Растения - гениальные инженеры природы

Патури Феликс

Растения - архитекторы, строители, механики

 

 

Как был создан Хрустальный дворец

Когда во второй половине прошлого века первые исключительно смелые инженерные сооружения из стекла, стали и бетона начали постепенно вытеснять постройки традиционных архитектурных стилей, то их появление ознаменовало глубокий переворот в зодческом искусстве. Успехи в строительной технике позволили создать новые, ранее неизвестные архитектурные формы и конструкции. Провозвестниками новомодных тенденций в зодчестве явились здания вокзала в Ливерпуле (1852 год), Парижская библиотека (1861 год) и Эйфелева башня, открытие которой было приурочено к Всемирной выставке 1889 года в Париже. Однако первым по-настоящему гениальным монументальным сооружением новой архитектуры был Хрустальный дворец в Лондоне, огромное здание павильонного типа, построенное целиком из стекла и металла.

Создатель Хрустального дворца Джозеф Пакстон, в молодости страстный любитель-садовод, принял участие в конкурсе на разработку проекта ярмарочного павильона для Всемирной выставки в Лондоне (1851 год). Честолюбие Пакстона, присущее ему чувство новизны, горячее желание затмить конкурентов — все побуждало его искать эпохальные решения. Ему виделось сооружение, которое, несмотря на свои гигантские размеры, не воспринималось бы как нечто тяжелое и неуклюжее, а напротив, казалось бы почти невесомым. Это должна была быть конструкция, которая позволила бы экономно расходовать строительные материалы и широко применять стекло, стекло и еще раз стекло. В то же время она должна была быть достаточно прочной, с тем чтобы полностью соответствовать требованиям, предъявляемым статикой сооружений.

В архитектуре не было аналогов для подобного проекта, ибо новое не имеет образцов для подражания. Правда, инженеры, строители мостов, уже в течение почти целого столетия на практике демонстрировали конструктивные преимущества и высокую несущую способность стальных конструкций. Сам Пакстон построил в 1837 году крупнейшую для того времени оранжерею из стекла и стали. Но подобные инженерные решения нельзя было безоговорочно переносить в область создания крупных сооружений павильонного типа. Если бы при возведении таких зданий стали использовать лишь тяжелые фермы, какие применяются при строительстве мостов, то здания получились бы чересчур массивными и громоздкими. Творению же Пакстона надлежало быть изящным и легким. И тут бывший садовод-любитель вспомнил о некоей растительной конструкции, которая сочетала в себе, с одной стороны, малые затраты строительных материалов, а с другой — высокую устойчивость и столь же высокую грузоподъемность. В молодости Пакстону часто приходилось любоваться гигантскими плавающими листьями Виктории регии. Ее округлые листья достигают в диаметре 2 метров (фото 6). Несмотря на незначительную толщину, они достаточно прочны, чтобы выдержать тяжесть взрослого человека. Своей столь высокой прочностью листья обязаны тому, что их нижняя поверхность усилена своего рода балками (фото 7). Из центра листа лучами, напоминающими спицы в колесах, расходятся во все стороны толстые, сильно выдающиеся жилки, которые по мере приближения к краю листа становятся все более и более плоскими. Из-за того, что жилки многократно, до пяти раз, ветвятся, расстояние между ними у кромки листа остается небольшим. В результате из одной крупной жилки в центре листа у его периферии образуется до 32 жилок, скрепленных друг с другом более плоскими поперечными связками.

Фото 6. Гигантские плавающие на поверхности воды листья Victoria regia с их высоко приподнятыми краями — прекрасный пример ботанической «лодки». Подъемная сила этих листьев необычайно велика. Юная девушка, изображенная на фотографии, весит почти 40 килограммов.

Фото 7. Совершенная конструкция «распорок» на нижней стороне листа Виктории регии обеспечивает ему очень высокую прочность.

Фото 8. Ажурную конструкцию своего Хрустального дворца архитектор Джозеф Пакстон заимствовал у листьев тропических водяных лилий.

Решение было найдено. Именно таким образом должен конструировать свой Хрустальный дворец и он, Джозеф Пакстон. Основу составят немногочисленные крупные силовые балки, от них отойдут менее крупные распорки, которые соединят между собой многочисленные тонкие связи. Более изящной конструкции он создать не мог (фото 8). Пятнадцатого июля 1850 года королевская комиссия телеграфом подтвердила выбор его проекта. Но если быть справедливым до конца, то истинным победителем в этом конкурсе надо считать не Джозефа Пакстона, а тропическую лилию. Заслуга Пакстона лишь в его наблюдательности, в том, что он сумел воплотить в стекле и металле строительные принципы, какие существуют в растительном мире уже очень много лет.

Когда техническая мысль приходит к тем же результатам, какие дает биологическая эволюция, или же когда в качестве образца она использует инженерные решения, найденные природой, мы можем быть полностью уверены в том, что созданная ею конструкция окажется целесообразной.

 

Гофрированный лист

Существуют две возможности, позволяющие придать тонкому листу со значительной площадью поверхности, а именно таковы листья многих тропических растений, дополнительную жесткость.

С одной из них мы уже познакомились. Это — образование ребер жесткости. Для водных растений, как Виктория регия, этот метод вполне пригоден. Здесь практически не имеет никакого значения то обстоятельство, что дополнительные конструкции в форме многочисленных распорок утяжеляют лист. Вода, на поверхности которой плавают листья гигантских лилий, хорошо выдерживает их вес.

Иное дело крупные и очень крупные листья наземных растений, и прежде всего тех, которые произрастают в тропических районах Земли с их частыми ураганными ветрами и сильными ливнями.

Длина листьев некоторых видов веерообразных пальм достигает 5—10 метров, в отдельных случаях — 15 метров при ширине 3—4 метра. Площадь поверхности таких листьев-гигантов колеблется от 15 до 60 квадратных метров. Само собой разумеется, что при столь огромных размерах сам лист должен быть предельно легким, с тем чтобы не создавать чрезмерной нагрузки на черешок. Черешок должен не только выдерживать вес листа-гиганта, но и суметь оказывать сопротивление всем воздействующим на него силам. На островах Малайского архипелага почти ежедневно во второй половине дня разражаются тропические ливни. Они сопровождаются ураганными ветрами, подвергающими листья пальм и других растений жесточайшим испытаниям на прочность. Одновременно с неба всего за несколько часов на землю низвергается колоссальное количество воды, какого не может дать даже знаменитый зальцбургский ливень, даже если бы он длился целый месяц. Поэтому крупные листья тропических растений, чтобы противостоять всем превратностям непогоды, должны быть, с одной стороны, исключительно легкими, с другой — в высшей степени прочными. Суметь конструктивно увязать такие характеристики, как легкость и прочность, — чрезвычайно сложная техническая проблема. Растениям удалось успешно решить ее, использовав принцип гофрирования. Хорошо известно, что жесткость на изгиб тонкого листа стали повышается, если сделать на нем ряд параллельных волнистых складок. Сколь значительным может быть при этом увеличение прочности, показывает простой пример. Возьмем лист машинописной бумаги и сложим его гармошкой по длине с таким расчетом, чтобы ширина каждой складки составляла один сантиметр. В итоге мы получим лист гофрированной бумаги. Если теперь лист обычной бумаги положить на две опоры, установленные по его краям, то он прогнется под собственной тяжестью (6 граммов). Этого не произойдет с гофрированным листом, даже если на него поместить значительный груз. На фото 9 такой лист опирается концами на две рюмки, отстоящие друга от друга на 23 сантиметра. В середину пролета поставлен наполненный вином бокал, вес которого равен 230 граммам. Бумага, сложенная гармошкой, выдерживает этот вес. Нагрузку продолжают увеличивать, и лишь когда она достигла 700 граммов, гофрированный лист бумаги прогнулся. Таким образом, соответствующее профилирование поверхности бумажного листа позволило увеличить его прочность, без установки промежуточной опоры, более чем в 100 раз.

Фото 9. Если сложить лист обыкновенной бумаги гармошкой, его прочность возрастет более чем в 100 раз!

Фото 10. Своей прочностью гигантские листья многих видов пальм обязаны все тому же принципу гофрирования «строительного материала». На снимке — лист южнокитайской ливистонии.

Фото 11. На снимке изображена свободнонесущая конструкция перекрытия, установленного над въездом в тоннель под Монбланом. По своей форме она напоминает гигантский лист пальмы.

Метод по-гениальному прост. Его с успехом использует природа, создав листья, имеющие в поперечном разрезе зигзагообразную форму (фото 10). Любопытно, что лист не становится менее прочным даже тогда, когда он оказывается, как это хорошо видно на снимке, надорванным по каждому второму сгибу. Частичное разрушение листовой пластинки ни в коей мере не отражается на его биологической функции, ибо оно «запланировано» природой. У многих видов растений лист, если только он не несет особой нагрузки, в процессе роста самопроизвольно, без какой-либо видимой причины надрывается. Еще в 1893 году такие листья были описаны профессором Г. Хаберландтом, ботаником, художником, исследователем тропической растительности и прекрасным натуралистом:

«Если бы кто-нибудь пожелал написать трактат о нерациональных творениях в царстве растений, тому, несомненно, показалось бы очень заманчивым рассказать о банановом дереве ( Musa sapientum ), чьи гигантские листья разрезаны дождем и ветром до серединки пластинки на многочисленные узкие полоски. Однако при более тщательном рассмотрении становится ясно, что пример выбран крайне неудачно. Листья, края которых никак не защищены от механических повреждений, легко надрываются; разрыв происходит параллельно вторичным жилкам листа вплоть до самой крупной срединной жилка. Раны листа заживают легко и быстро, а обвисшие, казалось бы вялые, сегменты продолжают нормально функционировать. Сильные ветры превращают чересчур крупные цельные листовые пластинки в лохматую бахрому. Это обстоятельство позволяет растению экономить „строительные“ материалы, иначе для того, чтобы предотвратить разрыв листьев большой площади, потребовалось бы применить мощные механические конструкции. Вместе с тем многократно разорванная листовая пластинка дает растению еще одно преимущество. Свободно висящие узкие сегменты листа жестко не закреплены, и это предохраняет их от повреждений сильными тропическими ливнями и защищает от палящих лучей высоко стоящего тропического солнца: на сегменты по сравнению с неповрежденной поверхностью лучи солнца падают под более острым углом. Итак, буквально „измочаленный“ ветрами и ливнями лист банана являет собой поучительный пример того, как в мире растений из, казалось бы, полностью нерациональных начал формируется нечто целесообразное. Это, далее, напоминание о том, что в области приспособления природе ничто так не чуждо, как ничем не оправданное, упорное сохранение одних и тех же, хотя бы и проверенных практикой схем».

Принцип гофрирования широко применяется в технике для повышения прочностных свойств конструкционных материалов. Этим исключительно простым путем добиваются повышения прочности многих вещей: кровли, стенок металлических гаражей, фюзеляжей самолетов, кузовов автомашин (для чего используется гофрированная листовая сталь), балконов (с этой целью их облицовывают гофрированными асбоцементными или полиэфирными плитами), картона, идущего на производство упаковки, и даже плиссированных бумажных юбок для рождественских карнавалов. Однако к мысли искусственно создавать в рукотворных структурах разрывы, подобные тем, какие наблюдаются у многих видов пальм (фото 10), инженеры пришли сравнительно поздно. Впервые эта идея была реализована в 1965 году при сооружении свободнонесущей конструкции защитного навеса при въезде в один из самых длинных и глубоких современных тоннелей — тоннель под Монбланом (фото 11).

 

«Арматурная сталь»

Одним из важнейших архитектурных элементов, применяемых с очень давних времен, является колонна. Известна она и в растительном мире. На протяжении более чем четырех тысяч лет архитекторы создают ее с однородной внутренней структурой. В то же время природа испокон веков выращивает колонны, которые в принципе сконструированы столь же рационально, как и те армированные сталью бетонные опоры, с которыми человек знаком на протяжении чуть более 100 лет. Бетон хорошо сопротивляется сжатию, но плохо переносит значительные растягивающие нагрузки, что обусловливает его повышенную восприимчивость к изгибающему напряжению. Вспомним наш опыт с листом гофрированной бумаги и положим бетонную плиту концами на две опоры. Как и в первом случае, нагрузим плиту. Какое-то непродолжительное время ее нижняя часть будет испытывать растяжение. Затем плита треснет, поскольку бетон неэластичен. Однако если бетон армировать сталью, которая устойчива к растягивающим нагрузкам, то вся конструкция обретет ту высокую прочность и долговечность, какие присущи, например, большепролетным автодорожным мостам. Разумеется, стальная арматура в железобетонной конструкции должна располагаться там, где возникают наибольшие напряжения на растяжение. В той бетонной плите, о которой шла речь выше, армировать следует ее нижнюю часть. Напротив, в случае свободнонесущего балкона арматура должна быть помещена в верхнем слое бетонной плиты, поскольку балкон, у которого один конец не закреплен, а свободен, прогибается в направлении, обратном тому, в котором изгибалась бетонная плита, положенная на две опоры.

А что же происходит с колонной? Поскольку она совершенно симметрична, напряжение на изгиб может возникать в любом направлении. Поэтому колонну нужно армировать таким образом, чтобы продольные стальные стержни располагались в ней по всему периметру, в непосредственной близости от поверхности и по всей высоте колонны. Для того чтобы до и в момент заливки бетоном прутковая основа не распалась, стержни связывают Друг с другом мягкой проволокой. В середине колонны, где напряжения не возникают, ставить арматуру нет необходимости.

На фото 12 показан идеальный арматурный каркас, или «короб», как его называют специалисты. Каркас уже построен, остается возвести опалубку и начать заливку бетоном.

Фото 12. Стальной арматурный каркас железобетонной опоры будущего автодорожного моста внутри полый. Он будет располагаться по периферии готовой опоры.

Читателю должно быть известно, что изобретатель железобетона не был ни инженером, ни архитектором. Им оказался французский садовник Ж. Монье. В 1867 году, пытаясь изготовить для своих цветов кадки из цементного раствора, он впервые применил каркас из металлической сетки. Но и он не «изобрел», а скорее «открыл» железобетон, ибо, будучи садовником, Ж. Монье не мог не видеть, каким образом растения усиливают свои несущие конструкции.

Без открытия Ж. Монье были бы просто немыслимы многие современные сооружения из бетона: мосты, небоскребы, телебашни, свободнонесущие конструкции зданий аэропорта и даже навесы автозаправочных станций.

Принцип армирования известен растениям на протяжении уже более 250 миллионов лет. У некоторых видов кактусов, в частности у цереусов, напоминающих своей формой гигантские канделябры, мягкие ткани после отмирания полностью разрушаются, открывая взору внутренний скелет растения (фото 13). Как и в железобетонной конструкции (фото 12), арматура кактуса располагается в непосредственной близости от поверхности ствола, вся же внутренняя часть тела растения свободна от каркаса. Иная, решетчатая форма расположения механических тканей характерна для другой разновидности кактусов — опунции (Opuntia bigelowii) (фото 14). Но и здесь эти ткани находятся близ поверхности, в самом же теле опунции арматурные элементы отсутствуют.

Фото 13. Арматурная структура отмершего канделябровидного кактуса похожа на стальной каркас железобетонной опоры автодорожного моста: она располагается вблизи поверхности «живой» колонны и внутри полая.

Фото 14. Решетчатый остов опунций внутри также пустой.

Но не только оптимальное расположение механических тканей обусловливает совершенство растительных конструкций. По прочности на разрыв и изгиб некоторые растения могут успешно конкурировать со стальной проволокой. Так, стебель злака, диаметром не более 3—5 миллиметров, а высотой до 1,5 метра, выдерживает вес тяжелого колоска и, не ломаясь, сгибается под напором ветра почти до земли, а затем эластично выпрямляется.

На плато Колорадо в североамериканском штате Аризона колония отмерших 15-метровой высоты кактусов-канделябров (разновидность цереусов) представляет собой весьма причудливую, фантастическую картину: словно гигантские кисточки для бритья, принадлежащие какому-то исполину, стоят они, скрашивая собой в высшей степени монотонный пейзаж пустыни. Как видно на фото 13, лишь в нижней части кактуса несущие структуры арматурного каркаса связаны между собой, выше в стволе они располагаются совершенно свободно. Как только мягкие ткани разрушатся, арматурные связки под напором ветра отходят друг от друга, распадаются, и растение приобретает сходство с расплетенным, «размочаленным» концом веревки или каната. Стволы некоторых лиан почти целиком сложены многочисленными механическими тяжами, которые при сгибании растения могут легко перемещаться относительно друг друга. Этим они напоминают тросы, сплетенные из большого числа стальных проволочек.

 

Вьющиеся и лазящие канаты

Чем экстремальнее условия обитания, тем гениальнее и разнообразнее приспособляемость растений к превратностям окружающей среды. Нередко приспособление заходит столь далеко, что внешняя среда начинает полностью определять форму растения. И тогда растения, относящиеся к различным семействам, но обитающие в одних и тех же суровых условиях, часто становятся внешне столь похожими друг на друга, что это может ввести в заблуждение в отношении истинности их родственных связей. Например, в пустынных областях для многих видов, и, прежде всего, для кактусов, наиболее рациональной оказалась форма шара. Однако не все то, что имеет шарообразную форму и утыкано шипами-колючками, — кактусы. Столь целесообразная конструкция, позволяющая выжить в тяжелейших условиях пустынь и полупустынь, возникла и в других систематических группах растений, не принадлежащих к семейству кактусовых (фото 71).

И наоборот, кактусы не всегда приобретают форму шара или колонны, усеянных колючками. Один из самых известных в мире кактусоведов Курт Баккеберг в своей книге «Чудесный мир кактусов» рассказывает о том, как могут выглядеть эти растения, помещенные в те или иные условия обитания. Вот что он пишет:

«Ночь на Кубе полна таинственных шорохов и звуков. Крупные летучие мыши, словно тени, бесшумно проносятся мимо нас в полной темноте, лишь светится пространство вокруг старых, умирающих деревьев, в котором мириады светлячков исполняют свой огненный танец. Непроглядная тропическая ночь с ее давящей духотой плотно окутала землю. Длительный путь, проделанный нами верхом, отнял у нас последние силы, и теперь мы, забравшись под москитные сетки, пытаемся хотя бы немножко отдохнуть. Конечная цель нашей экспедиции — край изумительно красивых зеленых кактусов группы рипсалиевых.

Но вот наступил час седлать лошадей. И хотя эту несложную операцию мы проделываем ранним утром, пот буквально заливает нам глаза. Вскоре наш небольшой караван вновь отправляется в путь.

После нескольких часов дороги зеленоватый мрак девственного леса начинает постепенно рассеиваться. Нашим глазам до самого горизонта открывается полная солнца местность, сплошь покрытая кустарником. Лишь кое-где над ним возвышаются вершины низкорослых деревьев, да иногда можно видеть одиночные мощные стволы, увенчанные громадными кронами.

Однако до чего странно выглядят ветви деревьев! На них как бы двойная вуаль: покачиваясь от дуновений теплого приземного ветерка, с веток почти до земли свисают длинные нити-стебли одного из видов бромелиевых (Tillandsia usneoides) , чем-то похожие на длинные, усыпанные серебром седины сказочные бороды. Между ними висит масса тонких, сплетающихся в клубки растений-веревок: это — место обитания колоний безлистных эпифитов, кактусов, родственных рипсалиевым. Точно спасаясь бегством от буйной наземной растительности, они стремятся забраться повыше в кроны деревьев, поближе к солнечному свету. Какое многообразие форм! Здесь тонкие нитевидные стебли либо громоздкие покрытые нежным пушком мясистые выросты, там — сильно разросшиеся побеги, напоминающие по виду ребристые цепочки. Сложное переплетение вьющихся растений самых причудливых форм: спиральных, зазубренных, витых, волнистых — кажется причудливым произведением искусства. В период цветения вся эта зеленая масса увешана изящными венками или изукрашена разноцветьем мельчайших крапинок. Позже растения надевают на себя пестрые ожерелья из ярко-белых, вишневых, золотисто-желтых и темно-голубых ягод».

Кактусы, которые приспособились жить в кронах лесных великанов и стебли которых, подобно лианам, свисают до самой земли, широко распространены в тропических лесах Центральной и Южной Америки. Некоторые из них обитают даже на Мадагаскаре и Цейлоне.

Лазящие кактусы — это ли не поразительный пример способности растений приспосабливаться к новым условиям жизни? Но он не единственный из многих сотен других. Обычными обитателями тропических джунглей являются вьющиеся и лазящие растения, а также растения-эпифиты, поселяющиеся в кронах древесных растений. Все они стремятся как можно скорее выбраться из вечных сумерек густого подлеска девственных тропических лесов. Они находят путь наверх, к свету, не создавая при этом мощных стволов и опорных систем, требующих огромных затрат строительного материала. Они спокойно карабкаются вверх, пользуясь «услугами» других растений, выступающих в роли опор. Для того чтобы успешно справиться с этой новой задачей, растения изобрели разнообразные и довольно совершенные в техническом отношении органы: цепляющиеся корни и черешки листьев с выростами на них, шипы на ветвях, цепляющиеся оси соцветия и т. д. В распоряжении растений имеются петли-арканы; специальные диски, с помощью которых одно растение своей нижней частью прикрепляется к другому; подвижные усиковидные крючочки, вначале впивающиеся в ствол растения-хозяина, а затем разбухающие в нем; разного рода сдавливающие приспособления и, наконец, весьма изощренный аппарат захватывания.

Выше мы приводили описание структуры листьев банана, данное Г. Хаберландтом. Не менее красочно описывает он и ротанг — одну из разновидностей лазящих пальм:

«Если сойти с пешеходной дорожки Ботанического сада в Богоре (остров Ява) и несколько углубиться в заросли, то уже через несколько шагов можно остаться без головного убора. Десятки разбросанных повсюду крючочков будут цепляться за наши одежды и многочисленные царапины на лице и руках станут призывать к большей осторожности и вниманию. Оглядевшись вокруг и присмотревшись к аппарату „хватания“ растений, в зоне действия которого мы оказались, мы обнаружили, что черешки грациозных и весьма сложных листьев ротанга имеют длинные, до одного-двух метров, исключительно гибкие и эластичные отростки, усеянные многочисленными твердыми и к тому же полуподвижными шипами, каждый из которых представляет собой согнутый и наклоненный назад крючок-зацепку. Любой лист пальмы снабжен таким наводящим страх крючкообразным шипом, не так-то просто расстающимся с тем, что зацепилось за него. Предел упругости „крюка“, состоящего почти целиком из прочных лубяных волокон, чрезвычайно высок. „На него можно подвесить целого быка“,— шутя заметил мой спутник, обратив внимание на мои попытки хотя бы приблизительно определить вес, который в состоянии выдержать подобная „леска“. У многих родственных ротангу пальм в такие орудия захвата превратились удлиненные оси соцветий. Ветер легко бросает гибкие соцветия из стороны в сторону до тех пор, пока на их пути не окажется ствол дерева-опоры. Многочисленные крючки-зацепки позволяют им быстро и надежно зацепиться за кору дерева.

Прочно закрепившись с помощью разросшихся листьев на нескольких стоящих рядом друг с другом деревьях (нередко дополнительными средствами удержания служат шипы в нижней части черешка листа или даже в листовом влагалище), совершенно гладкий, змееподобный ствол ротанга, подобно вьюну, взбирается вверх, продираясь сквозь многочисленные ветви, порой перекидываясь на кроны соседних деревьев, с тем чтобы, в конце концов, пробиться молодыми листьями к свету и подняться над кроной дерева-опоры. Дальше ему дороги нет: напрасно его побеги будут искать опору в воздухе. Стареющие листья постепенно отмирают, и пальма избавляется от них. Лишенные „якорей-крючков“, побеги пальмы под тяжестью собственного веса скользят вниз до тех пор, пока самые верхние листья своими шипами вновь не зацепятся за какую-либо подпорку. У подножия деревьев нередко можно видеть многочисленные побеги пальмы, свитые в петли, совершенно голые, без листьев, часто толщиной с руку взрослого человека. Создается впечатление, что побеги, словно змеи, расползаются по сторонам в поисках новой опоры. В Ботаническом саду Богора наибольшая длина ствола ротанга достигает 67 метров. В труднопроходимых дебрях влажных тропических лесов встречаются ротанги длиной 180 метров, а иногда даже и до 300 метров!»

Технически совершенен и едва ли нуждается в улучшении механизм лазания у многих видов тыквенных. Сочетание в единой комбинации специальных органов поиска и захвата, с одной стороны, и весьма хитроумной системы «осязания» и регулирования — с другой, представляет собой в высшей степени изящное решение довольно-таки непростой задачи. Созданные человеком техника автоматического управления промышленными процессами или оборудование для точного регулирования работы механизмов уступают растениям в своей эффективности. Растение при этом решает задачу тройственного характера. В первую очередь ему нужно найти подходящую опору, затем прочно закрепиться на ней и, наконец, позаботиться о том, чтобы механические нагрузки, создаваемые ветром либо движением самой опоры, не нарушали обретенной устойчивости. Реализация «технического задания» происходит в три этапа. Для того чтобы отыскать необходимую точку опоры, надо, прежде всего, провести систематическую и тщательную рекогносцировку окружающего пространства. Ее обеспечивает у растения специальный хватательный нитевидный орган — усик. Сразу же после появления усик растет строго вверх, но затем изгибается и, заняв горизонтальное положение, начинает, подобно часовой стрелке, совершать круговые движения (фото 15). У бенинказы (Benincasa hispida), фотографию которой вы только что видели, усики, совершающие поиск, имеют небольшую длину, всего 15 сантиметров. Но в тропических лесах можно встретить растения, у которых длина подобных структур достигает уже 1—2 метров. Каждый час меняя свое положение, этот рукообразный отросток в поисках места прикрепления буквально ощупывает пространство, ограниченное кругом диаметром 2—4 метра. Найдя подходящую опору, усик тотчас же при помощи вращательных движений обвивает ее и плотно к ней прижимается.

Фото 15. Пятнадцатисантиметровый усик бенинказы (Benincasa hispida) совершает медленные кругообразные движения в поисках опоры.

Фото 16. После того, как усик бенинказы (Benincasa hispida) найдет подходящее место для прикрепления, он начинает скручиваться, напоминая этим винтовую пружину. Так образуется прочное и одновременно очень эластичное соединение растения с опорой.

У вьющихся тропических растений, испытывающих механические нагрузки уже под действием своей собственной тяжести, позже происходит утолщение усика в месте его прикрепления к какой-либо поверхности. Это еще более упрочивает его контакт с ней. Закрепившись, усик, словно винтовая пружина, многократно завивается вокруг опоры в процессе дальнейшего роста (фото 16). Будучи жестко закреплен с двух сторон, усик закручивается в своей средней части, причем он может виться и направо и налево. В конечном счете образуется прочное, эластичное и к тому же подпружиненное соединение растения со своей опорой.

Но этим далеко не исчерпываются технические возможности усиков тыквенных растений. Ко всему прочему они обладают исключительным «чутьем» распознавать места, где можно или, напротив, нельзя надежно закрепиться. Эксперименты показали, что опора с очень гладкой поверхностью, например стеклянная палочка, оставляется растением без внимания. Оно не в состоянии здесь прочно и надолго удержаться. Усик предпочитает шершавую поверхность. Но если позволить усику на одно мгновение коснуться ее, а затем предмет убрать, то он вначале самопроизвольно реагирует на касание изгибом, но уже очень вскоре автоматически выпрямится и продолжит поиск. Феноменальный технический талант усиков в полной мере может оценить только специалист в области автоматического регулирования и следящих систем. Ему хорошо известно, что при столь незначительных издержках практически невозможно создать техническую систему, которая была бы столь же совершенна, как и системы, наблюдаемые у растений.

И еще: если усик не находит опоры, он свертывается и увядает — растение не нуждается в органе, который более не выполняет своей функции. Но те усики, которые смогли за что-то ухватиться, со временем утолщаются и в конце концов одревесневают. Старые, одревесневшие отростки с трудом можно оторвать от предмета-опоры. Они в высшей степени прочны, а благодаря пружинной связи с опорой одновременно и необычайно эластичны. Весь процесс развития усиков протекает прямо у нас на глазах, в течение каких-нибудь нескольких дней: усики вырастают и начинают искать точку опоры. Если они не выполнят своей «миссии», их судьба печальна: они быстро увядают, а растение забирает заключенные в них ценные вещества. Напротив, в те усики, которые сумели найти опору, растение инвестирует добавочный материал. Природа не допускает создания расточительных или ошибочных конструкций.

Под каким бы углом зрения мы ни рассматривали лианы, нас не может не поразить их оптимальная приспособленность к условиям среды обитания. Для того чтобы обрисовать с такой же подробностью, с какой велся наш рассказ о тыквенных, все поистине гениальные средства приспособления, позволяющие растениям выжить, потребовалось бы написать толстенный том. Практически на каждом шагу можно встретить знаки безраздельной победы растений над окружающей средой, победы, подготовленной умением организмов приноровиться к противоречивым условиям существования.

 

Свайные постройки в природе

Когда нескольким более 4 тысяч лет назад люди каменного века, обитавшие на берегах Цюрихского, Боденского, Женевского и Невшательского озер, на низких морских побережьях, в пойме реки По и в других столь же сырых местах, стали переходить к оседлой жизни, им пришлось столкнуться с проблемой сооружения жилищ в условиях постоянного или временного затопления.

О том, как люди эпохи неолита решали эту проблему, рассказывает древняя наскальная живопись, о том же повествуют и более поздние сочинения римского историка Геродота: они возводили свайные постройки.

В 1854 году чрезвычайно низкий уровень воды в швейцарских озерах обнажил хорошо сохранившиеся забитые в грунт деревянные опоры древних строений, что побудило историков продолжить активные поиски следов свайной культуры. Профессор X. Райнерт реконструировал одно из ранних береговых поселений, которое располагалось близ Ульдинга на берегу Боденского озера (фото 17).

Фото 17. Реконструированная свайная постройка бронзового века. Сваи обеспечивают прекрасную вентиляцию и предохраняют строение от гниения и затопления. Одновременно — это прочная опора на влажном грунте.

Фото 18. Свайным «фундаментом» пользуются мангровые растения. Здесь изображена система ходульных корней Pandanus utilis.

Тот факт, что найденные деревянные сваи пробыли под водой около четырех тысячелетий, свидетельствует прежде всего о долговечности подобных построек. Но наряду с прочностью свайный фундамент обладает еще двумя достоинствами. Во-первых, он обеспечивает свободную циркуляцию воздуха непосредственно под жилым помещением и предохраняет его тем самым от гниения. Во-вторых, сваи поднимают сооружение на такой уровень над водой или влажной почвой, который гарантирует их безопасность при высоких паводках. Свайная конструкция полностью оправдывает себя. И в наши дни ее широко используют в болотистых местностях тропической зоны или там, где существует угроза частых наводнений. Не без успеха этот метод строительства применяется также при ведении буровой разведки на нефть в шельфовых зонах.

В природе столь рациональный метод строительных работ известен на протяжении многих миллионов лет. Остановимся на одном примере. Ходульные корни у пандана и мангровых растений (фото 18), произрастающих в тропических болотах и в прибрежной полосе тропических морей и океанов, выполняют те же функции, что и сваи в свайных постройках. Однако в техническом отношении эти природные конструкции более совершенны, чем творения рук человеческих.

Для того чтобы забить сваи в землю, человек должен затратить массу усилий. В то же время ходульные корни мангровых растений внедряются в почву и прочно укореняются в ней без посторонней помощи. При этом «подготовительные работы» по укоренению всходов мангровых растений уже заранее «запрограммированы» в процессе созревания плодов и семян на материнском растении. Если бы семена мангровых просто падали в илистое мелководье затопляемой морем прибрежной полосы, то уже ближайший прилив неизбежно смыл бы их отсюда, поскольку очевидно, что за столь короткий промежуток времени семена не смогли бы укрепиться в почве. Вот почему с веток мангровых растений на землю падают не семена, а уже готовые проростки. Они имеют длину от 60 до 100 сантиметров и обладают солидным весом. Таким образом, мангровые — это своего рода «живородящие» растения. Еще до того, как проросток покинет материнское растение, он успевает обрести все те свойства, которые необходимы для успешного укоренения в илистой почве, периодически заливаемой приливной волной. Чем-то похожие по внешнему виду на колышки для крепления палаток, свешиваются с веток некоторых видов мангровых крученые, округлые проростки толщиной до 2 сантиметров. Нижний конец их заточен, как у копья. Несколько выше острия колышек имеет утолщение, что придает ему дополнительную тяжесть. Поэтому проросток всегда надает нижним концом вниз и, с силой ударившись о поверхность, довольно глубоко уходит в ил.

На дорогу юное растение получает солидный запас питательных веществ, который позволяет ему после столь неожиданно быстрого «высева» столь же неожиданно быстро начать расти. Уже через несколько часов проросток выпускает боковые корни и успевает за время одного отлива настолько прочно закрепиться в почве, что ему уже не грозит гибелью идущий вслед за отливом прилив.

Позднее растение развивает целую систему ходульных корней, так напоминающих свайные постройки, и с их помощью поднимается выше уровня приливной волны. Главный же корень, как правило, вскоре отмирает.

Как это часто случается в мире растений, корни-опоры во многом превосходят искусственно созданные человеком родственные конструкции и, прежде всего, тем, что обладают высокой аккомодационной способностью. В отличие от конструирования процесс эволюционного развития никогда не бывает завершенным из-за существования обратной связи во взаимоотношениях эволюционирующего объекта с окружающей средой. Одной-единственной мощной прибойной волны (к счастью, на Боденском озере их не бывает), по-видимому, было бы достаточно, чтобы серьезно повредить изображенные на фото 17 свайные постройки. Мангровые растении с их гораздо более тонкими опорами выдерживают натиск мощных прибойных волн: ходульные корни обладают высокой эластичностью, позволяющей им после спада волны занимать первоначальное положение. Это свойство они обретают в процессе своего роста. На первых этапах развития ходульные корни растут параллельно поверхности земли, то есть горизонтально, и лишь позднее начинают по дуге опускаться вниз. Ствол дерева как бы покоится на хорошо развитой системе эластичных подпорок высотой в 2—3 метра. Приняв на себя удар волны, ходульные корни прогибаются со стороны поправления удара и выпрямляются с противоположной стороны; при отступлении волны нагрузки действуют в обратном направлении.

 

Техника каркасного строительства

Тяжелым конструкциям, если к тому же они обладают сравнительно небольшой площадью основания, присущи свои собственные статические закономерности. По этой причине их следует либо выполнять массивными, либо они должны иметь каркас, состоящий из вертикальных и горизонтальных элементов и раскосов, с тем, чтобы все сооружение в целом приобрело необходимые жесткость и прочность. Именно по этому принципу в наши дни строятся стальные решетчатые опоры высоковольтных линий электропередачи.

На протяжении многих столетий каркасную (иначе, фахверковую) конструкцию широко применяли в жилых постройках. При этом стены здания не являлись несущими элементами. Они лишь оберегали жилище от воздействия плохой погоды. И тем не менее их делали в достаточной степени толстыми. В последние десятилетия метод каркасного строительства переживает свой «ренессанс». Правда, сегодня мы почти не строим из дерева и не применяем раскосы. И может быть, поэтому мы не употребляем больше выражения «фахверковая конструкция», а говорим о «каркасном строительстве». Но принцип остается прежним: прочная решетчатая конструкция обеспечивает строению необходимую устойчивость, а стены, как и прежде, лишь защищают от холода, дождя и ветра, хотя и стали более тонкими.

Но как бы то ни было, современные каркасные здания много экономичнее прежних массивных построек. Однако это не всегда влечет за собой снижение общей стоимости строительства. Нередко построить здание со стальным каркасом бывает дороже, чем возвести обычный кирпичный дом или даже дом из железобетонных конструкций. Но в длительной перспективе при этом достигается существенная экономия строительных материалов. Сегодня, когда мы в состоянии достаточно точно предсказать сроки полного истощения некоторых видов сырьевых ресурсов, именно это обстоятельство следует принимать во внимание в первую очередь. В течение многих столетий человек безрассудно расточал природные богатства. Не менее опрометчиво поступает он и сейчас. Повсюду, где недра земли богаты строительным песком и гравием, ежегодно вырубаются под корень многие десятки квадратных километров лесов, разрушается тонкий слой плодородной почвы, интенсивно разрабатываются песчано-гравийные карьеры (фото 19). Необходимо положить конец столь хищнической эксплуатации природных ресурсов. Иначе наши дети, хотя и будут жить в дешевых домах, но в окружении пустырей и нагромождений шахтных отвалов, которые нельзя будет вновь засадить лесом, ибо уничтожить плодородный слой земли — это значит одновременно уничтожить и те запасы воды, которые так необходимы для развития наземной растительности.

Фото 19. Еще год назад жители этого небольшого западногерманского городка могли гордиться тем, что их домики стоят на опушке леса. Ныне сразу же за заборами садовых участков взгляду открывается иная картина. Вырубаются большие площади лесов, с тем, чтобы уступить место активно разрабатываемым гравийным карьерам.

Сама природа всегда исключительно экономно расходует свои строительные материалы. И так было и 200 миллионов и более лет назад, когда о какой-либо нехватке того или иного ресурса не могло быть и речи. Деревья с их бесчисленными сучьями, ветками и веточками представляют собой подобие ювелирной филиграни, в которой заполнен большой объем пространства при минимальных затратах строительных материалов.

Итак, речь пойдет о каркасных конструкциях. Наиболее отчетливо они выражены у близких родственников обычных комнатных фикусов — у мощных старых экземпляров Ficus rumphii. Ветви этих гигантов растут не только «центробежно», но и «центростремительно». Они переплетаются и сращиваются между собой самым причудливым образом. Возникает крупноячеистая решетчатая конструкция, которая придает дереву необычайно высокую прочность, позволяющую растению иметь могучую крону (фото 20).

Фото 20. Каркасная конструкция обеспечивает необычайную прочность как тропическим фикусам (Ficus rumphii)...,

Фото 21. ...так и современным многоэтажным каркасным постройкам..,

Фото 22. ...и в виде ажурного переплетения плоду физалиса (тонкая прозрачная оболочка плода здесь удалена).

Исключительно умелыми строителями каркасов показали себя фикусы-удушители, которые, не будучи истинными паразитами, избрали другие деревья лишь местом своего обитания. Семена этих фикусов заносятся в кроны деревьев, где они прорастают и закрепляются с помощью цепляющихся корней. Затем растение образует несколько питающих корней, которые спускаются свободно вдоль ствола дерева-опоры, пока, наконец, не достигнут почвы, где и укореняются. От вертикальных питающих корней отрастают горизонтальные воздушные корни. Они не только крепко оплетают ствол «хозяина», но и многократно срастаются друг с другом. Так возникает прочный живой каркас, который душит дерево, давшее приют фикусу, и оно в конечном итоге погибает. Сетчатая конструкция, образованная корневой системой фикуса-душителя, настолько прочна, что выдерживает его собственный вес и тогда, когда ствол-опора полностью сгнивает. Решетчатая структура ствола этого фикуса очень напоминает арматурный каркас железобетонных опор (фото 12) с той лишь разницей, что здесь арматура не заполняется сплошь материалом.

Выше приводились немногие примеры, взятые в основном из жизни тропических растений, и, прежде всего, семейства фикусовых, лишь потому, что каркасные структуры наблюдаются здесь в масштабах, приближающихся к принятым у людей. Но этот принцип можно видеть у растений и в миниатюре: практически каждый лист двудольных растений имеет каркасную конструкцию. Жилки листа образуют правильную решетку, придающую нежной поверхности листа прочность, аналогичную той, которую в современных небоскребах обеспечивает сравнительно тонким наружным стенам и внутренним перегородкам стальная арматура (фото 21). Очень отчетливо решетчатая структура видна также в плоде физалиса (Physalis alkekengi) (фото 22).

 

Стебель травы и «сэндвич»

Крепление распорками, придание волнистой формы строительным материалам, применение свай и сооружение арматурных каркасов — все это методы строительства с использованием легких и облегченных конструкций.

Поскольку они имеют прямое отношение прежде всего к солидным по своим размерам объектам, будь то огромные здания, большие растения или какие-то крупные части растений, их присутствие всегда легко заметить. Однако аналогичные структуры известны и в растительном микромире.

Дитя XX века — конструкция типа «сэндвич», или просто «сэндвич». При этом я имею в виду не традиционный английский сэндвич, существующий не одно столетие, а многослойные элементы строительной конструкции, сочетающие в себе малый вес с высокой прочностью. Что это такое? Представим себе две тонкие и весьма прочные опорные плиты, между которыми находится толстый слой легкого, но восприимчивого к механическим нагрузкам конструкционного материала. В большинстве случаев в качестве последнего используют жесткие пенопласты или ячеистые плиты, которые, подобно содержимому английских сэндвичей, склеиваются, прессуются или свариваются с опорными панелями. Наряду с большой экономией исходных материалов и легкостью такие конструкции отличаются очень высокой прочностью.

Технические «сэндвичи» нашли широкое применение лишь благодаря развитию таких современных производств, как, например, индустрия пластических масс, легких сплавов и т. д. Что касается природы, то «сэндвич» — основной принцип организации структур, наблюдаемых у травянистых растений. Рассмотрим поперечный срез стебля злака (фото 23). Пространство между внешней и внутренней стенками трубки стебля заполнено крупноячеистой очень легкой сотовой структурой. При столь незначительном весе конструкции вряд ли можно создать более прочный «сэндвич». Правильные шестиугольники наилучшим образом противостоят воздействию внешних сил. Это отлично «понимают» пчелы и сооружают свои соты с ячейками именно такой формы.

Фото 23. Микроскоп раскрывает тайну трубчатого стебля травы. Сотовый «сэндвич» — основная причина необычайной прочности стебля, толщина стенок которого всего лишь 0,6 миллиметра. (Здесь изображен поперечный срез соломины ячменя.)

Фото 24. В самолетостроении небольшой вес и высокая прочность достигаются тем же способом, какой использует стебель травы, то есть с помощью конструкции типа «сэндвич».

Тот же принцип «сэндвича» был применен в авиационной промышленности при создании исключительно прочных и легких металлических оболочек-стенок с совершенно ровной поверхностью (фото 24). Большая заслуга в деле изучения «технических» возможностей растений и животных и использования их для нахождения принципиально новых инженерных решений принадлежит авиаконструктору Генриху Хертелю. Результаты очень точных математических исследований полета колибри и передвижения в воде быстроплавающих рыб он перенес в сферу решения аналогичных проблем при конструировании, например, несущих винтов вертолета или движительных устройств корабля. Хертель не раз показал, в какие тупики может завести ту или иную отрасль промышленности, и, прежде всего, самолетостроение, применение лишь традиционных методов конструирования без внесения в них элементов развития.

 

Сверхпрочные тканые и нетканые материалы

Прочность конструкционных материалов, изготовляемых из пластических масс (маты, панели, пленки), можно повысить путем армирования их стекловолокном. Исследователи многих стран приложили немало усилий, чтобы определить, все ли виды стеклянных волокон и способы скрепления их между собой в нити и в ткани разного плетения одинаково хороши для эффективного армирования и нет ли здесь каких-либо существенных различий. Если различия существуют, то как создать идеальную волокнистую структуру? Результат ошеломляет: стеклянные волокна тем прочнее, чем они тоньше. Но это вовсе не значит, что более тонкое волокно труднее рвется, просто при уменьшении диаметра волокна вдвое прочность на разрыв уменьшается в гораздо меньшей пропорции. Чтобы повысить долговечность пластмасс, целесообразнее применять стеклоткани, в которых тонких стекловолокон содержится больше, чем толстых. Но это лишь одно чрезвычайно важное открытие. Другое не менее важное знание состоит в том, что наиболее благоприятное соотношение длины и толщины стеклянной нити составляет 200:1. Большая длина уже не будет способствовать дальнейшему повышению прочности изделия, к тому же возникают технологические трудности, связанные с необходимостью равномерно распределить волокна в массе пластика. Лабораторные исследования привели к созданию промышленных стеклопластиков различных типов. Таков итог эволюционной разработки идеи, выдвинутой в противоположность приемам жесткого конструирования (фото 25).

Фото 25. Армирование с помощью нетканого стекловолокна повышает прочность листовых и панельных изделий из синтетических смол.

Фото 26. Использование растениями волокнистых материалов обеспечивает высокую прочность клеточной оболочка (на снимке — структура клеточной стенки у Valonia ventricosa).

Как же решили растения в процессе эволюционного развития проблему создания прочной клеточной оболочки? Ответ не будет неожиданным: эволюция дала такой же результат, как и разработка идеи стеклопластика. Структура стенки растительной клетки практически не отличается от структуры синтетических материалов, армированных стекловолокном (фото 26). Для нас, людей, этот факт служит доказательством правильности наших научных изысканий.

В тех случаях, когда прочность, создаваемая путем использования короткого неориентированного стекловолокна, оказывается недостаточной, промышленность вместо стекломатов применяет тканые стекловолокнистые материалы (фото 27). Вполне оправдывает себя на практике стеклянная ткань с простым, крестовым переплетением нитей, например ткань саржевого плетения. Аналогичная картина наблюдается и в природе: структуру, похожую на крестовое плетение, имеют клеточные оболочки тех тканей, которые подвергаются значительным механическим нагрузкам (фото 28).

Фото 27. Там, где недостаточно запаса прочности, создаваемого армированием пластмасс нетканым стекловолокном с неупорядоченной структурой волокон, применяются тканые стекломатериалы разных видов плетения.

Фото 28. Аналогичные структуры можно найти и в растительном мире. Перед нами клеточная стенка у Alstonia spathulata.