Растения - гениальные инженеры природы

Патури Феликс

Решение транспортных проблем

 

 

Через реки, озера, моря

Освоить Землю. Не почву, глину, песок, горные породы и так далее, а земной шар как таковой. Но известно, что около двух третей поверхности нашей планеты покрыто водой. В таком случае освоить Землю означает также освоить и водную стихию. Человек пытался делать это по-своему, растения — по-своему. Человеку «удалось» многое: он сумел загрязнить ручьи, реки и даже моря и океаны до размеров, угрожающих самой жизни, и стал причиной опасного снижения запасов растворенного и воде кислорода. Американские ученые полагают, что если и впредь реки Земли будут продолжать сбрасывать в Мировой океан все увеличивающиеся количества отбросов и ядовитых веществ, то может оказаться, что к концу столетия в его водах нельзя будет поймать ни одной рыбешки, что погибнут водоросли — главные поставщики кислорода в атмосферу Земли, и тогда наземная растительность окажется не в состоянии одна восполнять израсходованные количества кислорода. Вот такими методами человек пытается «осваивать» водную стихию! Напротив, растения не только приспособились к обитанию в воде, но научились при этом очищать и осветлять воду и даже обогащать ее кислородом. Человек нередко разрушает окружающую среду, с тем чтобы поставить ее себе на службу. Растения же всячески сохраняют и поддерживают ее ради той же цели.

Разумеется, было бы неразумно упрекать человека в том, что он не превратил водные просторы Земли в место своего обитания. Человек — не водное растение и не рыба, а технические возможности имеют свои рациональные пределы. К тому же нельзя быть полностью уверенным в том, что грядущие поколения из-за нехватки места на суше все же не будут вынуждены переместить свои жилые и производственные постройки под воду или по крайней мере освоить с той же целью поверхность морей и океанов.

Но сегодня эта вероятность всего лишь предполагается. Здесь же я намереваюсь сравнивать лишь сравнимое. В области использования водной поверхности — это в первую очередь проблемы судоходства. Человек бороздит просторы морей с доисторических времен. Люди каменного века уже умели строить суда, выдалбливая их из цельного ствола дерева, сплетая лодки и плоты из стеблей тростника или сшивая их из шкур убитых животных. За 1500 лет до нашей эры мужественные финикийцы отваживались выходить далеко в открытое море.

История гибели судов столь же стара, как и история самого судоходства. Огромные сокровища навсегда погрузились вместе с затонувшими кораблями в морскую пучину. За прошедшие столетия и тысячелетия океан поглотил целые флоты. Еще и сегодня не проходит недели, дня, чтобы в море не гибли суда, а вместе с ними не исчезали бы безвозвратно ценности, созданные трудом человеческих рук. Статистические службы крупных международных страховых компаний утверждают, что в среднем ежегодно гибнет от 300 тысяч до 500 тысяч регистровых тонн, приходящихся на суда водоизмещением более 500 брутторегистровых тонн. А сколько пропадает без вести судов и суденышек меньших размеров?

Много путешествуют по воде и растения: по ручьям, рекам, морям, океанам. Но сколь совершенные меры безопасности предусмотрела для них природа! Их «суда» практически непотопляемы, выдерживают серьезные столкновения с плывущими по воде предметами, умеют противостоять силе прибоя и вовремя уклониться от встречи с торчащими из воды утесами.

В принципе растения «освоили» ту же технику плавания, какую освоил и человек. Им знаком и челн, то есть полый и открытый сверху поплавок; и понтоны, тот же полый поплавок, только полностью закрытый (фото 36); и плот, держащийся на воде не за счет связанных вместе понтонов, а исключительно благодаря свойствам материала, из которого он выполнен.

Фото 36. Плавательные пузыри водяного гиацинта (Eichhornia crassipes), родина которого — тропики Южной Америки. Наглядная иллюстрация использования растением принципа понтона.

С примером использования растениями принципа челна читатель уже познакомился в первом разделе книги, где говорилось о Виктории регии. Но ее листья, которые легче воды, обладают также способностью держаться на воде, подобно плотам (молодые растения Виктории используют именно этот принцип). Высокие борта листьев превращают их одновременно и в превосходные «челны», которые очень прочны и в состоянии выдержать солидный груз. На фото 6 снят лист Виктории регии с сидящей на нем молодой девушкой. Ее вес составляет почти 40 килограммов, и тем не менее нет опасения, что лист потонет или что его может залить водой. Гигантский лист площадью около 3 квадратных метров погружается в воду всего на 2 сантиметра. Поэтому при обычных условиях лист Виктории регии практически не может затонуть.

Претендовать на высокий уровень обеспечения прочности может и один из самых лучших мореплавателей в мире растений — кокосовый орех. Если в технике обычно принято устанавливать пятикратный запас надежности, то в данном случае этот запас намного больше. Плод кокосовой пальмы — кокосовый орех имеет прекрасную оснастку, которая позволяет ему, используя течение, беспрепятственно пересекать бухты и заливы, моря и даже океаны в поисках нового места обитания. Этот вид пальмы предпочитает всем другим краям морские побережья и имеет склонность к дальним морским путешествиям. Кокосовый орех использует два принципа плавания: принцип плота и понтона. Твердая скорлупа ореха покрыта сверху толстой оболочкой из жесткого, эластичного и в то же время рыхлого волокнистого материала. Оболочка настолько легка, что в состоянии одна удержать кокосовый орех на плаву. С внешней стороны ее ограждает от возможных повреждений гладкая кожура. Если орех попадает в полосу прибоя и кожура разорвется из-за трения о песок и камни, оболочку защитят от истирания кокосовые волокна. Они необычайно крепки и поэтому являются излюбленным материалом для изготовления местными жителями красивых циновок. Но даже если долгое, порою продолжающееся многие месяцы морское путешествие в конце концов разрушит оболочку-плот, семя не погибнет. Остается еще крепкая скорлупа ореха, предохраняющая внутреннюю полость от проникновения в нее морской воды, и орех продолжит плавание уже в качестве понтона.

Таким образом, основная задача — уберечь находящееся внутри ореха мясистое семя от возможных повреждений на протяжении всей длительной и многотрудной одиссеи — решается наилучшим образом.

Однако этим не исчерпываются меры безопасности, без которых невозможна успешная «колонизация» заморских стран. Когда в конце долгого пути кокосовый орех наконец прибьется к берегу, он, разумеется, не найдет там себе «удобного гнездышка» с влажной плодородной почвой. Скорее всего, прибой занесет его в какую-нибудь соленую лагуну с песчаным дном. Но путешественнику это не страшно, ибо весь нужный ему провиант у него с собой. Питательная сочная мякоть плода содержит в больших количествах растительные жиры и белки, столь необходимые для развития будущего проростка. Не забыты и запасы пресной воды, без которой не могут обойтись молодые всходы, — это знаменитое кокосовое молоко.

У растений — обитателей морских побережий — можно наблюдать большое разнообразие семян и плодов, умеющих плавать, подобно кокосовому ореху. Все они по своим размерам достаточно велики и в то же время плавучи, что благоприятствует их распространению при помощи морских течений.

Весьма интенсивное «судоходство» поддерживают и растения внутренних водоемов, и среди них самые обыкновенные кувшинки. Их плавающие семена, доверившись волнам и течениям, гонимые ими, в конце концов пристают к новым берегам.

Но, расселяясь при помощи воды, сами растения остаются при этом пассивными. Они лишь используют морские течения и, не тратя собственной энергии, переносятся ими на большие расстояния. Но есть в мире растений и настоящие пловцы, которые передвигаются в воде достаточно активно. Движительные аппараты, которые они используют при этом, по своим характеристикам намного превосходят технические системы, применяемые в наши дни на водном транспорте. Совершаемые ими движения подобны движениям хвостового плавника рыбы. Активно плавают в воде бактерии, одноклеточные Жгутиковые, половые клетки многих водорослей, грибов, мхов, папоротников. Большинство из них перемещается посредством довольно сложных гребных движений, производимых жгутиками. На фото 37 показаны три различных типа движений, которые совершают жгутики одного и того же растительного микроорганизма. Возможность имитировать удар хвостового плавника рыбы или взмах крыла птицы представляет для конструктора весьма заманчивую цель. Орган передвижения у живых организмов, будь то жгутик, плавник рыбы или крыло птицы, в каждой отдельной фазе движения непостижимо верно адаптируется к складывающимся условиям обтекания внутри водного или воздушного потока. Существующие технические системы не в состоянии пока достичь этого даже в первом приближении.

Фото 37. Движения жгутиков одноклеточного растительного организма из рода Monas удивительно точно соответствуют господствующим условиям обтекания. Поэтому к.п.д. подобного весьма гибкого механизма движения приближается к 100 процентам. В технике добиться такого показателя практически невозможно. На схеме а и б — два вида возвращения жгутика в исходное положение;в, г и д — различные виды направляющего движения жгутика.

Создание гребных и авиационных винтов с переменным углом атаки лопастей — первая и весьма слабая попытка конструкторов создать гибкие движительные устройства. В этой области уже на протяжении многих лет проводит опыты профессор Хертель, который, работая в авиастроении, стремится в своих поисках брать за образец природу. В Высшей технической школе Берлина он испытывает модели судов, которые оснащены установками, в общих чертах копирующими движения хвостового плавника рыб или жгутика одноклеточных организмов. Первые полученные результаты сам Хертель характеризует как «поразительно хорошие». По его словам, коэффициент полезного действия этих пока еще довольно жестких конструкций достигает 50—60 процентов. Можно предполагать, что механизм, полностью имитирующий движение жгутика и несравненно более приспособленный к условиям обтекания, будет иметь к.п.д. почти 100 процентов. Следовательно, этот механизм практически без потерь станет использовать энергию движения по ее прямому назначению. Но сегодня во многих областях техники такого рода конструкция все еще продолжает оставаться недостижимой мечтой.

 

Мирные стрелки

Существует мнение, что лишь систематическая разработка средств разрушения якобы позволяет науке и технике добиваться крупных успехов. Но совершенно очевидно, что стимулировать таким путем технический прогресс чересчур дорого и опасно. К тому же это окольный путь. Согласно другому суждению, появление некоторых видов новой техники, используемых ныне в мирных целях, было бы вообще немыслимо, если бы они вначале не предназначались только для военных нужд, поскольку, мол, возможности их мирного применения выявляются значительно позднее. На это можно возразить, что последнее следует отнести на счет неумения человека правильно распознавать и конструктивно, гибко решать проблемы повседневной жизни. Любопытно, что растения также имеют в своем арсенале изобретенные когда-то людьми катапульты, рычажные метательные аппараты, пневматические ружья и прочие взрывные устройства, хотя они никогда и ни на кого не нападали, и что растения сами являются прекрасными баллистиками, хотя они никогда и ни на кого не сбрасывали бомб. Растения осуществили то, что иной человек сочтет за невозможное: они научились стрелять не воюя.

Из громадного числа хитроумных способов того, как стреляют растения, мы подробнее остановимся лишь на трех. Принцип действия пневматического ружья напоминает способ, каким плодовые коробочки некоторых видов сфагновых мхов разбрасывают свои споры. Почти зрелые коробочки этих растений лишь вдвое больше булавочной головки и имеют сферическую полую внутри форму. На последней стадии созревания эти крошечные образования сильно усыхают, примерно на одну четвертую своего первоначального размера, шаровидная форма полностью утрачивается, и коробочка трансформируется в миниатюрное подобие ружейного ствола, верхняя часть которого плотно прикрыта откидывающейся изнутри крышкой. Поскольку содержащийся в коробочке воздух в процессе ее усыхания не может выйти наружу, его давление возрастает, достигая в конечном счете около 4 атмосфер. Для сравнения скажем, что давление воздуха в покрышках легковых автомобилей вдвое меньше. Непосредственно за крышкой, словно заряд картечи в охотничьем патроне, располагаются споры мха. В самый критический момент сморщивания спороносной коробочки крышка отскакивает, а сжатый воздух, расширяясь, с силой выбрасывает наружу содержимое (споры). При этом можно услышать легкий шум, создаваемый выходящим под давлением воздухом, и визуально наблюдать движение опустевшей коробочки под воздействием силы отдачи. Микроскопические снарядики летят на 40 сантиметров вверх и, если коробочка наклонена, на расстояние более 2 метров в сторону. Для орудия, размеры которого едва ли превышают один миллиметр, это превосходный результат. Но здесь гораздо большее значение имеет высота, а не дальность стрельбы, поскольку спорам необходимо прежде всего покинуть зону приземного слоя воздуха, а обо всем остальном позаботится ветер. Именно поэтому стволы миниатюрных орудий направлены почти всегда вертикально вверх.

Широко распространенный в средиземноморских странах бешеный огурец, напротив, не может рассчитывать на помощь ветра. Поэтому он стреляет не легкими, как пыль, спорами, а семенами, которые крупнее и тяжелее, чем все только что описанное нами орудие. К тому же растение стреляет не вертикально вверх, а под наиболее благоприятным для дальней стрельбы углом возвышения, величина которого колеблется в пределах 50—55 градусов. Читатель, обладающий познаниями в области физики, вправе возразить, что, мол, наибольшей дальности полета снаряда можно достичь при угле возвышения 45 градусов. С математической точки зрения дело обстоит именно так, но бешеный огурец, ведя «огонь», должен учитывать помехи, создаваемые листьями, которые встают на пути его семян, если те летят по более плоской траектории. Угол «обстрела», несколько превышающий 50 градусов, позволяет успешно миновать эти препятствия.

Бешеный огурец стреляет по принципу работы пистолета-распылителя, который применяется для распыления красок при нанесении их на какую-либо поверхность. Сам плод формой и размерами напоминает продолговатую сливу и имеет очень прочные стенки. При отделении зрелого плода от плодоножки в месте отрыва образуется отверстие, через которое почти в то же мгновение выбрасывается смесь из клейкого сока и семян (фото 38). Это вызвано тем, что содержимое плода находится под высоким давлением (почти 6 атмосфер). К тому же стенки плода создают дополнительное давление в момент выстрела. Дальность стрельбы исключительно высока: расстояния, превышающие 12 метров, совсем не редкость. Скорость полета семян достигает почти 10 метров в секунду.

Фото 38. Момент отрыва зрелого плода бешеного огурца от плодоножки. Клейкая смесь из сока и семян «выстреливается» на расстояние 12 метров и более.

Совсем по-иному стреляет циклантера (Cyclanthera explodens), принадлежащая к семейству тыквенных. Ее плод размером 2—3 сантиметра состоит, подобно ракушке, из двух находящих друг на друга створок. Между ними зажат слегка изогнутый, эластично напряженный рычаг, один конец которого накрепко прирос к телу плода, а на другом, свободном, непрочно прикреплены семена, которым предстоит отправиться в дальний путь.

Вся конструкция находится в состоянии динамического напряжения под давлением в 14—16 атмосфер, что почти в 10 (!) раз превышает давление в автомобильных покрышках. При легком касании или небольшом сотрясении створки «ракушки» моментально распахиваются, рычаг выпрямляется и, подобно праще, посылает семена на расстояние до 3 метров.

Некоторые другие растения (например, виды дорстении) столь же успешно работают при более низких давлениях. Они расселяют свои семена, используя тот же принцип, который применяют наши дети, когда стреляют косточками вишен, зажимая их между большим и указательным пальцами. Дальность стрельбы подобных «отжимных» орудий равна 5 — 7 метрам.

 

Ветряные мельницы, парашюты и планеры

На обочине зеленой — одуванчик — славный воин, захватил он все вокруг: сад и рощу, поле, луг... Пока тихо, он — молчит, но лишь ветер налетит, шлет в воздушный океан парашютный свой десант. Смельчаки-парашютисты лезут в траву, воду, листья, а вчера я спас из супа двух отбившихся от группы.

Веселые четверостишия юмориста Хайнца Эрхардта приписывают безобиднейшему одуванчику довольно воинственные намерения. Вот он — типично человеческий подход к явлениям природы! Впрочем, в стихах содержится и доля истины. Во-первых, и в самом деле одуванчик посылает своих «парашютистов», только дождавшись хорошего ветра. Во-вторых, «отбившиеся от группы» десантники у одуванчика скорее правило, чем исключение. То и другое совершается вполне преднамеренно, ибо растение стремится заселить как можно больше новых земель. Его крохотные летающие плодики-парашютики необычайно легки и приспособлены для переноса их ветром (фото 39). Однако, созрев, они не отправляются тотчас же в полет с первым веянием ветерка. Они, подобно многим другим воздухоплавателям из мира растений, терпеливо ожидают того момента, когда потянет хороший ветер. И лишь тогда, когда будет достаточно сухо, когда станет в меру тепло и когда, наконец, воздух вокруг придет в движение и это будет не мгновенное легкое дуновение, а ровно и энергично дующий ветер, только тогда плоды-парашютисты рискнут покинуть отчий дом и отправиться в далекое воздушное путешествие. Для того чтобы не пропустить этот благоприятный момент, само растение регулярно «оценивает» состояние погоды: относительную влажность воздуха, температуру и силу ветра. Точно так же многие деревья, прибегающие к услугам воздушных потоков как к транспортному средству, выбрасывают десант из пыльцы или семян преимущественно в первые, как правило, ветреные послеполуденные часы. В этих случаях дальность полета бывает наибольшей.

Фото 39. Хорошо известный нам с детских лет одуванчик освоил планирующий полет при помощи парашюта. Два последних «воздухоплавателя» ожидают доброго ветра.

То, что плоды одуванчика столь удивительно похожи на миниатюрные парашюты, факт отнюдь не случайный. С одной стороны, ветер в состоянии далеко унести подобные легковесные создания. С другой, конструкция с висящим под парашютом плодом обеспечивает такую посадку, при которой плод опускается вертикально вниз, то есть находясь в наиболее благоприятном для прорастания положения. Удлиненная форма и крючочек-зацепка на его верхнем конце позволяют плоду сохранять это отвесное положение после его приземления в какую-нибудь расщелину в почве или в низкий и густой травяной покров,

Многие растения, в том числе и относящиеся к разным семействам, имеют, подобно одуванчику, своих «парашютистов». Независимо от своего систематического положения различные растения одинаковыми способами решают одну и ту же транспортную проблему.

Но, как известно, полеты на парашютах не исчерпывают всех возможностей аэронавигации. Подняться в воздух позволяют также воздушные шары и крылатые летательные аппараты, использующие подъемную силу крыла либо винта. Человек освоил все эти виды передвижения в воздушном пространстве. Быть может, в этой области он опередил растения? Отнюдь нет, ибо растениям уже давно знакомы перечисленные выше способы. К тому же растения успешно применяют и некоторые другие, весьма необычные способы полета, до сих пор еще не освоенные человеком.

В тропиках высоко в кронах дерева-опоры обитает один из видов лиан Zanonia macrocarpa. Ее красивые свободно свешивающиеся с ветвей ярко-зеленые гирлянды неизменно привлекают внимание путешественников. Крылатые семена лианы дают нам один из интереснейших примеров растительной аэронавтики (фото 40).

Фото 40. Одним из самых выдающихся покорителей воздушного пространства в мире растений является семя тропической лианы занонии, размах крыльев которого достигает 15 сантиметров. В начале нашего века пионеры воздухоплавания брали его за образец при создании первых летательных аппаратов.

«Между ветвями, высоко вверху, словно гигантские абажуры, висят коричневые плоды. Нужно немного подождать, пока порыв ветра не колыхнет их, и тогда вдруг перед глазами замелькают мириады крупных отливающих атласом „бабочек“. Крупный, похожий на тыкву плод диаметром 20—24 сантиметра внезапно лопается, и на внешнем конце образуется большое треугольное отверстие с разворачивающимися по его краям плодолистиками. Раскрывшись, плод становится похожим на колокол, внутри которого множество крылатых семян расположены плотными параллельными рядами. Плоское желто-коричневое семя очень напоминает крупное тыквенное семечко. Ширина каждого из обоих слетка изогнутых в профиле крыльев равняется 5 сантиметрам, а длина 7—8 сантиметрам, что позволяет этому летательному аппарату иметь размах крыльев 14—16 сантиметров. Ткань крылышек просвечивает, словно вуаль, блестит, как шелк-сырец или атлас, и эластична, как листочки слюды. И, хотя хрупкие крылышки легко надрываются по краям, их размеры и незначительный вес самого семени, едва достигающий одной трети грамма, дают возможность крыльчатке даже в поврежденном состоянии сохранять превосходные летные качества. Слегка покачиваясь, описывая в воздухе большие круги, семя медленно, словно против своей воли, опускается на землю. Но уже при следующем дуновении ветра оно нарядной легкокрылой бабочкой вновь продолжает свой неторопливый полет».

Столь поэтично описывает ботаник Хаберландт свою встречу с летающими семенами занонии. Впрочем, планирующий полет семян этого растения произвел сильное впечатление не только на ботаников.

В 1898 году, то есть спустя пять лет после появления в свет книги Хаберландта, пионеры воздухоплавания Игнац и Иго Этрихи приобрели два летательных аппарата: планер и орнитоптер. Их прежний владелец Отто Лилиенталь был первым, кто начиная с 1891 года регулярно совершал планирующие полеты дальностью в несколько сот метров на аппаратах собственной конструкции. В 1896 году 48 лет от роду он погиб во время очередного полета. Его трагическая гибель не могла не бросить тени на достигнутые им успехи. Тем не менее это не повернуло колесо истории воздухоплавания вспять. Уже два года спустя отец и сын Этрихи, фабриканты из Богемии, решили продолжить дело, начатое Отто Лилиенталем. Прежде всего следовало искать пути обеспечения максимальной надежности летательных аппаратов. И все же их первый планер (1899 год) не смог выдержать своего первого непродолжительного полета. Неудача не обескуражила конструкторов. Стало ясно, что необходимо искать, находить и тщательно изучать уже имеющиеся образцы надежности. В технике подобных примеров не существовало. На протяжении ряда лет Этрих изучал анатомию и законы движения летающих животных. Долгое время приемлемой моделью для подражания он считал летучих мышей, поскольку с технической стороны казалось нетрудным создать нечто похожее на их летательные перепонки. Однако невозможность достичь столь же высокой, как у летучих мышей, подвижности геометрии крыла привела к краху радужных надежд. Это вынудило Этриха для создания модели планера искать в природе образец, который имел бы жесткую, неподвижную конструкцию.

И тут ему на помощь пришел случай. Некто Альборн, преподаватель из Гамбурга, только что обнаружил исключительные летные качества семян Zanonia macrocarpa. В статье «Устойчивость летательных аппаратов» он указал на то громадное значение, которое летные характеристики семян занонии могли бы иметь для развития воздухоплавания. Статья попала в руки Этриха. Не откладывая дела в долгий ящик, он вместе со своим сотрудником Вельсом отправился в Гамбург, где и получил от автора статьи модель семени и подробное описание его свойств.

Летательный аппарат семян тропической лианы представляет собой планер типа «летающее крыло», то есть планер без хвостового оперения. В последующие годы (1904—1909) Этрих строил планеры только этого типа, которые в точности копировали свой оригинал (фото 41), Самый первый из них имел размах крыльев 6 метров и мог нести 25 килограммов полезной нагрузки (фото 42). Второй планер имел размах крыльев уже 10 метров, но, как и первый, представлял собой беспилотный летательный аппарат, который поднимал в воздух 70 килограммов полезного груза. Дальность его полета достигала 300 метров. В 1906 году Иго Этрих построил аналогичную модель, на которой совершил полет уже человек. В 1909 году на планере был установлен двигатель мощностью 40 лошадиных сил. Трудности полета аппарата с двигателем и с человеком на борту создавались неточностью его центровки, от чего и зависела устойчивость аппарата в полете. Что касается семени лианы, то здесь подобных проблем не возникает, поскольку центр тяжести семени не перемещается. Любое же изменение позы человека влечет за собой перемещение и центра тяжести. По этой причине на следующей модели планера Этриха был установлен стабилизатор, форму которого позаимствовали у голубя. В мае 1910 года новый летательный аппарат успешно поднялся в воздух. Его прототипом было летучее семя тропической лианы.

Фото 41. Конструкторы первых летательных аппаратов строили планеры типа «летающее крыло», которые в точности копировали устройство семени тропической лианы.

Фото 42. Первая модель планера имела размах крыльев, равный 6 метрам. Она была в состоянии поднимать в воздух 25 килограммов полезного груза и обладала, как и ее прообраз из мира растений, хорошими характеристиками планирующего полета.

Энциклопедический словарь дает следующее определение термина «воздухоплавание»: «Воздухоплавание — перемещение в воздушном пространстве при помощи летательных аппаратов. В соответствии с международным воздушным правом к числу последних относятся: 1) летательные аппараты, подъемная сила которых создается заключенным в оболочке газом, это, например, воздушные шары, дирижабли; 2) летательные аппараты, подъемную силу которых создают потоки воздуха, обтекающие крылья, например самолеты (в том числе планеры, вертолеты и ракетопланы), а также парашюты и воздушные змеи». С парашютами в мире растений мы уже познакомились. Известен нам и наиболее интересный по своей конструкции планер (в природе имеется целый ряд существенно различающихся между собой вариантов летательных аппаратов этого типа). С принципом реактивного движения, аналогичным тому, который находит применение в ракетной технике, мы встретились, когда вели рассказ о способах распространения плодов и семян. Я не останавливаюсь на нем более подробно, так как в ботанике он играет второстепенную роль: для растений его применение в широких масштабах было бы неэкономно. Растения предпочитают использовать силу ветра, и здесь они — мастера своего дела.

Для того чтобы наиболее эффективно подключиться к такому древнейшему источнику энергии, каким является ветер, требуется создать наибольшую несущую поверхность. В этом направлении и работала мысль человека-конструктора (планеры, сферические и змейковые аэростаты, дирижабли). Сходным путем шли в этой области и растения. Так, например, у многолетнего травянистого растения физалиса (Physalis alkekengi) после отцветания образуются вздутые, очень крупные кораллово-красные чашечки с плодом внутри них. Обтянутые тончайшей кожицей-пленкой, они становятся игрушкой ветра, как только оторвутся от материнского растения (фото 22). Но не все воздухоплаватели из царства растений разрастаются до столь больших размеров. Семя мака сомнительного имеет множество крошечных пустот, уменьшающих его удельный вес; в целом оно весит всего лишь одну тысячную долю грамма при диаметре 0,7 миллиметра. За счет же ячеистой структуры существенно увеличивается площадь доступной ветру внешней поверхности.

Для более крупных тел, у которых использование принципа воздушного шара означало бы чересчур высокую скорость их снижения, природа изобрела нечто иное. В интересах сокращения веса путешествующих по воле ветров природа вынуждена экономить конструкционные материалы. Уже одним применением тончайших оболочек, которыми одеваются все мелкие и мельчайшие ребра жесткости, достигается весьма заметный эффект, который удается еще более повысить с помощью весьма искусного приема. Летательные аппараты растений, построенные по типу «несущего винта», способны имитировать наличие дополнительной поверхности. На фото 43 изображен плод клена остролистого (Acer platanoides). Площадь его поверхности равна 2 квадратным сантиметрам. В сухом состоянии вес его едва достигает одной восьмой доли грамма. Оторвавшись от дерева, плодик, падая, начинает быстро кружиться из-за сопротивления воздушной среды и вследствие собственной эксцентрической конструкции. Крылатка вращается при этом вокруг своего центра тяжести, который располагается на одном из концов крыла, там, где находится семя. Удалось сфотографировать винтовую траекторию снижения крылатки клена (фото 44). Подобно тому, как ветер вращает крылья ветряной мельницы, так и встречный поток воздуха заставляет плодик описывать круговые движения. Эффект же тот, что и у вертолета, снижающегося с отключенным двигателем: вращающиеся под действием набегающего потока воздуха лопасти винта позволяют ему успешно планировать. Обращение крылатки вокруг центра тяжести создает видимость замкнутой круговой поверхности, на которую может воздействовать ветер и площадь которой для плодика, изображенного на фото 43, составляет около 20 квадратных сантиметров. Таким образом, почти десятикратного мнимого увеличения площади растение добивается самым простым путем. В результате скорость снижения крылатки уменьшается в восемь и более раз. Легкого порыва ветра, едва колышущего ветви дерева (сила ветра 4 балла), вполне достаточно, чтобы падающую с высоты 10 метров крылатку клена унести на расстояние до 100 метров. Заметим, что в данном расчете не учтено влияние воздушных завихрений или восходящих потоков воздуха, которые во много раз увеличивают дальность полета.

Фото 43. Покрытый белой краской плод-крылатка клёна позволяет хорошо различить ребра жесткости («нервюры»).

Фото 44. В полете крылатка клёна работает точно так же, как лопасти несущего винта вертолета, опускающегося с выключенным двигателем.

Не будь такого поистине гениального приспособления, плоды падали бы с дерева более или менее отвесно. В результате они прорастали бы в тени кроны материнского дерева, и молодые побеги вынуждены были бы вести между собой конкурентную борьбу за свет и жизненное пространство.

С конструктивной точки зрения роторные летательные аппараты растений, использующие принцип «несущего винта», имеют идеальную форму. Иного, впрочем, нельзя ожидать от объекта длительного эволюционного развития. Скорость снижения такого аппарата едва ли выше, чем у оптимально рассчитанного «несущего крыла», и всего в полтора раза больше, чем у полусферического парашюта с общей поверхностью свыше 40 квадратных сантиметров.

Фото 45 познакомит читателя с еще одним летательным аппаратом типа «несущий винт». Это плод ясеня обыкновенного (Fraxinus excelsior). Его «лопасть» односторонне не утяжелена, как это наблюдается у крылатки клена, а, подобно лопасти пропеллера самолета, несколько изогнута (фото 46). На фото 47 совмещены контуры плода ясеня и лопасти воздушного винта. Масштаб изображения плода увеличен. Отчетливо видно, что основные технические характеристики обеих конструкций полностью совпадают: отношение ширины к длине в том и другом случае практически одинаково 1:4,2; угол атаки во всех соответствующих точках обеих лопастей также один и тот же. И тем не менее по двум параметрам имеются существенные расхождения. Во-первых, самое широкое место у плода крылатки ясеня лежит намного дальше от центра вращения по сравнению с инженерной конструкцией. Во-вторых, «лопасть» крылатки, исключая первую треть ее длины (отсчет и здесь ведется от центра вращения), в пропорции значительно тоньше лопасти воздушного винта. Большая ширина лопасти там, где скорость ее вращения выше (то есть ближе к противоположному от точки вращения концу), обеспечивает увеличение площади поверхности, на которую воздействует встречный поток воздуха. В целом же более тонкая лопасть означает ощутимую экономию веса — факт, крайне важный при создании летательных аппаратов. Почему же в таком случае наши инженеры не воспользуются этими достоинствами летательной техники растений? Разумеется, они могут это сделать, но лишь принеся и жертву необходимую устойчивость конструкции, которая столь важна в авиации и которая не требуется растению.

Фото 45. Симметричная «лопасть» плода ясеня несколько изогнута, подобно лопасти воздушного винта самолета.

Фото 46. На снимке — лопасть воздушного винта спортивного самолета. Верхний и нижний концы ее несколько развернуты относительно оси винта.

Фото 47. На снимке справа совмещены в масштабе контуры крылатки ясеня (штриховая линия) и лопасти пропеллера крупного пассажирского самолета (сплошная линия). Слева даны контуры поперечного разреза лопастей, сделанные на различных участках общей их длины. Отчетливо видно, что основные технические характеристики обеих конструкций (отношение ширины к длине и величина угла атаки) совпадают.

Еще о двух типах летательных аппаратов я просто упомяну, не вдаваясь в детали. Это, во-первых, — дископланы, своего рода «летающие тарелки» в растительном мире. Они представляют собой исключительно легкие и хрупкие образования, по форме напоминающие диски, в центре которых находятся семена или плоды. Во-вторых, «воланопланы», названные так за их внешнее сходство с мячом для игры в бадминтон (заметим, что последние не столь уж и хорошие летуны). Волан в данном случае играет скорее роль парашюта, задача которого уменьшить скорость снижения семени и не допустить его повреждения при ударе о землю. Короче говоря, нет ни одного сколько-нибудь достойного внимания принципа воздушного полета, который не наблюдался бы в мире растений.

Если вы, читатель, приметесь рассуждать о возможностях использования силы ветра для целей передвижения, то, помимо своей воли, прежде всего вспомните о воздушных шарах, самолетах, парашютах, иными словами, о разного рода летательных аппаратах. Но ветер содействует не только тем, кто находится в воздухе. Он помогает также добиваться высоких скоростей, например, на буерах, поставленных на колеса. Там, где на побережье моря имеются обширные песчаные пляжи и где дуют благоприятные ветры, гонки на буерах становятся одним из видов спорта. Растения, обитающие в сходных условиях, прибегают к тому же способу передвижения. Но для них, гонимых ветром по песчаным дюнам, это уже не развлечение, а способ и путь к освоению новых пространств.

В Индии с началом сухого и продолжительного периода муссонных ветров дюнная растительность морских побережий начинает чахнуть. Растения вянут, засыхают и, наконец, полностью сбрасывают свои листья. И вот именно тогда голубовато-зеленая жестколистная трава Spinifex squarrosus отправляет своих «потомков» на поиски новых земель. У этой травы в течение года образуются крайне необычные, диковинные соплодия величиной с голову человека. Они представляют собой легкую, как перышко, конструкцию правильной шарообразной формы, в центре которой находится множество плотно прижатых друг к другу колосков. Проносящийся над побережьем муссон без труда срывает этот шар и гонит его по земле с большой скоростью. Дети охотно играют в этот упругий, хорошо скачущий от удара «мяч». «Парусные гонки» обеспечивают растению идеальные условия для расселения: катясь по земле, оно высевает свои семена на большой площади. Подобный метод передвижения наблюдается и у травянистых растений степных районов, где их называют «перекати-поле».

 

Подобно пыли, вздымаемой ветром

В первые дни мая 1934 года на острове Гельголанд появился некто Ремпе, молодой биолог, работавший над своей докторской диссертацией. Он намеревался найти на этом клочке земли, затерявшемся в просторах Северного моря, пыльцу сосны, ели, дуба и березы. На первый взгляд эта задача казалась столь же неразумной, как и желание обнаружить в Африке следы обитания там австралийского кенгуру, поскольку в те годы на Гельголанде не было ни сосен, ни елей, ни берез. Единственными деревьями на острове, распустившими ко времени приезда Ремпе свои немногочисленные цветки, были несколько ив и одинокий вяз, росший у подъема на холм. Самая ближайшая точка материка находилась на расстоянии 51 километра. До ближайшего острова (Шаргорн) было 44 километра пути. Но молодой ученый хорошо знал, чего он хочет. В северо-западной оконечности острова, на высоте 53 метров над уровнем моря, прямо на скалах, круто обрывающихся к воде, он установил двухметровый шест. На нем он укрепил предварительно смазанную вазелином и ничем не защищенную от дождя и ветра ролик-ловушку диаметром 14 миллиметров и длиной 45 миллиметров и принялся ждать. Каждые 12 часов Ремпе менял ловушку. И так повторилось семь раз. Результат превзошел все ожидания: по истечении трех с половиной суток на каждом квадратном сантиметре поверхности ловушки будущий доктор насчитал 955 пыльцевых зерен дуба. Это почти 10 зерен на 1 квадратный миллиметр! Такого количества было бы вполне достаточно для опыления дерева, сплошь усеянного распустившимися женскими цветками.

Откуда же взялась на Гельголанде пыльца? На этот вопрос возможен был один-единственный ответ: ее принес с собой ветер с материка, пролетев над морем по меньшей мере 60—70 километров.

На острове оказалась также пыльца всех перечислявшихся выше древесных пород, правда в гораздо меньшем количестве. Однако и ее хватило бы для опыления росших там деревьев. Ремпе писал позже: «За время эксперимента, продолжавшегося 84 часа, на Гельголанд через рамку-счетчик площадью 1 квадратный метр было занесено ветром около 27 миллионов пыльцевых зерен. Только за 12 дневных часов 4 мая 1934 года здесь можно было насчитать 15 миллионов пылинок».

Итак, растения в состоянии преодолевать по воздуху значительные расстояния. Для них не редкость полеты дальностью в несколько сотен километров. Пыльца березы, занесенная восходящими потоками воздуха на высоту 2000 метров, благодаря своему крайне малому весу и относительно большой поверхности будет снижаться настолько медленно, что уже чуть веющий ветерок, который лишь слегка колышет листья дерева и оставляет недвижимыми ветви (сила ветра 3 балла, скорость — 18 километров в час), сможет унести ее на расстояние 400 километров, прежде чем планирующая пылинка окончательно опуститься на землю. Чтобы преодолеть этот путь ей потребуется несколько дней. Но вряд ли можно надеяться на то, что все эти дни будет дуть ровный попутный ветер. В то же время в этих расчетах не приняты во внимание ни восходящие потоки воздуха, ни сильные ветры, которые способствуют переносу пыльцы на большие расстояния. При хорошей летной погоде нет ничего необычного в том, что пылинки совершают свое воздушное путешествие на высотах 6000 метров и более. А это уже почти крейсерская высота современных пассажирских воздушных лайнеров. С такой выси пыльца березы даже при абсолютно неподвижной атмосфере будет опускаться на землю целых 66 часов, настолько она миниатюрна и легка. Напомним, что крылатке клена, чтобы пролететь 6 километров, потребуется нескольким более двух часов. Если же говорить о парашютисте, который раскрыл свой парашют на высоте 6000 метров, то его снижение должно показаться нам поистине падением, ибо он коснется ногами земли уже через 20 минут.

Итак, исключительная способность пыльцы долгое время парить в воздухе очевидна. Причина же кроется в микроскопических размерах этого летательного аппарата. Пыльцевое зерно пихты имеет диаметр всего каких-нибудь 0,15 миллиметра, диаметр пылинки розового конского каштана и большинства видов ивовых в 10 раз меньше! Подлинными карликами являются также разносимые потоками воздуха пыльцевые зерна некоторых видов орхидей. Полмиллиона таких карликов весят всего один грамм. Но и они кажутся настоящими гигантами в сравнении со спорами грибов, диаметр которых составляет лишь 0,005 миллиметра. На один грамм веса приходится 20 миллиардов этих крошечных созданий. Скорость их снижения в атмосфере, разумеется, намного меньше, чем у пыльцы. В свободном падении с высоты 6000 метров и до земли, при абсолютно неподвижном воздухе, они пробудут в полете не менее полумесяца. Но кто скажет, сколько раз на этом пути их может подхватить и увлечь с собою восходящий поток воздуха?

И последнее. Ошибается тот, кто полагает, что кружащаяся в воздухе пыльца растений, парящие в поднебесье пыльцевые зерна и преодолевающие громадные расстояния споры грибов — это всего лишь «пыль», поднятая ветром в воздух. Правильнее будет представить себе, что за бесценный груз столь отважно и на столь далекие расстояния несет с собою каждая такая крупинка. А ведь речь идет не более и не менее как о весьма подробной наследственной программе развития и поведения для каждого конкретного растения, будь то гриб, орхидея или дерево. По воздуху, часто на больших высотах, невидимые для человека, транспортируются мириады микро-ЭВМ, которые по своим характеристикам во многом превосходят самые современные запоминающие устройства, созданные руками человека. В одной из последующих глав мы более подробно остановимся на этом вопросе.

Но нет особого труда в том, чтобы с помощью ветра разослать по белу свету крохотные пылинки. Поражает другое. Как растениям удается создать компьютеры, столь миниатюрные по размеру и в столь немыслимо громадных количествах? Каким образом эти конструкции с успехом выдерживают экстремальные условия транспортировки их неустойчивыми воздушными массами. Как вообще растения сумели освоить эту дешевую и «экономически» выгодную систему перевозок на дальние расстояния. Попутно заметим, что здесь природа поступает отнюдь не беспланово и не занимается расточительством конструкционных материалов.

Цветущие деревья не распыляют свою пыльцу равномерно в течение суток. Для опыления они предпочитают использовать первые послеполуденные часы, наиболее благоприятные для возникновения восходящих токов воздуха.

 

Пассажиры с билетом и «зайцы»

Я неоднократно обращал внимание читателя на то, что растения при решении той или иной задачи обычно используют все представляющиеся для этого возможности. Применительно к тем транспортным средствам, с помощью которых происходит их расселение, сказанное означает, что растения должны, помимо путешествий по воздуху и воде, попытаться в тех же целях прибегнуть к помощи летающих или бегающих животных. Что может быть для растения более заманчивым, чем полет по воздуху с птицей или странствие по земле с животными, ни одного дня не проводящими на одном и том же месте? Растения научились использовать открывающиеся здесь возможности и полностью приспособились к ним.

В зависимости от вида «транспортного средства» растения перевозятся либо за определенное вознаграждение, либо бесплатно. Читателю, наверно, хорошо известно, насколько трудно попасть незамеченным на самолет: если хочешь лететь, плати. Другое дело — наземный транспорт. Порой здесь не представляет особого труда прокатиться «зайцем». Нечто похожее можно наблюдать и у растений. Если воздушный полет оплачивают, то путешествие в компании с наземными животными они совершают «безбилетниками», прицепившись к их шерсти. Сладкая и вкусная мякоть, которую имеют почти все ягоды и косточковые плоды, — своего рода стимул и плата птицам за то, что они разносят семена растений. Птицы охотно поедают сочные плоды, но их желудки не в состоянии переварить прочные и в большинстве случаев одревесневшие оболочки семян, находящихся внутри плода. Поэтому птицы «ссаживают» своего пассажира где-то в пути, вдали от родных мест. Многие островные растения обеспечили расселение своего вида именно путем наведения воздушных мостов между клочками суши, затерянными в морских просторах.

Для многих эпифитов, которые не принадлежат к паразитным растениям и используют деревья в качестве опоры или места прикрепления (фото 89), распространение семян при помощи ветра и особенно птиц оказывается жизненной необходимостью. Иным способом их семена не смогли бы попасть в кроны дерева-хозяина, чтобы там прорасти.

Некоторые тропические растения разработали, по-видимому, самый изощренный способ пользования услугами, предоставляемыми птицами. Если бы в подобных «поступках» растений мы пожелали бы усмотреть какой-либо умысел, то нам следовало бы считать их мошенниками, которые не оплачивают счета. Вот что пишет по этому поводу Хаберландт:

«B тропиках птицы и крупные животные гораздо чаще, чем в средних широтах, участвуют в распространении семян растений. Способы приспособления растений в этом направлении весьма многочисленны и разнообразны, но нам известны лишь немногие из них. Здесь же мне хотелось бы обратить внимание на некоторые виды бобовых, чьи плоды в целях приманивания птиц выработали явно подражательную окраску тем ягодам, которые охотно поедаются пернатыми. Наиболее известен в этом отношении чёточник (Abrus precatorius). Очень приметны и сразу бросаются в глаза блестящие, броские по цвету, багрово-красные семена Adenanthera pavonina. Они резко выделяются на фоне глянцевой, палевого цвета внутренней стороны перекрученной по спирали и вывернутой наизнанку створки стручка. Но пожалуй, великолепнее всего выглядят крупные, длиной до 10—11 сантиметров и шириной до 6 сантиметров, стручки Pahudia javanica: громадные, иссиня черные бобовины с их ярко-красными кровельками живописно контрастируют с серебристыми изнутри створками стручка. Трудно представить себе более эффектное сочетание цветов. Это, по-видимому, и вводит в заблуждение и приманивает зерноядных птиц, которые либо заглатывают неперевариваемые семена целиком, либо по меньшей мере разбрасывают их по сторонам. Любопытно, что семена не опадают тотчас после раскрытия створок, а еще некоторое время продолжают прочно удерживаться на них».

Свои путешествия на животных семена, плоды и даже целиком отдельные части растений совершают, не прибегая к цветовым обманам, но также не оплачивая свой проезд. Они просто повисают на шкуре животных когда те, задевая растения, проходят мимо. Нередко животное песет их на себе многие километры, пока низкая растительная поросль не смахнет их на землю. Такой способ путешествий потребовал разработки специальных приспособлений, с помощью которых плоды и семена могли бы быстро, прочно и надежно прикрепиться к движущемуся предмету и столь же быстро отцепиться от него. Лишь совсем недавно человеку впервые удалось создать подобную систему подвижного соединения. Ее элементы легко соединяются между собой и так же легко разъединяются. Речь идет о специальной ленте-застежке, действующей по принципу репейника. С ее помощью, например, прикрепляются часто сменяемые чехлы, которыми покрывают верхнюю часть кресел в современных самолетах. Крупные универмаги рекомендуют использовать ее для навески легких гардин. Швейная промышленность в некоторых случаях заменяет ею хорошо всем известные застежки-молнии. В фотоделе она дает возможность без особого труда фиксировать в нужном месте специально изготовленные кармашки для хранения фотопринадлежностей. Перечислять области практического применения столь универсальной и простой системы сочленения можно до бесконечности. С тем, как устроена эта система, знакомит фото 48. В полоску ткани шириной до 15 миллиметров заделано большое число мелких пластмассовых крючочков, которые при соприкосновении с ворсистой тканью крепко цепляются за волоски, но при некотором усилии легко, не повреждая ткани, отцепляются. Мне неизвестно, подражал или нет изобретатель этого прежде незнакомого человеку и одновременно очень простого способа соединения образцам, созданным природой. Однако уже само название нового изделия — застежка-репейник—отсылает нас к растению, которое использует тот же самый принцип действия. Это — репейник (лопух). На фото 49 изображены его крючочки-зацепки. Хорошо заметно, что стерженьки крючочков растения существенно длиннее. Это объясняется тем, что материал, за который им предстоит ухватиться, намного прочнее и грубее, чем техническая ткань. А сами крючочки? Разве точность и чистота исполнения их, а тем самым и соответствие предназначаемой цели не выше, чем у творения рук человеческих?

Фото 48. Застежка-«репейник» представляет собой полоску ткани, в которую заделано большое число мелких пластмассовых крючочков. Изображение кусочка ткани дано в 7-кратном увеличении.

Фото 49. Плод растения, давшего название техническому изделию, при том же увеличении показывает сходную структуру. Правда, стерженьки его крючочков-зацепок существенно длиннее. Это объясняется тем, что материал, за который им приходится цепляться, гораздо грубее, чем ткань.

Фото 50. Размеры плода череды невелики, всего 8 миллиметров, но его концы оснащены четырьмя исключительно эффективными «острогами».

Соцветия лопуха приспособлены к тому, чтобы разноситься животными с шерстным покровом. Они легко, целиком, ничуть не повреждаясь, отделяются от растения, как только шипики плодиков зацепятся за шерсть пробегающего мимо животного. Позднее они стряхиваются на землю и распадаются на отдельные семянки. Нередко происходит так, что отрывается не целиком вся корзинка, а только часть ее. В результате плодики лопуха, находящиеся внутри корзинки, освобождаются и успевают во время бега животного рассеяться по огромной площади.

Такого рода «зайцев», которые, чтобы пуститься в путь, используют самые различные крючочки и зацепки, в мире растений имеется великое множество. Особый интерес представляет плод череды из рода Bidens, обладающий микроскопическими, размером в несколько миллиметров, «острожками». На фото 50 можно видеть в полную величину семянку Bidens cerulus, длина которой составляет всего 8 миллиметров. Размеры остей, усеянных крючочков, не превышают 3 миллиметров. Тот, кто хоть раз свел с ними знакомство, не скоро забудет эти небольшие и необычайно настырные создания. Лишь с превеликим трудом и с помощью очень жесткой щетки удается очистить от них одежду. На фото 51 дано сильно увеличенное изображение верхней части одной из четырех остей. Разве не напоминает оно конец намного более крупной в натуре костяной остроги, которую наши далекие предки из палеолита применяли при охоте на водных животных и рыб (фото 52).

Фото 51. Сильное увеличение показывает, насколько точно и чисто обработана поверхность крошечной, имеющей длину всего 3 миллиметра «остроги».

Фото 52. Костяные остроги наших далеких предков из палеолита очень напоминают растительную структуру, изображенную на предшествующей фотографии. Те и другие имеют одно и то же назначение — как можно надежнее зацепиться за какую-либо поверхность.

Примеры с застежкой-репейником или острогой свидетельствуют о том, что при разработке простых механических конструкций человеку трудно найти новые формы, которые не встречались бы в мире растений. Но сколько еще есть у природы секретов, которые нам предстоит раскрыть и применить на практике! Неужели и в самом деле должны были пройти тысячелетия, прежде чем человек смог овладеть нехитрыми приемами, «известными» репейнику, тому самому репейнику, с которым каждую осень играют миллионы ребятишек. Какие простые и эффектные решения стародавних проблем сразу открылись бы нашему взору, будь мы немного наблюдательнее. Если мы станем серьезнее, глубже, а главное, систематически задумываться над подобными вещами, то эти наши усилия окупятся сторицей.

Впрочем, не только семена и плоды распознали благоприятные возможности путешествий на животных. Нередко в далекий путь отправляются «зайцами» целые части растений. В первую очередь это можно видеть у растений степей, полупустынь и пустынь, «умеющих» долгое время обходиться без воды. В Америке обитают членистые кактусы эпифиллюмы, каждый из члеников которых усеян множеством крючочков, цепляющихся практически за все, что попадается на их пути. Даже прочная, отполированная до блеска кожа не представляется им чересчур гладкой. В периоды затянувшейся засухи одиночные членики или их группы особенно легко отделяются от растения и уносятся животными прочь. Может быть, они попадут туда, где не столь сухо и где у них появится реальнейший шанс пережить суровое время. В том месте, где животное стряхнет зацепившиеся за его кожу плоды на землю, последние тотчас же пускают корни и начинают быстро расти. «Прыгающий» кактус Мексики проявляет чудеса ловкости, стремясь отправиться в путешествие «зайцем». Даже если проходящее мимо животное непосредственно не заденет кактуса, тот все же оказывается на его шкуре, совершив предварительно настоящий прыжок (быть может, благодаря действию сил электростатического притяжения?). Поэт писал о растении: «Ты никогда не кидаешься на людей и животных». На эти слова один из крупнейших знатоков и давний собиратель кактусов Курт Беккеберг возразил: «Кактус Cylindropuntia tunicata всегда охотно „набрасывается“ на людей и животных». Это растение в шутку называют небритым, нахальным бродягой-скитальцем. Мы должны отдать ему должное как непревзойденному мастеру приспособления к условиям окружающей среды, владеющему техникой, которая дает ему возможность в суровой и враждебной жизни пустыни выстоять в, казалось бы, безнадежной борьбе за существование.

 

Монокультуры нежелательны

Независимо от того, о чем идет речь: о совершающих ли морские путешествия кокосовых орехах, о гонимых ли ветром по песчаным дюнам морских побережий соплодиях Spinifex или о степных растениях шарообразной формы «перекати-поле», во всех случаях мы имеем дело с ярко выраженным стремлением растения колонизовать новые территории и тем самым обеспечить как можно более широкое расселение своего вида. Сказанное в полной мере относится и к дальним полетам по воздуху пыльцы растений. На первый взгляд может показаться, что в последнем примере расселение практически исключено, поскольку анемофилия, или ветроопыление, предполагает наличие в конечном пункте воздушного путешествия, помимо пыльцы, хотя бы одного экземпляра цветущего растения того же вида. Однако посредством скрещивания с родственными видами, а позднее и возвратного скрещивания (бэккросса) возможно реальное увеличение ареала.

Но чего, собственно, добиваются растения, проявляя своего рода «миграционный инстинкт»? Разве для них не все равно, где им расти? Разве там, где цветет и плодоносит материнское растение, не самые подходящие условия для развития молодых всходов? Ведь по логике вещей вероятность нахождения благоприятной среды обитания должна уменьшаться по мере удаления семени, плода или целых частей растений от места произрастания их родителя. В принципе дело обстоит именно так. Однако два чрезвычайно важных обстоятельства объясняют стремление растений проникнуть на новые земли.

Во-первых, «мигрируя», растения колонизуют те регионы, где они могут выжить даже в таких условиях, в которых они на своей прежней родине, где существует конкурентная борьба за жизненное пространство, не имели бы никаких шансов на продолжение рода. Так, например, многие виды альпийской флоры не погибли в продолжительные по времени ледниковые периоды только потому, что их отдельные представители переселились в более теплые долины или даже в равнинные местности. Впрочем, не только наступление нового ледникового периода означало бы настоящую катастрофу и гибель большинства растений. Для многих видов реальной угрозой их дальнейшему существованию явилось бы уже устойчивое повышение среднегодовой температуры воздуха всего на полградуса при одновременном незначительном увеличении количества осадков. Например, колоннообразные кактусы погибли бы от чрезмерного поглощения ими влаги из воздуха даже при столь несущественном изменении климата. В условиях избытка влаги кактусы буквально переполняются водой, их оболочка не выдерживает и лопается.

Во-вторых, — и, возможно, это наиболее веский довод в пользу самого активного, самого интенсивного расселения — растения плохо растут в монокультурах. Если бы все семена прорастали и развивались в непосредственной близости от материнского растения, тогда на Земле существовало бы мною районов с бедной однообразной растительностью. В этом случае не происходило бы смешения растительных форм, которое является необходимой предпосылкой для образования естественного биоценоза и дальнейшего выживания всех составляющих ого видов. Вместо него появились бы монокультуры, которые в длительной перспективе оказываются нежизнеспособными. Эпидемические заболевания, массовое размножение насекомых-вредителей за короткий срок превратили бы такие однообразные ландшафты в пустыни, лишенные всякой растительности. Ветер и вода разрушили бы плодородный слой почвы, что весьма затруднило бы возобновление здесь жизни. В монокультурах не образуется достаточных запасов почвенной влаги, и это обстоятельство иногда обрекает на гибель целые лесные массивы. Ураганные ветры легче опустошают одновидовые древостой. Поваленные деревья — благодатная пища для жуков-короедов, которые, быстро размножившись, принимаются за уничтожение уцелевших деревьев. Но природа эффективно противостоит подобным катастрофам благодаря преобладанию в растительном покрове Земли смешанных насаждений, преимущества которых перед монокультурами вполне очевидны. Их, однако, не только не замечает, но полностью игнорирует человек, занимающийся лесным хозяйством.

Любое более или менее подробное описание острова Мадейра непременно содержит серьезные упреки в адрес первопоселенцев, почти полностью уничтоживших с помощью огня густые обширные леса острова. В книгах о странах, расположенных вдоль северных берегов Средиземного моря, можно встретить аналогичные обвинения, но уже относящиеся к «безответственным» европейцам, которые-де сплошь вырубили леса, когда-то покрывавшие среднегорья, и которым, несмотря на прилагаемые колоссальные усилия, никак не удается вновь облесить их.

Но где те, кто не только говорили бы в поучительном тоне о прошлом, но и принимали бы уже сегодня безотлагательные меры но предотвращению ущерба, который систематически наносится нашему будущему во всех странах умеренной зоны? Напротив, лесное хозяйство во все нарастающих масштабах культивирует то, чего всеми средствами стремится избежать природа: монокультуру. Ветровал, эпидемии, массовое засыхание деревьев на корню — все это явления, присущие монокультурным посадкам. Это уже не грозящая опасность, а реальная действительность. Тринадцатого ноября 1972 года сильный ветер всего за каких-нибудь несколько часов нанес громадный урон монокультурным лесным посадкам ФРГ. На площади 100 тысяч гектаров можно было насчитать около 40 миллионов вывернутых с корнем, поваленных и покореженных стволов, что в пересчете составило 18 миллионов кубических метров древесины. И все это — бросовый лес. На его перевозку потребовался бы железнодорожный состав длиной 9000 километров.

Чтобы как можно скорее убрать эти нагромождения валежника и бурелома, западногерманское правительство было вынуждено воспользоваться услугами лесорубов и рабочих лесного хозяйства, приглашенных из Тироля (Австрия) и даже из Канады. Действовать надо было без промедления, ибо гибнущие деревья могли стать причиной массового размножения жука-короеда и тем самым причиной гибели живых, уцелевших древостоев. Работа велась быстро и тщательно. И тем не менее даже спустя полгода многие площади все еще несли на себе следы происшедшей катастрофы. На фото 53 можно видеть состояние участка леса в Хохшпессарте в мае 1973 года. Но снимок запечатлел еще одну сторону ущерба, причиненного ураганными ветрами. Как видно, большая часть стволов покорежена и расщеплена, а это означает, что вся взращенная ценой долгого и тщательного ухода деловая древесина в течение немногим более часа была превращена ветром в обыкновенные дрова.

Можно ли было предвидеть и предотвратить эту катастрофу? Недалеко от тех мест, где пострадал лес в 1972 году (фото 53), еще в 1958 году сильные ветры «прорубили» широкую просеку в сосновом лесу. Что же сделали лица, ответственные за ведение лесного хозяйства? Вдоль поврежденных участков леса местные органы проложили своего рода учебную тропу и выставили на ней щит, на котором перечислялись все те меры, которые необходимо предпринимать во избежание повторения подобных случаев: «Защитные полосы закладывать перпендикулярно к основному направлению ветров. Осуществлять смешанные посадки глубоко- и мелкоукореняющихся деревьев (ель), а также тех культур, которые успешно противостоят сильным ветрам: европейской лиственницы, сосны, пихты, дуба, липы». Но сколь бы похвальным ни был факт установки этого щита, сегодня он сам представляет собой весьма мрачную иллюстрацию привычки человека забывать уроки прошлого. Позади щита, на том самом участке леса, которому уже однажды ветер нанес значительный урон, растет новая поросль, и опять же чистая монокультура. А еще дальше можно видеть немых, печальных свидетелей урагана 1972 года (фото 54). Следует ли ожидать, что и на этом пустыре вновь вырастят монокультуру, которая, быть может, через 20, 30 или 40 лет снова станет жертвой урагана? Перед лицом полного несоответствия между умными словами, написанными на щите, и молодым еловым лесом, растущим за ним, едва ли можно надеяться на что-либо иное, «ибо люди часто не делают того, о чем они осведомлены и что им следует делать».

Фото 53. Монокультуры мелкоукореняющихся пород деревьев не выдерживают натиска сильных ураганных ветров.

Фото 54. Прокомментировать этот снимок можно с помощью всего лишь одной фразы: «Ибо люди часто не делают того, о чем они осведомлены и что им следует делать». Специальная табличка в назидание потомству напоминает о том, что ущерба от ураганных ветров можно избежать, если высаживать разные породы деревьев. Однако непосредственно за щитом видны свежие и опять же монокультурные посадки ели.

Монокультуры — нездоровое явление. Природа всячески противится их возникновению. Мы же, люди, не перестаем противодействовать ей в этих ее устремлениях. Так стоит ли удивляться тому, что мы вынуждены вновь и вновь сетовать на последствия нашей же неосмотрительности и недальновидности?