Энергия и жизнь

Печуркин Николай Савельевич

Глава 5. Живая природа. Нехватка вещества и его циклы

 

 

5.1. Главная ячейка жизни — клетка

Определение жизни с позиций функционального подхода (метаболизм, размножение, расселение в пространстве) можно дать в следующей форме [Печуркин, 1982]: это открытая система, развивающаяся на основе матричного автокатализа под влиянием внешнего потока энергии, ограниченная по веществу и использующая циклы реакций.

Что такое матричный автокатализ, известно из школьного курса биологии, и мы не будем его описывать.

Энергетические траты живой клетки осуществляются через запасание энергии в молекуле аденозин-трифосфата (АТФ) и передачу ее соответствующим «работающим» молекулам (подробнее позже).

Полученную энергию клетка расходует на поддержание активности и многочисленные синтезы. Несмотря на сложность и большое разнообразие органических молекул и клеточных структур, все они строятся из малого набора простых соединений-предшественников, поступающих из внешней среды. Начало синтезов идет от двуоксида углерода, воды и минеральных солей. На первом этапе они превращаются в промежуточные продукты, из которых на втором этапе создаются основные строительные блоки и среди них аминокислоты и мононуклеотиды. На третьем этапе происходит сборка четырех типов макромолекул из строительных блоков. На следующих этапах образуются функциональные надмолекулярные комплексы, которые на высшем уровне организации объединяются в целостный организм — клетку как основную (и единственную) ячейку жизни.

Давая краткое описание работы клетки, подчеркнем важнейшую особенность жизни. «Поразительным открытием молекулярной биологии за последние три десятилетия» назвала обнаруженную всеобщность фундаментальных химических процессов в живой клетке известная исследовательница эволюции жизни, профессор Бостонского университета Л. Маргелис, [1983]. Действительно, функциональное единство самых существенных биологических феноменов не может не поражать. Так, генетический код, определяющий соотношение между последовательностями нуклеотидов и аминокислот в белке, универсален. По существу, он одинаков у всех изученных организмов — от древнейших бактерий до человека.

Связывание информационных РНК, комплементарных генной ДНК, с рибосомами при синтезе белков, по-видимому, тоже универсально. Наконец, энергетическая валюта — АТФ — также едина для представителей всех царств живого мира.

Остановимся еще на одной немаловажной особенности клеточной организации. Это — энергетическая экономичность генетического кода. Одним из ее проявлений может служить корреляция между распространенностью аминокислоты в белках и энергетической стоимостью ее синтеза. Из статистического анализа более 600 белков вирусов, микроорганизмов, растений и животных удалось достоверно установить, что чем выше затраты АТФ на биосинтез данной аминокислоты, тем реже входит она в состав белков. С этой точки зрения становится понятным явление незаменимости аминокислот, т. е. неспособности некоторых из них синтезироваться в организмах высших животных и человека. (Поэтому нам и требуется животный белок, содержащий эти аминокислоты, в свою очередь полученные от растений.) Оказывается, что энергетическая эффективность биосинтеза белка у организмов, не синтезирующих, а потребляющих извне эти аминокислоты, на целых 20 % выше, чем у организмов, которые синтезируют все необходимые аминокислоты. Кроме того, для синтеза незаменимых аминокислот требуется гораздо большее число ферментов, чем для синтеза заменимых, что также связано с дополнительными тратами вещества и энергии.

Рис. 5. Сравнение структур прокариотной (а) и эукариотной (б) клеток [Маргелис, 1983].

а: 1 — жгутик, 2 — клеточная мембрана, 3 — нуилеоид (генофор), 4 — малые рибосомы, 5 — нецеллюлозная стенка; б: 1 — пластида, 2 — ядерная мембрана, 3 — большие рибосомы, 4 — кинетохор, 5 — хромосома, 6 — эндоплазматический ретикулум, 7 — ундулиподия 9 + 2 (микротрубочки), 8 — кинетосома 9 + 0, 9 — клеточная мембрана, 10 — клеточная стенка, 11 — митохондрии.

Выделяют две главные таксономические единицы — надцарства: прокариоты и эукариоты.

Название «прокариоты» происходит от латинского слова pro (вперед, вместо) и греческого káryon (ядро) (рис. 5). Клетки прокариот не содержат ядра с мембраной, их кольцевая ДНК располагается в клетке свободно. Слабо выражено деление пространства клетки на отдельные части. Ограничено количество клеточных компонентов — органелл. Отсутствуют пластиды и митохондрии, отвечающие за энергетические превращения в более высокоорганизованных клетках. Клеточная стенка состоит из гетерополимерного вещества — муреина, которое не встречается у других групп организмов. Аппараты движения (жгутики) либо отсутствуют, либо относительно просто устроены. Наконец, размеры прокариотных клеток очень малы, в среднем единицы микрометров (мкм), что находится на грани разрешающей способности светового микроскопа.

Простота структуры у прокариот компенсируется высокой лабильностью и многообразием метаболических процессов. Способ питания может быть как автотрофным, так и гетеротрофным. Прокариоты питаются путем всасывания, или абсорбции, питательных веществ через клеточную стенку. Обычный тип размножения бесполый, простое деление пополам, однако обмен генетическим материалом иногда происходит при слиянии клеток за счет парасексуальных процессов.

Если прокариоты справедливо считаются первичными формами, возникшими в начале эволюционного пути, то развившиеся из них эукариоты представляют собой следующую ступень эволюции (см. рис. 5).

Клетки эукариот имеют выраженное ядро, окруженное мембраной. Генетический материал (ДНК) связан с белком в отдельных образованиях — хромосомах. Имеется целый набор органелл клетки: вакуоли, гранулы, нитевидные и палочковидные структуры. Энергетические процессы локализованы в митохондриях. Хорошо развита эндоплазматическая мембранная система, несущая множество пузырьков и цистерн. Мелкие нуклеопротеидные частицы — рибосомы, в которых производится синтез белков, либо связаны с мембранами эндоплазматической сети, либо взвешены в цитоплазме. Обычный тип размножения — через половой процесс с чередованием слияния ядра в зиготе и редукционного деления с образованием половых клеток — гамет. Возможны и неполовые способы размножения: простым делением, как у прокариот, почкованием, образованием спор и т. д., что наиболее часто встречается у микроорганизмов. Жгутики, или реснички, если они есть, имеют более сложное, чем у прокариот, строение. Питание эукариот может быть автотрофным и гетеротрофным: абсорбционным, как у прокариот, или голозойным, при котором пища заглатывается и перерабатывается внутри организма.

Размеры эукариотных клеток намного превышают размеры прокариотных, к примеру, митохондрии сопоставимы по величине с отдельными прокариотными клетками.

Подводя итог краткому описанию структуры и функции основной единицы живого — клетки, выделим «три кита» биологической организации: биохимическое единство, экономия материала и энергетическая эффективность.

 

5.2. Биологический взрыв и нехватка вещества

Одной из важных черт жизни является способность к рождению себе подобных, которые также могут размножаться, давая новые единицы, способные к размножению, и т. д. Это и есть известное явление автокатализа в физике, химии, при механических переносах: это — лавины, сели, реакции возгорания и взрыва (от простого пожара до атомного и термоядерного взрывов). Математически такому процессу соответствует уравнение экспоненты. Если размножение идет простым удвоением, типа бактериального деления пополам один родитель дает два потомка и т. д.), то формула для числа потомков Х имеет вид

Х = Х0 · 2t/g = X0 · 2n ,

где g — длительность одного поколения, т. е. время от рождения до следующего рождения; n — число поколений; Х 0 — начальное число размножающихся единиц (клеток, организмов).

Первое представление об экспоненте и ее стремительном росте во времени связывают со старинной восточной легендой о появлении шахмат. Правитель решил отблагодарить мудреца-изобретателя и предложил ему самому назначить награду, гарантируя исполнение. Мудрец попросил, казалось бы, немного: дать ему одно зернышко — на первый квадратик шахматной доски, два — на второй, четыре — на третий и т. д., удваивая каждый раз цифру (вплоть до 263, так как 20 = 1 на первой клетке). Правитель был вначале поражен скромностью просьбы, а потом... оказалось, что она невыполнима. Чтобы заполнить все клетки доски, потребовалось бы по весу около 100 млрд т зерна, т. е. многократный мировой урожай!

В живой природе такая способность к быстрому возрастанию, автокаталитическому размножению была не только отмечена около тысячи лет назад, но уже и сформулирована в начало XIII в. (1202 г.) в виде математической модели итальянским математиком Леонардо Пизанским (он был родом из той самой Пизы, где находится знаменитая падающая, но до сих пор не упавшая башня). Этот Леонардо более известен под именем Фибоначчи. Рассуждая о числе потомков, появляющихся в последовательных поколениях, от единственной пары кроликов, Леонардо получил растущую последовательность чисел: 1; 1; 2; 3; 5; 8; 13; 21 и т.д., где каждое последующее число — сумма двух предыдущих (это и есть знаменитый ряд чисел Фибоначчи). Таким образом, численность популяции очень резко возрастает с числом поколений; так, если к десятому поколению общее число потомков приблизится к 100 особям, то уже к шестнадцатому будет свыше 1500 особей.

Великий классификатор и систематик живой природы К. Линней в середине XVIII в. вычислил, что «если бы однолетнее растение производило только пару семян („Нет ни одного растения, которое было бы так неплодовито“, — отмечает Ч. Дарвин, который приводит эти вычисления Линнея), его потомки на следующий год снова по паре семян и т.д., то в 20 лет было бы миллион растений» (цит. по: [Дарвин, 1912, с. 56]).

Сам Ч. Дарвин находился под глубоким впечатлением от высокой скорости размножения живых организмов в геометрической прогрессии. «...Все органические вещества естественно возрастают в такой прогрессии, что, если бы они не погибали, земля вскоре была бы покрыта потомством одной единственной пары... Даже медленно размножающийся человек удваивает численность в 25 лет, и по этой пропорции менее чем в тысячу лет буквально не осталось бы для его потомства места, где можно было бы поставить ногу» [Там же, с. 56].

Наиболее впечатляющие цифры можно привести из кинетики роста микроорганизмов. Если взять среднюю массу бактерии равной 6 · 10—13 г и сравнить ее с массой Земли, равной 6 · 1027 г, то получим величину, в 1040 раз меньшую. Однако прирост биомассы бактерий в такое число раз при размножении простым делением можно получить примерно за 130 последовательных поколений (1040 = 2130). Если длительность поколения принять за 20 мин (это — средние данные для кишечной палочки на богатой среде), то получим необходимое время — несколько менее 2 сут. Таким образом, при хороших условиях размножения потомки одной бактериальной клетки способны в течение всего лишь 2 сут создать биомассу по величине, равную массе всей планеты, а по объему превышающую ее в пять раз с лишним. Поистине огромен потенциал живой приводы к размножению!

Мы уже говорили, что биохимическую основу, обеспечивающую высокие скорости роста и развития клеток, организмов, популяций, составляют хорошо сбалансированные системы реакций воспроизводства (автокатализа) макромолекул, прежде всего нуклеиновых кислот и ферментов. Например, эффективность иона железа как катализатора реакции разложения перекиси водорода возрастает на 9—10 порядков (т. е. в миллиарды раз), если он в составе молекулы порфирина входит в фермент — каталазу. Примерно такие же, т. е. в сотни миллионов и миллиарды раз большие по сравнению со скоростями реакций в неживой природе, скорости процессов, протекающих на ферментативной основе в живых системах.

В живых организмах «... скорость химической реакции почти всегда достигает предельного значения, которое определяется законами физики. Во всех случаях обнаруживают оптимальное соотношение тенденции „как можно быстрее“ и „настолько точно, как это нужно“»,— пишут в книге «Игра жизни» известный исследователь физико-химических основ эволюции лауреат Нобелевской премии Манфред Эйген и его соавтор Роберт Винклер [М. 1979, с. 96].

Однако возможности неограниченного размножения не могут реализоваться: и для популяционного уровня, и выше «взрывы» численностей имеют место гораздо реже, чем поддержание стационарных уровней, и бывают кратковременными. Живая природа упирается в ограничение косного окружения. «Напор жизни» (по выражению В. И. Вернадского), нехватка вещества загоняют ее в условия сильного лимитирования. (Не зря существует выражение: «Голод правит миром».)

Живая система использует все, что может взять у среды. Главная черта, характеризующая «хитрость» живой природы, ее «умение» справляться с лимитированием по веществу при постоянной накачке потоком солнечной энергии,— это повсеместное развитие циклов вещества. Рассмотрим некоторые примеры циклов вещества в живой природе — от молекулярных структур клетки до биосферы в целом — на разных уровнях ее организации.

 

5.3. Живые циклы: от электронного до биосферного

«„Wheels within wheels within wheels“ — циклы, включающие циклы, которые, в свою очередь, включают циклы,— так определяется биологический процесс в целом»,— пишут в книге «Наука о живом» известные биологи П. и Дж. Медавары [М., 1983]. Мы начнем описание этих циклов с самого основного — энергодающего.

Представим простую схему протонного (электронного) цикла (рис. 6). С помощью белков клетка способна использовать энергию света, перенося водородные ионы и, соответственно, электроны через мембрану. Таким способом создается разность потенциалов, электрохимический градиент. А он и будет движущей силой процесса, в данном случае химического. Его величина, порядка 0,25 В, вполне достаточна, чтобы компенсировать потери энергии при синтезе АТФ из АДФ. На каждую синтезированную молекулу АТФ, этой энергетической валюты, «расходуется» два Н+, т. е. два протона обратно возвращаются через мембрану. Так работает цикл. Энергетические ресурсы клетки могут быть разнообразными для авто- и гетеротрофов, в последнее время много работают с бактериородопсином как источником электрохимического потенциала. Этот светочувствительный белок наряду с широко известным хлорофиллом также можно назвать генератором электрического тока. У эукариотных гетеротрофных клеток энергодающим источником является глюкоза, а образование АТФ связано с мембранами митохондрий. Последние образно называют «электростанциями клетки». Теперь, в связи с пониманием протонного цикла, оказалось, что это вовсе не метафора. А в целом, по энергетике, автотрофную клетку можно назвать «фотоэлектрическим элементом», а гетеротрофную — «электрохимическим элементом» на основе циклов.

Рис. 6. Схема энергодающего протонного цикла.

Одной из главных особенностей живого является наличие специфических белковых катализаторов — ферментов. Работа этих катализаторов также циклична. Существовал специальный термин—«число оборота» фермента, т. е. сколько молекул субстрата «перерабатывает» одна молекула фермента в единицу времени. (Теперь эту характеристику называют молекулярной активностью). И этот показатель может быть очень большим, достигая, например, тысячи или даже миллиона в минуту. Миллион операций в минуту! — Такова «скорострельность» фермента, так работает эта сложная машина, циклически меняющая свою пространственную конформацию с огромной скоростью.

Основа деятельности зеленых растений — фотосинтез, и осуществляется он наверху, в листьях, содержащих хлорофилл. Газообмен с окружающей средой при фотосинтезе и дыхании растения осуществляется через межклеточные пространства — устьица, величина которых может регулироваться. А необходимая для фотосинтеза вода подается по специальной транспортной системе, которая называется ксилемой. Иногда эту систему тонких трубочек называют водопроводной. В воде растворены минеральные соли, необходимые для многочисленных биосинтезов всей органики растения. Все это поступает из корней под влиянием корневого давления и транспирации воды в листьях. Но корни тоже «хотят жить», а они гетеротрофны, и вот по другой системе трубочек — флоэме к ним устремляется источник энергии — образовавшийся в листьях сахар. Движущая физико-химическая природа этого потока, иногда очень быстрого (до 10 м/ч), не совсем ясна. Ксилема и флоэма и образуют циркуляционную систему растения, по которой проходит огромное количество вещества. Например, на фотосинтез используется 1–2% поступающей от корней воды, а остальное количество, в 50—100 раз больше, уходит при транспирации. Прямо или косвенно, через атмосферные процессы (осадки, конденсация, потоки) эта вода опять возвращается к корням. Так замыкается ее цикл.

Более совершенная и более замкнутая циркуляционная система имеется у животных, особенно у высших, включая человека. Здесь работают настоящие насосы, перекачивающие энергетическое топливо, кислород, питательные элементы и выводящие отходы метаболизма. Главным носителем является кровь. В легких она обогащается кислородом, который запасает в эритроцитах (дискообразных форменных элементах) и выделяет CO2 как результат окисления глюкозы в энергодающих процессах. В кишечнике она получает питательные вещества, образующиеся в результате метаболического усвоения, «переваривания» пищи. Самый главный мотор организма животного — это его сердце. Выталкивая через артерии обогащенную кислородом и питанием кровь, оно через систему ветвлений и капилляров доводит ее до каждой работающей клетки, где путем диффузии происходит обмен принесенных веществ на метаболические отходы. Венозная кровь, замыкающая цикл, прокачивается через выделительные системы, где освобождается от метаболитов и вновь приходит по малому кругу к легким. Удивительна работа сердца как насоса. За минуту у человека, находящегося в состоянии покоя, оно перекачивает около 5 л крови, а за час это составит уже по весу примерно 4–5 весов взрослого человека. За 70 лет жизни сердце человека в среднем перекачивает свыше 150 млн л крови, что более чем в 2 млн раз превышает вес человека. Такова работа этой циркуляционной системы, обеспечивающей жизнь организма.

Рассмотрим работу планетарного биотического круговорота. Очень конкретно и точно выразил свою точку зрения на «энергетический цикл жизни» один из выдающихся биохимиков нашего времени А. Сент-Дьёрдьи [1964, с. 30]: «Электроны сначала поднимаются на более высокий энергетический уровень фотонами (квантами света), а затем в живых системах падают на свой основной уровень, отдавая при этом свою избыточную энергию, которая приводит в действие машину жизни».

Рис. 7. Схема основного энергодающего цикла в биотическом круговороте. Параллельные стрелки показывают поток энергии Солнца.

Поток возбужденных, богатых энергией электронов, или электронный каскад, можно уподобить ряду водопадов: каждый водопад приводит в движение циклы вещества, вращает «турбины» ферментативных реакций, в ходе которых энергия электронов связывается в биологически полезной форме — в виде энергии макроэргических соединений, например всем известного аденозинтрифосфата, или АТФ, которую часто называют «энергетической валютой жизни».

И в данном случае, как и при описании других типов круговоротов, очевидна необходимость циклов вещества для длительного использования «вечного» потока энергии от Солнца.

Основой для расчета циклов главных элементов, прежде всего углерода, кислорода и водорода, составляющих 9/10 массы всех живых тел, может служить уравнение реакции фотосинтеза (или дыхания), представленное на рис.7. Для прямого протекания этой главной для жизни реакции необходима энергия солнечного света (Q = 120 ккал/моль), а обратная реакция — дыхание, связанная с потреблением глюкозы, осуществляется за счет использования энергии, запасенной в углеводах.

Для замыкания круговорота достаточно иметь всего два звена: фотосинтезирующее, автотрофное, которое производит органические соединения (растения суши и водоросли), и звено потребителей этой энергии, гетеротрофное (бактерии). Работа бактерий сопровождается освобождением элементов неорганического питания для последующего использования автотрофным звеном и т. д. (рис. 8).

Рис. 8. Схема биотического круговорота и потоков энергии через основные звенья упрощенной экосистемы.

Сплошные линии — потоки вещества; штриховые — передача энергии; стрелки, отходящие от круга, указывают потери энергии в каждом звене, т. е. отток энергии в космос.

Итак, растения-продуценты, фиксирующие и аккумулирующие солнечную энергию в своей биомассе, могут как потребляться травоядными животными, так и, отмирая, перерабатываться бактериями и грибами в запас неорганических биогенных элементов в почве и воде. При этом, казалось бы, что травоядные (хищники 1-го рода) создают новую биомассу. Но надо помнить, что для создания ее они расходуют примерно в 10 раз больше живого вещества с предыдущего уровня продуцентов. Соответственно и теряется энергия. Следующий трофический уровень — плотоядные (хищники 2-го рода), потребляя травоядных, также рассеивают энергию, но они уже могут использовать до 30% от потребленной энергии. Трофических уровней потребителей может быть несколько, обычно не более 4–6, из-за потерь энергии на каждом из них. Кстати, о человеке, с этой точки зрения, можно говорить как о хищнике 1-го, 2-го и последующих родов.

В конечном счете все органические молекулы расщепляются до неорганических соединений, пополняя запас биогенных элементов, но они опять расходуются на синтез фитомассы, самой большой массы органики на нашей планете.

Поскольку молекулы воды и углекислого газа находятся на низких энергетических уровнях, можно сказать, что цикл превращений идет от H2O до H2O через скачок с помощью квантов света до «горячих» протонов и электронов, или от CO2 до CO2 через образование энергетически богатых связей углерода, прежде всего глюкозы.

Общие показатели, определяющие масштабы и энергоемкость биотического круговорота на нашей планете, характеризуются следующими величинами [Ковда, 1975]: биомасса всех живых существ — 2,42·1012 т (по сухому весу), из них менее 1% приходится на долю мирового океана; первичная продукция (по сухому веществу) — 2,32·1011 т/год, из них 1,72·1011 т/год — продукция континентов; 0,6·1011 т/год — продукция Мирового океана. Из всей приходящей на поверхность Земли солнечной энергии на фотосинтез расходуется менее 0,1% (на суше несколько выше 0,1%, на поверхности Мирового океана примерно 0,04% из-за низкопродуктивных центральных частей, соответствующих пустыням суши).

Согласно А. А. Ничипоровичу [1967], годовая продукция фотосинтеза на Земле оценивается в 46·109 т органического углерода. По уравнению реакции фотосинтеза для производства этого количества углерода требуется, чтобы 170·109 т углекислоты связывались с 68·109 т воды, в результате чего усваиваются 44·1016 ккал ФАР и образуются 123·109 т кислорода и 115·109 т сухого органического вещества.

Не будем останавливаться на видовом разнообразии организмов (насчитывают около 2 млн видов растений и животных, не говоря уже о бактериях, среди которых известна едва ли не десятая часть видов). Отметим, что весь этот калейдоскоп, составляющий живую оболочку планеты — биосферу, занимает всю тропосферу и нижнюю часть стратосферы (до озонового экрана, примерно 30–40 км), а снизу ограничен отложениями на дне океанов и глубиной проникновения подземных вод вместе с микроорганизмами (до глубины порядка 10 км).

Скорость оборота всего живого вещества достигает примерно 10% в год, этот же показатель характерен и для продуцентов, точнее, зеленых растений суши, составляющих более 99% общей биомассы. Для деструкторов, едва ли достигающих 1 % от общей биомассы планеты и вынужденных перерабатывать всю массу органического вещества (в 10 раз превышающую их собственный вес), скорости оборота соответственно во много раз выше.

Рис. 9. Зависимость максимальной продуктивности от радиационного баланса для территории СССР.

Максимальная продуктивность растительного покрова определяется радиационным балансом (рис. 9). Естественно, что для более точного описания характеристик круговорота, в особенности его продуктивности и интенсивности, необходимо учитывать и конкретные условия развития экосистем данной зоны, и условия обеспеченности водой, и результирующие температуры, но для нас с вами в данном случае важно подчеркнуть, что условие обеспечения потоком энергии является первичным и наиважнейшим.

Давая краткий обзор характеристик глобального биотического круговорота, еще раз выделим общепланетарное значение живого вещества, которому придавал огромное значение В. И. Вернадский. Проиллюстрировать это можно с помощью несложных расчетов. По сухому веществу наличная биомасса Земли, имея вес 2,42·1012 т, составляет лишь 0,00001 % от веса земной коры (2·1019). Однако принимая 10 лет за период ее обновления и полагая, что продукция по объему мало изменилась за последний миллиард лет, можно получить суммарную величину массы вещества, использованного жизнью: 2,0·1012 × 10-1 × 1·109 т = 2·1020 т. А это уже в 10 раз превышает вес коры Земли. Мы можем утверждать, что атомы, составляющие наши тела, побывали и в древних бактериях, и в динозаврах, и в мамонтах. Положение о ведущей роли живого вещества в биосфере предложено назвать законом Вернадского. В одной из наиболее полных формулировок он гласит: «Миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция), или же она протекает в среде, геохимические особенности которой (кислород, углекислый газ, сероводород и т. д.) преимущественно обусловлены живым веществом, как тем, которое в настоящее время населяет данную биокосную систему, так и тем, которое действовало на Земле в течение всей геологической истории» [Перельман, 1977, с. 128].

Приведем некоторые показатели, характеризующие «экономию биосферы», или степень замыкания круговорота по одному из важнейших элементов — углероду за последний миллиард лет. Годичная продуктивность биосферы по углероду достигает 9·1010 т. За миллиард лет — 9·1019 т. Запасы мертвого органического вещества биогенного происхождения, выпавшего из круговорота в толщах осадочных пород, т. е. ушедших из цикла древних биосфер, составляют по различным оценкам от 4·1015 до 15·1015 т (в пересчете по углероду), за среднее можно принять цифру 9·1015 т. Отсюда можно оценить степень несовершенства круговорота как отношение потерянного углерода ко всему задействованному:

или в процентах: К = 0,01% (соответственно степень замкнутости определяется числом с четырьмя девятками — 99,99%). А это значит, что в среднем каждый атом углерода участвовал в цикле примерно десять тысяч (!) раз, прежде чем был потерян для жизни в захоронениях литосферы. Так удивительно экономна наша биосфера как единая функционирующая единица, так совершенен наш глобальный биотический круговорот. А ведь углерод не является основным лимитирующим биогенным элементом, поэтому цифры по азоту и фосфору должны быть еще более впечатляющими.

Более того, и те органические остатки, которые захоронены в седиментах литосферы, если говорить о геологическом времени, т. е. учитывать геохимические циклы, находятся там не вечно.

По образному выражению А. В. Лапо, автора интересной книги «Следы былых биосфер» [М., 1979, с. 111], консервация биогенных веществ в экосистемах — «явление сугубо временное, нечто вроде хранения багажа в автоматической камере на вокзале. Нормально жизнь забирает обратно свой багаж (то бить небиогенное вещество). Нужны какие-то исключительные обстоятельства, чтобы ячейка камеры осталась невскрытой, а багаж — замурованным в ней». Один из наиболее ярких примеров использования захоронений такого рода — это добыча полезных ископаемых человеком гораздо более высокими темпами, чем средние скорости их образования. Недаром так высока угроза быстрого истощения ископаемых ресурсов, а с ней и возможностей нашего «паразитирования» на несовершенствах и катастрофах былых биосфер.

Заканчивая рассмотрение особенностей жизни, мы можем еще раз подчеркнуть, что возмущающий поток энергии раскручивает циклы на всех уровнях организации живого вещества.

Тем самым жизнь не останавливается, не загоняется в тупик из-за нехватки вещества, а совершенствуется, ускоряя и умощняя свои циклы. «Хочешь жить — умей вертеться» — гласит лукавая пословица. Для оценки развития круговоротов (а не в приложении к одной популяции) она теряет большую часть метафоричности и довольно точно отражает одну из главных черт биотических циклов. Действительно, в физическом круговороте произошел отбор самого энергоемкого и подвижного носителя — молекулы воды. В биотическом круговороте и в структурах живого вещества она тоже играет одну из важнейших ролей.

Это удивительное вещество пронизывает всю биосферу. В атмосфере — это испарение и громадные переносы облаков по всей планете; в гидросфере — это аккумуляция тепла океаническими водами и глобальные течения; в литосфере — это теплоноситель отопительной системы, позволяющий выводить внутренние потоки тепла. И наконец, вода — основа всего живого. Все живое вещество состоит более чем на 2/3 из воды. Например, человек за свою жизнь в среднем прокачивает воды около 75 т (а это в тысячу раз больше его веса). А главное — вода участвует в энергодающих метаболических процессах, без которых жизнь невозможна.

Тесную взаимосвязь воды и жизни много раз отмечал В. И. Вернадский, говоря, что вода и жизнь генетически связаны, а известный немецкий физиолог прошлого века Эмиль Дюбуа-Реймон называл жизнь «одушевленной водой». Можно сделать некоторые выводы.

1. Поток энергии является источником движения в любой системе.

2. Под влиянием постоянной накачки энергией в любой ограниченной системе возникают циклические перемещения вещества вплоть до сложных динамических структур. Неравновесность является характерной чертой для систем с накачкой (а не с особым свойством жизни).

3. В системах с циклами имеет место отбор наиболее подвижного и энергоемкого носителя, примером которого на нашей планете может служить вода.

4. Ведущую роль в трансформации веществ на Земле играет биотический круговорот, составляющий основу жизни.