Энергия и жизнь

Печуркин Николай Савельевич

Глава 7. Первая ступень эволюции жизни на Земле: от химического к биотическому круговороту

 

 

7.1. Как в химических циклах могли образоваться протоклетки

Происхождение и развитие жизни на Земле через химическую эволюцию к преджизни, а затем — к современной жизни у эволюционистов-материалистов не вызывает сомнений. С широко известных работ А. И. Опарина и Д. Б. С. Холдейна, написанных в 20-х годах нашего века, началось изучение и научное обоснование этапов развития жизни. Субстратный подход занял главенствующее положение в изучении первых этапов химической и биологической эволюции. Однако огромное разнообразие возможных вариантов и даже путей образования структур в принципе не поддается описанию и приходится говорить либо о «закономерном появлении новой формы движения материи» (см. гл. 1), либо о «самоорганизации» (см. гл. 2).

Энергетический подход в сочетании с субстратным позволяет резко уменьшить рассматриваемое число возможных вариантов и путей развития, заменив традиционный вопрос: что было раньше — наследственная молекула или белок («яйцо или курица»), на другой: как выглядела первичная экосистема. Или точнее: как изменялось первичное вещество на поверхности нашей планеты с учетом непрерывной накачки энергией (главным образом от Солнца, но на определенных этапах формирования нашей планеты и изнутри ее). При этом первичные химические преобразования должны были носить циклический характер, так как потоки энергии прежде всего вызывают механические циклы перемещения газов и жидкостей. Мы знаем, что в ограниченной системе образуются циклические потоки, разнообразные по размерам и длительности (в гл. 4 мы их обсуждали). При этом вещество то попадает в зону действия потока энергии (УФ-лучи, разряды молний и прочее), то уносится из этой зоны в спокойные тихие места, где направление химической реакции может и должно смениться на противоположное. Особенно эффективной в организации наиболее быстрых, а следовательно, и наиболее активных циклов химических реакций и потоков вещества является смена дня и ночи. И уже здесь мы можем говорить от отборе, идущем в двух направлениях. Первое — уход тех «участников», которые выпадают из круговорота (в осадки, захоронения или улетают в космос). Так отбиралась, например, вода как активный участник физического круговорота. Второе направление, более интригующее, это отбор по ускорению химических реакций. Этот отбор связан с увеличением потоков вещества и его трансформацией через те реакции, в которых это вещество быстрее реагирует — в полном соответствии с известным принципом максимума скоростей реакций в открытых химических системах.

В данной главе мы и рассмотрим схематически этапы становления и развития жизни на нашей планете, опираясь на субстратный и подчеркивая энергетический аспект развития циклов от химических до биотического. При этом энергетическая оценка, определяя направление развития (т. е. ответ на вопрос: «куда» шло развитие), позволяет несколько снизить остроту вопроса: «кто» конкретно развивался.

Если оценивать возраст Земли в 4,6 млрд лет, что общепринято, и учесть, что о первом миллиарде лет почти ничего не известно (нет геологических свидетельств), то уже практически в первых сохранившихся отложениях осадочных пород обнаруживаются микроокаменелости, напоминающие бактерии. По крайней мере разрыв не превышает 0,3 млрд лет. Отсюда понятна и точка зрения тех исследователей, которые полагают, что жизнь была занесена на нашу планету извне. Однако прибегать к теории панспермии, да еще направленной, нет особой необходимости, так как большинство этапов абиогенного синтеза в настоящее время имеют естественно-научное объяснение, а целый ряд их может быть воспроизведен экспериментально.

Сама проблема происхождения жизни может быть разбита на пять отдельных вопросов: 1) образование планеты с атмосферой и гидросферой, где имеется «сырье» для возникновения жизни; 2) синтез биологических мономеров, исходных кирпичиков жизни, например аминокислот, Сахаров и органических оснований; 3) синтез биологических полимеров типа белковых и нуклеиновокислотных цепей; 4) вычленение отдельных частиц типа капель бульона по Холдейну, микросфер по Фоксу, коацерватов по Опарину, их превращение в пробионты с собственным химизмом; 5) возникновение репродуктивного аппарата, передающего дочерним клеткам химические и метаболические потенции родителей. Кратко это формулируется как проблемы исходного сырья, образования мономеров, полимеров, изоляции и репродукции.

Чтобы не остаться в рамках только субстратного подхода к изучению жизни, мы должны обратить внимание на «движущие силы» химической эволюции, а именно на источники энергии для химических синтезов в примитивной атмосфере Земли. И еще раз вспомним о вызываемых ими циклах реакций: синтеза — ре-синтеза, образования — разрушения. Каковы же были эти источники энергии? Основным источником, как и теперь, было Солнце, спектральный состав излучения которого не изменился. Однако свет проходил через атмосферу иного состава. Кислорода, который имеет биогенное происхождение, не было, а следовательно, не было и озонового экрана, который поглощает теперь почти все коротковолновое ультрафиолетовое излучение. Тогда большая часть этого высокоэнергетического излучения достигала земной поверхности. Следовательно, большие количества активной фотохимической энергии были доступны для взаимодействия с веществом. Может быть, с учетом этого высокая скорость химической эволюции и не покажется столь удивительной. Кроме того, возможно, что и электрические разряды были более мощными, так как для первобытной земной поверхности была характерна высокая вулканическая активность. Жар лавовых потоков, сильные ливни создавали самые разнообразные условия для протекания химических реакций. Например, выпадение вулканического пепла могло служить в локальных водоемах хорошим временным экраном от разящих УФ-лучей.

К настоящему времени проведено множество модельных экспериментов по химической эволюции. Было обнаружено, что при воздействии разных видов энергии на газообразный углерод, азот, воду, водород, входящие в состав примитивной атмосферы, вначале образуются реакционноспособные промежуточные продукты. А они затем дают множество биологических или близких к биологическим мономеров и некоторые полимеры. Как подчеркивает К. Фолсом, автор книги «Происхождение жизни» [М., 1982], для суждения о процессах на примитивной Земле необходимо рассматривать не отдельно взятый эксперимент, а всю их совокупность. Первые циклы могли иметь такую структуру:

Направление реакций определялось притоком энергии в зависимости от места и времени (например, времени суток). Можно считать, что проблема синтеза мономеров не заключает в себе каких-либо фундаментальных трудностей или трудностей философского характера.

При синтезе полимеров необходимы одновременно приток энергии и отщепление воды. Как и при синтезе мономеров, проблема небиологического синтеза полимеров не имеет принципиальных трудностей для понимания, хотя некоторые затруднения здесь имеются (к примеру, для конденсации лучше всего подходят безводные условия, в которых очень сложно представить ход эволюции живых систем).

Следующий этап химической эволюции — развитие фазово-обособленных систем. И здесь модельные эксперименты дают нам большое разнообразие возможных вариантов. Это — коацерватные капли Бунгенберг-де-Йонга и Опарина, пузырьки Голдейкра, микросферы Фокса и т. д. Отметим очень важное свойство фазовой обособленности или наличия границ в замкнутой системе. Полимеры, возникающие в растворах, не могут достичь высоких концентраций, в частности, из-за протекания обратных реакций. А полимеризация в ограниченном, выделенном объеме снижает в нем концентрацию мономеров и, соответственно, понижает осмотическое давление. Такое снижение приводит к перекачке мономеров из окружающей среды. И таким образом пробионты способны «высасывать» органику из первичного бульона, а значит, расти и почковаться или делиться. По образному выражению профессора Б. М. Медникова, [1980, с. 425], «не жизнь породила клетку, а клетка возникла раньше самой жизни».

Действительно, можно выделить ряд свойств пробионтов, чтобы они могли стать прародителями первичных живых клеток: способность к обмену с окружающей средой (проницаемая мембрана); способность к росту, увеличению объема; способность к делению и почкованию. Особого внимания заслуживает способность пробионтов к первичному метаболизму, т. е. к протеканию специфических синтетических и биохимических реакций. Это приводит к тому, что локальные условия в них сильно отличаются от условий внешней среды. Например, коацерваты Опарина, состоящие из полинуклеотида и белка, при добавлении полинуклеотид-фосфорилазы в присутствии АДФ способны синтезировать полинуклеотид-полиадениловую кислоту. При этом капли растут в размере и способны к механическому разделению.

В экспериментах Фокса в результате нагрева смеси аминокислот, с последующим охлаждением и переносом в воду, образовывались протеиноподобные микросферы. Они также характеризовались определенной каталитической активностью и были способны к почкованию или делению, как и большинство бактерий.

В модели Бернала полимеры сорбировались на глинистых минералах, и предполагалось, что далее они самоорганизуются в протоклетки с метаболизмом и отбором.

Эксперименты Опарина, Фокса и других — всего лишь демонстрация того, как работают физико-химические фазово-обособленные системы. Но они показывают аналогии жизненных процессов в простых системах и позволяют проиллюстрировать идеи выживания и отбора на уровне химических систем. Из этих экспериментов следует, что образование коацерватных капель и микросфер — это типичное поведение полимеров в растворах. Шансы таких капель на выживание повышаются, если они способны к каталитической активности, в результате которой могут расти в размерах. Те из них, которые обладали повышенной скоростью «высасывания» мономеров из окружающей среды, развивались быстрее и побеждали в конкурентной борьбе.

Таким образом, можно себе представить, что на протяжении целых геологических эр действовал мощный химический отбор. Он приводил к ускорению химических процессов. Механизм этого действия практически очевиден.

Согласно принципу максимальных скоростей реакций в случае нескольких открытых химических систем с общей внешней средой основной поток вещества идет через систему, которая обеспечивает наибольшую скорость химических превращений. Такие пробионтные системы в «первичном бульоне» получали преимущество перед соседними и начинали вытеснять более медленные (менее приспособленные) формы. Под воздействием внешних механических сил, таких как ветер и волны, происходило дробление (деление) капель. Запасы готовых органических веществ, пригодных для прямого использования, естественно, были ограниченны, что приводило к конкуренции за субстрат и, таким способом, к возникновению «предбиологического естественного отбора». Применение термина «естественный отбор» к эволюции коацерватов-пробионтов представляется вполне допустимым, так как никаких специфических отличий между популяциями протобионтов и современных микроорганизмов с точки зрения действия отбора не имеется. В том и другом случае отбор приводит к увеличению приспособленности популяции, что выражается через изменение действующих скоростей роста. А характер и направление отбора определяются условиями среды.

В этом смысле применение методов непрерывного культивирования, разработанных для исследования микробных популяций, по-видимому, является весьма перспективным для изучения действия отбора в популяциях протобионтов и в конечном счете для моделирования данного этапа эволюции, заключающегося в возникновении и совершенствовании метаболизма.

Совершенствование метаболизма может изучаться в проточной системе по методу, основанному на модели Н. Горовица. Логика рассуждений данного автора сводилась к тому, что в некоторый момент в первичном бульоне усваиваемые вещества A оказались полностью израсходованными; тогда те протобионты, которые были способны производить A из других доступных соединений B, получили преимущество. Когда, в свою очередь, снизилось количество вторичных питательных веществ B, возникла необходимость в образовании A и B из C и т. д. Приобретение соответствующих катализаторов, ускоряющих эти реакции, от простых катализаторов до ферментов, определяло степень усложнения этого процесса и ускорения метаболизма.

В соответствии со схемой Горовица об удлинении цепей метаболизма легко представить себе замыкание этих цепей в циклы, первые круговороты вещества с участием клеток. Причем необязательно это могло осуществляться в одном типе фазово-обособленных систем, возможно распределение по звеньям цикла, с вычленением звеньев. Вначале это гетеротрофное звено с наиболее древним источником энергии — гликолизом; затем, по мере исчерпания органики, подключение автотрофных вариантов. Подробнее мы обсудим это в следующем параграфе, а пока коротко оценим два альтернативных варианта использования энергии при развитии протобионтов.

Конкурентную гипотезу о прямом использовании энергии протоклетками развивает американский исследователь К. Фолсом. Он обращает внимание на то, что в экспериментах при воздействии энергии на смесь первичных газов, т. е. уже на первом этапе, не только образуются малые органические молекулы, но и обнаруживается полимерный материал, содержащий большое количество углерода. Обычно он осаждается на стенках реакционного сосуда или на электродах, иногда образует маслянистую пленку на поверхности воды. Химически он трудно интерпретируется. При встряхивании или при перемешивании такая пленка может образовывать сферулы от 1 до 20 мкм в диаметре. Они имеют двойную гидрофобную мембрану. После самосборки они медленно опускаются на дно сосуда. Такие структуры имеют одну удивительную способность: после начала реакции в искровом разряде их число возрастает во времени экспоненциально. По замечанию К. Фолсома, это может свидетельствовать о том, что одна микроструктура служит центром для самосборки других, а именно такого рода автокатализ и является характеристикой биологических популяций.

Прямое использование энергии и большой выход реакции (практически весь углерод переходит в эти структуры) заставляют обратить на такие сферулы особое внимание. Рецепторами энергии в них могут служить порфирины, которые легко получаются в экспериментах по имитации химической эволюции пирролов. Протоклетки, имеющие гидрофобную границу раздела фаз, способны избирательно адсорбировать порфирины. В свою очередь, сорбированные порфирины могут служить рецепторами ультрафиолетового излучения, устанавливать протонные градиенты и превращать энергию излучения в потенциальную энергию химических связей. Следовательно, на самой ранней стадии возникновения жизни возможно существование гетеротрофных фотосинтезирующих организмов, использующих УФ-излучение для создания полимеров. Даже нерегулярные полимеры аминокислот, образующие комплексы с ионами металлов, обладают слабой каталитической активностью. Так открывается поле деятельности для естественного отбора.

Вторая из конкурентных гипотез имеет дело с прямым использованием энергии первичных газовых выбросов изнутри нашей планеты. В гл. 4 мы подчеркивали, что основу функционирования живых систем составляет цикл реакций окисления — восстановления. В первичной атмосфере окислительные условия создавались за счет фотохимических реакций, к примеру отщеплением водорода с его диффузией в космос. По расчетам, восстановленные соединения типа CH4 в такой атмосфере неустойчивы и быстро окисляются. Глубины Земли, наоборот, являются источником восстановительных газов, которые поступали изнутри особенно интенсивно на ранних этапах развития самой планеты.

Представляется возможным даже полностью независимое развитие и существование литотрофных организмов за счет энергии водорода и других восстановительных газов, имеющих как ювенильное, так и метаморфическое происхождение. Одним из главных условий поддержания и развития микроорганизмов (первичных организмов) является наличие длительного и достаточного потока энергии. По крайней мере, хемолитотрофные организмы способны окислять все основные компоненты вулканических газов: H2, CO, NH3, CH4, SO2 и т. д. Поэтому в местах длительного выхода глубинных газов может развиваться микробное сообщество, использующее не продукты разложения органического вещества, синтезированного каким-то другим, а первичные продукты газовых выделений [Заварзин, 1984], таким образом вместо фототрофии имеется возможность хемолитотрофии.

Совершенствование пробионтов под влиянием естественного отбора постепенно привело к появлению живых клеток. По метаболизму ни одно живое существо в принципе не делает больше того, что могли делать пробионты [Медников, 1980]. Поэтому возникновение систем репликации и передачи наследственного материала от родительских к дочерним клеткам следует считать одной из важнейших черт жизни. Однако именно здесь кроется самая большая тайна. Можно согласиться с Р. Дикерсоном [1981], что эволюция генетического аппарата — это тот этап эволюции, для которого лабораторных моделей не найдено, поэтому рассуждать о ней можно бесконечно, не смущаясь неудобными фактами. Действительно, генетический аппарат современных организмов настолько сложен и универсален, что почти невозможно его себе представить в примитивном виде. А это значит, что главные принципы эволюции — ее непрерывность и последовательность — пока еще четко не продемонстрированы.

Не вызывает сомнения, что генетический аппарат эволюционировал согласованно (т. е. «курица и яйцо» вместе) из наиболее простых форм. Важно отметить, теперь уже с позиций энергетического подхода, что простые первичные варианты, как неэффективно функционирующие, были вытеснены в дальнейшей конкурентной борьбе и исчезли впоследствии. О них теперь можно только гадать. Одной из самых загадочных является проблема возникновения рибосомального аппарата биосинтеза белков. Тут сразу требуется несколько десятков молекул специфических белков и не менее трех типов молекул РНК с различными молекулярными весами.

Постепенность развития биополимеров в протоклетках связана с увеличением их малых, по сравнению с современными биополимерами, размеров. Первичные «белки» могли быть совсем небольшими молекулами, могли состоять лишь из пяти — семи аминокислотных остатков. И первичные полинуклеотиды содержали не миллионы, а десяток-другой оснований. Такие полимеры и получаются во многих экспериментах, имитирующих начальные условия. Напомним, что каталитический активный центр фермента почти всегда гораздо меньше всей молекулы фермента, он имеет лишь небольшое число аминокислотных остатков. Остальную часть большой молекулы можно считать позднейшей надстройкой: она не связана с катализом отдельной реакции, а служит для целостного контроля в клетке.

При таком подходе можно постепенно двигаться дальше. Представим небольшую генераторную РНК, выполняющую и генетическую, и матричную роль. Более устойчивая ее форма — кольцо. В этой же клетке может быть несколько коротких тРНК. Генераторная РНК способна реплицироваться без ферментов, хотя и медленно. На циклическом генераторе могут непрерывно реплицироваться новые РНК, гораздо более длинные, двух типов: крупные кольцевые и линейные. Для ускорения реакции необходимы простые полипептиды, катализирующие синтез олигопуклеотидов. Синтез таких пяти-, семичленных пептидов, но уже со специфической последовательностью, возможен с помощью коротких первичных тРНК на генераторной РНК, выполняющей роль матричной РНК. Связывание аминокислоты с тРНК, возможно, обеспечивалось энергией пирофосфатпых связей. Внешняя среда служила источником всех необходимых малых молекул, т. е. они «высасывались» протоклеткой из среды по правилам химической кинетики. Пирофосфаты образовывались под влиянием потока энергии ультрафиолетового излучения Солнца. Так могла работать первичная живая клетка по К. Фолсому. (Но, может быть, и не совсем так.)

Скорости функционирования таких протоклеток были невысоки, но и специфичность катализа тоже была невысокой, а это резко снижает требования к уникальности биополимеров. Сходные функции способны выполнять разнообразнейшие структурные сочетания, миллиарды миллиардов вариантов! (Это, как правило, не учитывается в расчетах по вероятности возникновения жизни, так как принимается в расчет вероятность образования определенной конкретной структуры биополимера, якобы обладающей уникальной функцией.) В сочетании с малыми размерами первичных биомолекул шансы на быстрое образование первичных клеток, т. е. на возникновение жизни, резко повышаются.

Очень доказательными в этом смысле являются эксперименты по молекулярной эволюции, проведенные группой Спигелмана, о которых мы писали в предыдущей главе. Помимо изменения размеров фаговой РНК, реплицирующейся с помощью фермента репликазы, обнаружено, что фермент способен катализировать синтез рибонуклеотидных цепочек и без матрицы. Синтез шел медленнее, до тех пор пока образующаяся цепь не становилась матрицей сама. Полученная РНК оказалась совершенно непохожей (!) на фаговую РНК. Она была случайной последовательностью нуклеотидных остатков, но реагировала на факторы отбора подобно ее специфической фаговой форме. Следовательно, не строгая структура определяет функцию, а под функционирование подбирается структура. И, как мы обсуждали в предыдущей главе, можно предсказывать направление отбора соответствующих структур согласно энергетическим принципам.

Коротко резюмируем суть рассмотренного этапа развития жизни — химической эволюции, вплоть до образования первых живых клеток. Основу его составляет физико-химическое концентрированно абиогенно образованного органического вещества в пробионтах. Отбор, возникающий уже на этом предбиологическом этапе, действует не на отдельные молекулы, а на целостные фазово-обособленные структуры. Выигрывали те из них, которые наиболее эффективно прокачивали через себя вещество под влиянием внешнего потока энергии (структура подгонялась под функцию). Прямым или косвенным источником этой энергии был поток солнечного излучения и, возможно, поток доступной энергии изнутри Земли, например с газовыми выделениями. Возникновение генетического кода резко ускорило ход эволюции и действие отбора, так как появился автокатализ в ограниченной среде (основа для действия отбора в открытых системах, неважно: живых или неживых).

В заключение особо оговорим энергетические преимущества перехода к живым системам, совершенствования и усложнения структур протоклеток. Фазовое обособление структур очевидно из физико-химических требований. Однако по энергетике, например при прямом взаимодействии с квантами света, молекулы, связанные в полимер и укрытые в клетке, могут даже частично проигрывать по сравнению со свободными молекулами того же типа, оставшимися в первичном бульоне. В частности, это может происходить из-за эффекта затенения их друг другом или оболочкой клетки. Но мощнейшим противовесом, компенсирующим все потери, служит возникающий метаболизм. Высасывание по законам химической кинетики органических молекул с запасенной в них абиогенно энергией из объемов, гораздо больших, чем размеры самих пробионтов, резко увеличивает энергетическую нагрузку на каждую включенную в состав протоклетки молекулу. Первичные варианты, способные к автокатализу, относительно быстро смогли использовать самые доступные органические молекулы из первичного бульона — это и есть развитие по ЭПЭР (захват энергии и пространства без изменения качества). А при нехватке доступного источника стала в отборе совершенствоваться качественная сторона — интенсификация процесса метаболизма старых соединений и возрастание умения утилизировать новые источники. Это — прямое проявление действия ЭПИР (совершенствование структуры для выполнения функций, связанных с перекачкой энергии). Развитие и совершенствование циклов недостающих веществ выглядит здесь очевидным.

Итак, всего вероятнее, что первый шаг в «оживлении» химического круговорота, первый разрыв химического цикла, а точнее, встраивание в него, были сделаны гетеротрофными анаэробными формами. По сравнению с остальными организмами их пути метаболизма гораздо короче, а энергия, используемая ими, заключена в транспортабельной форме в абиогенно образованных органических молекулах. Первичные сопрягающие агенты в форме полифосфатов также могли иметься в наличии в результате простых химических синтезов.

Основным поставщиком энергии, самым простым, самым универсальным, является гликолиз, или анаэробное брожение. При нем происходит разрушение глюкозы или родственных ей соединений, и высвобождаемая энергия запасается в форме «моченого полифосфата», т. е. в форме молекулы АТФ, которая и является универсальной энергетической «валютой». Следовательно, по схеме эволюции «от простого к сложному» («задом наперед», по Горовицу) гликолитический путь получения энергии возник после исчерпания полифосфатов, образовавшихся абиогенно путем химической конденсации. Видимо, скорости химического образования полифосфатов уже не могли удовлетворять энергетические потребности растущей популяции примитивных организмов. И это естественно. Автокатализ, характерный для живых систем, быстро показал неэффективность химического синтеза вещества, а особенно его энергетическую недостаточность.

При гликолизе, в результате 10 согласованных реакций, каждая молекула глюкозы расщепляется на две молекулы пирувата, а клетка получает две макроэргические фосфатные связи в виде молекул АТФ (из АДФ). Подчеркнем единство энергетического и субстратного подходов. Пируват служит субстратом для целого семейства нужных для клеток соединений, например этилового спирта, молочной кислоты и ряда других кислот типа муравьиной, уксусной, янтарной, масляной; пропилового и бутилового спирта, ацетона, газообразного водорода и т. д. Это определяется природой конечного акцептора электрона. И, что очень существенно, весь этот «букет» достигается включением лишь небольшого числа дополнительных реакций и с применением сходных каталитических механизмов. Все эти вещества служат строительным материалом для дальнейших синтетических реакций конструктивного обмена. Если к этому добавить, что гликолиз характеризуется необычайно высокими скоростями протекания реакции, а следовательно, и получения энергии, то становится ясным, почему он так широко распространен в современном живом мире.

Недостатком его является невысокая степень высвобождения энергии из исходного субстрата: продукты его остаются еще высокоэнергетическими. Поэтому электроны, поднятые прямо или косвенно энергией фотонов на высокий энергетический уровень, опускаются не на нижний основной уровень, а совсем немного, останавливаясь на промежуточных уровнях восстановленных соединений-акцепторов.

Подытожим результаты рассмотрения первого этапа становления биотического круговорота. Это — гетеротрофные, анаэробные одноклеточные организмы, возможно похожие на современные бактерии, такие как клостридии, живущие за счет брожения. Они существуют за счет распада богатых энергией органических соединений, образовавшихся абиогенно. Они играют роль «мусорщиков», уничтожая органику химического происхождения, возникшую под влиянием УФ-лучей, электрических разрядов, ударных волн и прочих источников энергии. Основная функция гетеротрофов — деструкция органических соединений. Они ее выполняют быстро за счет автокатализа и таким образом «выжимают» все, что может дать химический синтез, гораздо более медленный по сравнению с биологической деструкцией. Наступает первый кризис из-за несбалансированности круговорота. И кризис этот — энергетический, так как косвенного производства энергии через полифосфаты явно недостаточно. Кроме того, низкий энергетический выход процессов брожения требует переработки громадного количества субстрата для обеспечения энергией биосинтетических процессов в клетке. Например, по сравнению с позднее возникшим окислительным фосфорилированием гликолиз забирает лишь около 7% энергии, запасенной в молекуле глюкозы (но об этом чуть позже). Таким образом, первичной жизни не хватало доступной энергии.

И в то же время потоки энергии «бушевали» вокруг простых протоклеток, задевая их самих. Источником этих потоков были Солнце и ядро Земли, дававшее богатые энергией газовые эксгаляции.

 

7.2. Первый биотический круговорот (цианобактериальное сообщество)

Первичные гетеротрофные клетки, естественно, были частично окрашенными и потому взаимодействовали с потоком солнечного излучения. Оно могло разрушать молекулы, особенно его УФ-часть, или терялось в виде тепла. Но в толще воды, более интенсивно поглощавшей коротковолновое излучение, могли иметь место и другие взаимодействия, в частности взаимодействия о длинноволновым излучением. Поглощение света сложными молекулами могло приводить к развитию фотохимических реакций, в которых за счет энергии света при обычных температурах преодолевались высокие энергетические барьеры. Это приводило и к ускорению скоростей реакций, и к практически необратимому синтезу еще более сложных соединений. Естественно считать, что флюоресцирующие сложные молекулы, входящие в состав живых клеток, вначале приводили к ускорению лишь некоторых процессов метаболизма, а не к прямому фотосинтезу органических веществ.

Среди фотосенсибилизаторов, т.е. оптически активных молекул, возбуждаемых квантами света, наиболее часто встречаются (как составные части ферментов) соединения, построенные путем сочетания неорганических ионов с органической основой, которую, как правило, составляет порфириновый цикл. Порфирины могут образовываться из пирролов и формальдегида, несколько хуже в восстановительной, чем в окислительной среде, а для синтеза наиболее восстановленных порфиринов требуются строго анаэробные условия. Включение металла в центр порфириновой молекулы заметно увеличивает ее фотохимическую активность, а кроме того, и сильно увеличивает интенсивность окраски порфирина и тем самым его способность к поглощению видимого света. Дальнейшая эволюция шла по пути увеличения количества светочувствительных пигментов и усложнения их структур.

Серьезным завоеванием на пути к полной автотрофии явился анаэробный фотосинтез. Его представителями, сохранившимися до нашего времени, являются фотосинтезирующие бактерии (пурпурные, серные и несерные; зеленые серные бактерии). Они способны усваивать энергию света, но еще не способны к отрыву электрона от воды. Они используют в качестве восстановителя (источника электрона и водорода) различные органические или неорганические соединения. Например, для фотохимического отнятия электрона от сероводорода требуется значительно меньше энергии, чем для отнятия его от воды.

Главным эволюционным приобретением, лежащим в основе фотосинтеза, как в целом качественно нового этапа в развитии биоэнергетических систем на Земле, следует считать организацию электронного потока. Именно он оказался наиболее эффективным способом запасать энергию электронного возбуждения в виде химических связей.

Постепенное уменьшение содержания в среде восстановленных органических субстратов заставило в обостряющейся конкурентной борьбе расширять круг используемых источников углерода. Световая энергия из дополнительного источника энергии, облегчавшего фотоассимиляцию имевшихся органических соединений, превращалась в основной, более мощный поток. В клетках накапливалось большое количество пигментов, шел отбор наиболее эффективно работающих систем, происходило пространственное упорядочивание пигментных структур, совершенствовались механизмы миграции энергии возбуждения от всей массы пигментов к каталитически активно работающему пигменту — активному центру. (В современных организмах энергия, поглощенная большим количеством пигментов, находящихся в агрегированных структурах, очень быстро и эффективно передается к активному центру.)

При растущем дефиците органических соединений фотосинтезирующие бактерии приобрели способность усваивать в качестве источника углерода углекислоту, широко имевшуюся в наличии. Но, чтобы восстанавливать CO2 до уровня восстановленности углеродсодержащих соединений клетки (типа углеводов — (CH2O)n), потребовался постоянный источник электронов (протонов). Световая энергия стала расходоваться на образование АТФ и на образование восстановителя, и таким образом сформировался нециклический путь переноса электронов. Возникавшие электронные вакансии в возбужденных молекулах хлорофилла (дырки) потребовалось заполнить за счет организации непрерывного притока электронов. В окружающей среде шел поиск соединений, способных выполнять функцию внешних доноров электронов. Одной из таких находок и были соединения серы, о которых мы уже говорили. Использование соединений серы автоматически привязывало организмы к местам, где эти соединения имелись.

Самым распространенным веществом у поверхности Земли была вода. Поэтому организмам, способным использовать воду в качестве донора электронов, была гарантирована победа в борьбе за существование. Из тех древнейших форм прокариотных клеток, способных к фотолизу воды, до нас дошли современные варианты — цианобактерии, или синезеленые водоросли.

С развитием прокариотных фотосинтезирующих клеток (около 3 млрд лет назад) замкнулся биотический круговорот. Появилась возможность существования обеих ветвей, имеющих живую основу: ветви синтеза и ветви деструкции. Их энергетическая независимость от абиогенного химического синтеза может считаться одной из основных черт данного этапа. Жизнь в виде биотического круговорота вступила в свои права и стала перестраивать лик планеты.

Для нас наиболее важно, что в пределах группы цианобактерии сформировался и развился новый тип энергетики, который затем был «принят на вооружение» и высшими организмами. Это формирование фотосистемы II, обеспечивающей использование воды и выделение молекулярного кислорода. Развитие этой фотосистемы связано с появлением новой группы фоторецепторов (типа хлорофилла а и фикобилипротеидов) и образованием фотохимически активных реакционных центров, способных фотоокислять воду. Достройка новой фотосистемы к старой фотосистеме I позволяет оторвать электрон от молекулы воды и «подбросить» его на более высокий уровень, а дальше он уже может использоваться в энергетических превращениях фотосистемы I. Как конкретно поэтапно формировалась фотосистема II, пока неизвестно, ибо современные цианобактерии — это результат длительной эволюции.

Некоторые представления о функционировании первичного круговорота можно получить на примере изучения современных цианобактериальных сообществ, развивающихся «на задворках» биосферы: в термальных источниках, соленых морских лагунах или на берегах мелководных сильно засоленных озер. Следуя работе Г. А. Заварзина [1984], опишем, в качестве примера, сообщество, развивающееся в лагунах юго-восточной части Сиваша. Повышенная соленость этих мелководных водоемов глубиной несколько десятков сантиметров ограничивает развитие высшей растительности и эукариот вообще. Дно таких водоемов покрыто кожистой пленкой розоватого или серого цвета. Основной формообразующий компонент сообщества — это синезеленые водоросли рода микроколеус. Их трихомы переплетены в виде канатов, заключены в общее слизистое влагалище и даже способны мигрировать по вертикали. Самый верхний слой составляют слизистые бесцветные бактерии, они являются аэробными органотрофами. Днем под их слоем образуются пузырьки фотосинтетического кислорода. Находящийся под ним слой синезеленых водорослей имеет зеленую окраску. Он представляет собой плотную пленку толщиной несколько миллиметров. Под этим слоем находится оливковый слой трихомных бактерий. Под ним, в анаэробной зоне, где развиваются анаэробные бактерии, идет образование карбонатных материалов и гипса. Еще ниже — слой образования сероводорода и выпадения черного сульфида железа.

Автору этих строк довелось обнаружить цианобактериальное сообщество в Средней Азии, в пустыне, недалеко от г. Бухары. Около искусственного пресноводного оз. Тадакуль, за его насыпными берегами, есть места скопления соленой воды и солончаки. В соленых мелких лужах, берега которых покрыты коркой соли, очень чистая, прозрачная вода. Их дно покрыто серо-желтым слоем. Это — верхняя, бактериальная часть мата, похожая на войлок, с переплетением нитей толщиной 2–3 мм. Под ней — удивительно яркий, зеленый слой цианобактерий толщиной не более 1 мм. Еще ниже — сероватый 2–3-миллиметровый слой анаэробов, а затем — черная зона с запахом сероводорода. Видимо, так выглядела первичная биосфера.

Применение микроэлектродной техники показывает резкую вертикальную стратификацию метаболизма в таком цианобактериальном мате. Например, практически весь падающий свет может поглощаться слоем синезеленых водорослей около 0,3 мм. Здесь же и происходят процессы синтеза биомассы. Ниже идет деструкция органического вещества. И, что особенно важно отметить, она протекает анаэробно, без затраты O2. Это как раз и соответствует первичным условиям фотосинтеза и деструкции, которые имели место в бескислородной среде.

Остановимся чуть подробнее на другой части работы биотического цикла — на процессах деструкции. Как известно, в условиях отсутствия кислорода основным источником энергии для гетеротрофного звена является процесс брожения, или субстратного фосфорилирования. Замыкание биотического круговорота привело к тому, что органический углерод стал связываться во все более трудные для сбраживания формы в виде полимеров (белков, полисахаридов, нуклеиновых кислот и других). Часть соединений биотического или абиогенного происхождения оказалась вообще недоступной для сбраживания. К ним относятся прежде всего алифатические и ароматические углеводороды, составляющие основу нефти, сохранившейся до нашего времени.

В целом этот этап развития круговорота оказался «перекошенным» в пользу синтетической ветви, особенно по энергетике (второй энергетический кризис). Следующий шаг в развитии биотического круговорота и заключался в использовании побочного «ядовитого» продукта фотосинтеза — кислорода в цепях дыхания, т. е. в активизации звена деструкции, необходимой для обеспечения баланса круговорота.

Факт, что молекулярный кислород атмосферы имеет биогенное происхождение, в настоящее время почти не вызывает сомнений. Кислород является результатом нового этапа фотосинтеза, при котором в качестве донора электронов (протонов) служит вода. Усиление синтетической половины первичного биотического круговорота привело к связыванию углерода в биомассе автотрофов, к снижению концентрации CO2; в воде. Это могло вызывать защелачивание воды, а следовательно, и выпадение в осадок солей двухвалентных элементов типа кальция, т. е. еще большее обеднение гидро- и атмосферы углеродом. Гетеротрофное звено и с ним звено редукции явно отставали от звена синтеза. В атмосфере накапливался сильнейший яд — окислитель для существ, развивающихся в восстановительной атмосфере. Несомненно, что на этом этапе эволюция должна была быть связана с адаптацией к кислороду. Иначе — смерть и самим фотосинтетикам, его производящим. И мы можем проследить (теперь уже имеется достаточно данных палеонтологии, биохимии и физиологии), как живые организмы блестяще справились с этой эволюционной задачей. Сильнейший токсикант удалось не только обезвредить, но и явно использовать для ликвидации узкого места круговорота: в отборе получили преимущество те организмы, которые сумели использовать молекулярный кислород, прежде всего для своих энергетических потребностей.

Так как цианобактерий считаются первыми производителями кислорода, то им первым и должны были понадобиться защитные механизмы от его токсичности. Как конкретно происходило превращение нейтрализующих реакций в полезные, идущие с использованием молекулярного кислорода, остается неясным. Достаточно правдоподобные объяснения имеются, мы не будем их обсуждать детально (оставим это для субстратного подхода). Рассмотрим здесь только канву энергетических приобретений.

Накопление кислорода означало, что появился «идеальный» конечный акцептор электронов, т. е. открылась возможность передавать ему электроны с восстановленных при фотосинтезе органических соединений. Правда, разрыв по энергетике между донорами и акцептором был велик и ничем не заполнен. Развитие и совершенствование цепи переносчиков и ее связи с энергодающими системами клетки было основным направлением действия отбора в энергетическом смысле.

Чтобы наилучшим способом использовать открывшиеся энергетические возможности, связанные с переносом водорода («горячих» электронов) с субстрата на молекулярный кислород, гетеротрофным клеткам пришлось решать, как минимум, три сложные задачи. Во-первых, полностью отщепить водород от имевшегося органического субстрата. Это было сделано путем развития цикла трикарбоновых кислот (ЦТК). Во-вторых создать систему переноса электронов по электрохимическому градиенту, которую мы называем «дыхательная цепь». В-третьих, связать эту систему электронного транспорта с фосфорилированием, т. е. с образованием единой энергетической валюты — АТФ.

Отметим два очень существенных обстоятельства. Во-первых, окислительное фосфорилирование сходно с фотофосфорилированием, по крайней мере по энергетическому выходу они близки. И таким образом, гетеротрофное звено подтянулось до уровня фототрофного по энергетике, а биотический круговорот на основе прокариот сбалансировался. Во-вторых, для прокариот, сформировавшихся в «докислородную» эпоху, задача обезвреживания кислорода так и осталась одной из самых сложных. К примеру, у тех же цианобактерий фотосинтез и дыхание разобщены во времени, тогда как у эукариот-фотосинтетиков, сформировавшихся позднее, во времена кислородной эры, эти процессы могут идти одновременно из-за их пространственного разделения. Кроме того, у прокариот степень сопряжения электронного транспорта в дыхательной цепи с окислительным фосфорилированием невелика. У наиболее продвинутых в эволюционном отношении аэробных форм она достигает лишь 1/3 от эффективности сопряжения у эукариот. (Измерения проводятся по величине P/O, т. е. по числу потребленных молекул неорганического фосфата, или образовавшихся молекул АТФ, на один поглощенный атом кислорода. Для эукариот P/O = 3, для прокариот — около 1.)

Зато в биохимическом отношении прокариотные организмы отличаются громадным разнообразием: и по конечным акцепторам электронов, и по использованию разнообразных субстратов органической и неорганической природы, и по составу промежуточных переносчиков в дыхательных цепях. Действительно, поразителен тот факт, что в царстве прокариот имеется практически все, что достигнуто жизнью в области биосинтетических процессов. И «если бы мерой эволюционного прогресса служили только биосинтетические возможности, то многоклеточных животных следовало бы считать гораздо менее продвинутыми по пути эволюции, чем хемоавтотрофных бактерий...» [Маргелис, 1983, с. 131].

Можно сказать, что в настоящее время прокариоты заняли все те «пустые» и трудные для жизни места, которые эукариоты не смогли занять прежде всего из-за ограниченности метаболических возможностей. Но магистральное направление эволюции, биологический прогресс по вкладу в биотическии круговорот оказались на стороне эукариот.