет некоторые из этих звёзд в свою очередь взорвутся и дадут жизнь новому поколению звёзд. Таков цикл развития Вселенной – старые звёзды взрываются, и из их остатков образуются новые. Поколение от поколения отделяют миллионы лет, для нас это вечность, хотя Вселенная в своём нынешнем виде не вечна – она не будет существовать бесконечно, она когда-то появилась и когда-нибудь ей придёт конец. Из современных теорий следует, что Вселенная появилась около 20 миллиардов лет назад в результате грандиозного взрыва. Когда и как она прекратит своё существование, пока не ясно, но конец наступит.

Как уже упоминалось ранее, изображение удалённых объектов позволяет судить лишь о том, как они выглядели, когда их покинул наблюдаемый сейчас свет. Чем дальше объект, тем старше его изображение. Это значит, что, наблюдая в телескоп Вселенную, мы, по сути, вглядываемся в прошлое. Сегодня мы видим галактики такими, какими они выглядели миллионы лет назад. В начале 20-х годов сотрудник обсерватории Маунт-Вилсон Эдвин Хаббл начал изучать эти галактики. Через несколько лет он сделал открытие, поразившее и озадачившее астрономов. Оказалось, что все галактики, за исключением нескольких, расположенных в нашей местной группе, удаляются от нас; причём чем больше расстояние, тем выше скорость разлёта. Значит, Вселенная расширяется!

Туманность Андромеды, спиральная галактика, подобная нашему Млечному Пути

Заглядывая всё дальше в глубь Вселенной, мы видим, что многие галактики не похожи на нашу – они находятся в состоянии хаоса. В них бушуют невероятные силы, отдирающие звёзды одну от другой и выбрасывающие их на периферию; при этом генерируются радиоволны, которые мы регистрируем на Земле. По сути, это взрывающиеся галактики, которые носят название радиогалактик. Ещё дальше находятся квазары – объекты, которые остаются загадкой, хотя их активно исследуют уже 20 лет. Они излучают такое количество энергии, что по мощности их можно сравнить с крупными радиогалактиками, однако по остальным признакам они невелики – не больше звёзд-супергигантов. Они так малы и далеки от нас, что непонятно, как их вообще можно увидеть.

Сразу же за квазарами проходит граница наблюдаемой Вселенной. Может показаться странным, что у нашей Вселенной есть граница, ведь тут же возникает вопрос, а что за этой границей? Чтобы понять, откуда берётся граница, нужно рассмотреть скорость разбегания сильно удалённых объектов – она близка к скорости света, а согласно теории относительности (с которой мы познакомимся позже) ни одно тело не может двигаться относительно нас со скоростью света или большей (её обычно обозначают латинской буквой c). Итак, сразу же за квазарами находится область, где объекты – если бы они там были – должны были бы двигаться со скоростью c, а это невозможно. Это и есть граница наблюдаемой Вселенной. За последние десять лет астрономы многое узнали о Вселенной: были открыты новые типы объектов – пульсары, квазары, предсказано существование сверхэкзотических объектов, таких как чёрные дыры, и астрономы считают, что они действительно есть, хотя неопровержимо доказать это пока не удалось. Каждое новое достижение, каждое новое открытие расширяют наши знания о Вселенной, но в то же время приносят новые тайны, новые загадки, требующие решения. Невольно возникает вопрос – а истощится ли когда-нибудь поток этих загадок?

До сих пор речь шла о тайнах вселенского масштаба, связанных с макрокосмосом. Но в ином пространственном масштабе проходит ещё одна граница, граница микрокосмоса – мира атомов и элементарных частиц. И в этом мире тайн ничуть не меньше.

Во Вселенной встречается много различных частиц, но преобладают среди них три – электроны, протоны и нейтроны. Электрон имеет отрицательный заряд, протон гораздо массивнее его, имеет заряд той же величины, но положительный, а у нейтрона заряда вообще нет.

Первая частица другого вида была предсказана в 1932 году английским физиком-теоретиком Полем Дираком. Работая над теорией электрона, он обнаружил, что должна существовать частица, во всём подобная электрону, но имеющая положительный заряд. Несколько лет спустя был обнаружен положительно заряженный электрон, названный позитроном. Позже установили, что каждой частице соответствует античастица, а при их встрече происходит удивительная вещь – они уничтожают друг друга, аннигилируют, и при этом выделяется значительная энергия.

В 1935 году было сделано ещё одно важное предсказание. Японский физик Хидэки Юкава постулировал существование частицы с массой, большей чем у электрона, но меньшей чем у протона – так называемого мезона. В течение следующих трёх лет действительно удалось обнаружить частицу с промежуточной массой (мюон), но оказалось, что у неё совсем не те свойства, которые предсказывал Юкава. В конце концов нашли и частицу Юкавы, которая носит название «пион».

Шли годы, и учёные обнаруживали всё новые и новые частицы. По мере увеличения размеров ускорителей тоненький ручеёк открытий превратился в мощный поток, и в конце концов физиков захлестнуло «море» элементарных частиц. Они даже начали задумываться, иссякнет ли когда-нибудь этот поток. Для удобства было решено разделить все частицы на два типа – лептоны и адроны. К лептонам отнесли лёгкие частицы (наиболее известная из них – электрон), а к адронам – тяжёлые. Адроны подразделены ещё на две группы – барионы и мезоны. Самый известный из барионов – протон; к ним принадлежит также и нейтрон. Как уже упоминалось раньше, мезоны имеют промежуточную массу.

И всё же простая классификация частиц по типам отнюдь не помогла решить проблему. С ростом числа частиц в семействах пришло понимание того, что в основе классификации должна быть некая система; все эти частицы, в особенности огромное семейство барионов, никак не могли быть «по-настоящему элементарными». Они явно состоят из каких-то более фундаментальных частиц.

В 1964 году Мюррей Гелл-Манн из Калифорнийского технологического института и независимо от него Георг Цвейг из Женевы предложили решение проблемы. Они предположили, что адроны состоят из трёх фундаментальных частиц, которые Гелл-Манн назвал кварками (в предложенной схеме есть и антикварки). С физической точки зрения теория была замечательной – она предсказывала все наблюдаемые частицы и позволяла свести число действительно элементарных типов адронов во Вселенной всего к трём; с таким числом справиться значительно легче. Существовала, впрочем, одна трудность – кварков никто никогда не видел. След одиночного кварка ни разу не наблюдался в пузырьковой камере, более того, ниоткуда, кроме этой теории, их существование не следовало! И всё же, несмотря на то что кварки до сих пор не обнаружены, теория осталась. В неё внесли некоторые изменения, но по сей день она лучшая из всех теорий элементарных частиц.

Итак, все элементарные частицы, из которых построена Вселенная, самые фундаментальные (насколько можно судить) составляющие материи можно разделить на два класса: лептоны и кварки. Лептон нельзя расщепить на что-то более элементарное, и уж, конечно, нельзя расщепить кварк, который к тому же до сих пор не удалось изолировать. Сейчас принято считать, что кварк в принципе изолировать нельзя.

Весь мир построен из этих различным образом сгруппированных частиц. Но если бы существовали только они, наш мир выглядел бы весьма странно: в пространстве беспорядочно носились бы бесчисленные миллиарды частиц. Нам известно, что на самом деле частицы движутся не беспорядочно, на них действуют силы, удерживающие их вместе. В природе известны четыре типа сил, два из которых проявляются внутри атомов. Атом состоит из ядра, в котором плотно упакованы протоны и нейтроны (в ядре сосредоточена почти вся масса атома), и вращающихся вокруг него электронов. В электрически нейтральном атоме число электронов равно числу протонов. Так как протоны имеют положительный заряд, а электроны – отрицательный, они удерживаются на орбите в результате электрического притяжения противоположных по знаку зарядов.

Приглядевшись к ядру попристальнее, можно заметить, что протоны располагаются очень близко друг к другу, хотя, будучи одноименно заряженными частицами, они должны были бы отталкиваться, что, кстати, на определённом расстоянии и происходит. Но есть другая сила – сильное взаимодействие, примерно в 1000 раз более мощное, чем электромагнитное. Сильное взаимодействие отличается от электромагнитного тем, что оно близкодействующее, т.е. действует только на расстоянии порядка диаметра ядра. Это означает, что при сближении два протона сначала отталкивают друг друга, а потом вдруг, на очень малом расстоянии, между ними возникает сильнейшее притяжение, удерживающее их вместе. Сильное взаимодействие проявляется не между всеми частицами, а только между парами адронов.

Третья фундаментальная сила природы внутри атомов почти не проявляется, для этого она очень слаба (в миллиард миллиардов раз слабее электромагнитных сил), хотя с ней, несомненно, знакомы все – это сила тяжести. Как и электромагнитное, гравитационное поле дальнодействующее, но отличается тем, что вызывает только притяжение (электромагнитное поле вызывает также отталкивание). Конечно, между ядром и вращающимися вокруг него электронами есть слабое гравитационное притяжение, но оно настолько мало, что по сравнению с другими силами его можно не учитывать. Это не значит, что гравитационным полем можно вовсе пренебречь; оно важно хотя бы потому, что благодаря ему мы удерживаемся на Земле. Под действием гравитационного поля и Земля вращается вокруг Солнца.

Последнее из четырёх фундаментальных взаимодействий – слабое ядерное. Оно несколько сильнее гравитационного, но гораздо слабее электромагнитного или сильного. Слабое взаимодействие (как и сильное) очень короткодействующее, но оно в отличие от сильного проявляется редко, только в некоторых типах ядерных реакций.

В поисках сути

Современный научный метод – проведение экспериментов в лаборатории – был введён Галилеем. Благодаря этому методу он смог объяснить немало явлений природы, которые оставались загадкой в течение многих столетий. Позднее Ньютон ввёл в науку математику. Он показал, что движение тел можно описать формулами, что формулы – удобный способ краткой записи физических процессов. Ньютон продемонстрировал и магию своих формул. С их помощью можно не только определить, как вели себя и двигались частицы и тела в прошлом (если известно, какие силы на них действовали), но и предсказать, что с ними случится в будущем, сколь угодно далёком.

Однако самым важным достижением Ньютона было введение понятия теории. В основе теории лежат несколько основных законов, на базе которых можно делать различные предсказания. Теория движения Ньютона, известная под названием ньютоновой механики, основана на небольшом числе простых законов, из которых можно вывести любые типы движения.

Вскоре после того, как Ньютон предложил свои теории, стали появляться и другие; представления об электричестве и магнетизме спустя много лет выкристаллизовались усилиями Максвелла в теорию электромагнетизма. В те же годы была сформулирована теория теплоты. Теперь все они называются классическими теориями.

Для своего времени теория Ньютона была превосходной. Она объясняла почти всё, во всяком случае многое, в устройстве Вселенной, доступной нашим органам чувств. В ней воплотились многократно проверявшиеся взаимосвязи, а сама теория отличалась удивительной простотой. Это, по мнению большинства учёных, весьма важно – любая теория должна основываться на небольшом числе постулатов, и чем их меньше, тем лучше. Более того, всякая теория должна допускать проверку опытом, и, естественно, классическая теория удовлетворяла этому требованию.

Но так как теории создаются людьми, они несут на себе печать недостатков своих создателей. Бывает, что новая теория поначалу только кажется значительным достижением, но скоро от неё приходится отказаться. Любая теория распространяется лишь на ограниченное число явлений. Если многие эксперименты подтвердили справедливость теории в каких-то пределах, то её можно безбоязненно применять в этих рамках, необходимо только внимательно следить, чтобы их не перешагнуть.

Именно так обстоит дело с классической теорией. Объекты обычных размеров, движущиеся с привычными скоростями, удовлетворительно описываются классическими законами движения, но стоило учёным попытаться распространить эти законы на атомы и микромир вообще, как оказалось, что тут классические законы не работают, что-то с ними было не так.

Тем не менее вера в классическую теорию была настолько велика, что на осознание пределов её применимости потребовалось довольно много времени. Часть этих пределов стала заметна ещё в конце XIX века, но большинству учёных они представлялись лишь небольшими недостатками, прорехами, которые без труда можно залатать. Один учёный на рубеже XX века даже публично заявил, что о Вселенной известно практически всё, т.е. обнаружены все основные законы. Он и не подозревал, что вот-вот в физике начнётся настоящая революция.

Первый революционный шаг сделал немецкий физик Макс Планк. Пытаясь исправить один из серьёзных недостатков классической теории, он в 1900 году понял, что требуется совершенно новый подход. Планк предположил, что излучение, например свет, испускается «порциями», а не непрерывно, как считалось ранее. Хотя сам он полагал, что лишь «заделывает дыры» в одном из уравнений классической теории, придуманные им «порции», или, как он их назвал, кванты, оказались чрезвычайно важны и вскоре заняли центральное место в описании микромира.

Здесь уместно отметить следующее. За несколько лет до этого было показано, что свет имеет волновую природу. Как же он может одновременно состоять из частиц – квантов? В 1923 году французский принц Луи де Бройль преодолел это затруднение – он ввёл представление о корпускулярно-волновом дуализме, причём не только для излучения, но и для вещества. Де Бройль показал, что взаимодействие электронов с излучением легче всего понять, если считать, что электроны ведут себя и как частицы, и как волны.

Поначалу эта идея показалась учёным абсурдной. Как электрон может быть волной? Но де Бройль принадлежал к королевскому роду, и открыто смеяться над его диссертацией, в которой содержалось такое предположение, было неловко. С другой стороны, как будет выглядеть комиссия, если после защиты выяснится, что это злая шутка? Казалось, ситуация безвыходная – диссертацию нельзя ни принять, ни отвергнуть. Тогда решили обратиться к эксперту – Альберту Эйнштейну, и каково же было всеобщее изумление, когда выяснилось, что идея ему чрезвычайно понравилась и показалась справедливой.

Эйнштейн не ошибся – в 1927 году Дэвиссон и Джермер из Соединённых Штатов экспериментально доказали, что электроны обладают волновыми свойствами. Направляя пучок электронов на кристалл, они наблюдали на экране картину из светлых и тёмных полос; такая картина могла получиться, только если электроны вели себя как волны. Позднее было показано, что частицы любого вида дают такую же картину – вещество действительно обладает волновыми свойствами.

Математическую форму представлениям о корпускулярно-волновом дуализме придали в 1926 году Эрвин Шрёдингер и независимо от него Вернер Гейзенберг. Но созданная ими теория отличалась от всех других – она была вероятностной. Из неё следовали не точные и строгие предсказания, а лишь вероятности происхождения тех или иных событий. Американские телезрители знакомы с такими вероятностными предсказаниями. Перед каждым большим праздником по радио и телевидению сообщают, что в выходные дни на автодорогах погибнут, скажем, около 700 человек. После праздников оказывается, что число жертв составляет действительно около 700. Конечно, невозможно заранее сказать, кто именно погибнет; точно так же квантовая теория позволяет предсказать, что три атома из десяти в ближайшие 10 минут претерпят радиоактивный распад, хотя не даёт возможности узнать, какие именно.

Эйнштейн внёс важный вклад в квантовую теорию на раннем этапе её развития, но не мог согласиться с тем, что за ней останется последнее слово. Ему казалось, что она в лучшем случае представляет собой лишь приближение, и рано или поздно квантовую теорию, сменившую непригодную для описания микромира классическую, заменит более глубокая теория. Дело не в том, что квантовая теория не позволяла получить точные значения – этот аспект у него возражений не вызывал. Беспокоили Эйнштейна философские выводы – то, что она говорила нам о физическом мире. Выходило, что ничего нельзя вычислить точно, можно только определить вероятности, т.е. квантовая теория – статистическая. При её помощи можно предсказать, что в среднем произойдёт с пучком частиц, но не с каждой отдельной частицей пучка. Эйнштейн был уверен, что более глубокая теория позволит определять и судьбу отдельных частиц.

Нильс Бор – главный сторонник квантовой теории, несмотря на дружбу с Эйнштейном, никогда не разделял этого мнения. Более того, их взгляды на квантовую теорию были диаметрально противоположны, а спор о её философских следствиях растянулся на долгие годы. Не совсем ясную позицию Бора понять было нелегко (теперь её называют копенгагенской интерпретацией). В её основе лежат сформулированный немецким физиком Вернером Гейзенбергом принцип неопределённости, из которого следует, что на атомном уровне имеется некоторая «размытость»» и предложенный Бором принцип дополнительности, поясняющий, как следует рассматривать элементарные частицы. Например, электрон ведёт себя то как частица, то как волна. Принцип дополнительности гласит, что эти аспекты дополняют друг друга, т.е. могут существовать только по отдельности.

Один из вопросов, который следует из копенгагенской интерпретации, звучит так: «Что мы понимаем под реальностью?». Квантовая механика даёт ответ, в котором как будто мало толку – по крайней мере, с точки зрения того, что мы называем здравым смыслом. Большинство из нас считает, что объективный мир существует вне нас, т.е. вне зависимости от того, регистрируем ли мы происходящие в нём события. В копенгагенской же интерпретации этот вопрос трактуется иначе; всё в окружающем физическом мире зависит от способа измерения; этот мир не существует до выполнения измерения. Например, электрон может быть волной или частицей в зависимости от способа измерения. Более того, положение и импульс частицы (произведение её массы на скорость) зависят от того, как мы их измеряем.

Рассмотрим последнее утверждение подробней, Оно следует из принципа неопределённости, в соответствии с которым нельзя одновременно измерить импульс и координату частицы. При измерении импульса нарушается положение частицы – она находится уже не там, где раньше. Но тогда возникает вопрос, существуют ли в действительности положение и импульс? Потенциально – да, но каждый из них обретает реальность только после измерения, а так как в каждый момент можно измерить только один из этих параметров, приходится говорить, что другой не существует. Иными словами, вне нас нет объективной реальности – она появляется только тогда, когда мы выполняем измерения.

Изображения от электронов, проходящих через одну щель (слева) и через две щели (справа). Высота кривой соответствует интенсивности излучения, попадающего на экран

Можно взглянуть на это и с другой стороны, если вспомнить о принципе дополнительности. Эксперимент, который позволяет понять некоторые его следствия, известен как опыт с двумя щелями. Предположим, что на экран, расположенный позади щели, направлен пучок электронов. Когда щель одна, большинство электронов проходит в неё в виде частиц; несколько из них, возможно, отклонится у краев щели, но мы ими пренебрежём. Получаемая на экране картина показана на левом рисунке. Теперь предположим, что рядом с первой щелью на некотором расстоянии от неё установлена вторая и электроны падают сразу на обе. В этом случае, как ни странно, картина получается совершенно иной (см. правый рисунок).

Продолжим наш опыт. Теперь уменьшим интенсивность пучка настолько, чтобы электроны вылетали из источника по одному, тогда, вроде бы, должно быть известно наверняка, через какую щель – A или B – прошёл каждый электрон. Однако на практике оказывается, что никакой разницы нет; если проводить опыт достаточно долго, результат будет таким же, как и в эксперименте с двумя щелями. Как же так? Ведь чтобы получилась такая картина, электрону в момент прохождения одной щели должно быть известно, открыта другая или закрыта! Если она открыта, электрон попадёт в одну точку экрана, если закрыта – в другую. Но откуда он знает, открыта или закрыта другая щель? Чтобы ответить на этот вопрос, приходится предположить, что электрон – это волна, которая размазывается перед тем, как попасть в установку, и проверяет, в каком состоянии находится вторая щель, т.е., по сути, один и тот же электрон проходит через обе щели. Но поскольку электрон – это и частица, физически представляется, что он может проходить либо через одну, либо через другую щель.

Попробуем перехитрить электрон. Предположим, что у щелей установлено такое устройство, которое позволяет определить, через какую из них электрон проходит на самом деле. Но здесь в игру вступает принцип неопределённости – проводя измерения, мы вмешиваемся в процесс и влияем на его результат. Пытаясь определить, проходит ли электрон через щель A, мы воздействуем на него, и он проходит через щель B.

Непривычность этого и ему подобных опытов отталкивала Эйнштейна. Он резко выступал против квантовой механики, за что подвергался суровой критике. Но аргументы Эйнштейна основывались на глубоком знании теории и отнюдь не были пустыми придирками. Он очень интересовался этой теорией и, как говорят, постоянно носил с собой книгу Дирака «Принципы квантовой механики». Эйнштейн прилагал массу усилий, чтобы выявить недостатки этой теории. Однажды он сказал: «Вы даже не представляете, с каким упорством я пытался найти удовлетворительный математический подход к квантовой теории, но пока безуспешно».

Усилия Эйнштейна не пропали даром. В 1935 году он указал на один из возможных недостатков теории, и к его идеям до сих пор относятся со всей серьёзностью. Вместе с Борисом Подольским и Натаном Розеном он опубликовал статью «Можно ли считать квантовомеханическое описание физической реальности полным?».

Рассмотрим упрощённый вариант приводимых в статье рассуждений. Предположим, что имеется система из двух частиц, вращающихся в противоположных направлениях. Будем считать, что спин (параметр, характеризующий вращение) одной из частиц направлен вверх, а другой – вниз. Пусть теперь эти частицы каким-то образом разделяются, например разлетаются в противоположных направлениях. Предположим далее, что одна из них улетает в окно, а другая попадает в лабораторную установку, где определяется её спин. Допустим, что спин второй частицы направлен вверх; отсюда следует, что спин первой направлен вниз. Таким образом, мы получаем информацию об одной из частиц, не проведя над ней измерения. Но это противоречит копенгагенской интерпретации, из которой следует, что до тех пор, пока не выполнено измерение, объект не существует – ни одна частица не существует без измерения.

Ясно, что этот парадокс требовалось разрешить. Объяснение ему было дано в середине 60-х годов. Сотрудник ЦЕРН (Европейского центра ядерных исследований) Джон Белл в 1964 году предложил способ разрешения указанного парадокса. Теперь он носит название неравенства Белла.

Первые проверки не дали определённого результата – одни из них, казалось, подтверждали правоту Эйнштейна, другие – Бора. Но в 1983 году эксперименты, проведённые в Парижском университете Аленом Аспеком, дали, по-видимому, решающий результат – неравенство Белла нарушается. Прав оказался Бор.

Означает ли это, что квантовая теория окончательно решает все проблемы и невозможно создать более фундаментальную теорию, о которой говорил Эйнштейн? Видимо, шансов на это мало, но всякое бывает – наука в своём развитии иногда делает странные зигзаги.

Претензии к квантовой теории высказывал не только Эйнштейн. Макс Планк, впервые предложивший идею квантов, так полностью и не принял эту теорию, а Шрёдингер в итоге пришёл к выводу, что она не является окончательной. Совсем недавно, в 1979 году, Поль Дирак заявил: «Ясно, что современная квантовая механика ещё не приняла законченной формы. Очень может быть, что в новой квантовой механике будет присутствовать детерминизм, который имел в виду Эйнштейн… Вполне вероятно, что он окажется прав».

Принстонский физик Дэвид Бом много лет посвятил поискам фундаментальной теории. Он твёрдо убеждён в том, что в ней должны быть скрытые переменные, хотя большинство физиков считает, что это не так. Он уверен, что квантовая механика имеет окончательный вид, и согласен с копенгагенской интерпретацией.

Другая фундаментальная физическая теория – теория относительности – была опубликована в 1905 году. В ней речь шла не о мире атомов, а о понятиях пространства, времени и массы (а также электрического и магнитного полей). За несколько лет до этого учёные Юнг и Френель показали, что свету присущи некоторые явления (интерференция и дифракция), свойственные только волнам. Если свет – тоже волна, то для его распространения нужна какая-то среда; это можно пояснить на таком примере. От брошенного в воду камня во все стороны кругами расходятся волны; если бы в месте падения камня не было воды, не было бы и волн. Очевидно, для распространения волн нужна среда, в данном случае вода. Для света наличие такой среды неочевидно, поэтому физики её придумали и назвали эфиром. Предполагалось, что эфир заполняет всю Вселенную, но свойства эфира (прозрачность, несжимаемость, невосприимчивость к действию тяготения) затрудняют его обнаружение. И хотя изобретением эфира удалось устранить проблему распространения света, тут же появилась новая трудность – эфир оказался системой отсчёта для всей Вселенной. Это означало, что можно использовать его для определения нашей абсолютной скорости относительно Вселенной в целом. Эфир был чем-то вроде гигантского озера, а на озере измерить свою скорость даже без спидометра очень легко. Нужно бросить буй и следить за тем, насколько быстро он удаляется.

Чтобы найти скорость, с которой Земля движется сквозь эфир, два физика, Майкельсон и Морли, выполнили в 1887 году остроумный эксперимент. В качестве буя они использовали луч света, послав его в направлении движения Земли по орбите. Так как свет распространяется в эфире, а Земля имеет некоторую конечную скорость в том же направлении, нам должно было бы казаться, что луч движется от нас с меньшей скоростью, чем от неподвижной Земли (предполагается, что эфир около Земли не испытывает возмущений); однако, выполнив свой опыт, Майкельсон и Морли с удивлением обнаружили, что мы, т.е. Земля, не догоняем свет. Луч света имеет постоянную скорость, не зависящую от нашей; это значит, что с какой бы скоростью мы не гнались за светом, догнать его невозможно. Свет всегда будет двигаться со скоростью 300 000 км/с.

В течение многих лет учёные пытались понять смысл этого загадочного результата. Приближённые формулы независимо получили Г. А. Лоренц в Нидерландах и Ф. Фицджералд в Ирландии, но они не объяснили, что же происходит на самом деле. Лишь в 1905 году с созданием специальной теории относительности загадка была решена. Эйнштейн не знал о результате опыта Майкельсона и Морли; он решил задачу, подойдя к ней с другой стороны. Его интересовало, что происходит с электрическим и магнитным полями при скоростях, близких к скорости света, но созданная им теория описывала гораздо больше, чем поведение этих полей. В ней говорилось, что происходит с пространством, временем и массой, когда тела движутся со скоростями, близкими к световой. Пространство растягивается (движущиеся объекты становятся короче), время замедляется, а масса возрастает. (На самом деле это происходит при всех скоростях, но становится заметным при скоростях, близких к скорости света.) Из этой теории следовало также, что эфир не нужен.

В 1916 году Эйнштейн распространил специальную теорию относительности, касавшуюся только равномерного прямолинейного движения, на все виды движения. В результате получилась общая теория относительности, из которой следует, что пространство может быть не только растянуто, но и искривлено, причём настолько сильно, что перестает существовать во Вселенной. (Речь об этой теории пойдёт в гл. 2.)