Новый ум короля: О компьютерах, мышлении и законах физики

Пенроуз Роджер

Глава 5

Классический мир

 

 

Состояние физической теории

Что нам нужно знать о законах природы, чтобы понять, какая роль в ней может быть отведена сознанию? Насколько важно представлять себе для этого принципы организации и взаимодействия, которым подчиняются элементы, составляющие тело и мозг? Если осознанное восприятие — всего лишь результат выполнения алгоритмов (как нас пытаются убедить многие приверженцы ИИ), то вопрос о конкретном виде и действии этих принципов не имеет особого значения. Любое устройство, способное просчитать алгоритм, будет ничуть не хуже любого другого. Но, быть может, наше чувство осознания не сводится полностью к работе алгоритмов. И возможно, что детальное знание нашего внутреннего устройства и точных физических законов, управляющих той субстанцией, из которой мы состоим, может оказаться достаточно важным. Вероятно, нам понадобиться понять те фундаментальные физические свойства, которые лежат в основе самой природы вещества и определяют его поведение. Сегодня физика не достигла пока такого уровня, и ей предстоит еще раскрыть множество тайн и испытать немало глубоких озарений. Тем не менее большинство физиков и физиологов склонны считать, что мы уже сейчас располагаем достаточным знанием тех физических законов, которые управляют работой такого объекта средних размеров, как наш мозг. Хотя никто не оспаривает исключительную сложность головного мозга человека как физической системы и не отрицает существования значительного числа пробелов в наших знаниях о его детальной структуре и принципах работы, — все же лишь немногие осмелились бы утверждать, что мы испытываем существенную нехватку знаний именно в области физических основ функционирования мозга.

Ниже я приведу пример, свидетельствующий как раз об обратном, — то есть о том, что мы еще не знаем физику настолько, чтобы (даже в принципе) иметь возможность адекватно использовать ее язык для описания работы человеческого мозга. Но прежде мне потребуется дать хотя бы в общих чертах представление о достижениях и состоянии современной физической теории. В этой главе речь пойдет главным образом о той области, которую принято называть «классической физикой» и которая включает в себя механику Ньютона и теорию относительности Эйнштейна. По существу, термин «классическая» в данном случае означает, что обе теории достигли расцвета задолго до рождения (примерно в 1925 году, вдохновенными трудами таких физиков, как Планк, Эйнштейн, Бор, Гейзенберг, Шредингер, де Бройль, Борн, Иордан, Паули и Дирак) квантовой теории — загадочной теории, опирающейся на вероятности и индетерминизм и описывающей поведение молекул, атомов и субатомных частиц. В отличие от квантовой теории, классическая теория является детерминистской, поэтому будущее в ее рамках всегда полностью определяется прошлым. Но даже и в классической физике есть еще много загадок, несмотря на то, что знания, накопленные за несколько веков, позволили нам построить феноменально точную картину мира. Мы также должны будем рассмотреть и квантовую теорию (в главе 6), ибо я убежден, что — несмотря на мнение, разделяемое большинством физиологов — квантовые явления могут играть важную роль в функционировании головного мозга человека. Но к этой теме мы обратимся в последующих главах.

К сегодняшнему дню наука достигла поразительных успехов. Достаточно бросить хотя бы беглый взгляд вокруг, чтобы воочию убедиться в невероятном могуществе, которое мы обрели благодаря нашему пониманию законов природы. Конечно, при создании современных технологий существенно использовались обширнейшие эмпирические данные. Однако куда более важна физическая теория, лежащая в основе этих технологий, и сейчас нас будет интересовать именно она. Теории, существующие в настоящее время, отличаются удивительной точностью. Но сила их заключается не только в способности правильно описывать соответствующие явления и процессы. Не меньшее значение имеет и то, что они, как оказывается, прекрасно поддаются точному и скрупулезному математическому анализу. Взятые вместе, эти обстоятельства позволили нам создать науку, обладающую поистине впечатляющей силой.

Физическая теория, о которой идет речь, имеет богатую историю. Но одно событие можно особенно выделить: это публикация в 1687 году Математических начал натуральной философии Исаака Ньютона. В этой работе, имеющей непреходящее значение, было показано, как, исходя из весьма немногих физических принципов, можно понять (причем зачастую с поразительной точностью) реальное поведение многих физических объектов. (Значительная часть Начал посвящена разработке математических методов, хотя более удобный для практического использования аппарат был создан позднее Эйлером и другими физиками и математиками.) Собственные труды Ньютона, как он охотно признавал, во многом опирались на труды его предшественников, выдающихся мыслителей, среди которых были Галилео Галилей, Рене Декарт и Иоганн Кеплер. Некоторые из основополагающих идей Ньютон заимствовал у еще более древних мыслителей. Упомяну в частности геометрические идеи Платона, Евдокса, Евклида, Архимеда и Аполлония. Об этих математиках я еще расскажу более подробно в дальнейшем.

Отклонения от основных положений динамики Ньютона появились позднее. Первым из них оказалась электромагнитная теория Джеймса Клерка Максвелла, разработанная в середине XIX века. Она охватывала не только классическое поведение электрического и магнитного полей, но и поведение света. Эта замечательная теория будет рассмотрена нами чуть позднее. Теория Максвелла имеет первостепенное значение для современной технологии, равно как и для понимания принципов функционирования нашего головного мозга, в котором электромагнитные явления играют очень важную роль. Менее ясно, имеют ли какое-нибудь отношение к процессам нашего мышления две поистине великие теории относительности, связанные с именем Альберта Эйнштейна. Специальная теория относительности , возникшая из исследований уравнений Максвелла, была создана Анри Пуанкаре, Хендриком Лоренцем и Эйнштейном (позднее элегантное геометрическое описание специальной теории относительности предложил Герман Минковский) для объяснения необычного поведения тел, движущихся со скоростями, близкими к скорости света. Частью этой теории стало знаменитое соотношение Эйнштейна Е = mc 2 . Но влияние специальной теории относительности на технологию до сих пор остается весьма слабым (если не считать ядерной физики), а отношение к функционированию нашего мозга — в лучшем случае косвенным. С другой стороны, специальная теория относительности затрагивает фундаментальные вопросы физической реальности, связанные с природой времени. В последующих главах мы увидим, что это приводит нас к ряду «загадок» из области квантовой теории, которая может иметь принципиальное значение для понимания наших механизмов восприятия «течения времени». Кроме того, нам необходимо понять специальную теорию относительности прежде, чем мы сможем должным образом оценить общую теорию относительности Эйнштейна — теорию, которая использует для описания гравитации искривленное пространство-время. До сих пор эта теория не оказывала на технологию почти никакого влияния так что предположение о возможной связи между общей теорией относительности и процессами, происходящими в нашем мозге, потребовало бы немалой смелости воображения.

Интересно, что в наших дальнейших размышлениях общая теория относительности будет играть существенную роль, особенно в главах 7 и 8, где нам придется отправиться в самые удаленные области пространства и времени, чтобы собрать «по зернышку» сведения о тех изменениях, которые, как я считаю, необходимы для создания полностью непротиворечивой картины квантовой теории — но об этом позже!

Все, что мы до сих пор упоминали, относится к области классической физики. А как обстоит дело с квантовой физикой? В отличие от теории относительности, квантовая теория начинает оказывать существенное влияние на технологию. Отчасти это объясняется тем вкладом, который квантовая теория внесла в столь технологически важные области, как химия и металлургия. Действительно, для многих эти области теперь срослись с физикой именно благодаря тем новым знаниям, которые дала нам квантовая теория. Помимо этого существуют и совершенно новые явления, появление которых без квантовой теории было бы невозможным (самым известным из таких явлений, думаю, будет справедливо назвать лазер). Тогда что же мешает нам предположить, что некоторые существенные аспекты квантовой теории могут играть решающую роль в той физике, которая лежит в основе наших процессов мышления?!

А как обстоит дело с относительно новыми физическими теориями? Возможно, некоторым читателям приходилось встречаться с возбуждающими идеями, использующими такие понятия, как «кварки» (см. ниже эту подглаву), теории великого объединения, «инфляционный сценарий», «суперсимметрия», теория «(супер)струн» и т. д. Как такие новые течения согласуются с теми теориями, о которых шла речь выше? Насколько нам важно уделять внимание их изучению? Чтобы выработать ясное понимание подобных вопросов, было бы полезно разбить основные физические теории на три широкие категории. Я назову их следующим образом:

1. ПРЕВОСХОДНАЯ.

2. ПОЛЕЗНАЯ.

3. ПРОБНАЯ.

К категории ПРЕВОСХОДНАЯ надлежит отнести все теории, которые я рассматривал в предыдущих разделах. Для того, чтобы теорию можно было причислить к разряду ПРЕВОСХОДНЫХ, совершенно не обязательно, по-моему, требовать от нее полного согласия со всеми явлениями в мире — однако диапазон явлений и точность их описания должны быть в определенном смысле феноменальными [98]В оригинале игра слов: phenomen — явление, phenomenal — феноменальный. — Прим. ред.
. Принимая во внимание такую трактовку термина «превосходная», остается только удивляться тому, что в эту категорию вообще попадают какие-то теории! Я не знаю ни одной фундаментальной теории в любой другой естественной науке, которую можно было бы с достаточным основанием отнести к этой категории. Возможно, больше всех других название «превосходной» заслуживает теория естественного отбора, выдвинутая Дарвином и Уоллисом, — но и ей далеко до идеала.

Самой древней из ПРЕВОСХОДНЫХ теорий по праву можно считать евклидову геометрию, с отдельными положениями которой мы познакомились еще в школе. Возможно, древние вообще не рассматривали евклидову геометрию как физическую теорию, но в действительности она была таковой: тонкой и в высшей степени точной теорией физического пространства — и геометрии твердых тел. Почему я упоминаю о евклидовой геометрии как о физической теории, а не как о разделе математики? Причина проста: по иронии судьбы евклидова геометрия — как нам стало теперь известно — не вполне точна в качестве инструмента для описания того физического пространства, в котором мы все обитаем! Общая теория относительности Эйнштейна говорит нам, что пространство-(время) в действительности «искривлено» (т. е. не является в точности евклидовым) в присутствии гравитационного поля. Но этот факт отнюдь не лишает евклидову геометрию права называться ПРЕВОСХОДНОЙ теорией. Действительно, в метровом диапазоне отклонения от евклидовой плоскостности чрезвычайно малы, и ошибки, связанные с заменой геометрии реального пространства на евклидову, составляют величину меньшую, чем диаметр атома водорода!

С полным основанием можно утверждать, что статика — теория, занимающаяся изучением неподвижных тел — превратившаяся в красивую науку благодаря Архимеду, Паппу и С. Стевину — может быть смело отнесена к категории ПРЕВОСХОДНЫХ теорий. В настоящее время статика входит в ньютоновскую механику. Глубокие идеи динамики (занимающейся изучением движущихся тел) были заложены примерно в 1600 году Галилеем и позднее превращены Ньютоном в величественную и широкую по своему охвату теорию. Динамика несомненно должна быть включена в категорию ПРЕВОСХОДНЫХ теорий. Применительно к движению планет и лун экспериментальная точность динамики поистине превосходна — выше одной десятимиллионной. Одна и та же ньютоновская схема применима и здесь, на Земле, и за пределами звезд и галактики, причем примерно с одинаковой точностью. Аналогичным образом, теория Максвелла применима с высокой точностью в необычайно широком диапазоне, примыкающем с одного конца к микроскопическим масштабам атомов и субатомных частиц, а с другого — к масштабам галактик, т. е. в миллион миллионов миллионов миллионов миллионов миллионов раз больших! (На микроскопическом конце шкалы уравнения Максвелла необходимо надлежащим образом сочетать с правилами квантовой механики.) Так что теорию Максвелла по праву можно тоже отнести к ПРЕВОСХОДНЫМ теориям.

Специальная теория относительности Эйнштейна (предтечей которой выступил Пуанкаре, а изящную формулировку предложил Минковский) дает удивительно точное описание явлений, в которых скорости объектов могут приближаться к скорости света, т. е. при таких скоростях, когда ньютоновские описания начинают «не срабатывать». Изящная и оригинальная теория общей относительности Эйнштейна обобщает динамическую теорию (гравитации) Ньютона и повышает ее точность, наследуя при этом все достоинства теории Ньютона во всем, что касается движения планет и лун. Кроме того, общая теория относительности Эйнштейна объясняет различные необычные наблюдаемые явления, не укладывающиеся в более старую ньютоновскую схему. Рассмотрение одного из таких явлений (а именно, «двойного пульсара», см. конец подглавы «Релятивистская причинность и детерминизм») показывает, что теория Эйнштейна справедлива с точностью до 10-14. Обе теории относительности, вторая из которых включает в себя первую, с полным основанием могут быть отнесены к категории ПРЕВОСХОДНЫХ теорий (по причинам их математического изящества, почти не уступающего их точности).

Диапазон явлений, объясняемых необычайно красивой и революционной квантовой механикой, и точность, с которой она согласуется с экспериментом, ясно указывают на то, что квантовая теория вне всяких сомнений может быть отнесена к категории ПРЕВОСХОДНЫХ. Никаких расхождений между наблюдениями и квантовой механикой не известно — но сила ее простирается еще дальше, проявляя себя в ряде ранее необъяснимых явлений, которые ныне получили обоснование в рамках этой теории. Законы химии, стабильность атомов, четкость спектральных линий (см. гл.6, подглавы «Проблемы с классической теорией» и «Начало квантовой теории») и их весьма специфическое расположение в наблюдаемых спектрах; удивительное явление сверхпроводимости (нулевого электрического сопротивления) и поведение лазеров — таков далеко не полный перечень явлений, объясняемых квантовой механикой.

Я устанавливаю высокие стандарты для категории ПРЕВОСХОДНЫХ теорий — но именно к таким стандартам мы привыкли в физике. А как обстоит дело с теориями, появившимися в последнее время? По моему мнению, только одна из них может претендовать на включение в категорию ПРЕВОСХОДНЫХ, и она не так уж нова: я имею в виду теорию, получившую название квантовой электродинамики (или КЭД ). Ее основы заложили в своих трудах Иордан, Гейзенберг и Паули; сформулирована она была Дираком в 1926–1934 годах; а «рабочую форму» обрела в работах Бете, Фейнмана, Швингера и Томонаги в 1947–1948 годах. Эта теория возникла как соединение принципов квантовой механики и специальной теории относительности, совместно с уравнениями Максвелла и фундаментальным уравнением, описывающим движение и спин электронов, выведенным Дираком. В целом, квантовая электродинамика не обладает привлекательным изяществом или непротиворечивостью более ранних ПРЕВОСХОДНЫХ теорий, но я, тем не менее, считаю возможным отнести эту дисциплину к таковым в силу ее поистине феноменальной точности. Особого упоминания заслуживает хотя бы один результат, следующий из квантовой электродинамики — оценка величины магнитного момента электрона. (Электроны ведут себя как крохотные магниты, образованные вращающимися вокруг собственной оси электрическим зарядом. Термин «магнитный момент» как раз и характеризует силу такого крохотного магнита.) Величина 1,00115965246 (в соответствующих единицах и с допустимой погрешностью около 20 в двух последних знаках) была вычислена для магнитного момента электрона на основе квантовой электродинамики — в то время как самое последнее из полученных экспериментальных значений этой величины составляет 1,001159652193 (с возможной погрешностью около 10 в двух последних цифрах). Как отметил Фейнман, при столь малой погрешности расстояние от Нью-Йорка до Лос-Анджелеса можно было бы определить с точностью до толщины человеческого волоса! Нам нет необходимости досконально знакомиться здесь с этой теорией, но для создания у читателя более полного представления о предмете наших рассуждений, я в конце следующей главы вкратце упомяну некоторые из принципов и существенных особенностей квантовой электродинамики).

Отдельные современные теории я мог бы отнести к категории ПОЛЕЗНЫХ. Две из них не понадобятся нам в дальнейшем, но упомянуть о них все же стоит. Первая — это кварковая модель субатомных частиц Гелл-Манна — Цвейга. Субатомные частицы называются адронами. К этой группе относятся протоны, нейтроны, мезоны и т. д., образующие атомные ядра, — или, точнее, «сильно взаимодействующие» частицы. Возникшая (позднее) детальная теория их взаимодействия получила название квантовой хромодинамики , или КХД . Основная идея КХД состоит в том, что все адроны «построены» из составных частей, называемых «кварками», которые взаимодействуют между собой в соответствии с некоторым обобщением теории Максвелла (известным под названием «теории Янга — Миллса»). Во-вторых, существует теория (предложенная Глэшоу, Саламом, Уордом и Вайнбергом — также на основе теории Янга — Миллса), объединяющая электромагнитное взаимодействие со «слабым» взаимодействием, ответственным за радиоактивный распад. Эта теория включает в себя описание так называемых лептонов (электронов, мюонов, нейтрино, а также W - и Z -частиц — т. е. всех «слабо взаимодействующих» частиц). Обе теории подкрепляются солидными экспериментальными данными. Но по различным причинам эти теории не столь точно, как хотелось бы (по сравнению, например, с КЭД или другими теориями), согласуются с экспериментом, и их предсказательная сила в настоящее время еще далеко не соответствует тем феноменальным стандартам, которые требуются для их включения в категорию ПРЕВОСХОДНЫХ теорий. Взятые вместе, эти две теории (причем вторая из них — вместе с КЭД) иногда называются стандартной моделью .

Наконец, существует еще одна теория (другого типа), которая, на мой взгляд, относится по меньшей мере к категории ПОЛЕЗНЫХ теорий. Я говорю о теории Большого взрыва , в результате которого родилась Вселенная). Эта теория будет играть важную роль в главах 7 и 8.

На этом, как мне кажется, заканчивается список теорий — претендентов на звание ПОЛЕЗНЫХ. Существует много идей, пользующихся в настоящее время (или пользовавшихся до недавнего времени) широкой популярностью. Среди них «теории Калуцы — Клейна»; «суперсимметрия» (или «супергравитация»); все еще чрезвычайно модные теории «струн» (или «суперструн»); а также теории великого объединения , равно как и отдельные порожденные ими идеи, например, «инфляционный сценарий» (см. примечание 13 на с. 282). Все они, по моему твердому убеждению, относятся к категории ПРОБНЫХ теорий (см. работы Барроу [1988], Клоса [1983], Дэвиса и Брауна [1988], Сквайерса [1985]). Важное различие между категориями ПОЛЕЗНЫХ и ПРОБНЫХ теорий состоит в том, что последние не подкреплены надежными экспериментальными данными. Это отнюдь не означает, что какая-нибудь из них не может неожиданно возвыситься до разряда ПОЛЕЗНОЙ и даже ПРЕВОСХОДНОЙ. Некоторые из упомянутых выше теорий содержат оригинальные и весьма многообещающие идеи, пока, правда, не получившие достаточного экспериментального подтверждения. Категория ПРОБНЫХ теорий охватывает весьма широкий диапазон. Не исключено, что концепции, встречающиеся в отдельных теориях подобного рода, несут в себе зерна новых достижений в понимании природы — но в то же время другие из них на удивление неправдоподобны и вполне могут ввести своих сторонников в заблуждение. (У меня было искушение отщепить от категории почтенных ПРОБНЫХ теорий еще одну, четвертую категорию, и назвать ее, скажем, ТУПИКОВЫЕ теории, но по зрелом размышлении я отказался от этого намерения, поскольку не хочу потерять половину своих друзей!)

Не следует удивляться тому, что основные ПРЕВОСХОДНЫЕ теории возникли довольно давно. Вероятно, на протяжении истории таких теорий существовало гораздо больше, но некоторые из них со временем перешли в категорию ПРОБНЫХ и в большинстве своем оказались забыты. Аналогичным образом, в категорию ПОЛЕЗНЫХ теорий попадало немало таких, которые впоследствии теряли свою актуальность, тогда как некоторые поглощались другими — ставшими впоследствии ПРЕВОСХОДНЫМИ теориями. Рассмотрим несколько примеров. До того, как Коперник, Кеплер и Ньютон создали новую, более совершенную теорию, существовала детально разработанная теория планетных движений, родившаяся в Древней Греции и получившая название птолемеевой системы. Согласно этой модели, движения планет описывались сложной суперпозицией круговых движений. Птолемеева система была весьма эффективной с точки зрения предсказаний, но с каждым разом становилась все сложнее и сложнее по мере повышения требований к точности. Нам, живущим ныне, птолемеева система кажется слишком искусственной. Это — хороший пример ПОЛЕЗНОЙ системы (она действительно была полезной на протяжении почти двадцати веков!), которая впоследствии, сыграв свою историческую организующую роль, сошла со сцены как физическая теория. В качестве хорошего примера ПОЛЕЗНОЙ теории, которая в конце концов доказала свою состоятельность, можно привести блестящую идею Кеплера о движении планет по эллиптическим орбитам. Другим примером могла бы стать периодическая система химических элементов Менделеева. Сами по себе эти идеи не позволяют построить модели, обладающие предсказательной силой требуемого «феноменального» характера, однако в будущем они становятся «правильными» следствиями из выросших из них ПРЕВОСХОДНЫХ теорий (соответственно, ньютоновской динамики и квантовой теории).

В последующих разделах и главах я не буду останавливаться на обсуждении существующих ныне теориях, которые всего лишь ПОЛЕЗНЫ или ПРОБНЫ. Достаточно сказать о тех теориях, которые ПРЕВОСХОДНЫ. Можно считать удачей, что у нас есть такие теории, позволяющие постигать этот мир во всей его полноте. Но в конечном счете, мы должны попытаться решить вопрос о том, достаточно ли могущественны даже эти теории, чтобы описывать функционирование нашего мозга и работу разума. В свое время я еще вернусь к этой теме — а пока мы рассмотрим ПРЕВОСХОДНЫЕ теории в том виде, в котором они нам сегодня известны, и попробуем оценить степень их применимости к интересующим нас задачам.

 

Евклидова геометрия

Евклидова геометрия — это, попросту говоря, тот самый предмет, который мы изучаем в школе как «геометрию». Однако я подозреваю, что большинство людей склонны считать евклидову геометрию областью математики, а вовсе не физической Теорией. Разумеется, евклидова геометрия является в том числе и математикой — но все же это не единственная возможная математическая геометрия. Та геометрия, которую придумал Евклид, очень точно описывает физическое пространство нашего с вами мира, но это — не логически необходимое следствие, а всего лишь (почти точно) наблюдаемое свойство физического мира.

Действительно, существует другая геометрия, называемая геометрией Лобачевского (или гиперболической) которая во многом похожа на евклидову геометрию, но имеет при этом и некоторые интригующие отличия. Напомним, в частности, что в евклидовой геометрии сумма углов треугольника всегда равна 180°. В геометрии Лобачевского сумма углов треугольника всегда меньше 180°, причем отличие суммы углов от 180° пропорционально площади треугольника (рис. 5.1).

Рис. 5.1. а) Треугольник в евклидовом пространстве,

б) Треугольник в пространстве Лобачевского

Замечательный голландский художник Мориц К. Эшер создал несколько мозаик, очень тонко и точно передающих суть геометрии Лобачевского. Одна из этих мозаик представлена на рис. 5.2.

Рис. 5.2. Пространство Лобачевского, изображенное

Эшером в виде мозаики. (Все рыбы — как черные,

так и белые — должны считаться конгруэнтными.)

Каждую черную рыбу, в соответствии с геометрией Лобачевского, следует считать имеющей такой же размер и такую же форму, что и любая другая черная рыба. Для белых рыб — аналогично. Геометрия Лобачевского не может быть абсолютно точно воспроизведена на евклидовой плоскости, отсюда — кажущееся скопление рыб вблизи круговой границы. Представьте себе, что вы находитесь внутри мозаики где-то у этой окружности. Тогда геометрия Лобачевского должна для вас выглядеть точно такой же, как если бы находились в центре или в каком-то другом месте мозаики. То, что выглядит как «граница» мозаики в этом евклидовом представлении, в действительности находится «на бесконечности» в геометрии Лобачевского. Граничную окружность вообще не следует рассматривать как часть пространства Лобачевского — равно как и никакую часть евклидовой области, лежащую за ее пределами. (Это остроумное представление плоскости Лобачевского принадлежит Пуанкаре. Его достоинство заключается в том, что форма очень маленьких фигур при этом не искажается — изменяются только их размеры.) «Прямыми» в геометрии Лобачевского (вдоль которых расположены некоторые из рыб на мозаике Эшера) служат окружности, пересекающие круговую границу под прямыми углами.

Вполне может быть, что геометрия Лобачевского действительно выполняется для нашего мира в космологических масштабах (см. главу 7, «Космология и Большой взрыв»). Но коэффициент пропорциональности между дефицитом углов и площадью треугольника в этом случае чрезвычайно мал, а для обычных масштабов евклидова геометрия дает превосходное приближение геометрии Лобачевского. В самом деле, как мы увидим далее в этой главе, общая теория относительности Эйнштейна говорит нам о том, что геометрия нашего мира действительно отклоняется от евклидовой геометрии (хотя и «нерегулярно», т. е. более сложно, чем геометрия Лобачевского) на масштабах, значительно уступающих космологическим, хотя по обычным меркам нашей повседневной жизни эти отклонения всеравно будут ничтожно малы.

Тот факт, что евклидова геометрия, казалось бы, столь точно отражает структуру «пространства» нашего мира, вводил нас (и наших предшественников!) в заблуждение, заставляя думать, будто евклидова геометрия является логической необходимостью или будто мы обладаем внутренней интуитивной способностью априори догадаться, что евклидова геометрия должна быть применима к миру, в котором мы живем. (Так утверждал даже великий философ Иммануил Кант.) Реальный разрыв с евклидовой геометрией наступил только с созданием Эйнштейном общей теории относительности, появившейся на свет много лет спустя. И тогда стало понятно, что евклидова геометрия вовсе не является логической необходимостью, и что ее весьма точное (хотя и далеко не абсолютное) соответствие структуре нашего физического пространства — не более, чем результат эмпирических наблюдений! Евклидова геометрия действительно была (ПРЕВОСХОДНОЙ) физической теорией. И это в дополнение к тому, что евклидова геометрия — изящный и логически непротиворечивый раздел чистой математики.

Здесь угадывается определенное сходство с философской концепцией Платона (изложенной примерно в 360 году до н. э. — почти за пятьдесят лет до появления Начал Евклида — знаменитого сочинения по геометрии). С точки зрения Платона объекты чистой геометрии — прямые, окружности, треугольники, плоскости и т. п. — могут быть лишь приблизительно реализованы в реальном мире физических вещей. Эти математически точные объекты чистой геометрии обитают в другом мире — платоновском идеальном мире математических понятий. Платоновский мир состоит не из осязаемых вещей, а из «математических объектов». Этот мир доступен нашему восприятию не обычным физическим путем, а посредством интеллекта. Человеческий разум контактирует с миром Платона всякий раз, когда открывает математическую истину, постигая ее с помощью математических рассуждений и интуитивных догадок. Идеальный мир Платона рассматривался как отличный от нашего материального мира — более совершенный, но при этом столь же реальный. (Вспомним сказанное в главах 3 и 4, с. 89, 101 о платоновской реальности математических понятий.) Таким образом, хотя идеальные объекты чистой евклидовой геометрии можно исследовать с помощью мысли, логически выводя при этом их свойства — отсюда вовсе не следует, что для «несовершенного» физического мира, воспринимаемого нашими органами чувств, неукоснительное следование этому идеалу является необходимостью. Располагая в свое время достаточно скудными данными, Платон, по-видимому благодаря какому-то чудесному озарению, смог предугадать, что, с одной стороны, математику следует изучать и понимать ради самой математики, и что нельзя требовать полного и точного соответствия математических объектов объектам физического опыта; а с другой — что функционирование реального внешнего мира в конечном счете может быть понято только в терминах точной математики, т. е. в терминах платоновского идеального мира, «доступного через интеллект»!

Платоном в Афинах была основана Академия, в задачи которой входило дальнейшее развития таких идей. Среди элиты, выросшей из числа членов этой Академии, был и необычайно влиятельный и знаменитый философ Аристотель. Но здесь нас будет интересовать другой человек, принадлежащий к платоновской Академии — математик и астроном Евдокс, несколько менее известный, чем Аристотель, но, по моему глубокому убеждению, гораздо более проницательный ученый, один из величайших мыслителей античности.

В евклидовой геометрии есть одна очень важная и тонкая составляющая, которая, на самом деле, является очень существенной и которую сегодня мы вряд ли вообще отнесли бы к геометрии! (Математики охотнее назвали бы это «анализом», чем «геометрией».) Речь идет о введении действительных чисел. Евклидова геометрия использует длины и углы. Чтобы иметь возможность использовать такую геометрию, нам необходимо понимать, какого рода «числа» нужны для описания этих самых длин и углов. И здесь новая идея была предложена Евдоксом (ок. 408–335 гг. до н. э.) в IV веке до н. э.) Греческая геометрия переживала «кризис» из-за открытия пифагорейцами таких чисел, как √2 (последнее необходимо для того, чтобы выразить длину диагонали квадрата через длины его сторон), не представимых в виде дроби, т. е. отношения двух целых чисел. Для древних греков было важно иметь возможность формулировать их геометрические меры (отношения) в терминах (отношений) целых чисел, чтобы оперировать геометрическими величинами в соответствии с правилам арифметики. В основном, идея Евдокса заключалась в том, чтобы дать метод описания отношений длин (т. е. действительных чисел!) в терминах целых чисел. Евдоксу удалось сформулировать в рамках операций над целыми числами такие критерии, которые позволяли решать, является ли одно из отношений длин больше другого или их можно считать в точности равными.

В общих чертах идея Евдокса сводится к следующему: если a , b , c и d — четыре длины, то критерием, позволяющим утверждать, что отношение а/b больше отношения c/d , будет существование таких целых чисел М и N , что длина а , сложенная сама с собой N раз, больше длины b , сложенной сама с собой М раз, — тогда как длина d , сложенная сама с собой М раз, больше длины с , прибавленной к самой себе N раз). Соответствующий критерий можно аналогичным образом использовать для установления противоположного неравенства а/b < c/d . А искомый критерий равенства а/b  = c/d просто отвечает случаю, когда ни один из двух критериев (а/b > c/d и а/b < c/d ) не может быть выполнен!

Совершенно точная абстрактная математическая теория действительных чисел была построена только в XIX веке такими математиками, как Дедекинд и Вейерштрасс. Но в действительности, предложенная ими процедура опиралась на те же идеи, которые были открыты Евдоксом примерно двадцатью двумя столетиями раньше! Сейчас нам не обязательно заниматься подробным изучением этой современной теории. Я кратко коснулся ее основных моментов в главе 3 (подглава «Действительные числа»), где для большей наглядности изложения предпочел использовать более привычное десятичное разложение действительных чисел. (В действительности, десятичное разложение была введено Стевином в 1585 году.) Следует также заметить, что хорошо знакомая нам десятичная запись была неизвестна древним грекам.

Однако, между теориями, предложенными Евдоксом с одной стороны, и Дедекиндом и Вейерштрассом — с другой, существует важное различие. Древние греки рассматривали действительные числа как изначально данные — в терминах (отношений) геометрических величин — т. е. как свойства «реального» пространства. Древним грекам было необходимо иметь возможность описывать геометрические величины арифметически, чтобы затем в рамках законов и правил арифметики проводить строгие рассуждения над этими геометрическими величинам, а также их суммами и произведениями — существенными составляющими столь многих замечательных геометрических теорем древних. (На рис. 5.3 в качестве иллюстрации приведена знаменитая теорема Птолемея, хотя Птолемей открыл ее гораздо позже эпохи, в которую жил Евдокс. Теорема Птолемея устанавливает соотношение, которому удовлетворяют расстояния между четырьмя точками на окружности; в ее формулировке с необходимостью используются как понятие суммы, так и понятие произведения.) Критерии Евдокса оказались необычайно плодотворными и, в частности, позволили древним грекам строго вычислять площади и объема.

Рис. 5.3. Теорема Птолемея

Но для математиков XIX века — и, разумеется, для современных математиков роль геометрии изменилась. Для древних греков и, в частности, для Евдокса, «действительные» числа были объектами, извлеченными из геометрии физического пространства. Ныне мы предпочитаем считать, что действительные числа логически более первичны, чем геометрия. Это позволяет нам конструировать всевозможные различные типы геометрии, каждый из которых исходит из понятия числа. (Ключевой идеей была идея координатной геометрии, введенная в XVII веке Ферма и Декартом. Координаты можно использовать для определения других типов геометрии.) Любая такая «геометрия» должна быть логически непротиворечивой, но не обязательно должна иметь прямое отношение к физическому пространству нашего эмпирического опыта. Конкретную физическую геометрию мы, по-видимому, постигаем через идеализацию эмпирического опыта (т. е. в зависимости от наших экстраполяций на бесконечно большие или бесконечно малые размеры, — см. главу 3, подглава «„Действительность“ действительных чисел»). Проводимые ныне эксперименты достаточно точны и приводят нас с необходимостью к заключению, что наша «извлеченная из эмпирического опыта» геометрия в действительности отличается от евклидова идеала (см. гл.5, конец подглавы «Общая теория относительности Эйнштейна») и согласуется с геометрией, требуемой в общей теорией относительности Эйнштейна. Однако, несмотря на изменения в наших взглядах на геометрию физического мира, возникших в настоящее время, понятие действительного числа, выдвинутое Евдоксом двадцать три столетия назад, по существу осталось неизменным и является существенным ингредиентом как теории Эйнштейна, так и теории Евклида. В действительности это понятие служит существенным ингредиентом всех современных серьезных физических теорий!

Пятая книга Начал Евклида бьша, по существу, изложением описанной выше «теории пропорций», введенной Евдоксом. Эта книга имела принципиально важное значение для всего многотомного сочинения Евклида в целом. На самом деле, Начала Евклида, впервые увидевшие свет около 300 года до н. э., должны считаться одним из сочинений, оказавших наибольшее влияние в истории человечества. Именно Начала Евклида установили эталон для почти всего последующего естественнонаучного и математического мышления. Методы Начал были дедуктивными, изложение начиналось с четко сформулированных аксиом, которые предполагались «самоочевидными» свойствами пространства; из аксиом выводились многочисленные следствия, многие из которых были важными и поразительными, и совсем не самоочевидными. Не подлежит сомнению, что Начала Евклида имели огромное значение для последующего развития естественнонаучного мышления.

Величайшим математиком древности несомненно был Архимед (287–212 гг. до н. э.). Остроумно используя теорию пропорций Евдокса, Архимед вычислил площади и объемы многих фигур и тел различной формы, например, сферы и более сложных геометрических форм, в том числе парабол или спиралей. Ныне для этих целей мы использовали бы дифференциальное и интегральное исчисление, но Архимед жил и творил примерно за 19 веков до создания математического анализа, разработанного Ньютоном и Лейбницем! (Можно было бы сказать, что добрая половина — «интегральная» половина — математического анализ была известна еще Архимеду!) Степень математической строгости, достигнутой Архимедом в своих рассуждениях, была безупречной даже по современным стандартам. Работы Архимеда оказали глубокое влияние на математиков и естествоиспытателей последующих веков, в частности, в значительной мере на Галилея и Ньютона. Архимед также ввел (ПРЕВОСХОДНУЮ?) физическую теорию статики (т. е. теорию, занимающуюся изучением законов поведения тел, находящихся в состоянии равновесия, например, законов рычага и законов плавающих тел) и развил статику как дедуктивную науку, аналогично тому, как Евклид изложил науку о геометрическом пространстве и геометрию твердых тел.

Современником Архимеда, которого я также считаю необходимым отметить, был Аполлоний (ок. 262–200 гг. до н. э.), великий геометр, отличавшийся глубиной озарений и остроумием. Ему мы обязаны исследованием теории конических сечений (т. е. эллипсов, парабол и гипербол), которая оказала весьма сильное влияние на Кеплера и Ньютона. Оказалось, что именно эти кривые, что весьма примечательно, необходимы для описания планетных орбит!

 

Динамика Галилея и Ньютона

Глубоким прорывом, принесенным в естествознание XVII веком, стало понимание движения. Древние греки достигли замечательного понимания статики вещей — твердых геометрических тел или тел, находящихся в состоянии равновесия (т. е. в состоянии, в котором все действующие на тело силы уравновешены, и движения нет), но не имели хорошего представления о законах, управляющих поведением реально движущихся тел. Чего недоставало древним грекам, это хорошей теории динамики, т. е. теории, описывающей тот красивый способ, каким природа управляет изменениями положения тел от одного момента времени к другому. Частично (но отнюдь не полностью) это объясняется тем, что у древних греков не было никаких сколь-нибудь точных средств измерения времени, т. е. достаточно хороших «часов». Такие часы необходимы для точного хронометрирования изменений в положении тел. Это позволило бы точно определить скорости и ускорения тел. Наблюдения, произведенные Галилеем в 1583 году, показали, что в качестве надежного средства хранения точного времени можно было бы использовать маятник. Этот факт имел далеко идущие последствия для самого Галилея (и для развития всего естествознания в целом!), так как позволял осуществить точное хронометрирование движения. Примерно через сорок пять лет — с публикацией в 1638 году Бесед и математических доказательств, касающихся двух новых отраслей науки Галилея — начал развиваться новый предмет — динамика , и началась трансформация от древнего мистицизма к современной науке!

Позвольте мне выделить всего лишь четыре наиболее важные физические идеи, введенные Галилеем. Первая идея Галилея заключалась в том, что сила, действующая на тела, определяет ускорение, а не скорость. Что в действительности означают термины «ускорение» и «скорость»? Скорость частицы — или какой-нибудь точки тела — это темп изменения во времени положения этой частицы или точки. Скорость обычно принято считать векторной величиной, иначе говоря, необходимо принимать во внимание не только величину, но и направление скорости (в противном случае мы используем термин «величина скорости», см. рис. 5.4).

Рис. 5.4. Скорость, величина

скорости и ускорение

Ускорение (также векторная величина) — это темп изменения, скорости во времени. Таким образом, ускорение в действительности есть скорость изменения скорости изменения положения во времени! (Древним было трудно понять сущность понятия «ускорение», так как у них не было адекватных «часов», и они не располагали соответствующими математическими идеями относительно «темпа изменения».) Галилей установил, что сила, приложенная к телу (в случае, исследуемом Галилеем — сила тяжести), управляет ускорением этого тела, но не управляет непосредственно его скоростью, как полагали древние, например, Аристотель.

В частности, в отсутствие приложенной к телу силы его скорость постоянна. Следовательно, неизменяемое движение тела по прямой есть результат отсутствия силы (первый закон движения Ньютона).

Тела в свободном движении продолжают сохранять состояние равномерного прямолинейного движения, и для того, чтобы они пребывали в этом состоянии, никакой силы не требуется. Действительно, одно из следствий из выведенных Галилеем и Ньютоном законов движения состояло в том, что равномерное прямолинейное движение физически полностью неотличимо от состояния покоя (т. е. отсутствия движения): не существует локального способа, позволяющего отличить равномерное прямолинейное движение от покоя! Галилей особенно четко сформулировал это утверждение (даже более четко, чем Ньютон) и дал ему весьма наглядное описание, использовав образ корабля в море (см. Дрэйк [1953], с. 186–187):

«Закройтесь вместе с вашим приятелем в кают-компании под палубой большого судна, прихватив с собой мух, бабочек и каких-нибудь других мелких летающих существ. Возьмите также с собой большой сосуд с водой, в котором бы плавала рыбка; подвесьте бутылку, из которой вода капля за каплей вытекала бы в подставленный снизу широкий сосуд. Пока судно будет стоять, внимательно присмотритесь к тому, как мелкие твари летают в каюте с одинаковой быстротой по всем направлениям. Рыбка также плавает одинаково охотно по всем направлениям; капли из бутылки падают в подставленный снизу сосуд… Внимательно пронаблюдав все эти явления, вы пускаетесь в плавание. Судно идет с любой скоростью, какая вам будет угодна. До тех пор и поскольку движение судна будет прямолинейным и равномерным без рысканья то в одну, то в другую сторону, вы не обнаружите ни малейших изменений в наблюденных ранее явлениях и не сможете отличить ни по одному из них, движется ли судно или стоит на месте… Капли будут, как и прежде, падать в подставленный снизу сосуд, ничуть не отклоняясь к корме, хотя пока капли находятся в воздухе, судно успевает пройти значительное расстояние. Рыбка в воде будет плавать вперед (по ходу движения судна) так же часто, как и назад, и с одинаковой легкостью подплывать к корму, в каком бы месте у стенок сосуда он бы ни был насыпан. Наконец, мухи и бабочки будут по-прежнему летать по всем направлениям, не отдавая предпочтения ни одному из них, не скапливаясь ближе к корме, как бы от усталости, будучи вынужденными следовать курсу судна, от которого они будут отделены на протяжении продолжительных интервалов времени, в течение которых они находятся в воздухе».

Этот замечательный факт, получивший название принципа относительности Галилея , имеет в действительности решающее значение для наполнения копернианской точки зрения динамическим смыслом. Николай Коперник (1473–1543) и древнегреческий астроном Аристарх (ок. 310–230 гг. до н. э.; не путать с Аристотелем!) за восемнадцать веков до Коперника выдвинули гипотезу о том, что Солнце покоится, а Земля движется, вращаясь вокруг своей собственной оси и обращаясь по орбите вокруг Солнца. Почему мы не ощущаем этого движения, которое происходит со скоростью около нескольких сотен тысяч километров в час? До того, как Галилей выдвинул свою динамическую теорию, этот вопрос действительно представлял настоящую и глубокую загадку для сторонников копернианской картины мироздания. Если бы была верна более ранняя «аристотелевская» версия динамики, согласно которой реальная скорость системы в ее движении сквозь пространство влияла бы на динамическое поведение системы, то движение Земли заведомо было бы чем-то непосредственно очевидным для нас. Относительность Галилея позволяет понять, каким образом Земля может находиться в движении, хотя это движение не будет чем-то воспринимаемым нами непосредственно).

Заметим, что в рамках галилеевой относительности не существует локального физического смысла, который можно было бы придать понятию «в покое». Это приводит к важным следствиям относительно того, как надлежит рассматривать пространство и время. Интуитивная картина пространства и времени состоит в том, что «пространство» представляет собой своего рода арену, на которой происходят физические события. Физический объект может в один момент времени находиться в одной точке пространства, а в более поздний момент времени может оставаться в той же точке или оказаться в другой точке пространства. Представим себе мысленно, что точки пространства каким-то образом могут сохранять свое положение от одного момента времени до следующего момента так, что имеет смысл говорить о том, изменил ли некоторый объект свое положение в пространстве или не изменил. Но галилеева относительность учит нас, что «состояние покоя» не имеет абсолютного характера и поэтому невозможно придать смысл выражению «одна и та же точка пространства в два различных момента времени». Какая точка евклидова трехмерного пространства физической реальности в один момент времени является «той же» точкой евклидова трехмерного пространства в другой момент времени? На этот вопрос невозможно ответить. Создается впечатление, что для каждого момента времени нам необходимо иметь совершенно «новое» евклидово пространство! Этому можно придать смысл, если рассмотреть четырехмерную пространственно-временну́ю картину физической реальности (рис. 5.5).

Рис. 5.5. Галилеево пространство-время: частицы, движущиеся равномерно и прямолинейно, изображены в виде прямых

Трехмерные евклидовы пространства, соответствующие различным моментам времени, в этой картине действительно рассматриваются отдельно друг от друга, но все эти пространства объединены, образуя совместно полную картину четырехмерного пространства-времени. Истории частиц, движущихся равномерно и прямолинейно, описываются прямыми (называемыми мировыми линиями) в пространстве-времени. В дальнейшем я еще вернусь к проблеме пространства-времени и относительности движения в контексте эйнштейновской специальной теории относительности. Мы увидим, что довод в пользу четырехмерности обретает в этом случае гораздо бо́льшую силу.

Третья из великих догадок Галилея стала ключом к началу понимания закона сохранения энергии . Галилея главным образом интересовало движение объектов под действием силы тяжести. Он заметил, что если тело стартует из состояния покоя, то идет ли речь о свободно падающем теле, или о колеблющемся маятнике произвольной длины, или о теле, соскальзывающем по наклонной плоскости, скорость движения всегда зависит только от расстояния по вертикали, пройденного телом от начального положения. Кроме того, достигнутая скорость всегда в точности достаточна для возвращения тела на ту высоту, с которой оно начало двигаться. Теперь мы должны были бы сказать, что энергия, запасенная телом на исходной высоте над поверхностью земли (гравитационная потенциальная энергия), может превращаться в энергию движения тела (кинетическую энергию, которая зависит от величины скорости тела), а та, в свою очередь, — в потенциальную энергию, причем в целом энергия не утрачивается и не приобретается.

Закон сохранения энергии — очень важный физический принцип. Это — не независимое физическое требование, а следствие из законов движения Ньютона, до которых мы скоро дойдем. На протяжении столетий все более понятные формулировки закона сохранения энергии делались Декартом, Гюйгенсом, Лейбницем, Эйлером и Кельвином. Позднее в этой главе и в главе 7 мы еще вернемся к закону сохранения энергии. Оказывается, что в сочетании с галилеевским принципом относительности закон сохранения энергии приводит к другим законам сохранения, имеющим немалое значение: закону сохранения массы и закону сохранения количества движения (импульса ). Количество движения частицы равно произведению ее массы и ее скорости. Знакомые примеры сохранения количества движения возникают при рассмотрении реактивного движения, когда увеличение направленного вперед количества движения ракеты в точности уравновешивается направленным назад количеством движения выхлопных газов (обладающих меньшей массой, но зато большей скоростью). Отдача ружья при выстреле — еще одно проявление закона сохранения количества движения. Еще одним следствием из законов движения Ньютона служит закон сохранения углового момента (момента количества движения ), описывающий постоянство вращения системы вокруг собственной оси. Вращение Земли вокруг собственной оси, равно как и вращение теннисного мяча вокруг собственной оси, не затухают благодаря закону сохранения их угловых моментов. Каждая частица, образующая любое тело, вносит свой вклад в полный угловой момент тела, причем величина этого вклада равна произведению количества движения частицы на расстояние ее от оси вращения (длину перпендикуляра, опущенного из точки, где находится частица, на ось вращения). (Следовательно, угловую скорость свободно вращающегося объекта можно увеличить, сделав объект более компактным. Это приводит к поразительному, но хорошо знакомому действию, часто исполняемому спортсменами на льду и воздушными гимнастами на трапеции. Прижав к себе руки или поджав ноги, они резко увеличивают скорость вращения просто вследствие закона сохранения углового момента!) Как будет показано в дальнейшем, масса, энергия, количество движения (импульс) и угловой момент принадлежат к числу важных для нас понятий. Наконец, мне следовало бы напомнить читателю о пророческой догадке Галилея, понявшего, что в отсутствие атмосферного сопротивления все тела под действием силы тяжести падают с одной и той же скоростью. (Возможно, читатель вспомнит известную легенду о том, как Галилей сбрасывал с наклонной башни в Пизе по несколько предметов одновременно.) Три столетия спустя то же самое озарение привело Эйнштейна к обобщению принципа относительности на ускоренные системы отсчета и стало, как мы увидим в конце этой главы, краеугольным камнем его необычайной общерелятивистской теории относительности.

На мощном фундаменте, заложенном Галилеем, Ньютону удалось возвести величественнейший храм. Он сформулировал три закона, управляющие поведением материальных тел. Первый и второй законы Ньютона по существу совпадали с законами, открытыми Галилеем: если на тело не действует никакая сила, то тело продолжает равномерно двигаться по прямой; если на тело действует какая-нибудь сила, то произведение массы тела на ускорение (т. е. скорость изменения количества движения тела) равно этой силе. Заслуга собственно Ньютона состояла в осознании необходимости третьего закона движения: сила, с которой тело А действует на тело В , в точности равна по величине и противоположна по направлению силе, с которой тело В действует на тело А (иными словами, «для каждого действия всегда существует равное по величине противодействие»), Три закона движения Ньютона образуют основу основ. «Ньютоновская вселенная» состоит из частиц, движущихся в пространстве, где действуют законы евклидовой геометрии.

Рис. 5.6. Сложение векторов по правилу параллелограмма

Ускорения этих частиц определяются действующими на них силами. Сила, приложенная к каждой из частиц, получается путем сложения (по правилу сложения векторов, см. рис. 5.6) всех сил, действующих на данную частицу со стороны всех остальных частиц. Чтобы система была хорошо определенной, необходимо задать некоторое четкое правило, которое позволяло бы установить, какая сила действует на частицу А со стороны другой частицы В . Обычно мы требуем, чтобы эта сила действовала по прямой, соединяющей частицы А и В (рис. 5.7).

Рис. 5.7. Сила, действующая между двумя частицами, направлена по прямой между ними (и по третьему закону Ньютона сила, действующая на частицу А со стороны частицы В , всегда равна по величине и противоположна по направлению силе, действующей на В со стороны А )

Если речь идет о гравитационной силе, то между А и В возникает сила притяжения, величина которой пропорциональна произведению масс частиц А и В и обратно пропорциональна квадрату расстояния между частицами: закон обратных квадратов. Для других типов сил зависимость от взаимного расположения частиц может быть другой, и величина силы в этом случае будет зависеть не от масс частиц, а от какого-то иного их свойства.

Великий Иоганн Кеплер (1571–1630), современник Галилея, заметил, что орбиты планет, описываемые ими вокруг Солнца, имеют форму эллипсов, а не окружностей (причем Солнце всегда находится в фокусе, а не в центре эллипса), и сформулировал два других закона, задающих скорости, с которыми планеты движутся по орбитам. Ньютон сумел показать, что три закона Кеплера следуют из его собственной общей модели (с учетом силы притяжения, обратно пропорциональной квадрату расстояния между телами). Кроме того, Ньютон внес многие поправки к кеплеровским эллиптическим орбитам, а также объяснил ряд других эффектов (например, медленное движение оси вращения Земли, замеченное задолго до Ньютона еще древними греками). Чтобы прийти к таким результатам, Ньютону, помимо дифференциального исчисления, пришлось разработать немало дополнительных математических методов. Феноменальный успех, увенчавший эти усилия, во многом объясняется его высочайшим искусством математика и великолепной физической интуицией.

 

Механистический мир динамики Ньютона

С введением определенного закона для силы (как обратного квадрата расстояния между телами) ньютоновская модель превращается в точную и определенную систему динамических уравнений. Если положения, скорости и массы различных частиц заданы в некоторый момент времени, то их положения и скорости (равно как и массы, которые считаются постоянными) автоматически определены для всех последующих моментов времени. Эта форма детерминизма, которой удовлетворяет мир механики Ньютона, оказала (и все еще продолжает оказывать) глубокое влияние на философскую мысль. Попробуем изучить природу ньютонианского детерминизма чуть более подробно. Что он может сказать нам о «свободе воли»? Мог бы в строго ньютонианском мире существовать разум? Найдется ли в нем место хотя бы компьютерам?

Давайте попытаемся представить более конкретно «ньютонианскую» модель мира. Например, мы можем предположить, что частицы материи допустимо считать математическими точками, т. е. объектами, не имеющими никакой пространственной протяженности. В качестве альтернативы все частицы можно считать твердыми сферическими шариками. И в том, и в другом случае нам придется предположить, что законы действия сил, как в случае ньютоновского закона всемирного тяготения, известны. Мы хотим промоделировать и другие встречающиеся в природе силы, такие как электрические и магнитные взаимодействия (впервые подробно исследованные в 1600 году Уильямом Гильбертом), или сильные ядерные взаимодействия, которые, как ныне известно, связывают частицы (протоны и нейтроны), образующие атомные ядра. Электрическое взаимодействие похоже на гравитационное, поскольку тоже удовлетворяет закону обратных квадратов, но при этом одинаково заряженные частицы отталкивают (а не притягивают, как в случае гравитационного взаимодействия) друг друга, и величину электрического взаимодействия определяют не массы, а электрические заряды частиц. Магнитное взаимодействие, так же как и электрическое, «обратно пропорционально квадрату расстояния», но ядерное взаимодействие имеет совершенно другую зависимость от расстояния: оно очень велико на очень малых расстояниях, сравнимых с внутриатомными, и пренебрежимо мало на бо́льших расстояниях.

Предположим, что мы остановили свой выбор на модели твердых сферических шариков, потребовав, чтобы при столкновении частиц шарики просто идеально упруго отражались. Иначе говоря, они должны разлетаться после столкновения без какой бы то ни было потери энергии (или полного количества движения (импульса)), как если бы они были идеальными бильярдными шарами. Нам необходимо также точно задать, какие силы должны действовать между шариками. Для простоты мы можем положить, что сила, с которой один шарик действует на любой другой, направлена по прямой, соединяющей центры шариков, а величина силы определяется длиной отрезка между центрами шариков. (Для ньютоновской гравитации это предположение выполняется автоматически в силу замечательной теоремы, доказанной Ньютоном; а для других видов сил оно может быть наложено в качестве дополнительного требования.) Если шарики сталкиваются только попарно, а тройные столкновения, как и столкновения более высокого порядка, не происходят, то все вполне определено, и исход столкновения непрерывно зависит от начального состояния (т. е. достаточно малые изменения в начальном состоянии приводят лишь к малым изменениям в конечном). Скользящие столкновения рассматриваются как предельный случай прохождения шариков в непосредственной близости друг от друга. Проблема возникает при рассмотрении тройных столкновений и столкновений более высоких порядков. Например, если происходит одновременное столкновение трех шариков А , В и С , то вся картина значительно меняется в зависимости от того, какое из попарных соударений мы рассматриваем сначала: шарика А с шариком В , а сразу же после этого — С с В ; или же мы считаем, что сначала сталкиваются шарики А и С , а затем шарик В сталкивается с шариком А (рис. 5.8).

Рис. 5.8. Тройное соударение. Поведение частиц в результате столкновения существенно зависит от того, какие частицы сталкиваются первыми, поэтому исход столкновения не зависит непрерывным образом от начальных данных

В нашей модели существует индетерминизм , когда происходит тройное столкновение! Если угодно, то мы можем просто исключить тройные столкновения и столкновения более высокого порядка как «в высшей степени (бесконечно) невероятные». Это дает вполне непротиворечивую схему, но потенциальная проблема тройных столкновений означает, что результирующее поведение частиц может не зависеть непрерывным образом от начального состояния.

Поскольку такое положение дел нас не совсем удовлетворяет, то мы можем отдать предпочтение картине точечных частиц. Но для того, чтобы избежать некоторых теоретических трудностей, возникающих в рамках этого подхода (бесконечные силц и бесконечные энергии при столкновении частиц), необходимо сделать дополнительные предположения, в частности о том, что на коротких расстояниях силы, действующие между частицами, всегда становятся отталкивающими. Тогда мы можем обеспечить невозможность столкновения любой пары частиц. (Оно также помогает нам избежать проблемы определения поведения частиц при столкновении!) Но для большей наглядности я все-таки буду рассматривать модель твердых сферических шариков, ибо, как мне кажется, подобная «бильярдная» картина для большинства из нас подсознательно как раз и является рабочей моделью реальности!

Подчеркнем (игнорируя проблему столкновения нескольких шариков), что ньютонианская бильярдная картина реальности в действительности является детерминистской моделью. Слово «детерминистская» надлежит понимать в том смысле, что физическое поведение системы с математической точки зрения полностью определено во все моменты времени в будущем (или в прошлом) положениями и скоростями шариков (во избежание некоторых проблем предположим, что число шариков конечно) в какой-то один момент времени. Таким образом, создается впечатление, будто в таком бильярдном мире нет места для разума, который своей «свободной волей» мог бы влиять на поведение материальных объектов. Если мы верим в «свободу воли», то, по-видимому, вынуждены будем усомниться в возможности описания нашего реального мира в рамках бильярдной модели.

Мучительный вопрос о «свободе воли» проходит через всю эту книгу — хотя при обсуждении большинства затронутых в ней тем он остается на заднем плане. В этой главе ему предстоит сыграть определенную, но небольшую роль (связанную с проблемой передачи сигналов со сверхсветовой скоростью в теории относительности). Вопросом о свободе воли мы займемся непосредственно в главе 10, и читатель несомненно будет разочарован моим вкладом в эту проблему. Я действительно считаю, что вопрос о свободе воле представляет собой реальную, а не вымышленную проблему — но она в высшей степени нетривиальна и ее трудно сформулировать адекватно. Вопрос о детерминизме в физической теории, безусловно, важен, однако я убежден, что он не является камнем преткновения. Например, мир может быть детерминистским, но невычислимым. Иначе говоря, будущее может определяться прошлым, но точно рассчитать его при этом будет в принципе невозможно. В главе 10 я попытаюсь изложить аргументы, показывающие, что действие нашего наделенного сознанием разума неалгоритмично (т. е. невычислимо). Соответственно, свобода воли, которой мы наделены (по нашему глубокому убеждению), должна быть тесно связана с какой-то невычислимой составляющей законов, управляющих тем миром, в котором мы живем. Независимо от того, принимаем ли мы или отвергаем такую точку зрения на свободу воли, интерес для нас представляет вопрос именно о вычислимости данной физической теории (например, ньютоновской динамики), а не о том, является ли она детерминистской. Вопрос о вычислимости отличен от вопроса о детерминизме. Утверждение о том, что это — два совершенно разных вопроса, как раз и служит одним из основных тезисов в данной книге.

 

Вычислима ли жизнь в бильярдном мире?

Позвольте мне сначала показать на умышленно абсурдном искусственном примере, что вычислимость и детерминизм — понятия различные. Для этого я продемонстрирую «игрушечную модель вселенной», которая детерминистична, но не вычислима. Пусть «состояние» этой вселенной в любой «момент времени» описывается как пара натуральных чисел (m , n ). Пусть Т u — фиксированная универсальная машина Тьюринга, например, та, которая описана в главе 2 («Универсальная машина Тьюринга»). Чтобы решить, какое состояние этой вселенной наступит в следующий «момент времени», нам необходимо спросить, остановится ли действие машины Тьюринга Т u на m или не остановится (в обозначениях главы 2, «Неразрешимость проблемы Гилберта» Т u (m ) ≠ □ или Т и (m ) = □). Если машина Тьюринга Т и останавливается, то состояние в следующий момент времени есть (m + 1 , n ). Если же машина Тьюринга не останавливается, то состояние в следующий момент времени должно быть (n +1 , m ). В главе 2 было показано, что не существует алгоритма для решения проблемы остановки машины Тьюринга. Следовательно, не может быть алгоритма предсказания «будущего» в рассматриваемой модели вселенной, несмотря на то, что эта модель вполне детерминистична.

Разумеется, описанную выше модель не следует принимать всерьез, но она показывает, что вопрос все же существует и на него необходимо найти ответ. Относительно любой детерминистской физической теории мы сможем спросить, вычислима она или нет. Действительно, вычислим ли ньютонианский бильярдный мир?

Вопрос о физической вычислимости отчасти зависит от того, какого рода информацию о данной системе мы хотим получить. Я могу придумать целый ряд вопросов о конкретной физической системе, на которые — как мне кажется — в случае ньютоновской бильярдной модели не существует вычислимого (т. е. алгоритмически получаемого) ответа. Одним из таких вопросов мог бы быть следующий: столкнется ли когда-нибудь шарик А с шариком В ? Имеется в виду, что в качестве начальных условий нам в некоторый момент времени (t = 0 ) задаются положения и скорости всех шариков; и задача состоит в том, чтобы, исходя из этих данных, выяснить, сталкиваются или не сталкиваются шарики А и В в некоторый последующий момент времени (t > 0 ). Чтобы придать задаче бо́льшую конкретность (хотя и сделав ее при этом не особенно реалистичной), мы можем предположить, что все шарики имеют одинаковый радиус и одинаковую массу и что, скажем, сила, действующая между шариками, обратно пропорциональна квадрату расстояния между ними. Одна из причин, по которой я сделал предположение о невозможности алгоритмически получить ответ на этот вопрос, заключается в том, что сама модель несколько напоминает «бильярдную модель для вычисления», предложенную Эдвардом Фредкином и Томмазо Тоффоли (Фредкин, Тоффоли [1982]). В их модели шарики (вместо того, чтобы попарно взаимодействовать по закону обратных квадратов) были ограничены различными «стенками», но упруго отражались при столкновениях друг с другом — по аналогии с теми ньютоновскими шариками, которые я только что описывал (рис. 5.9).

Рис. 5.9. «Переключатель» (конструкции А. Ресслера) в компьютере Фредкина — Тоффоли на бильярдных шарах. Если шар попадает в переключатель через вход В , то в дальнейшем он покидает переключатель через выход D или Е в зависимости от того, попадает ли другой шар в переключатель через вход А (предполагается, что шары попадают в переключатель через входы А и В одновременно)

В модели Фредкина — Тоффоли все основные логические операции компьютера могут выполняться с помощью шариков. Модель позволяет имитировать вычисления, производимые любой машиной Тьюринга: конкретный выбор машины Тьюринга Т u определяет конфигурацию «стенок» и т. д. в машине Фредкина — Тоффоли; начальное состояние движущихся шариков соответствует информации на входной ленте машины Тьюринга; а содержимое на выходной ленте соответствует конечному состоянию шариков. Таким образом, можно, в частности, спросить: останавливается ли когда-нибудь такая-то и такая-то машина Тьюринга? «Остановка» может быть сформулирована как состояние при котором шарик А сталкивается, в конце концов, с шариком В . То, что на этот вопрос невозможно ответить алгоритмически (см. гл.2 «Неразрешимость проблемы Гильберта»), по крайней мере наводит на мысль о том, что ньютоновский вопрос «сталкивается ли когда-нибудь шарик А с шариком В ?», который был поставлен мной первоначально, тоже не может быть разрешен алгоритмически.

В действительности, ньютоновская задача является гораздо более каверзной, чем задача, поставленная Фредкином и Тоффоли. Эти авторы могли задавать состояние своей модели с помощью дискретных параметров (т. е. при помощи утверждений «да или нет» типа «шарик либо находится в данном туннеле, либо не находится»). Но в полной ньютоновской задаче начальные положения и скорости шариков необходимо задавать с бесконечной точностью в терминах координат, которые являются действительными числами, а не принимают дискретные значения. Таким образом, мы снова сталкиваемся со всеми проблемами, которые нам уже приходилось рассматривать, когда в главе 4 мы пытались ответить на вопрос, рекурсивно ли множество Мандельброта. Что означает «вычислимость», когда в качестве входных и выходных данных допускаются непрерывно изменяющиеся параметры? Проблему можно слегка облегчить, предположив, что все начальные положения и скорости заданы рациональными числами (хотя нельзя ожидать, что координаты и компоненты скорости останутся рациональными в более поздние рациональные моменты времени t ). Напомним, что рациональное число представимо в виде отношения двух целых чисел и, следовательно, определяется в дискретных конечных терминах. Используя рациональные числа, мы можем сколь угодно точно аппроксимировать любые наборы начальных данных, которые собираемся использовать в своих вычислениях. И предположение о том, что при рациональных начальных данных может не существовать алгоритма, позволяющего определить, столкнутся в конце концов или нет шарики А и В , — отнюдь не лишено смысла.

Однако на самом деле, когда говорят: «Ньютонианский бильярдный мир не вычислим», имеют в виду совсем другое. Та модель, которую я сравниваю с ньютонианским бильярдным миром — а именно, «бильярдный компьютер» Фредкина — Тоффоли — действует как вычислительный алгоритм. В конечном счете, это и было квинтэссенцией идеи Фредкина и Тоффоли — что их модель должна вести себя как (универсальный) компьютер! Вопрос, который я пытаюсь сейчас прояснить, сводится к следующему: можно ли представить себе, что человеческий мозг, используя некоторые подходящие «невычислимые» физические законы, работает в определенном смысле «лучше», чем машина Тьюринга? Бесполезно пытаться использовать что-нибудь вроде следующего утверждения:

«Если шарик А никогда не сталкивается с шариком В , то ответ на Ваш вопрос будет: „нет“».

Чтобы окончательно удостовериться в том, что шарик А действительно никогда не сталкивается с шариком В , пришлось бы прождать вечность! Разумеется, машины Тьюринга ведут себя именно так.

На самом деле, существуют, по-видимому, достаточно весомые указания в пользу своего рода вычислимости ньютонианского бильярдного мира (по крайней мере, если оставить в стороне проблему множественных столкновений). Способ, которым мы пользуемся для того, чтобы рассчитать поведение такого мира, сводится к введению аппроксимаций. Мы могли бы предположить, что центры шариков по определению располагаются в узлах некоторой точечной решетки, причем координаты узлов измерены, например, с точностью до сотых долей единицы. Время также можно считать «дискретным»: все допустимые моменты времени должны быть кратными некоторой небольшой единице (обозначаемой, скажем, Δt ). Это приводит к разным дискретным возможностям для «скоростей» (разностей между значениями положений точек на решетке В два последовательных разрешенных момента времени, деленных на Δt ). Соответствующие приближения для. ускорений вычисляются с использованием закона силы, и, в свою очередь, используются для получения значений «скоростей». После чего с требуемой точностью вычисляются новые положения шариков в узлах решетки в следующий допустимый момент времени. Вычисления производятся до тех пор, пока сохраняется указанная точность. Вполне может оказаться, что точность будет потеряна раньше, чем мы успеем рассчитать состояние системы для достаточно большого числа моментов времени. В этом случае процедура начинается снова со значительно более мелкой пространственной решеткой и более частыми допустимыми моментами времени. Это позволяет достичь большей точности — и рассчитать поведение системы в более отдаленном будущем. Такой прием дает возможность математически описывать ньютоновский бильярдный мир (игнорируя множественные столкновения) сколь угодно точно, и в этом смысле можно сказать, что ньютонианский мир действительно вычислим.

Но в то же время можно сказать и обратное: что в некотором (практическом) смысле этот мир «невычислим», поскольку точность, с которой могут быть известны начальные данные, всегда ограничена. Действительно, такого рода задачам всегда присуща некоторая (и весьма значительная) «нестабильность». Очень небольшое изменение в начальных условиях может привести к возникновению чудовищных изменений в конечном состоянии. (Всякий, кто пытался загнать в лузу бильярдный шар, стремясь ударить его промежуточным шаром, поймет, что я имею в виду!) Сказанное становится очевидным, когда происходят (последовательные) столкновения, но такие неустойчивости в поведении могут встречаться и в случае действия ньютоновского тяготения на расстоянии (если гравитирующих тел больше двух). Для обозначения этого типа неустойчивости часто используется термин «хаос», или «хаотическое поведение». Например, хаотическое поведение важно, когда речь заходит о погоде. Хотя ньютоновские уравнения, управляющие стихиями, хорошо изучены, долговременный прогноз погоды печально известен своей ненадежностью!

Все это не похоже на тот тип «невычислимости», который можно было бы каким-то образом «использовать». Невычислимость в данном случае обусловлена просто тем, что из-за существования предела точности, с которой может быть известно начальное состояние, будущее состояние в принципе не поддается точному расчету на основании известных начальных условий. На самом деле, в этом случае к будущему поведению системы примешивается случайный элемент — и только. Если же работа мозга все-таки опирается на полезные невычислимые составляющие физических законов, то последние должны быть совершенно другими — и более конструктивными — по своей природе. Поэтому я не буду называть «хаотическое» поведение такого рода «невычислимостью», предпочитая использовать термин «непредсказуемость». Наличие непредсказуемости — весьма общее явление для тех детерминистских законов, которые, как мы вскоре убедимся, действительно возникают в (классической) физике. Но мы скорее уж предпочтем минимизировать непредсказуемость, чем «использовать» ее в конструкции мыслящей машины!

Обсуждая в общем и целом вопросы вычислимости и непредсказуемости, нам будет полезно принять более широкую, чем прежде, точку зрения на природу физических законов. Это позволит рассматривать не только схему ньютоновской механики, но и более поздние теории, пришедшие ей на смену. И сперва нам стоит окинуть беглым взглядом замечательную формулировку законов механики, предложенную Гамильтоном.

 

Гамильтонова механика

Своими успехами ньютоновская механика обязана не только своей способности исключительно точно описывать физический мир, но и обилию порожденных ею математических теорий. Замечательно, что все ПРЕВОСХОДНЫЕ теории природы оказались весьма щедрыми источниками математических идей. В этом кроется глубокая и прекрасная тайна: все наиболее точные теории в то же время необычайно плодотворны и с точки зрения математики. Не подлежит сомнению, что это свидетельствует о каких-то глубоких связях между реальным окружающим нас миром и платоновским миром математики. (Далее, (в главе 10, «Взгляд на физическую реальность») я постараюсь еще раз вернуться к этому вопросу.) Возможно, ньютоновская механика в этом отношении не имеет себе равных, так как ее рождение привело к возникновению дифференциального и интегрального исчисления. Кроме того, специфическая ньютонианская схема дала рождение массе замечательных математических идей, составляющих классическую механику. Имена многих великих математиков XVIII и XIX веков связаны с развитием этой науки: Эйлер, Лагранж, Лаплас, Лиувилль, Пуассон, Якоби, Остроградский, Гамильтон. То, что принято называть «гамильтоновой теорией» включает в себя многое из проделанной ими работы. Сейчас мы вкратце коснемся Общих положений этой теории. Разносторонний и самобытный ирландский математик Уильям Роуан Гамильтон (1805–1865), автор гамильтоновых циклов (обсуждаемых в гл.4, подгл. «Теория сложности»), придал этой теории такую форму, которая особо подчеркивала аналогию с распространением волн. Это указание на существование взаимосвязи между волной и частицей (равно как и форма самих уравнений Гамильтона) сыграло важную роль в последующем развитии квантовой механики. К этой стороне дела я еще вернусь в следующей главе.

В рамках гамильтоновой теории впервые появились «переменные» для описания физической системы. До Гамильтона положения частиц считались первичными, а скорости считались просто быстротой изменения положения частиц во времени. Напомним, что для задания начального состояния ньютоновской системы нам необходимы положения и скорости всех частиц — только тогда мы можем определить последующее поведение системы. В рамках гамильтоновой формулировки необходимо выбирать импульсы, а не скорости частиц. (В гл.5, подгл. «Динамика Галилея и Ньютона» мы отметили, что импульс частицы есть не что иное, как произведение ее скорости на массу.) Само по себе это нововведение может показаться несущественным, но важно здесь другое: положение и импульс каждой частицы в гамильтоновой формулировке надлежит рассматривать как независимые, более или менее равноправные величины. Тем самым, используя гамильтонову формулировку, мы «делаем вид», что импульсы различных частиц не имеют никакого отношения к быстроте изменения переменных, описывающих их относительное положение, а представляют собой отдельный набор переменных — и, как следствие, мы можем считать импульсы совершенно независимыми от изменения положений движущихся частиц. В гамильтоновой формулировке мы располагаем двумя системами уравнений: одна из них говорит нам о том, как изменяются во времени импульсы различных частиц, другая — о том, как изменяются во времени положения частиц. И в том, и в другом случае быстрота изменений определяется различными положениями и импульсами в рассматриваемый момент времени.

Грубо говоря, первая система гамильтоновых уравнений выражает второй, самый важный закон движения Ньютона (быстрота изменения импульса = силе), тогда как вторая система уравнений Гамильтона говорит нам о том, чему равны импульсы, выраженные в терминах скоростей (быстрота изменения положения = импульс/массу). Напомним, что в формулировках законов движения Галилея — Ньютона использовались ускорения (или быстрота изменения быстроты изменения положения, т. е. уравнения «второго порядка»), тогда как в гамильтоновой формулировке нам достаточно говорить только о быстроте изменения величин (уравнения «первого порядка»). Все гамильтоновы уравнения выводятся всего лишь из одной важной величины: функции Гамильтона Н , представляющую собой полную энергию системы, выраженную в переменных, описывающих положения и импульсы.

Гамильтонова формулировка дает весьма изящное и симметричное описание механики. Выпишем здесь гамильтоновы уравнения просто для того, чтобы понять, как они выглядят, хотя многие читатели, возможно, и не знакомы с принятыми в математическом анализе обозначениями, необходимыми для полного понимания — впрочем, оно сейчас и не требуется. Все, что нам сейчас действительно нужно знать о дифференциальном исчислении, ограничивается пониманием смысла «точки» в левых частях уравнений Гамильтона — она означает быстроту изменения по времени (в первом случае — импульса, во втором случае — положения):

#i_083.png

Индекс i здесь использован просто для того, чтобы отличать все различные координаты импульсов (р 1 , p 2 , p 3 , p 4 …) и положений (х 1 , х 2, x 3 , x 4 …). Для n частиц, не ограниченных наложенными на них связями, мы получаем 3n координат импульсов и 3n координат положений (по одной координате для каждого из трех независимых направлений в пространстве). Символ ∂ относится к операции «частного дифференцирования» (взятию производной по одной переменной при сохранении постоянных значений всех остальных переменных), а Н , как сказано выше, означает функцию Гамильтона. (Если Вы ничего не знаете о «дифференцировании» — не стоит беспокоиться. Просто рассматривайте правые части уравнений Гамильтона как некие вполне определенные математические выражения, записанные через x i и p i .)

Координаты x 1 , x 2 … и, р 1 , p 2 ,…. могут на самом деле использоваться для обозначения более общих вещей, а не только обычных декартовых координат для частиц (т. е. когда x i  — обычные расстояния, измеряемые по трем различным направлениям, расположенным под прямыми углами друг к другу). Например, некоторые из x i в гамильтоновом случае можно считать углами — тогда соответствующие р i превращаются в угловые моменты (см. гл.6, подгл. «Уравнение Шредингера; уравнение Дирака») вместо импульсов — или вообще какими-нибудь совершенно абстрактными величинами. Замечательно, что при этом гамильтоновы уравнения по-прежнему сохраняют в точности ту же форму. Действительно, при подходящем выборе функции Гамильтона Н гамильтоновы уравнения остаются в силе для любой системы классических уравнений, а не только для уравнений Ньютона. В частности, они выполняются для теории Максвелла(—Лоренца), к рассмотрению которой мы вскоре приступим. Гамильтоновы уравнения можно записать и для специальной теории относительности. Даже общую теорию относительности (при соблюдении должной осторожности) можно представить в гамильтоновой форме. Кроме того, как мы убедимся в дальнейшем при знакомстве с уравнением Шредингера (см. гл.6, подгл. «Уравнение Шредингера; уравнение Дирака»), гамильтонова формулировка служит отправным пунктом для вывода уравнений квантовой механики. Такое единство формы в структуре динамических уравнений, сохранившееся несмотря на все революционные новшества, введенные в физические теории за минувшие столетия, поистине удивительна!

 

Фазовое пространство

Форма гамильтоновых уравнений позволяет нам «наглядно представить» эволюцию классической системы, используя весьма мощный и универсальный подход. Попытаемся вообразить «пространство» большого числа измерений, по одному измерению

на каждую из координат x 1 , x 2 … p i , p 2 …

(Математические пространства часто имеют размерность выше трех.) Такое пространство называется фазовым пространством (рис. 5.10).

Рис. 5.10. Фазовое пространство. Каждая точка  Q фазового пространства описывает полное состояние некоторой физической системы, включающее в себя мгновенные движения всех ее частей

Для n свободных частиц размерность фазового пространства равна 6n (по три координаты положения и по три координаты импульса для каждой частицы). Читателя может обеспокоить то, что даже для одной-единственной частицы размерность фазового пространства оказывается вдвое большей, чем мы обычно привыкли представлять! Но секрет успеха заключается в том, чтобы не пасовать перед трудностями. Конечно, шестимерное пространство действительно имеет бо́льшую размерность, чем та, которую можно с ходу (!) представить — но даже если бы могли себе его представить, то пользы от этого оказалось бы немного. Например, всего лишь для комнаты, полной молекул газа, размерность фазового пространства могла бы равняться, например, такой величине:

10 000 000 000 000 000 000 000 000 000.

Попытка наглядно представить себе пространство столь высокой размерности заранее обречена на провал! Так что лучше даже и не пытаться делать это даже в случае фазового пространства для одной-единственной частицы. Просто представьте себе несколько расплывчатую трехмерную (или даже всего лишь двумерную) область. Взгляните еще раз на рис. 5.10. Этого вполне достаточно.

А как теперь наглядно представить себе уравнения Гамильтона для фазового пространства? Прежде всего следует помнить о том, что на самом деле изображает одна точка Q фазового пространства. Она соответствует некоторому конкретному набору значений всех координат положений х 1 , х2 …. и всех координат импульсов р 1 , p 2 , …. То есть, точка Q представляет всю нашу физическую систему в определенном состоянии движения, заданного для каждой из образующих ее частиц в отдельности. Уравнения Гамильтона говорят нам о степени быстроты изменения всех этих координат, если их текущие значения известны, т. е. управляют движениями всех отдельных частиц. В переводе на язык фазового пространства уравнения Гамильтона описывают дальнейшее поведение точки Q в этом пространстве, если нам задано ее текущее положение. Таким образом, в каждой точке фазового пространства мы имеем маленькую стрелку (точнее: вектор), которая говорит нам о том, как движется точка Q — а это позволяет описывать эволюцию во времени всей нашей системы. Совокупность всех стрелок образует так называемое векторное поле (рис. 5.11). Следовательно, уравнения Гамильтона определяют векторное поле в фазовом пространстве.

Рис. 5.11. Векторное поле в фазовом пространстве, представляющее эволюцию системы во времени в соответствии с уравнениями Гамильтона

Выясним, как можно интерпретировать в терминах фазового пространства физический детерминизм. В качестве начальных условий при t = 0 мы имели бы конкретный набор значений, заданных для всех координат положений и импульсов, т. е. некоторую определенную точку Q фазового пространства. Чтобы вычислить эволюцию системы во времени, надо просто следовать стрелкам. Таким образом, все поведение нашей системы (независимо от степени ее сложности) описывается в фазовом пространстве всего лишь одной точкой, движущейся по стрелкам, которые она встречает на своем пути. Мы можем считать, что стрелки указывают «скорость» нашей точки Q в фазовом пространстве. Если стрелка «длинная», то точка Q движется быстро, а если «короткая» — то медленно. Чтобы узнать, что наша система делает в момент времени t , мы просто смотрим, куда к этому времени переместилась точка Q , следуя указаниям попутных стрелок. Ясно, что это — детерминистская процедура. Характер движения точки Q полностью определяется гамильтоновым векторным полем.

А как обстоит дело с вычислимостью? Если мы стартовали из вычислимой точки фазового пространства (т. е. из точки, у которой все координаты положения и импульсов являются вычислимыми числами, см. главу 3, «Страна Тор'Блед-Нам»), и с момента начала движения прошло вычислимое время t — то закончим ли мы с необходимостью в точке, которая может быть вычислимым образом получена из t и исходных значений координат? Ответ, очевидно, зависит от выбора функции Гамильтона Н . Действительно, в функцию Н могут входить физические константы — такие, как ньютоновская постоянная тяготения или скорость света, величина которых зависит от выбора единиц; или другие, описывающиеся точными числовыми выражениями — и поэтому, чтобы положительно ответить на поставленный вопрос, необходимо сначала убедиться в том, что все эти постоянные вычислимы. В таком случае я осмелюсь предположить, что для обычных гамильтонианов (т. е. функций H ), встречающихся в физике, ответ может быть утвердительным. Но это — всего лишь догадка, и вопрос — интересный вопрос! — остается пока открытым. Надеюсь, что со временем он будет изучен более основательно.

С другой стороны, мне кажется, — по тем же самым причинам, которых я кратко коснулся в связи с бильярдным миром — что этот вопрос не настолько существенен. Ведь чтобы утверждение о невычислимости точки фазового пространства имело смысл, необходимо было бы задавать ее координаты с бесконечной точностью, т. е. со всеми десятичными знаками после запятой! (Число, записываемое конечным количеством десятичных знаков, всегда вычислимо.) Конечный отрезок десятичного разложения любого числа ничего не говорит нам о возможности вычислить оставшуюся часть. Но точность всех физических измерений ограничена возможностями приборов, поэтому они могут дать нам информацию лишь о конечном числе знаков десятичного разложения. Обесценивает ли это само понятие «вычислимого числа» применительно к физическим измерениям?

Действительно, если мы рассматриваем устройство, которое могло бы использовать каким-нибудь полезным образом некие (гипотетические) невычислимые составляющие физических законов, то разумно предположить, что оно не должно зависеть от произведения измерений с неограниченной точностью. Но возможно, я сейчас стараюсь рассуждать слишком строго. Предположим, что у нас имеется физическое устройство, которое в силу известных теоретических причин реализует некоторую интересную математическую процедуру неалгоритмического характера. Тогда поведение этого устройства — при условии, что мы имеем возможность точно удостовериться в этом — позволило бы получать правильные ответы на последовательность математически содержательных вопросов, для решения которых не существует алгоритма (подобно вопросам, рассмотренным в главе 4). Любой наперед заданный алгоритм на определенной стадии такого процесса дал бы сбой — тогда как наше устройство на той же стадии выдало бы некоторый новый результат. Действительно, это устройство могло бы осуществлять изучение некоторого физического параметра со все большей и большей точностью, необходимой для дальнейшего продвижения по списку вопросов. Однако мы действительно получим нечто новое от нашего устройства на какой-то конечной стадии точности, по крайней мере пока нам не удастся найти усовершенствованный алгоритм для ответа на указанную последовательность вопросов: затем нам следовало бы повысить точность, чтобы продвинутся еще дальше — до тех пор, пока наш усовершенствованный алгоритм не окажется бессилен.

Тем не менее, создается впечатление, что даже все возрастающая точность в определении физического параметра неудобна в качестве способа кодирования информации. Гораздо предпочтительнее было бы получать нашу информацию в «дискретной» (или «цифровой») форме. В этом случае ответы на вопросы, расположенные все дальше и дальше от начала списка, могли бы быть получены путем рассмотрения все большего количества дискретных единиц или, быть может, путем повторного рассмотрения некоторого фиксированного набора дискретных единиц, где требуемая неограниченная информация распределялась бы по все более длинным временным интервалам. (Мы могли бы представить себе, что эти дискретные единицы построены из частей, каждая из которых может находиться в одном из двух состояний — «вкл.» или «выкл.» — подобных единицам и нулям в описании машины Тьюринга, приведенном в главе 2.) Для этого нам, как представляется, требуются такие устройства, которые могли бы принимать (отличимые) дискретные состояния и, совершив определенные эволюции в соответствии с динамическими законами, снова перейти в один из наборов дискретных состояний. Если бы это было так, то мы могли бы избежать необходимости изучать каждое устройство с произвольно высокой степенью точности.

Возникает вопрос: действительно ли гамильтоновы системы ведут себя подобным образом? Необходимым условием для этого, видимо, должна быть некоторая устойчивость в поведении системы, позволяющая четко устанавливать, в каком из таких дискретных состояний находится наше устройство. При этом желательно будет зафиксировать это состояние (по крайней мере на некоторый достаточно продолжительный период времени) и добиться того, чтобы оно (устройство) не дрейфовало из одного состояния в другое. Кроме того, если система оказывается в этих состояниях с небольшой погрешностью, то нам бы не хотелось, чтобы погрешности накапливались; наоборот: мы будем требовать, чтобы такие погрешности со временем сглаживались. К тому же, наше искомое устройство должно было бы состоять из частиц (или каких-то других подэлементов), которые с необходимостью описывались бы в терминах непрерывных параметров, причем каждое отличимое «дискретное» состояние покрывало бы некоторый диапазон значений этих непрерывных параметров. (Например, можно представлять разные дискретные состояния с помощью частицы, лежащей либо в одном, либо в другом ящике. Чтобы указать, что частица действительно находится в одном из них, мы будем говорить, что координаты положения частицы принадлежат определенному диапазону значений.) С точки зрения фазового пространства это означает, что каждая из «дискретных» альтернатив должна соответствовать некоторой области в фазовом пространстве так, чтобы различные точки фазового пространства, принадлежащие одной и той же области, отвечали бы одному и тому же состоянию нашего устройства (рис. 5.12).

Рис. 5.12. Область в фазовом пространстве соответствует диапазону возможных значений пространственных координат и импульсов всех частиц. Такая область может представлять отдельное отличимое состояние (т. е. «альтернативу») какого-нибудь устройства

Предположим теперь, что наше устройство стартует из точки фазового пространства, принадлежащей некоторой области R 0 . которая соответствует одной из таких возможностей. Мы будем считать, что область R 0 перемещается вдоль гамильтонова векторного поля до тех пор, пока в момент времени t она не переходит в область R t  Представляя себе такое развитие событий, мы тем самым описываем эволюцию нашей системы во времени при всех возможных начальных состояниях, соответствующих одной и той же альтернативе (рис. 5.13).

Рис. 5.13. С течением времени область  R 0 фазового пространства, увлекаемая вдоль векторного поля, переходит в новую область R t . Это может служить описанием эволюции во времени некоторого определенного состояния нашего устройства

Вопрос об устойчивости (в том смысле, в каком мы трактуем устойчивость здесь) сводится к вопросу о том, остается ли с ростом t область R t локализованной или начинает расплываться по всему фазовому пространству. Если область R t со временем сохраняет конечный объем, то мы будем говорить, что наша система демонстрирует устойчивое поведение. Точки фазового пространства, близкие друг к другу (настолько, что они соответствуют конкретным физическим состояниям системы, которые существенно похожи друг на друга), остаются близкими, и погрешности в указании их положения со временем не увеличиваются. Любое чрезмерно сильное расплывание начальной области R 0 в результате приводит к появлению непредсказуемой составляющей в поведении системы.

А что вообще можно сказать о гамильтоновых системах? Стремятся ли области фазового пространства расплываться со временем или все-таки нет? Казалось бы, при такой общей постановке проблемы сказать о ней можно будет немного. Однако для гамильтоновых систем существует весьма красивая теорема, принадлежащая выдающемуся французскому математику Жозефу Лиувиллю (1809–1882), которая утверждает, что объем любой области фазового пространства должен оставаться постоянным при любых изменениях состояния системы, происходящих в соответствии с уравнениями Гамильтона. (Разумеется, размерность «объема» следует понимать в смысле размерности фазового пространства.) Следовательно, объем каждой области R t должен быть таким же, как объем исходной области R 0 . На первый взгляд теорема Лиувилля позволяет утвердительно ответить на вопрос об устойчивости гамильтоновых систем. В силу того, что размер исходной области (в смысле ее объема в фазовом пространстве) не может возрастать, создается впечатление, будто наша исходная область не может со временем расплываться по всему фазовому пространству.

Однако такое впечатление обманчиво, и, немного поразмыслив над этим, мы поймем, что в действительности может произойти прямо противоположная ситуация! На рис. 5.14 я попытался наглядно изобразить такое поведение системы, которое можно было бы ожидать в общем случае.

Рис. 5.14. Несмотря на то, что — согласно теореме Лиувилля — объем фазового пространства сохраняется постоянным, он, как правило, будет расплываться в результате чрезвычайно сложной эволюции системы во времени

Представим себе, что начальная область R 0 невелика и имеет «приемлемую» форму — достаточно гладкую, лишенную причудливых выступов — которая указывает на то, что при описании состояний, принадлежащих этой области, чрезмерно высокая точность совсем необязательна. Но с течением времени область R t начинает деформироваться и растягиваться — сначала принимая форму, напоминающую амебу, а затем образуя причудливые отростки, которые простираются далеко в стороны, замысловато извиваясь то в одном, то в другом направлении.

Объем при этом действительно сохраняется, но тот же самый объем может теперь истончиться и распределиться по обширной области фазового пространства. Практически аналогичная картина будет наблюдаться в случае с капелькой чернил, попавшей в большую емкость с водой. В то время, как реальный объем чернильной жидкости остается неизменным, она постепенно истончается, распределяясь по всему объему емкости. Вероятно, подобным образом ведет себя и исходная область R 0 в фазовом пространстве. Она не обязательно должна расплываться по всему фазовому пространству (эта предельная ситуация известна под названием «эргодической») — но вполне может в конце концов занять область, значительно превышающую ее первоначальный объем. (Дальнейшее обсуждение см. в книге: Дэвис [1974].)

Трудность заключается в том, что сохранение объема отнюдь не влечет за собой сохранение формы : малые области имеют тенденцию деформироваться, и их деформации простираются на большие расстояния. В многомерных пространствах проблема расплывания начальной области гораздо более серьезна, чем в пространствах малой размерности, так как «направлений», по которым расплываются отдельные части нашей области, гораздо больше. На самом деле, вместо того, чтобы «помочь» нам держать область R t под контролем, теорема Лиувилля создает фундаментальную проблему! Не будь теоремы Лиувилля, можно было бы представить, что бесспорная тенденция к расплыванию области в фазовом пространстве могла бы (при соответствующих обстоятельствах) компенсироваться уменьшением полного объема. Но теорема Лиувилля говорит нам, что такое уменьшение невозможно, и нам остается только мириться с таким поразительным свойством — универсальным для всех классических динамических (гамильтоновых) систем нормального типа!

Помня о неизбежном расплывании исходной области в фазовом пространстве, уместно спросить: а как в таком случае вообще возможно делать предсказания в классической механике? Это действительно непростой вопрос. Расплывание начальной области говорит нам о том, что независимо от степени точности, с которой мы знаем начальное состояние системы (конечно, в разумных пределах), тенденция к возрастанию погрешностей со временем сделает нашу исходную информацию практически бесполезной. В этом смысле классическая механика в принципе непредсказуема. (Вспомним введенное выше понятие «хаоса».)

Чем же в таком случае объяснить явный успех ньютоновской механики? Говоря о небесной механике (т. е. движении небесных тел под действием сил гравитации), в качестве наиболее вероятной причины можно назвать, наверное, то, что, во-первых, небесная механика занимается изучением сравнительно небольшого числа связанных тел (Солнца, планет и их естественных спутников — лун), между которыми имеется большой разброс по массе, поэтому в первом приближении возмущающим действием менее массивных тел на более массивные можно пренебречь и рассматривать только взаимодействие нескольких массивных тел друг на друга; во-вторых, законы движения, применимые к отдельным частицам, образующим эти тела, как нетрудно видеть, работают и на уровне самих тел, вследствие чего с очень хорошим приближением Солнце, планеты и луны можно, в свою очередь, рассматривать как частицы и не беспокоиться по поводу малых движений отдельных составляющих небесных тел! И снова нам удается свести все к рассмотрению системы из «небольшого» количества тел, где расплывание начальной области в фазовом пространстве становится несущественным.

Помимо небесной механики и поведения запущенных тел (камней, пуль, ядер, и т. д.), что можно рассматривать как ее частный случай, а также изучения простых систем, содержащих небольшое число частиц, — основные методы, использовавшиеся ньютоновской механикой, очевидно, не могут быть вообще отнесены к разряду «детерминистско-предсказуемых» в том смысле, о котором мы говорили выше. Общую ньютоновскую схему используют скорее для построения моделей, изучение которых позволяет делать выводы о поведении системы в целом. Некоторые точные следствия из законов движения, такие, как законы сохранения энергии, импульса и углового момента, действительно выполняются на любых масштабах. Кроме того, существуют статистические свойства, которые можно комбинировать с динамическими законами, управляющими отдельными частицами, и использовать их для общего прогнозирования поведения системы. (См. обсуждение термодинамики в главе 7; эффект расплывания в фазовом пространстве, рассмотрением которого мы занимались выше, находится в достаточно тесной взаимосвязи со вторым началом термодинамики — и при соблюдении надлежащей осторожности эти идеи действительно можно использовать для прогнозирования.) Искусно проделанное самим Ньютоном вычисление скорости звука в воздухе (слегка подправленное столетие спустя Лапласом) — хороший тому пример. Но весьма редко случается, чтобы детерминизм, присущий ньютоновской (или, в более широком смысле, гамильтоновой) динамике, реально использовался на практике.

Эффект расплывания начальной области в фазовом пространстве приводит к еще одному замечательному следствию. Только подумайте: ведь он свидетельствует о том, что классическая механика, на самом деле, не в состоянии адекватно описать наш с вами мир! Я несколько преувеличиваю — но не так уж сильно. Классическая механика может достаточно точно описывать поведение жидких тел — главным образом газов, хотя (с приемлемой степенью точности) и собственно жидкостей — в том случае, когда интерес представляют общие «усредненные» свойства систем частиц; но она испытывает затруднения при попытке объяснить структуру твердых тел, которая отличается более высокой организацией. Проблемой здесь становится невозможность описать феномен сохранения твердым телом своей формы несмотря на то, что оно состоит из мириадов точечноподобных частиц, структура относительного расположения которых постоянно нарушается из-за расплывания начальной области в фазовом пространстве. Как мы теперь знаем, для того, чтобы разобраться в строении твердых тел, необходима квантовая теория, поскольку квантовые эффекты могут каким-то образом предотвратить расплывание портрета системы в фазовом пространстве. Это — весьма важный вопрос, к которому мы еще вернемся в дальнейшем (см. главы 8 и 9).

Затронутая нами тема имеет не менее важное значение и для вопроса о построении «вычислительной машины». Эффект расплывания в фазовом пространстве относится к разряду явлений, которые необходимо контролировать. Нельзя позволить слишком сильно расплываться той области фазового пространства, которая соответствует «дискретному» состоянию вычислительного устройства (такой, например, как описанная выше область R 0 ). Напомним, что даже в «бильярдном компьютере» Фредкина— Тоффоли требовались некоторые специально вводимые извне твердые стенки, необходимые для правильной работы компьютера. Объяснить «цельность» объекта, состоящего из множества частиц, можно в действительности только с помощью квантовой механики. Создается впечатление, что даже «классическая» вычислительная машина должна заимствовать некоторые принципы из квантовой физики — иначе она просто не сможет работать эффективно!

 

Электромагнитная теория Максвелла

В ньютоновской картине мира мы представляем, что крохотные частицы влияют друг на друга с помощью сил, действующих на расстоянии, причем если частицы не совсем точечные, то они способны отскакивать друг от друга в результате прямого физического контакта. Как уже упоминалось раньше (Глава 5. «Механистический мир динамики Ньютона»), электрические и магнитные силы (которые были известны еще с античных времен и впервые подробно изучены Уильямом Гильбертом в 1600 году и Бенджамином Франклином в 1752 году) действуют аналогично гравитационным силам, поскольку также обратно пропорциональны квадрату расстояния — хотя обе представляют собой скорее силы отталкивания, чем притяжения, действуя в соответствии с принципом «подобное отталкивает подобное»; а вместо массы мерой интенсивности их воздействия служит электрический заряд и сила магнитного полюса, соответственно. На этом уровне не существует никаких трудностей, которые препятствовали бы включению электричества и магнетизма в ньютоновскую схему. Поведение света может быть сравнительно легко описано в общем виде с позиций ньютоновской механики (хотя определенные проблемы при этом все же возникают): либо путем рассмотрения света как субстанции, состоящей из отдельных частиц («фотонов», как теперь их принято называть); либо с помощью представления его в виде волнового процесса, распространяющегося в некоторой среде (в последнем случае эту среду — «эфир» — следует считать состоящей из отдельных частиц).

То, что движущиеся электрические заряды могут создавать магнитные силы, вызывает некоторые дополнительные затруднения, но не разрушает целиком всю ньютонианскую схему. Многие математики и физики (в том числе Гаусс) предлагали системы уравнений для описания эффектов, создаваемых движущимися электрическими зарядами. В рамках общей ньютонианской схемы эти уравнения казались вполне удовлетворительными. Первым, кто бросил серьезный вызов «ньютонианской» картине мира, был, по-видимому, великий английский физик-экспериментатор Майкл Фарадей (1791–1867).

Чтобы понять суть этого вызова, необходимо прежде всего разобраться в смысле термина физическое поле . Начнем с магнитного поля. Большинству читателей случалось наблюдать за поведением железных опилок, рассыпанных на листке бумаги, который положили поверх магнита. Железные опилки поразительным образом выстраиваются вдоль так называемых «магнитных силовых линий». Представим себе, что силовые линии присутствуют в пространстве, даже если нет железных опилок. Эти силовые линии и образуют то, что мы называем магнитным полем. В каждой точке пространства это «поле» ориентировано в определенном направлении, а именно — в направлении силовой линии, проходящей через данную точку. В действительности, мы имеем в каждой точке пространства вектор , т. е. магнитное поле является примером векторного поля. (Мы можем сравнить магнитное поле с гамильтоновым векторным полем, которое было рассмотрено нами в предыдущем разделе, но теперь мы имеем векторное поле в обычном, а не фазовом пространстве.) Точно так же и тела, несущие электрический заряд, оказываются окруженными полем, только несколько иного рода, которое известно под названием электрического поля; а любое массивное тело создает вокруг себя так называемое гравитационное поле. Все это — векторные поля в обычном пространстве.

Подобные идеи были известны задолго до Фарадея, и в ньютоновской механике они составляли весьма заметную часть арсенала теоретиков. Но согласно господствовавшей тогда точке зрения, такие «поля» не рассматривались как реальная физическая субстанция. Их скорее считали своего рода страницами вспомогательной «бухгалтерской книги», в различных точках которых надлежало размещать подходящие частицы. Но фундаментальные явления, наблюдаемые Фарадеем (во время опытов с движущимися витками с током, магнитами и т. п.), привели его к убеждению, что электрическое и магнитное поля совершенно «материальны» с физической точки зрения — и к открытию у переменных полей способности «проталкивать» друг друга через пустое пространство, порождая своего рода бестелесную волну! Фарадей высказал предположение, что' свет может состоять из таких волн. Подобная точка зрения существенно отличалась от господствовавшей в то время «ньютонианской мудрости», которая не считала электромагнитные поля чем-то «реальным», а рассматривала их всего лишь как удобные вспомогательные математические понятия для описания «настоящей» ньютоновской картины «физической реальности» — «действия на расстоянии (дальнодействия) точечных частиц».

Столкнувшись с обнаруженными Фарадеем экспериментальными фактами, а также с более ранними открытиями замечательного французского физика Андре Мари Ампера (1775–1836) и других исследователей, великий шотландский физик и математик Джеймс Клерк Максвелл (1831–1879) задумался над математической формой уравнений, описывающих электрические и магнитные поля с учетом обнаруженных экспериментальных фактов. В результате поразительного интуитивного озарения Максвелл предложил внести в уравнения незначительную на первый взгляд поправку, что привело к поистине фундаментальным последствиям. Эта поправка в принципе не могла быть подсказана ему никакими из известных экспериментальных фактов (хотя и находилась в согласии с ними). Выводы Максвелла были результатом собственных теоретический постулатов Максвелла — отчасти физических, отчасти математических, а где-то — даже эстетических. Одно из следствий уравнений Максвелла говорило о том, что электрическое и магнитное поля действительно «проталкивают» друг друга сквозь пустое пространство. Осциллирующее магнитное поле должно было бы порождать осциллирующее электрическое поле (о чем свидетельствовали экспериментальные факты, полученные Фарадеем); а это осциллирующее электрическое поле, в свою очередь, должно создавать осциллирующее магнитное поле (в согласии с теоретическими выводами Максвелла); последнее снова порождает осциллирующее электрическое поле и т. д. (См. рис. 6.26, 6.27 гл. 6, где схематически изображен этот волновой процесс.)

Максвеллу удалось вычислить скорость, с которой этот процесс должен был бы распространяться в пространстве, и она в результате оказалась равной скорости света! Кроме того, эти так называемые электромагнитные волны интерферировали и обладали удивительной способностью поляризоваться, как и свет (последнее свойство на тот момент было уже давно известно, а мы еще вернемся к нему в главе 6). Помимо объяснения свойств видимого света, для которого длины электромагнитных волн должны были бы лежать в диапазоне 4–7 х 10-7 м, Максвелл предсказал существование электромагнитных волн других длин, порождаемых электрическими токами в проводниках. Существование таких волн было экспериментально установлено замечательным немецким физиком Генрихом Герцем в 1888 году. Вдохновенная надежда Фарадея воплотилась в чудесные уравнения Максвелла!

Хотя нам совсем не обязательно вдаваться в подробности уравнений Максвелла, давайте все же окинем их быстрым взглядом:

Здесь Е , В и j — векторные поля, описывающие, соответственно, электрическое поле, магнитное поле и электрический ток; ρ — плотность электрического заряда, а с — постоянная — скорость света. Не стоит огорчаться, если вам не известен смысл обозначений «rot» и «div». Они просто означают различные пространственные вариации полей В и Е . (Обозначения «rot» и «div» представляют собой определенные комбинации частных производных по пространственным координатам. Напомним, что операции взятия «частной производной», обозначаемой символом ∂ , мы коснулись в связи с уравнениями Гамильтона.) Операторы ∂ /∂t , стоящие в левых частях двух первых уравнений, по существу означают то же самое, что «точки» в уравнениях Гамильтона (различие в обозначениях вызвано чисто техническими причинами). Таким образом, ∂E /∂t означает «скорость изменения во времени электрического поля», a ∂B /∂t означает «скорость изменения во времени магнитного поля».

Первое уравнение связывает изменения электрического поля с текущими значениями магнитного поля и электрического тока; тогда как второе, наоборот, описывает изменения магнитного поля в зависимости от величины электрического поля. Третье уравнение, грубо говоря, представляет собой закодированную форму закона обратных квадратов, показывающую, как электрическое поле (в данный момент времени) должно быть связано с распределением зарядов. Что же касается четвертого уравнения, то оно говорит то же самое о магнитном поле (с той лишь разницей, что «магнитные заряды» — отдельные «северные» и «южные» полюсы частиц — не существуют).

Уравнения Максвелла несколько напоминают уравнения Гамильтона тем, что определяют скорость изменения по времени соответствующих величин (электрического и магнитного полей) в зависимости от их текущих значений в любой заданный момент времени. Следовательно, уравнения Максвелла являются по сути детерминистскими — точно так же, как и система уравнений в обычной гамильтоновой теории. Единственное (хотя и важное) различие состоит в том, что уравнения Максвелла полевые, а не корпускулярные. Это означает, что для описания состояния такой системы необходимо бесконечно много параметров (векторы поля в каждой точке пространства) вместо всего лишь конечного числа параметров (трех координат положения и трех компонент импульса каждой частицы) в корпускулярной теории. Таким образом, фазовое пространство в теории Максвелла бесконечномерно ! (Как я уже упоминал выше, уравнения Максвелла в действительности могут быть включены в общую гамильтонову схему, но из-за их бесконечномерности гамильтонову схему перед этим необходимо слегка обобщить.)

Принципиально новой составляющей в той картине нашего физического мира, которая выстраивалась на основе теории Максвелла (помимо и сверх того, что было известно ранее), стала необходимость рассматривать поля уже не как математические придатки к «реальным» частицам, или корпускулам, в ньютоновской теории — но как самостоятельно существующие объекты. Действительно, Максвелл показал, что когда поля распространяются в виде электромагнитных волн, они переносят с собой определенное количество энергии. Ему удалось получить даже явное выражение для этой энергии. То есть оказалось, что энергию, на самом деле, могли переносить с места на место «нематериальные» электромагнитные волны. Этот факт был экспериментально подтвержден Герцем, сумевшим зарегистрировать электромагнитные волны. То, что радиоволны действительно могут переносить энергию, до сих пор представляется удивительным даже тем, кто в той или иной степени знаком с этим феноменом!

 

Вычислимость и волновое уравнение

Непосредственно из своих уравнений Максвелл сумел вывести, что в областях пространства, где нет ни зарядов, ни токов (т. е. там, где в приведенных выше уравнениях j = 0 , ρ = 0 ) все компоненты электрического и магнитного полей должны удовлетворять так называемому волновому уравнению. Волновое уравнение можно рассматривать как «упрощенный вариант» уравнений Максвелла, так как оно записано для одной-единственной величины, а не для всех шести компонент электрического и магнитного полей. Решения уравнения Даламбера дают пример волнообразного движения без дополнительных усложняющих свойств наподобие «поляризации» в теории Максвелла (направления вектора электрического поля, см. гл. 6 «Спин фотона»).

Волновое уравнение представляет сейчас для нас тем больший интерес, что оно было предметом целенаправленного изучения именно в связи с его свойствами вычислимости. Действительно, Мариану Б. Пур-Элю и Яну Ричардсу (Пур-Эль, Ричардс [1979, 1981, 1982], см. также [1989]) удалось показать, что, даже несмотря на детерминистское (в обычиом смысле) поведение решения волнового уравнения — при котором данные в начальный момент времени однозначно определяют решение во все остальные моменты времени — существуют вычислимые начальные данные некоего «особого» рода, обладающие тем свойством, что для них однозначно рассчитать значения поля в более поздний (вычислимый) момент времени — невозможно. Таким образом, уравнения вполне допустимой физической теории поля (хотя и отличающейся от теории Максвелла, которая действительно «работает» в нашем мире) могут, согласно Пур-Элю и Ричардсу, породить невычислимую эволюцию!

На первый взгляд это кажется весьма удивительным результатом, который вроде бы противоречит тому, о чем я говорил в предыдущем разделе относительно возможной вычислимости «разумных» гамильтоновых систем. Однако, несмотря на то, что поразительный результат Пур-Эля — Ричардса исполнен, несомненно, глубокого математического смысла, он все же не противоречит высказанной выше гипотезе — причем по причине, имеющей глубокий физический смысл. Причина же эта состоит в том, что начальные условия «особого» рода не относятся к «плавно изменяющимся», а именно это свойство обычно требуется от каждого поля, имеющего физический смысл. Пур-Эль и Ричардс в действительности доказали, что невычислимость не может возникнуть в случае волнового уравнения, если мы не будем рассматривать поля «особого» рода. С другой стороны, даже если бы такие поля считались допустимыми, было бы трудно понять, как может использовать подобную «невычислимость» любое физическое «устройство» (например, головной мозг человека)? Она могла бы иметь существенное значение только при наличии возможности производить измерения со сколь угодно высокой степенью точности (которые, как я объяснял выше, нереальны с физической точки зрения). Тем не менее, результаты Пур-Эля— Ричардса открывают интригующую область знания, которая до сих пор остается практически нетронутой.

 

Уравнение движения Лоренца; убегающие частицы

Система уравнений Максвелла в том виде, как мы ее выписали, не является, на деле, полной. Эти уравнения великолепным образом описывают распространение электрических и магнитных полей при наличии заданного распределения электрических зарядов и токов. Эти заряды физически нам даны в виде заряженных частиц — в основном, электронов и протонов, как нам сейчас известно — а токи порождаются движением этих частиц. Если мы знаем, где находятся заряженные частицы и как они движутся, то уравнения Максвелла позволяют определить поведение электромагнитного поля. Но вот что уравнения Максвелла нам не говорят — это как должны себя вести сами частицы. Частичный ответ на этот вопрос был известен еще во времена Максвелла, но удовлетворительной системы уравнений не было до тех пор, пока в 1895 году замечательный голландский физик Хендрик Антон Лоренц, воспользовавшись идеями, близкими к идеям специальной теории относительности, не вывел уравнения движения заряженной частицы, известные ныне как уравнения Лоренца (см. Уиттекер [1910]). Эти уравнения позволяют описывать непрерывные изменения скорости заряженной частицы под действием электрического и магнитного полей в той точке, где она в данный момент находится. Присоединив уравнения Лоренца к уравнениям Максвелла, мы получаем систему уравнений, описывающих эволюцию во времени и заряженных частиц, и электромагнитного поля.

Но эта система уравнений, в свою очередь, тоже не безукоризненна. Она дает превосходные результаты, если поля однородны вплоть до масштабов порядка диаметра самих частиц (за единицу измерения диаметра принимается «классический радиус» электрона — около 10-15 м), а движения частиц не слишком интенсивны. Однако здесь имеется принципиальная трудность, обойти которую при других обстоятельствах становится невозможно. Дело в том, что уравнения Лоренца подразумевают измерения электромагнитного поля в той самой точке, где находится заряженная частица (по существу, такое измерение должно дать нам значение «силы», действующей в этой точке со стороны электромагнитного поля на нашу частицу). Но где следует выбирать эту точку, если частица имеет конечные размеры? Следует ли принять за нужную точку «центр» частицы, или поле («силу») необходимо усреднить по всем точкам поверхности частицы? Если поле неоднородно в масштабе порядка размера частицы, то разный выбор точки может привести к отличающимся результатам. Есть и другая, более серьезная проблема: каково на самом деле электромагнитное поле на поверхности частицы (или в ее центре)? Напомним, что мы рассматриваем заряженную частицу. Следовательно, электромагнитное поле, обусловленное самой частицей, необходимо добавить к «фоновому полю», в котором находится частица. Вблизи самой «поверхности» частицы ее собственное поле становится чрезвычайно интенсивным и легко поглощает все остальные поля в окрестности частицы. Кроме того, собственное поле частицы всюду вокруг нее направлено преимущественно наружу (или вовнутрь), вследствие чего результирующее истинное поле, на которое по предположению реагирует частица, вовсе не однородно, а в каждой точке на «поверхности» частицы направлено в свою сторону, не говоря уже о «внутренности» частицы (рис. 5.15).

Рис. 5.15. Как можно строго применить уравнения движения Лоренца? Сила, действующая на заряженную частицу, не может быть получена измерением поля в точке нахождения частицы, так как здесь доминирует собственное поле частицы

Дополнительно к этому нам следует выяснить, будут ли отличающиеся по величине силы, которые действуют на частицу, стремиться повернуть или деформировать ее; а также понять, какими упругими свойствами обладает частица: и т. д. (особенно трудны вопросы возникающие в связи с теорией относительности, но я не собираюсь сейчас отвлекать на них внимание читателя). Ясно, что теперь проблема становится намного сложнее по сравнению с тем, какой она казалась нам прежде.

Возможно, нам стоило бы рассматривать частицу как материальную точку. Но такой подход приводит к проблемам другого рода, ибо в непосредственной окрестности точечной частицы ее собственное электрическое поле становится бесконечным. Если, как это следует из уравнений Лоренца, частица должна реагировать на электромагнитное поле в той точке, где она находится, то точечная частица должна испытывать действие со стороны бесконечно большого поля! Чтобы формула Лоренца для величины силы имела смысл, необходимо найти способ, который позволил бы вычитать собственное поле частицы и оставлять конечное фоновое поле, которое бы однозначно определяло поведение частицы. Такой метод был предложен в 1938 году Дираком (о котором мы еще услышим в дальнейшем). Однако решение Дирака приводило к определенным следствиям, которые не могли не вызывать тревогу. Дирак обнаружил, что для однозначного определения поведения частиц и полей исходя из соответствующих начальных данных, необходимо знать не только начальное положение и скорость каждой частицы, но и ее начальное ускорение (в контексте стандартных динамических теорий такую ситуацию нельзя не признать несколько аномальной). Для большинства значений начального ускорения частица ведет себя самым «сумасшедшим» образом, спонтанно ускоряясь в пространстве до скорости, весьма близкой к световой! Эти «убегающие решения» Дирака не соответствуют ни одному природному явлению. Необходимо найти способ, который позволил бы исключать убегающие решения и правильно выбирать начальные ускорения. Такой выбор возможен всегда, но только при условии, что мы будем пользоваться неким «априорным знанием», т. е. будем задавать начальное ускорение так, будто нам уже известно, какие решения в конце концов станут убегающими, и стараться избавляться от них. Однако в стандартной детерминистской физической задаче начальные данные задаются по-другому — произвольно и без каких-либо ограничений и требований относительно будущего поведения решений. В нашем же случае не только будущее полностью определено данными, заданными в некоторый момент времени в прошлом, но и сам способ задания этих данных весьма жестко ограничен требованием, накладываемым на будущее («допустимое») поведение частиц и полей!

Так обстоит дело, пока мы рассматриваем фундаментальные классические уравнения. Читатель легко поймет, что вопрос о детерминизме и вычислимости в законах классической физики носит раздражающе неясный характер. Действительно ли в физических законах есть телеологическая составляющая, которая заставляет будущее каким-то образом оказывать влияние на происходящее в прошлом? На самом деле, физики обычно не рассматривают подобные следствия из классической электродинамики (теории классических заряженных частиц, а также электрического и магнитного полей) как соответствующие реальности. Стандартный ответ физиков на упомянутые выше трудности сводится к утверждению, что «отдельные заряженные частицы» относятся к области квантовой электродинамики, и что нельзя ожидать получить разумные ответы на подобные вопросы, если использовать строго классическую теорию. Такое утверждение, безусловно, верно — но, как мы увидим в дальнейшем, в самой квантовой теории здесь также возникают проблемы. На самом деле, Дирак исследовал классическую задачу движения заряженной частицы именно потому , что надеялся обнаружить там какие-нибудь новые идеи, способные помочь в разрешении еще более фундаментальных трудностей, возникающих при рассмотрении (физически более адекватной) квантовой задачи. С проблемами квантовой теории нам еще придется столкнуться позднее!

 

Специальная теория относительности

Эйнштейна и Пуанкаре

Напомним принцип относительности Галилея, который гласит, что физические законы Ньютона и Галилея останутся совершенно неизменными, если от покоящейся системы отсчета мы перейдем в другую, движущуюся равномерно и прямолинейно. Из этого принципа следует, что, просто наблюдая динамическое поведение объектов вокруг нас, мы не можем установить, находимся ли мы в состоянии покоя или движемся равномерно и прямолинейно в каком-то направлении. (Вспомним пример Галилея с кораблем в море, гл.5 «Динамика Галилея и Ньютона») Предположим теперь, что к законам Ньютона и Галилея мы присоединили уравнения Максвелла. Останется ли при этом в силе принцип относительности Галилея? Напомним, что электромагнитные волны Максвелла распространяются с фиксированной скоростью с — скоростью света. Казалось бы, здравый смысл подсказывает, что если мы будем двигаться очень быстро в каком-нибудь направлении, то должно создаться впечатление, что скорость света в этом направлении стала меньше с (поскольку мы «догоняем свет»); а скорость света в противоположном направлении — больше с (так как при этом мы движемся «от света»). Видно, что и тот, и другой результат отличны от фиксированного значения с скорости света в теории Максвелла. И здравый смысл не подвел бы нас: комбинация уравнений Ньютона и Максвелла не удовлетворяет принципу относительности Галилея.

Обеспокоенность этими проблемами привела Эйнштейна в 1905 году — а Пуанкаре даже несколько раньше (в 1898–1905 годах), — к созданию специальной теории относительности. Пуанкаре и Эйнштейн независимо обнаружили, что уравнения Максвелла тоже удовлетворяют некоторому принципу относительности (см. Пайс [1982]), т. е. остаются неизменными при переходе от неподвижной системы отсчета к движущейся, хотя правила такого перехода несовместимы с физикой Галилея-Ньютона! Чтобы сделать их совместимыми, необходимо видоизменить либо одну, либо другую систему уравнений — или же отказаться от принципа относительности. Эйнштейн не собирался отказываться от принципа относительности. Его великолепная физическая интуиция настойчиво подсказывала ему, что принцип относительности должен выполняться для физических законов нашего мира. Кроме того, Эйнштейну было хорошо известно, что практически для всех известных явлений физика Галилея-Ньютона была экспериментально проверена только при скоростях ничтожно малых по сравнению со скоростью света, при которых отмеченная выше несовместимость была несущественной. Только сам свет, как было известно, способен развивать скорости достаточно большие для того, чтобы упомянутые выше «несоответствия» начинали заметно сказываться. Следовательно, именно поведение света могло бы подсказать, какой принцип относительности следует избрать; при этом уравнения, которыми описывается свет — это уравнения Максвелла. Таким образом, выбор следовало бы остановить на принципе относительности для теории Максвелла, а законы Галилея — Ньютона — соответственно, модифицировать!

Лоренц еще до Пуанкаре и Эйнштейна тоже заинтересовался этими вопросами и даже нашел на них частичные ответы. К 1895 году Лоренц пришел к заключению, что силы, связывающие частицы материи, имеют электромагнитную природу (как в действительности и оказалось), поэтому поведение реальные материальных тел должно удовлетворять законам, вытекающим из уравнений Максвелла. Отсюда, в частности, следовало, что тело, движущееся со скоростью, сравнимой со скоростью света, должно претерпевать небольшое сокращение в направлении движения («сокращение Фитцджеральда — Лоренца»). Это вывод Лоренц использовал для объяснения удивительного экспериментального факта, установленного в 1897 году Майкельсоном и Морли, который свидетельствовал о том, что электромагнитные явления нельзя использовать для определения «абсолютной» покоящейся системы отсчета. (Майкельсон и Морли показали, что на скорость света, измеряемую на поверхности Земли, движение Земли вокруг Солнца — вопреки ожиданиям — не влияет.) Всегда ли материя ведет себя так, что ее (равномерное прямолинейное) движение не может быть обнаружено локально? Таким был предварительный вывод Лоренца; однако Лоренц в своем исследовании ограничился только специальной теорией материи, где не учитывались никакие силы, кроме электромагнитных. Пуанкаре, будучи выдающимся математиком, сумел в 1905 году строго показать, что материя должна вести себя именно так, как предполагал в своих теоретических построениях Лоренц — т. е. в соответствии с принципом относительности, лежащим в основе уравнений Максвелла — поэтому равномерное прямолинейное движение вообще не может быть обнаружено локально. Ему также удалось глубоко понять физические следствия из этого принципа (в том числе — явление «относительности одновременности», о котором мы еще поговорим далее). По-видимому, Пуанкаре рассматривал этот принцип лишь как одну из возможностей, и не разделял убеждения Эйнштейна, что определенный принцип относительности должен выполняться.

Принцип относительности, которому удовлетворяют уравнения Максвелла, ставший известным под названием специальной (или частной) относительности (СТО ), довольно труден для понимания и полон противоречащих нашей интуиции моментов, которые на первый взгляд невозможно связать с реальными свойствами окружающего нас мира. Действительно, принципу специальной относительности вряд ли удастся придать смысл, если не воспользоваться еще одной идеей, введенной в 1908 году немецким геометром русского происхождения Германом Минковским (1864–1909), обладавшим в высшей степени незаурядным мышлением и тонкой интуицией. Минковский был одним из преподавателей Эйнштейна в Цюрихском Высшем Политехническом Училище. Его принципиально новая идея состояла в том, что пространство и время следует рассматривать совместно как единую сущность — четырехмерное пространство-время . В своей знаменитой лекции, прочитанной в 1908 году в Геттингенском университете, Минковский провозгласил:

«Таким образом, пространство само по себе и время само по себе обречены исчезнуть, превратившись в бесплотные тени, и только объединение пространства и времени сохранится как независимая реальность».

Попытаемся понять основные положения специальной теории относительности в терминах величественного пространства-времени Минковского.

Одна из трудностей на пути к освоению понятия пространства-времени связана с его четырехмерностью, мешающей нам представить себе пространство-время наглядно. Но после того, как мы пережили нашу встречу с фазовым пространством, представить себе всего лишь четыре измерения не составит для нас особых трудностей! Как и в случае с фазовым пространством, мы пойдем на «обман» и нарисуем картину пространства меньшего числа измерений, но теперь степень обмана будет несравненно меньше, а картина, соответственно — гораздо точнее и ближе к истинной. Для многих целей достаточно рассмотреть двумерное пространство-время (одно измерение — для пространства и одно измерение — для времени). Я надеюсь, что читатель простит мне некоторую напористость и разрешит подняться до трехмерного пространства-времени (два измерения — для пространства, и одно измерение — для времени). Это позволит нарисовать вполне убедительную картину, посмотрев на которую нетрудно будет понять, что, в принципе, аналогичные идеи могут быть легко распространены без особых изменений и на четырехмерный случай. Рассматривая графическое изображение пространства-времени, необходимо иметь в виду, что каждая точка на картинке представляет некоторое событие , т. е. определенную точку в пространстве в какой-то конкретный момент времени. Иначе говоря, точка пространства-времени обладает только мгновенным существованием. Полная картина пространства-времени изображает всю историю: прошлое, настоящее и будущее. Любая частица, коль скоро она существует на протяжении некоторого времени, представляется в пространстве-времени не точкой, а линией, которая называется мировой линией данной частицы. Мировая линия — прямая в случае равномерного движения частицы, и искривленная, если частица движется с ускорением (т. е. неравномерно) — описывает всю историю существования частицы.

На рис. 5.16 я изобразил пространство-время с двумя пространственными измерениями и одним временны́м.

Рис. 5.16. Световой конус в пространстве-времени Минковского (с двумя пространственными измерениями), описывающий историю световой вспышки при взрыве, произошедшем в точке О пространства-времени

Можно считать, что существует обычная временна́я координата t , измеряемая по вертикали, и две пространственные координаты x /c и z /c , измеряемые по горизонтали. Конус с вершиной в центре — это световой конус (будущего), с центром в начале координат О пространства-времени. Чтобы по достоинству оценить его значение, представьте себе, что в точке О происходит взрыв. (Иначе говоря, взрыв происходит в начале пространства в момент времени t = 0 .) Этот световой конус описывает историю света, испущенного при взрыве. На языке двумерного пространства история вспышки света была бы окружностью, расширяющейся со скоростью света с . В полном трехмерном пространстве вместо окружности мы имели бы сферу , расширяющуюся со скоростью света с , — сферический волновой фронт света. Но в рассматриваемом примере мы «подавляем» пространственное направление у и поэтому получаем всего лишь окружность, подобную круговым волнам, расходящимся от точки падения камня на поверхность пруда. Нетрудно понять, что на объемной картине пространства-времени мы получим расширяющиеся окружности, если рассмотрим серию горизонтальных сечений светового конуса, каждое последующее из которых расположено выше предыдущего. Эти горизонтальные сечения представляют собой различные пространственные описания волнового фронта света по мере возрастания временно́й координаты t . Одна из отличительных особенностей специальной теории относительности состоит в том, что никакая материальная частица не может двигаться быстрее света (подробнее об этом — чуть позднее). Все материальные частицы, возникшие при взрыве, должны отставать от света. На языке пространства-времени это означает, что мировые линии всех частиц, испущенных при взрыве, должны лежать внутри светового конуса.

Часто свет бывает удобно описывать не электромагнитными волнами, а как поток частиц, называемых фотонами . Мы можем мысленно представлять себе «фотон» как крохотный «пакет» электромагнитного поля, осциллирующего с высокой частотой. Термин «волновой пакет» физически более приемлем в контексте квантовых описаний, к которым мы перейдем в следующей главе, но пока для нас будут полезны и «классические» фотоны. В свободном пространстве фотоны всегда движутся по прямолинейным траекториям с постоянной скоростью с . Это означает, что, изображенная на картине пространства-времени Минковского мировая линия фотона всегда имеет вид прямой, образующей с вертикалью угол 45°. Фотоны, образовавшиеся при взрыве в точке О пространства-времени, описывают световой конус с вершиной в О .

Описанными выше свойствами должны обладать все точки пространства-времени. В начале пространства-времени нет ничего особенного: точка О ничем не отличается от любой другой точки. Следовательно, в любой точке пространства-времени должен быть свой световой конус, имеющий такой же смысл, как и световой конус, исходящий из начала пространства-времени. История любой вспышки света, или мировые линии фотонов, если угодно воспользоваться корпускулярным описанием света, всегда располагаются на поверхности светового конуса с вершиной в каждой точке пространства-времени — тогда как история любой материальной частицы всегда должна располагаться внутри соответствующего светового конуса. Это показано на рис. 5.17. Семейство световых конусов во всех точках пространства-времени можно рассматривать как часть геометрии Минковского пространства-времени.

Рис. 5.17. Картина геометрии Минковского

Что такое геометрия Минковского? Самая важная ее часть — структура светового конуса, хотя геометрия Минковского ею не исчерпывается. В этой геометрии существует понятие «расстояния», во многом аналогичное определению расстояния в евклидовой геометрии. В трехмерной евклидовой геометрии расстояние r от произвольной точки до начала координат, выраженное через обычные декартовы координаты, определяется соотношением

r 2 = x 2 + y 2 + z 2

Рис. 5.18. Сравнение «расстояний», измеренных в (а) евклидовой геометрии и (б) геометрии Минковского (здесь «расстояние» означает «прожитое время»)

(См. рис. 5.18 а. Это — всего лишь теорема Пифагора; возможно, двумерный вариант этого соотношения более привычен читателю.) В нашей трехмерной геометрии Минковского выражение для расстояния очень похоже на евклидово (рис. 5.18 б); существенное отличие состоит в том, что в геометрии Минковского это выражение содержит два знака минус:

Каков физический смысл величины «расстояния» s в этом выражении? Предположим, что мы рассматриваем точку Р с координатами (t , x /c , y /c , z /c ), или (t , x /c , z /c ) в трехмерном случае; см. рис. 5.16 — она лежит в световом конусе (будущего) точки О . Тогда прямолинейный отрезок ОР может представлять часть истории какой-то материальной частицы, например, испущенной при взрыве. «Длина» Минковского s отрезка ОР допускает прямую физическую интерпретацию. Это — продолжительность (длина) интервала времени, реально прожитого частицей между событиями О и Р ! Иначе говоря, если бы существовали очень прочные и точные часы, намертво прикрепленные к частице, то разность между их показаниями в точках О и Р составила бы ровно s единиц времени. Вопреки ожиданиям, величина t сама по себе не описывает время, измеряемое этими гипотетическими часами — за исключением того случая, когда часы «покоятся» в нашей системе координат (т. е. имеют фиксированные значения координат х /с , у /с , z /c ), а это означает, что мировая линия часов имеет на «картине» вид вертикальной прямой. Таким образом, t будет задавать «время» только для тех наблюдателей, которые «стационарны» (т. е. чьи мировые линии — «вертикальные» прямые). Правильной мерой времени для движущегося (равномерно и прямолинейно из начала координат О ) наблюдателя, согласно специальной теории относительности, служит величина s . Заключение, к которому мы пришли, весьма удивительно и полностью расходится с находящейся в согласии со «здравым смыслом» галилеево-ньютони-анской мерой времени, которая просто совпадает с координатным значением t . Обратите внимание на то, что релятивистская (в смысле Минковского) мера времени s всегда несколько меньше, чем t , если вообще существует какое-то движение (так как s 2 меньше, чем t 2 , коль скоро не все координаты х /с , у /с , z /c равны нулю), как это следует из приведенной выше формулы. Наличие движения (т. е. случай, когда отрезок ОР расположен не вдоль оси t ) приводит к «замедлению» хода часов по сравнению с t , иными словами, по отношению к показаниям часов в нашей системе отсчета. Если скорость движения мала по сравнению с с , то величины s и t почти совпадают, чем объясняется то, что мы непосредственно не ощущаем «замедление хода движущихся часов». В другом предельном случае, когда скорость движения совпадает со скоростью света, точка Р лежит на световом конусе, и мы получаем s = 0 . Световой конус есть не что иное, как геометрическое место точек, для которых «расстояние» в смысле Минковского (т. е. «время») от начала координат О действительно равно нулю. Таким образом, фотон вообще «не ощущает», как течет время! (Мы не можем позволить себе рассматривать еще более экстремальный случай, когда точка Р движется у самой поверхности снаружи светового конуса, так как это привело бы к мнимому значению s — квадратному корню из отрицательного числа, и нарушило бы правило, согласно которому материальные частицы, или фотоны, не могут двигаться быстрее света.)

Понятие «расстояния» в смысле Минковского одинаково хорошо применимо к любой паре точек в пространстве-времени, одна из которых лежит внутри световою конуса другой, так что частица может двигаться из одной точки в другую. Мы просто будем считать, что начало координат О перенесено в какую-то иную точку пространства-времени. Кроме того, расстояние по Минковскому между точками соответствует интервалу времени, отсчитываемого часами, которые равномерно и прямолинейно движутся из одной точки в другую. Когда в качестве частицы выступает фотон, и расстояние в смысле Минковского обращается в нуль, мы получаем две точки, одна из которых лежит на световом конусе другой — что позволяет строить световой конус для последней.

Основная структура геометрии Минковского со столь причудливой мерой «длины» мировых линий, интерпретируемой как время, измеряемое (или «прожитое») физическими часами, несет в себе самую суть специальной теории относительности. В частности, читателю, возможно, известен так называемый «парадокс близнецов» в СТО :

один из братьев-близнецов остается на Земле, другой совершает путешествие на соседнюю звезду, двигаясь туда и обратно с огромной скоростью, приближающейся к скорости света. По возвращении выясняется, что близнецы состарились неодинаково: путешественник все еще молод, а его брат, остававшийся на Земле, стал дряхлым стариком. «Парадокс близнецов» легко описывается в терминах геометрии Минковского, и всякий может без труда понять, почему это явление — хотя и способное озадачить — парадоксальным все же не является. Мировая линия АС принадлежит тому из близнецов, который остается дома, тогда как мировая линия близнеца-путешествен-ника состоит из двух отрезков А В и ВС , соответствующих полету на звезду и возвращению на Землю (рис. 5.19).

Рис. 5.19. Так называемый «парадокс близнецов» специальной теории относительности, трактуемый с помощью неравенства треугольника в геометрии Минковского. (Для сравнения приведен и евклидов случай.)

Близнец-домосед проживает время, измеряемое расстоянием в смысле Минковского АС , тогда как близнец-путешественник проживает время, измеряемое суммой двух расстояний АВ и ВС . Эти времена не равны, и мы обнаруживаем, что

АС > АВ + ВС .

Это неравенство показывает, что время, прожитое близнецом-домоседом, действительно больше времени, прожитого близнецом-путешественником.

Полученное неравенство очень похоже на хорошо известное неравенство треугольника из обычной евклидовой геометрии (А , B и С теперь — три точки в евклидовом пространстве):

АС < АВ + ВС ,

которое утверждает, что сумма двух сторон треугольника всегда больше третьей стороны. Это неравенство мы не считаем парадоксом! Мы прочно усвоили идею о том, что евклидова мера расстояния вдоль пути из одной точки в другую (в нашем случае — из А в С ), зависит от того, какой путь мы в действительности выберем. (В рассматриваемом примере двумя путями служат АС и более длинный изломанный маршрут ABC .) Неравенство треугольника — частный случай общего утверждения, которое гласит, что кратчайшее расстояние между двумя точками (в данном случае А и С ) измеряется по прямой, их соединяющей (отрезок АС ). Изменение знака неравенства на обратный при измерении расстояний в смысле Минковского происходит вследствие изменения знаков в определении «расстояния», в результате чего отрезок АС , измеряемый по Минковскому, оказывается «длиннее», чем ломаный маршрут ABC . Таким образом, «неравенство треугольника» в геометрии Минковского в более обобщенной формулировке говорит о том, что самой длинной (в смысле наибольшего прожитого времени) среди мировых линий, соединяющих два события, является прямая (т. е. траектория, соответствующая равномерному движению). Если оба близнеца стартуют из точки А и завершают свой путь в точке С , и при этом первый близнец движется прямо из А в С без ускорения, а второй — с ускорением, то первый близнец к моменту встречи со вторым всегда успевает прожить более длинный интервал времени.

Может показаться возмутительным вводить столь странную и сильно расходящуюся с нашими интуитивными представлениями концепцию меры времени. Однако ныне имеется огромное количество экспериментальных данных, свидетельствующих о правомерности такого положения. Например, существует много субатомных частиц, которые распадаются (т. е. превращаются в другие частицы) в определенной шкале времени. Иногда такие частицы движутся со скоростями, очень близкими к скорости света (например, так происходит с космическими лучами, попадающими на Землю из космического пространства, или в созданных человеком ускорителях элементарных частиц), и их времена распада оказываются при этом «растянуты» в полном согласии с вышеизложенными рассуждениями. Еще удивительнее другое: теперь, когда стало возможным изготовить особо точные («ядерные») часы, мы можем непосредственно обнаружить эффекты замедления хода часов, перевозимых на высокоскоростных самолетах, летающих на небольшой высоте — причем результаты измерений согласуются с мерой «расстояния» s в смысле Минковского, а не с t ! (Строго говоря, с учетом высоты приходится принимать во внимание небольшие дополнительные гравитационные эффекты, предсказываемые общей теорией относительности, но они также согласуются с наблюдениями — см. следующий раздел.) Кроме того, существует много других явлений, тесно связанных со всей теоретической основой СТО , постоянно подтверждающейся вплоть до мельчайших деталей. Одно из них — знаменитое соотношение Эйнштейна

Е = mc 2 ,

которое по существу устанавливает равноправие энергии и массы. (В конце этой главы мы познакомимся с некоторыми необычайно заманчивыми следствиями из этого соотношения.)

Я еще не объяснил, каким образом принцип относительности оказывается реально включенным в намеченную выше схему. Каким образом происходит, что наблюдатели, движущиеся прямолинейно и равномерно с различными скоростями, могут оказаться эквивалентными с точки зрения геометрии Минковского? Каким образом ось времени на рис. 5.16 («стационарный наблюдатель») может быть полностью эквивалентной некоторой другой прямолинейной мировой линии, например, отрезку ОР («движущийся наблюдатель»)? Задумаемся сначала над особенностями евклидовой геометрии. Ясно, что в ней две произвольные несовпадающие прямые совершенно эквивалентны по отношению к геометрии в целом. Можно мысленно представить себе, что все евклидово пространство «скользит» по самому себе как «жестко скрепленное целое» до тех пор, пока одна прямая не совпадет с другой. Представьте себе двумерный случай — евклидову плоскость. Можно представить себе листок бумаги, жестко скользящий по плоской поверхности, до тех пор, пока некоторая прямая, проведенная на листке бумаги, не совпадет с прямой, проведенной на поверхности. Это «жесткое» движение сохраняет структуру геометрии. Аналогичное утверждение справедливо и относительно геометрии Минковского, хотя это и менее очевидно, так что следует проявлять особую осмотрительность, договариваясь о том, какой смысл надлежит вкладывать в термин «жесткое движение». Вместо листка бумаги следует рассматривать особый материал (возьмем сначала для простоты двумерный случай), на котором прямые с углом наклона 45° сохраняют этот угол, тогда как сам материал может растянуться в одном направлении под углом 45° и, соответственно, сжаться в другом направлении под углом 45°. Такая ситуация изображена на рис. 5.20. На рис. 5.21 я попытался показать, что происходит в трехмерном случае.

Рис. 5.20. Движение Пуанкаре в двумерном пространстве-времени

Рис. 5.21. Движение Пуанкаре в трехмерном пространстве-времени. На рисунке справа изображены пространства, одновременные для наблюдателя S , на рисунке слева — одновременные для наблюдателя М . Обратите внимание, что, по мнению наблюдателя S , событие R предшествует событию Q , тогда как, с точки зрения наблюдателя М , событие Q предшествует событию R . (Движение в данном случае считается пассивным, т. е. приводит лишь к различным описаниям двумя наблюдателями S и М одного и того же пространства-времени.)

Эта разновидность «жесткого движения» пространства Минковского, называемая движением Пуанкаре (или неоднородным движением Лоренца), может выглядеть не очень «жесткой», но она сохраняет все расстояния в смысле Минковского, а «сохранение всех расстояний» — это ни что иное, как смысл понятия «жесткий» в евклидовом случае. Принцип специальной относительности утверждает, что законы физики при таких движениях Пуанкаре пространства-времени остаются неизменными. В частности, «стационарный» наблюдатель S , мировая линия которого совпадает с осью времени на нашем исходном изображении пространства-времени Минковского (рис. 5.16), имеет дело с физикой, совершенно эквивалентной физике «движущегося» наблюдателя М с мировой линией вдоль прямой ОР .

Каждая координатная плоскость t = const представляет для наблюдателя S «пространство» в какой-то один момент «времени», т. е. семейство событий, которые он считает одновременными (происходящими в «одно и то же время»). Назовем эти плоскости одновременными пространствами наблюдателя S . Когда же мы переходим к другому наблюдателю М , то с необходимостью переводим наше исходное семейство одновременных пространств в некоторое новое семейство с помощью движения Пуанкаре, что позволяет нам получить одновременные пространства для наблюдателя М . Обратите внимание на то, что одновременные пространства наблюдателя М выглядят «наклоненными вверх» (рис. 5.21). Если мыслить в терминах жестких движений в евклидовой геометрии, то может показаться, что наклон на рис. 5.21 изображен не в ту сторону, но именно таким его следует ожидать в геометрии Минковского. Наблюдатель S думает, что все события на любой плоскости t = const происходят одновременно, а наблюдатель М должен придерживаться другого мнения: ему кажется, что одновременно происходят все события на каждом из «наклоненных» одновременных пространств! Геометрия Минковского сама по себе не содержит единственного понятия «одновременности»; но каждый наблюдатель, движущийся равномерно и прямолинейно, имеет свое собственное представление о том, что значит «одновременно».

Рассмотрим два события R и Q на рис. 5.21. С точки зрения наблюдателя S событие R происходит раньше события Q , так как R лежит в более раннем одновременном пространстве, чем Q . Но с точки зрения наблюдателя М все будет наоборот, и событие Q окажется в более раннем одновременном пространстве, чем R . Таким образом, для одного наблюдателя событие R происходит раньше события Q , а для другого наблюдателя — позже! (Так может случиться лишь потому, что события R и Q , как принято говорить, пространственно разделены, что означает следующее: каждое событие находится вне светового конуса другого события, в результате чего ни одна материальная частица или фотон не могут совершить путешествие от одного события к другому.) Даже при очень медленных относительных скоростях для точек, разделенных большими расстояниями, имеют место значительные различия в хронологической последовательности. Представим себе двух людей, медленно проходящих друг мимо друга на улице. События в туманности Андромеды (ближайшей большой галактики, находящейся на расстоянии 20 000 000 000 000 000 000 км от нашей собственной галактики — Млечного Пути), одновременные по мнению этих двух прохожих, в тот момент, когда они поравняются друг с другом — могут отстоять по времени друг от друга на несколько суток (рис. 5.22).

Рис. 5.22. Два наблюдателя А и В медленно проходят мимо друг друга. Их мнения относительно того, стартовал ли космический флот Андромеды в момент, когда они поравнялись, существенно отличаются

В то время как для одного из прохожих космический флот, отправленный с заданием уничтожить все живое на Земле, уже находится в полете, для другого прохожего само решение относительно отправки космического флота в рейд еще не принято!

 

Общая теория относительности Эйнштейна

Напомним великую истину, открытую Галилеем: все тела под действием силы тяжести падают одинаково быстро. (Это было блестящей догадкой, едва ли подсказанной эмпирическими данными, поскольку из-за сопротивления воздуха перья и камни все же падают не одновременно! Галилей внезапно понял, что, если бы сопротивление воздуха можно было свести к нулю, то перья и камни падали бы на Землю одновременно.) Потребовалось три столетия, прежде чем глубокое значение этого открытия было по достоинству осознано и стало краеугольным камнем великой теории. Я имею в виду общую теорию относительности Эйнштейна — поразительное описание гравитации, для которого, как нам вскоре станет ясно, потребовалось введение понятия искривленного пространства-времени !

Какое отношение имеет интуитивное открытие Галилея к идее «кривизны пространства-времени»? Каким образом могло получиться, что эта концепция, столь явно отличная от схемы Ньютона, согласно которой частицы ускоряются под действием обычных гравитационных сил, оказалась способной не только сравняться в точности описания с ньютоновской теорией, но и превзойти последнюю? И потом, насколько верным будет утверждение, что в открытии Галилея было нечто такое, что не было позднее включено в ньютоновскую теорию?

Позвольте мне начать с последнего вопроса потому, что ответить на него проще всего. Что, согласно теории Ньютона, управляет ускорением тела под действием гравитации? Во-первых, на тело действует гравитационная сила , которая, как гласит открытый Ньютоном закон всемирного тяготения, должна быть пропорциональна массе тела. Во-вторых, величина ускорения, испытываемая телом под действием заданной силы, по второму закону Ньютона, обратно пропорциональна массе тела. Удивительное открытие Галилея зависит от того факта, что «масса», входящая в открытый Ньютоном закон всемирного тяготения, есть, в действительности, та же «масса», которая входит во второй закон Ньютона. (Вместо «та же» можно было бы сказать «пропорциональна».) В результате ускорение тела под действием гравитации не зависит от его массы. В общей схеме Ньютона нет ничего такого, что указывало бы, что оба понятия массы одинаковы. Эту одинаковость Ньютон лишь постулировал. Действительно, электрические силы аналогичны гравитационным в том, что и те, и другие обратно пропорциональны квадрату расстояния, но электрические силы зависят от электрического заряда, который имеет совершенно другую природу, чем масса во втором законе Ньютона. «Интуитивное открытие Галилея» было бы неприменимо к электрическим силам: о телах (заряженных телах) брошенных в электрическом поле, нельзя сказать, что они «падают» с одинаковой скоростью!

На время просто примем интуитивное открытие Галилея относительно движения под действием гравитации и попытаемся выяснить, к каким следствиям оно приводит. Представим себе Галилея, бросающего с Пизанской наклонной башни два камня. Предположим, что с одним из камней жестко скреплена видеокамера, направленная на другой камень. Тогда на пленке окажется запечатленной следующая ситуация: камень парит в пространстве, как бы не испытывая действия гравитации (рис. 5.23)! И так происходит именно потому, что все тела под действием гравитации падают с одной и той же скоростью.

Рис. 5.23. Галилей бросает два камня (и видеокамеру) с Пизанской башни

В описанной выше картине мы пренебрегаем сопротивлением воздуха. В наше время космические полеты открывают перед нами лучшую возможность проверки этих идей, так как в космическом пространстве нет воздуха. Кроме того, «падение» в космическом пространстве означает просто движение по определенной орбите под действием гравитации. Такое «падение» совсем не обязательно должно происходить по прямой вниз — к центру Земли. В нем вполне может быть и некоторая горизонтальная составляющая. Если эта горизонтальная составляющая достаточно велика, то тело может «падать» по круговой орбите вокруг Земли, не приближаясь к ее поверхности! Путешествие по свободной околоземной орбите под действием гравитации — весьма изощренный (и очень дорогой!) способ «падения». Как в описанной выше видеозаписи, астронавт, совершая «прогулку в открытом космосе», видит свой космический корабль парящим перед собой и как бы не испытывающим действия гравитации со стороны огромного шара Земли под ним! (См. рис. 5.24.) Таким образом, переходя в «ускоренную систему отсчета» свободного падения, можно локально исключить действие гравитации.

Рис. 5.24. Астронавт видит, что его космический корабль парит перед ним, как будто неподверженный действию гравитации

Мы видим, что свободное падение позволяет исключить гравитацию потому, что эффект от действия гравитационного поля такой же, как от ускорения Действительно, если вы находитесь в лифте, который движется с ускорением вверх, то вы просто ощущаете, что кажущееся гравитационное поле увеличивается, а если лифт движется с ускорением вниз, то вам кажется, что гравитационное поле убывает. Если бы трос, на котором подвешена кабина, оборвался, то (если пренебречь сопротивлением воздуха и эффектами трения) результирующее ускорение, направленное вниз (к центру Земли), полностью уничтожило бы действие гравитации, и люди, оказавшиеся в кабине лифта, стали бы свободно плавать в пространстве, подобно астронавту во время выхода в открытый космос, до тех пор, пока кабина не стукнулась бы о Землю! Даже в поезде или на борту самолета ускорения могут быть такими, что ощущения пассажира относительно величины и направления гравитации могут не совпадать с тем, где, как показывает обычный опыт, должны быть «верх» и «низ». Объясняется это тем, что действия ускорения и гравитации схожи настолько, что наши ощущения не способны отличить одни от других. Этот факт — то, что локальные проявления гравитации эквивалентны локальным проявлениям ускоренно движущейся системы отсчета, — и есть то, что Эйнштейн назвал принципом эквивалентности .

Приведенные выше соображения «локальны». Но если разрешается производить (не только локальные) измерения с достаточно высокой точностью, то в принципе можно установить различие между «истинным» гравитационным полем и чистым ускорением. На рис. 5 25 я изобразил в немного преувеличенном виде, как первоначально стационарная сферическая конфигурация частиц, свободно падающая под действием гравитации, начинает деформироваться под влиянием неоднородности (ньютоновского) гравитационного поля.

Рис. 5.25. Приливный эффект. Двойные стрелки указывают относительное ускорение (ВЕЙЛЬ)

Это поле неоднородно в двух отношениях. Во-первых, поскольку центр Земли расположен на некотором конечном расстоянии от падающего тела, частицы, расположенные ближе к поверхности Земли, движутся вниз с бо́льшим ускорением, чем частицы, расположенные выше (напомним закон обратной пропорциональности квадрату расстояния Ньютона). Во-вторых, по той же причине существуют небольшие различия в направлении ускорения для частиц, занимающих различные положения на горизонтали. Из-за этой неоднородности сферическая форма начинает слегка деформироваться, превращаясь в «эллипсоид». Первоначальная сфера удлиняется в направлении к центру Земли (а также в противоположном направлении), так как те ее части, которые ближе к центру Земли, движутся с чуть бо́льшим ускорением, чем те части, которые дальше от центра Земли, и сужается по горизонтали, так как ускорения ее частей, находящихся на концах горизонтального диаметра, слегка скошены «внутрь» — в направлении на центр Земли.

Это деформирующее действие известно как приливный эффект гравитации. Если мы заменим центр Земли Луной, а сферу из материальных частиц — поверхностью Земли, то получим в точности описание действия Луны, вызывающей приливы на Земле, причем «горбы» образуются по направлению к Луне и от Луны. Приливный эффект — общая особенность гравитационных полей, которая не может быть «исключена» с помощью свободного падения. Приливный эффект служит мерой неоднородности ньютоновского гравитационного поля. (Величина приливной деформации в действительности убывает обратно пропорционально кубу, а не квадрату расстояния от центра притяжения.)

Закон всемирного тяготения Ньютона, по которому сила обратно пропорциональна квадрату расстояния, допускает, как оказывается, простую интерпретацию в терминах приливного эффекта: объем эллипсоида, в который первоначально деформируется сфера, равен объему исходной сферы — в предположении, что сфера окружает вакуум. Это свойство сохранения объема характерно для закона обратных квадратов; ни для каких других законов оно не выполняется. Предположим далее, что исходная сфера окружает не вакуум, а некоторое количество материи общей массой М . Тогда возникает дополнительная компонента ускорения, направленная внутрь сферы из-за гравитационного притяжения материи внутри сферы. Объем эллипсоида, в который первоначально деформируется наша сфера из материальных частиц, сокращается — на величину, пропорциональную М . С примером эффекта уменьшения объема эллипсоида мы бы столкнулись, если бы выбрали нашу сферу так, чтобы она окружала Землю на постоянной высоте (рис. 5.26). Тогда обычное ускорение, обусловленное земным притяжением и направленное вниз (т. е. внутрь Земли), будет той самой причиной, по которой происходит сокращение объема нашей сферы.

Рис. 5.26. Когда сфера окружает некое вещество (в данном случае — Землю), возникает результирующее ускорение, направленное внутрь (РИЧЧИ)

В этом свойстве сжимания объема заключена оставшаяся часть закона всемирного тяготения Ньютона, а именно — что сила пропорциональна массе притягивающего тела.

Попробуем получить пространственно-временну́ю картину такой ситуации. На рис. 5.27 я изобразил мировые линии частиц нашей сферической поверхности (представленной на рис. 5.25 в виде окружности), причем я использовал для описания ту систему отсчета, в которой центральная точка сферы кажется покоящейся («свободное падение»).

Рис. 5.27. Кривизна пространства-времени: приливный эффект, изображенный в пространстве-времени

Позиция общей теории относительности состоит в том, чтобы считать свободное падение «естественным движением» — аналогичным «равномерному прямолинейному движению», с которыми имеют дело в отсутствие гравитации. Таким образом, мы пытаемся описывать свободное падение «прямыми» мировыми линиями в пространстве-времени! Но если взглянуть на рис. 5.27, то становится понятно, что использование слова «прямые» применительно к этим мировым линиям способно ввести читателя в заблуждение, поэтому мы будем в терминологических целях называть мировые линии свободно падающих частиц в пространстве-времени — геодезическими .

Но насколько хороша такая терминология? Что обычно понимают под «геодезической» линией? Рассмотрим аналогию для двумерной искривленной поверхности. Геодезическими называются такие кривые, которые на данной поверхности (локально) служат «кратчайшими маршрутами». Иначе говоря, если представить себе отрезок нити, натянутый на указанную поверхность (и не слишком длинный, чтобы он не мог соскользнуть), то нить расположится вдоль некоторой геодезической линии на поверхности.

Рис. 5.28. Геодезические линии в искривленном пространстве: линии сходятся в пространстве с положительной кривизной, и расходятся — в пространстве с отрицательной кривизной

На рис. 5.28 я привел два примера поверхностей: первая (слева) — поверхность так называемой «положительной кривизны» (как поверхность сферы), вторая — поверхность «отрицательной кривизны» (седловидная поверхность). На поверхности положительной кривизны две соседние геодезические линии, выходящие из начальных точек параллельно друг другу, начинают впоследствии изгибаться навстречу друг другу; а на поверхности отрицательной кривизны они изгибаются в стороны друг от друга.

Если мы представим себе, что мировые линии свободно падающих частиц в некотором смысле ведут себя как геодезические линии на поверхности, то окажется, что существует тесная аналогия между гравитационным приливным эффектом, о котором шла речь выше, и эффектами кривизны поверхности — причем как положительной кривизны, так и отрицательной. Взгляните на рис. 5.25, 5.27. Мы видим, что в нашем пространстве-времени геодезические линии начинают расходиться в одном направлении (когда они «выстраиваются» в сторону Земли) — как это происходит на поверхности отрицательной кривизны на рис. 5.28 — и сближаться в других направлениях (когда они смещаются горизонтально относительно Земли) — как на поверхности положительной кривизны на рис. 5.28. Таким образом, создается впечатление, что наше пространство-время, как и вышеупомянутые поверхности, тоже обладает «кривизной», только более сложной, поскольку из-за высокой размерности пространства-времени при различных перемещениях она может носить смешанный характер, не будучи ни чисто положительной, ни чисто отрицательной.

Отсюда следует, что понятие «кривизны» пространства-времени может быть использовано для описания действия гравитационных полей. Возможность использования такого описания в конечном счете следует из интуитивного открытия Галилея (принципа эквивалентности) и позволяет нам исключить гравитационную «силу» с помощью свободного падения. Действительно, ничто из сказанного мной до сих пор не выходит за рамки ньютонианской теории. Нарисованная только что картина дает просто переформулировку этой теории. Но когда мы пытаемся скомбинировать новую картину с тем, что дает предложенное Минковским описание специальной теории относительности — геометрии пространства-времени, которая, как мы знаем, применяется в отсутствие гравитации — в игру вступает новая физика. Результат этой комбинации — общая теория относительности Эйнштейна.

Напомним, чему учил нас Минковский. Мы имеем (в отсутствие гравитации) пространство-время, наделенное особого рода мерой «расстояния» между точками: если мы имеем в пространстве-времени мировую линию, описывающую траекторию какой-нибудь частицы, то «расстояние» в смысле Минковского, измеряемое вдоль этой мировой линии, дает время , реально прожитое частицей. (В действительности, в предыдущем разделе мы рассматривали это «расстояние» только для тех мировых линий, которые состоят из прямолинейных отрезков — но приведенное выше утверждение справедливо и по отношению к искривленным мировым линиям, если «расстояние» измеряется вдоль кривой.) Геометрия Минковского считается точной, если нет гравитационного поля, т. е. если у пространства-времени нет кривизны. Но при наличии гравитации мы рассматриваем геометрию Минковского уже лишь как приближенную — аналогично тому, как плоская поверхность лишь приблизительно соответствует геометрии искривленной поверхности. Вообразим, что, изучая искривленную поверхность, мы берем микроскоп, дающий все большее увеличение — так, что геометрия искривленной поверхности кажется все больше растянутой. При этом поверхность будет нам казаться все более плоской. Поэтому мы говорим, что искривленная поверхность имеет локальное строение евклидовой плоскости. Точно так же мы можем сказать, что при наличии гравитации пространство-время локально описывается геометрией Минковского (которая есть геометрия плоского пространства-времени), но мы допускаем некоторую «искривленность» на более крупных масштабах (рис. 5.29).

Рис. 5.29. Картина искривленного пространства-времени

В частности, как и в пространстве Минковского, любая точка пространства-времени является вершиной светового конуса — но в данном случае эти световые конусы расположены уже не одинаково. В главе 7 мы познакомимся с отдельными моделями пространства-времени, в которых явно видна эта неоднородность расположения световых конусов (см. рис. 7.13, 7.14). Мировые линии материальных частиц всегда направлены внутрь световых конусов, а линии фотонов — вдоль световых конусов. Вдоль любой такой кривой мы можем ввести «расстояние» в смысле Минковского, которое служит мерой времени, прожитого частицами так же, как и в пространстве Минковского. Как и в случае искривленной поверхности, эта мера «расстояния» определяет геометрию поверхности, которая может отличаться от геометрии плоскости.

Геодезическим линиям в пространстве-времени теперь можно придать интерпретацию, аналогичную интерпретации геодезических линий на двумерных поверхностях, учитывая при этом различия между геометриями Минковского и Евклида. Таким образом, наши геодезические линии в пространстве-времени представляют собой не (локально) кратчайшие кривые, а наоборот — кривые, которые (локально) максимизируют «расстояние» (т. е. время) вдоль мировой линии. Мировые линии частиц, свободно перемещающиеся под действием гравитации, согласно этому правилу действительно являются геодезическими. В частности, небесные тела, движущиеся в гравитационном поле, хорошо описываются подобными геодезическими линиями. Кроме того, лучи света (мировые линии фотонов) в пустом пространстве так же служат геодезическими линиями, но на этот раз — нулевой «длины». В качестве примера я схематически нарисовал на рис. 5.30 мировые линии Земли и Солнца. Движение Земли вокруг Солнца описывается «штопорообразной» линией, навивающейся вокруг мировой линии Солнца. Там же я изобразил фотон, приходящий на Землю от далекой звезды. Его мировая линия кажется слегка «изогнутой» вследствие того, что свет (по теории Эйнштейна) на самом деле отклоняется гравитационным полем Солнца.

Рис. 5.30. Мировые линии Земли и Солнца. Световой луч от далекой звезды отклоняется Солнцем

Нам необходимо еще выяснить, каким образом ньютоновский закон обратных квадратов может быть включен (после надлежащей модификации) в общую теорию относительности Эйнштейна. Обратимся еще раз к нашей сфере из материальных частиц, падающей в гравитационном поле. Напомним, что если внутри сферы заключен только вакуум, то, согласно теории Ньютона, объем сферы первоначально не изменяется; но если внутри сферы находится материя общей массой М , то происходит сокращение объема, пропорциональное М . В теории Эйнштейна (для малой сферы) правила в точности такие же, за исключением того, что не все изменение объема определяется массой М ; существует (обычно очень малый) вклад от давления, возникающем в окруженном сферой материале.

Полное математическое выражение для кривизны четырехмерного пространства-времени (которая должна описывать приливные эффекты для частиц, движущихся в любой данной точке по всевозможным направлениям) дается так называемым тензором кривизны Римана . Это несколько сложный объект; для его описания необходимо в каждой точке указать двадцать действительных чисел. Эти двадцать чисел называются его компонентами . Различные компоненты соответствуют различным кривизнам в различных направлениях пространства-времени. Тензор кривизны Римана обычно записывают в виде R tjkl , но так как мне не хочется объяснять здесь, что означают эти субиндексы (и, конечно, что такое тензор), то я запишу его просто как:

РИМАН .

Существует способ, позволяющий разбить этот тензор на две части, называемые, соответственно, тензором ВЕЙЛЯ и тензором РИЧЧИ (каждый — с десятью компонентами). Условно я запишу это разбиение так:

РИМАН = ВЕЙЛЬ + РИЧЧИ .

(Подробная запись тензоров Вейля и Риччи для наших целей сейчас совершенно не нужна.) Тензор Вейля ВЕЙЛЬ служит мерой приливной деформации нашей сферы из свободно падающих частиц (т. е. изменения начальной формы, а не размеров); тогда как тензор Риччи РИЧЧИ служит мерой изменения первоначального объема. Напомним, что ньютоновская теория гравитации требует, чтобы масса , содержащаяся внутри нашей падающей сферы, была пропорциональна этому изменению первоначального объема. Это означает, что, грубо говоря, плотность массы материи — или, что эквивалентно, плотность энергии (так как Е = mc 2 ) — следует приравнять тензору Риччи.

По существу, это именно то, что утверждают уравнения поля общей теории относительности, а именно — полевые уравнения Эйнштейна . Правда, здесь имеются некоторые технические тонкости, в которые нам сейчас, впрочем, лучше не вдаваться. Достаточно сказать, что существует объект, называемый тензором энергии-импульса , который объединяет всю существенную информацию об энергии, давлении и импульсе материи и электромагнитных полей. Я буду называть этот тензор ЭНЕРГИЕЙ . Тогда уравнения Эйнштейна весьма схематично можно представить в следующем виде,

РИЧЧИ = ЭНЕРГИЯ .

(Именно наличие «давления» в тензоре ЭНЕРГИЯ вместе с некоторыми требованиями непротиворечивости уравнений в целом приводят с необходимостью к учету давления в описанном выше эффекте сокращения объема.)

Кажется, что вышеприведенное соотношение ничего не говорит о тензоре Вейля. Тем не менее, оно отражает одно важное свойство. Приливный эффект, производимый в пустом пространстве, обусловлен ВЕЙЛЕМ . Действительно, из приведенных выше уравнений Эйнштейна следует, что существуют дифференциальные уравнения, связывающие ВЕЙЛЯ с ЭНЕРГИЕЙ — практически как во встречавшихся нам ранее уравнениях Максвелла. Действительно, точка зрения, согласно которой ВЕЙЛЯ надлежит рассматривать как своего рода гравитационный аналог электромагнитного поля (в действительности, тензора — тензора Максвелла), описываемого парой (Е , В ), оказывается весьма плодотворной. В этом случае ВЕЙЛЬ служит своего рода мерой гравитационного поля. «Источником» для ВЕЙЛЯ является ЭНЕРГИЯ — подобно тому, как источником для электромагнитного поля (Е , В ) является (ρ , j ) — набор из зарядов и токов в теории Максвелла. Эта точка зрения будет полезна нам в главе 7.

Может показаться весьма удивительным, что при столь существенных различиях в формулировке и основополагающих идеях, оказывается довольно трудно найти наблюдаемые различия между теориями Эйнштейна и теорией, выдвинутой Ньютоном двумя с половиной столетиями раньше. Но если рассматриваемые скорости малы по сравнению со скоростью света с , а гравитационные поля не слишком сильны (так, что скорости убегания гораздо меньше с , см. главу 7, «Динамика Галилея и Ньютона»), то теория Эйнштейна по существу дает те же результаты, что и теория Ньютона. Но в тех ситуациях, когда предсказания этих двух теорий расходятся, прогнозы теории Эйнштейна оказываются точнее. К настоящему времени был проведен целый ряд весьма впечатляющих экспериментальных проверок, которые позволяют считать новую теорию Эйнштейна вполне обоснованной. Часы, согласно Эйнштейну, в гравитационном поле идут чуть медленнее. Ныне этот эффект измерен непосредственно несколькими способами. Световые и радиосигналы действительно изгибаются вблизи Солнца и слегка запаздывают для наблюдателя, движущегося им навстречу. Эти эффекты, предсказанные изначально общей теорией относительности, на сегодняшний день подтверждены опытом. Движение космических зондов и планет требуют небольших поправок к ньютоновским орбитам, как это следует из теории Эйнштейна — эти поправки сегодня также проверены опытным путем. (В частности, аномалия в движении планеты Меркурия, известная как «смещение перигелия», беспокоившая астрономов с 1859 года, была объяснена Эйнштейном в 1915 году.) Возможно, наиболее впечатляющим из всего следует считать серию наблюдений над системой, называемой двойным пульсаром, которая состоит из двух небольших массивных звезд (возможно, двух «нейтронных звезд», см. гл.7 «Черные дыры»). Эта серия наблюдений очень хорошо согласуется с теорией Эйнштейна и служит прямой проверкой эффекта, полностью отсутствующего в теории Ньютона, — испускания гравитационных волн. (Гравитационная волна представляет собой аналог электромагнитной волны и распространяется со скоростью света с .) Не существует проверенных наблюдений, которые противоречили бы общей теории относительности Эйнштейна. При всей своей странности (на первый взгляд), теория Эйнштейна работает и по сей день!

 

Релятивистская причинность и детерминизм

Напомним, что в теории относительности материальные тела не могут двигаться быстрее света — откуда, в частности, следует, что их мировые линии всегда должны лежать внутри световых конусов (см. рис. 5.29). (В общей теории относительности ситуацию следует формулировать именно в таком локальном виде. Световые конусы расположены неодинаково, поэтому не имело бы особого смысла говорить, превосходит ли скорость очень далекой частицы скорость света здесь.) Мировые линии фотонов проходят по поверхности световых конусов, но мировая линия ни одной частицы не должна лежать вне световых конусов. В действительности, должно выполняться более общее утверждение, а именно: ни одному сигналу не разрешается распространяться вне светового конуса.

Чтобы понять, почему должно быть именно так, рассмотрим снова картину пространства Минковского (рис. 5.31).

Рис. 5.31. Сигнал, который распространяется для наблюдателя W быстрее света, для наблюдается U распространяется назад по времени. Ситуация справа ( б ) представляет собой ту же ситуацию, что и слева ( a ), только перерисованную с точки зрения наблюдателя U . (Эту перерисовку можно рассматривать как движение Пуанкаре. Сравните с рис. 5.21 — но здесь преобразование от ( a ) к ( б ) следует понимать в активном , а не в пассивном смысле.)

Предположим, что сконструировано некоторое устройство, способное посылать сигнал со скоростью немного больше скорости света. Пользуясь этим устройством, наблюдатель W посылает сигнал из точки А на своей мировой линии к далекой точке В , расположенной непосредственно под световым конусом события А . На рис. 5.31a эта ситуация изображена с точки зрения наблюдателя W , но на рис. 5.31б картина нарисована уже по-другому, с точки зрения второго наблюдателя U , который быстро движется от W (из точки, например, между А и В ) — и наблюдателю U событие В кажется происходящим раньше события А ! (Такая «перерисовка» есть не что иное, как движение Пуанкаре, как описано выше, см. «Специальная теория относительности Эйнштейна и Пуанкаре») С точки зрения наблюдателя W одновременные пространства наблюдателя U представляются «наклоненными». Поэтому событие В кажется наблюдателю U происходящим раньше события А . Таким образом, для U сигнал, испущенный наблюдателем W , будет распространяться назад во времени!

Здесь пока еще нет явного противоречия. Но, учитывая симметричность картины с точки зрения наблюдателя U (в силу принципа специальной относительности), третий наблюдатель V , движущийся от наблюдателя U в сторону, противоположную той, в которую движется наблюдатель W , и оснащенный таким же, как и у наблюдателя W , устройством, мог бы в свою очередь послать сигнал, распространяющийся быстрее света с его (наблюдателя V ) точки зрения, в направлении, противоположном направлению сигнала, испущенного наблюдателем W . Наблюдателю U при этом будет казаться, что сигнал, испущенный наблюдателем V , тоже движется назад во времени — но в противоположном (пространственном) направлении. Действительно, наблюдатель V мог бы послать второй сигнал к наблюдателю W в момент (В ) получения исходного сигнала, пришедшего от наблюдателя W . Этот сигнал достигает наблюдателя W в тот момент, когда происходит событие С , которое (по оценке наблюдателя U ) предшествует испусканию исходного сигнала (событию А ) (рис. 5.32).

Рис. 5.32. Если у наблюдателя V имеется сверхсветовое сигнальное устройство, тождественное устройству, имеющемуся у W , но посылающее сигналы в противоположном направлении, то наблюдатель W может им воспользоваться для того, чтобы отправить послание в свое собственное прошлое!

Но еще хуже то, что событие С действительно происходит раньше события А (испускания исходного сигнала) на собственной мировой линии наблюдателя W , поэтому W действительно воспринимает событие С как происходящее до того, как он испускает сигнал (события А )! Сигнал, отправляемый наблюдателем V обратно наблюдателю W , мог бы, по предварительной договоренности с W , просто повторять сигнал, полученный наблюдателем W в точке В . Таким образом, W получает в более ранний момент времени на своей мировой линии тот же самый сигнал, который он сам собирается послать позднее! Разнося двух наблюдателей достаточно далеко друг от друга, можно устроить все так, что ответный сигнал будет опережать исходный на сколь угодно большое время. Возможно, наблюдатель W своим исходным сигналом сообщал о том, что он сломал ногу. Тогда ответный сигнал он мог бы получить задолго до того, как с ним произошло это печальное происшествие, и тогда (предположительно) он мог бы предпринять необходимые меры предосторожности и избежать несчастного случая!

Таким образом, распространение сигналов со сверхсветовыми скоростями вместе с эйнштейновским принципом относительности приводит к вопиющему противоречию с нашим нормальным пониманием «свободы воли». В действительности, ситуация еще более серьезна, чем до сих пор представлялось. Ибо мы могли бы сделать «наблюдателя W » всего лишь механическим устройством, запрограммированным так, чтобы посылать в ответ тот же сигнал, который был им получен (т. е. отвечать на «НЕТ» — «НЕТ» и на «ДА» — «ДА»). Это приводит к такому же принципиальному противоречию, как то, с которым нам уже приходилось сталкиваться прежде. Причем кажется, что на этот раз оно не зависит от наличия у наблюдателя W «свободы воли». Это свидетельствует о том, что на устройство, способное испускать сверхсветовые сигналы, не стоит «делать ставку» как на физически возможное. В дальнейшем это обстоятельство еще приведет нас с вами к удивительным выводам (глава 6, «„Парадокс“ Эйнштейна, Подольского и Розена»).

Исходя из вышесказанного, давайте примем, что сигналы любого рода — а не только переносимые обычными физическими частицами — должны быть ограничены световыми конусами. Действительно, то, о чем мы только что говорили, опирается на идеи специальной теории относительности — но и в общей теории относительности правила СТО (локально) остаются в силе. Именно локальная выполнимость положений специальной теории относительности позволяет утверждать, что все сигналы остаются в пределах световых конусов, поэтому то же самое должно выполнятся и в общей теории относительности. Далее мы посмотрим, как это отражается на вопросах детерминизма в рамках этих теорий. Напомним, что в ньютоновской (или гамильтоновой и т. д.) схеме «детерминизм» — это возможность однозначного определения поведения системы в любой момент времени при условии, что заданы начальные условия. Если мы будем смотреть на ньютоновскую теорию с точки зрения пространства-времени, то «конкретное время», когда мы задаем эти начальные условия, будет представлено некоторым трехмерным «слоем» в четырехмерном пространстве-времени (т. е. будет всем пространством в этот момент времени). В теории относительности не существует одного глобального понятия «времени», которое можно было бы выделить для этой цели. Обычный подход предполагает гибкое отношение к этому вопросу. Годится любое «время». В специальной теории относительности вместо упоминавшегося выше «слоя» можно взять одновременное пространство какого-нибудь наблюдателя и задать на нем начальные данные. Но в общей теории относительности понятие «одновременного пространства» достаточно размыто. Вместо него можно воспользоваться более общим понятием пространственно-подобной поверхности . Такая поверхность изображена на рис. 5.33; она характеризуется тем, что в каждой из своих точек она лежит целиком вне светового конуса — так, что локально она напоминает одновременное пространство.

Рис. 5.33. Пространственно-подобная поверхность для задания начальных условий в общей теории относительности

Детерминизм в СТО можно сформулировать так: начальные данные на любом заданном одновременном пространстве S определяют поведение системы во всем пространстве-времени. (В частности, это верно для теории Максвелла, которая действительно является «специально релятивистской» теорией.) Однако можно высказать и более сильное утверждение. Если мы хотим знать, что произойдет в некоторой точке Р , лежащей где-то в будущем по отношению к пространству S , то для этого нам необходимы начальные данные не на всем S , а только в некоторой ограниченной (конечной) области пространства S — потому, что «информация» не может распространяться быстрее света, так что любые точки пространства S , лежащие слишком далеко для того, чтобы световые сигналы из них могли достигать Р , не оказывают на Р никакого влияния (рис. 5.34).

Рис. 5.34. В специальной теории относительности то, что происходит в точке Р, зависит только от данных, заданных в конечной области одновременного пространства. Так происходит потому, что никакое воздействие не может достичь точки Р быстрее света

Это гораздо более удовлетворительный результат по сравнению с той ситуацией, которая возникает в ньютоновском случае, где в принципе потребовалось бы иметь информацию о всем бесконечном «слое», для того, чтобы иметь возможность предсказать ближайшее будущее хотя бы для одной точки. На скорость, с которой может распространяться ньютоновская информация, не существует никаких ограничений, и действие ньютоновских сил поэтому распространяется мгновенно .

«Детерминизм» в общей теории относительности — вопрос гораздо более сложный, чем в СТО , и я ограничусь здесь лишь несколькими замечаниями. Прежде всего, для задания начальных условий нам необходимо воспользоваться пространственноподобной поверхностью S (а не просто одновременной поверхностью). Тогда оказывается, что уравнение Эйнштейна задают локально детерминистское поведение гравитационного поля в предположении (как обычно), что поля материи, дающие вклад в тензор ЭНЕРГИЯ , ведут себя детерминистским образом. Однако здесь возникают значительные осложнения. Сама геометрия пространства-времени (включая ее «причинную» структуру — расположение световых конусов) теперь становится частью того, что требуется определить. Априори расположение световых конусов нам не известно, так что мы не можем сказать, какие части поверхности S необходимы для однозначного определения поведения системы в некотором будущем событии Р . Но могут сложиться такие экстремальные ситуации, когда всех точек поверхности S для этого окажется недостаточно, и, соответственно, глобальный детерминизм будет утрачен! (Здесь затрагиваются непростые вопросы, имеющие отношение к одной важной нерешенной пока проблеме в общей теории относительности, которая известна под названием «космической цензуры» и связана с образованием черных дыр (Типлер и др. [1980]); см. главу 7, подгл. «Черные дыры») Маловероятно, чтобы любое подобное «крушение детерминизма», обусловленное «экстремальными» гравитационными полями, имело непосредственное отношение к тому, что происходит на «человеческих» масштабах — но тем не менее это недвусмысленно указывает на отсутствие ясности в вопросе о детерминизме в рамках общей теории относительности.

 

Вычислимость в классической физике:

где мы находимся?

На протяжении всей этой главы я старался не упускать из виду проблему вычислимости и, проводя различие между вычислимостью и детерминизмом, стремился показать, что первая может иметь не меньшее значение, коль скоро речь заходит о «свободе воли» и умственной деятельности. Но само понятие детерминизма в рамках классической теории оказалось не настолько четко определенным, как принято было думать. Мы видели, что при изучении классического уравнения Лоренца для движения заряженной частицы возникает целый ряд тревожных вопросов. (Вспомним «убегающие решения» Дирака.) Потом было показано, что и в общей теории относительности с детерминизмом сопряжены определенные трудности. Когда в таких теориях нет детерминизма — в них заведомо нет и вычислимости. Тем не менее ни в одном из названных случаев не создается впечатление, что отказ от детерминизма может существенным образом повлиять на нашу философию. В подобных явлениях еще «нет места» для нашей свободы воли: во-первых, потому, что классическое уравнение Лоренца для точечной частицы (в том виде, как его решил Дирак) нельзя считать пригодным с физической точки зрения для использования на том уровне, где возникают эти проблемы; и, во-вторых, потому, что масштабы, на которых классическая общая теория относительности приводит к такого рода проблемам (черные дыры и т. д.), в принципе не сравнимы с масштабами нашего собственного головного мозга.

Спрашивается: что мы сейчас знаем о вычислимости в классической теории? Разумно предположить, что в общей теории относительности мы сталкиваемся с теми же проблемами, что и в СТО — если не считать тех различий в вопросах причинности и детерминизма, о которых было только что сказано. Там, где будущее поведение физической системы определяется начальными данными, оно в то же время должно (из соображений, изложенных при рассмотрении ньютоновской теории) быть вычислимо на основе тех же начальных данных(не считая «бесполезного» типа невычислимости, с которым столкнулись Пур-Эль и Ричардс в случае волнового уравнения, о чем уже говорилось выше; эта ситуация не реализуется при гладко изменяющихся данных). Действительно, трудно представить, каким образом в любой из рассмотренных мной до сих пор физических теорий могут возникнуть какие-либо существенные «невычислимые» элементы. Можно заведомо предсказать, что «хаотической» поведение является типичным для большинства из этих теорий, где весьма малые изменения начальных данных способны вызвать громадные расхождения в последующем поведении. (Именно так, насколько можно судить, обстоит дело в общей теории относительности; см. Мизнер [1969], Белинский и др. [1970].) Но, как я уже упоминал выше, довольно трудно понять, каким образом этот тип невычислимости (т. е. непредсказуемости) может быть «использован» в устройстве, с помощью которого мы могли бы попытаться «подчинить» себе возможные невычислимые элементы в физических законах. Если «разум» способен каким-то образом использовать невычислимые элементы, то последние должны, видимо, лежать вне классической физики. Нам придется еще раз вернуться к этому вопросу позднее — после того, как мы в общих чертах познакомимся с квантовой теорией.

 

Масса, материя и реальность

Произведем небольшую «ревизию» той картины мира, которую дала нам классическая физика. Во-первых, там существует пространство-время, выполняющее важнейшую функцию арены, на которой разыгрываются всевозможные физические процессы. Во-вторых, имеются физические объекты, задействованные в этих процессах, но ограниченные точными математическими законами. Физические объекты, о которых идет речь, бывают двух типов: частицы (корпускулы) и поля. Об истинной природе и отличительных особенностях частиц сказано немного, за исключением того, что у каждой частицы имеется своя мировая линия и каждая частица обладает индивидуальной массой покоя, (возможно) электрическим зарядом и т. д. С другой стороны поля описываются очень точно: электромагнитное поле удовлетворяет уравнениям Максвелла, а гравитационное поле — уравнениям Эйнштейна.

В описании частиц мы сталкиваемся с определенной двусмысленностью. Если частицы имеют столь малые массы, что их собственным влиянием на поля можно пренебречь, то такие частицы называются пробными частицами, и их движение под действием полей задается однозначно. Выражение для силы Лоренца описывает реакцию пробных частиц на электромагнитное поле, законы движения по геодезическим линиям — на гравитационное поле (или соответствующую комбинацию в случае присутствия обоих полей). Поэтому частицы надлежит рассматривать как точечные, т. е. имеющие одномерные мировые линии. Но в тех случаях, когда влиянием частиц на поля (и, следовательно, на другие частицы) пренебрегать нельзя, т. е. когда сами частицы становятся источниками поля, их следует рассматривать как объекты с ненулевой протяженностью в пространстве. Иначе поля в непосредственной близости от каждой частицы обращаются в бесконечность. Такие протяженные источники создают распределение заряда-тока (ρ , j ), необходимое для уравнений Максвелла, и тензор ЭНЕРГИЯ , входящий в уравнения Эйнштейна. Наряду с этим пространство-время, вмещающее в себя все частицы и поля, обладает изменчивой структурой, которая сама по себе описывает гравитационные явления. «Арена» принимает участие в том самом действии, которое на ней разыгрывается!

Это то, что нам говорит классическая физика о природе физической реальности. Ясно, что хотя очень многое уже известно — не стоит пока благодушно тешить себя надеждой на то, что картины мироздания, рисующиеся нам сейчас, не будут однажды перечеркнуты с появлением более глубоких теоретических построений. В следующей главе мы увидим, что даже те революционные преобразования нашей картины, которые совершила теория относительности, бледнеют и кажутся почти незначительными по сравнению с нововведениями квантовой теории. Но мы пока не закончили изучение классической теории и далеко не исчерпали всех ее возможностей. А у нее для нас еще припасен один сюрприз!

Чем в действительности является «материя»? Это реальная субстанция, из которой состоят физические объекты — «вещи» окружающего нас мира. Это то, из чего состоим вы и я, то, из чего сделаны наши дома. Каким образом можно квантифицировать эту субстанцию, т. е. выразить ее количественно? В наших элементарных учебниках физики излагается ясный ответ, который дал на этот вопрос Ньютон. Мерой количества материи, содержащейся в объекте или в системе объектов, служит его (или их) масса . Такой ответ действительно кажется верным: другой физической величины, которая может всерьез конкурировать с массой за право называться истинной мерой всей материи, содержащейся в объекте, просто не существует. Кроме того, масса сохраняется: масса, а следовательно, и полное материальное содержимое любой системы всегда должно оставаться одним и тем же.

Однако знаменитая формула Эйнштейна из специальной теории относительности

E  = mc 2

свидетельствует о способности массы (m ) превращаться в энергию (Е ) — и наоборот. Например, когда атом урана участвует в процессе распада, распадаясь на меньшие осколки, полная масса каждого из осколков (если бы их можно было привести в состояние покоя), была бы меньше исходной массы атома урана — но если учесть энергию движения, т. е. кинетическую энергию (см. гл.5, подгл. «Динамика Галилея и Ньютона») каждого осколка и пересчитать ее в терминах массы, разделив на c 2 (по формуле Е = mc 2 ), то мы обнаружим, что суммарная энергия осколков осталась неизменной. Масса действительно сохраняется, но, поскольку она отчасти состоит из энергии, после распада атома могут возникнуть сомнения, что именно масса служит мерой количества вещества в составе объекта. Энергия, по существу, зависит от скорости, с которой движется материя. Энергия движения скорого поезда весьма значительна, но если мы сидим в вагоне этого поезда, то с нашей точки зрения поезд вообще не движется. Энергия движения скорого поезда (хотя и не тепловая энергия случайных движений его отдельных частиц) была «сведена к нулю» подходящим выбором системы отсчета. В качестве поразительного примера, весьма наглядно демонстрирующего действие соотношения масса-энергия Эйнштейна, рассмотрим распад одной из разновидностей субатомных частиц — так называемого π°-мезона. Это — заведомо материальная частица, обладающая вполне определенной (положительной) массой. Через какие-нибудь 10-16 секунды π°-мезон распадается (как атом урана, но гораздо быстрее), при этом почти всегда на два фотона (рис. 5.36).

Рис. 5.36. «Массивный» π°-мезон распадается на два безмассовых фотона. Пространственно-временна́я картина показывает, как сохраняется 4-вектор энергии-импульса: 4-вектор π°-мезона есть сумма 4-векторов двух фотонов, получаемая по правилу параллелограмма (на рисунке этот параллелограмм покрыт точками)

Для наблюдателя, покоящегося относительно π°-мезона, каждый фотон уносит половину энергии и, в действительности, половину массы π°-мезона. Однако, «масса» фотона носит несколько призрачный характер, ибо это — чистая энергия. Если бы мы получили возможность быстро двигаться в направлении одного из фотонов, то смогли бы уменьшить его массу до сколь угодно малой величины — поскольку собственная масса (или масса покоя — с этим понятием мы вскоре познакомимся) фотона равна нулю. Все сказанное вместе образует непротиворечивую картину сохраняющейся массы, но эта картина сильно отличается о той, которой мы располагали раньше. Масса может, как и прежде, служить в некотором смысле мерой «количества материи» — но наша точка зрения теперь кардинально изменилась: так как масса эквивалентна энергии, то масса системы, как и ее энергия, зависит от движения наблюдателя!

Сейчас нам стоит более четко сформулировать ту точку зрения, к которой мы в итоге пришли. Сохраняющаяся величина, которая исполняет роль массы — это единый объект, известный как четырехвектор энергии-импульса (или, в другой форме записи, 4-вектор энергии-импульса). Его можно условно изобразить в виде стрелки (вектора), исходящей из начала О пространства Минковского и направленной внутрь светового конуса будущего точки О (или, если речь идет о фотоне, — лежащей на поверхности этого конуса, см. рис. 5.35).

Рис. 5.35. 4-вектор энергии-импульса

Эта стрела, направленная в ту же сторону, что и мировая линия объекта, содержит всю информацию о его энергии, массе и импульсе. Таким образом, «t -значение» (или «высота») конца стрелки, измеренная в системе отсчета наблюдателя, описывает массу (или энергию, деленную на с 2 ) объекта, а пространственные компоненты задают импульс (деленный на с).

«Длина» этой стрелки в смысле Минковского — это важная величина, известная как масса покоя . Она описывает массу объекта в системе отсчета наблюдателя, покоящегося относительно этого объекта. Можно было бы рассматривать такую величину в качестве хорошей меры «количества материи», входящей в состав указанного объекта. Но подобная величина не аддитивна: если систему разделить на две, то исходная масса покоя не равна сумме масс покоя возникших в результате деления частей. Напомним рассмотренный выше распад π°-мезона. π°-мезон имеет положительную массу покоя, тогда как масса покоя каждого из возникших в результате распада фотонов равна нулю. Но свойство аддитивности выполняется для всей стрелки (четырехвектора), по отношению к которой мы должны выполнять «сложение» векторного типа, как показано на рис. 5.36. Именно вся стрелка служит мерой «количества материи»!

Обратимся теперь к электромагнитному полю Максвелла. Мы уже отмечали, что оно переносит энергию. Значит, по соотношению Е = mc 2 электромагнитное поле должно тоже иметь массу. Таким образом, и поле Максвелла представляет собой материю! И с этим утверждением теперь придется согласится, коль скоро поле Максвелла тесно связано с силами, удерживающими частицы вместе. Электромагнитные поля внутри любого тела должны вносить существенный вклад в его массу.

А как обстоит дело с гравитационным полем Эйнштейна? Во многих отношениях оно напоминает поле Максвелла. Подобно тому, как в теории Максвелла заряженные тела, двигаясь, могут испускать электромагнитные волны, массивные движущиеся тела тоже могут (согласно теории Эйнштейна) порождать гравитационные волны (см. выше «Релятивистская причинность и детерминизм»), которые, как и электромагнитные волны, распространяются со скоростью света, перенося при этом энергию. Однако эта энергия не поддается измерению стандартным способом, т. е. не может быть определена тензором ЭНЕРГИЯ , о котором говорилось выше. Для (чисто) гравитационной волны этот тензор всюду равен нулю ! Можно было бы принять точку зрения, согласно которой кривизна пространства-времени (не полностью задаваемая тензором ВЕЙЛЬ ) может каким-то образом представлять «количество материи», заключенной в гравитационных волнах. Но оказывается, что гравитационная энергия нелокальна: изучая кривизну пространства-времени только в ограниченных областях, невозможно определить, какова мера гравитационной энергии. Энергия, а следовательно, и масса гравитационного поля ведут себя подобно скользкому угрю, так что их невозможно «привязать» в каком-нибудь четко определенному месту. Тем не менее, к гравитационной энергии следует относиться со всей серьезностью. Она заведомо присутствует, и ее необходимо учитывать для того, чтобы сохранить смысл понятия массы. Существует хорошая (и положительная) мера массы (Бонди [1960] и Сакс [1962]), которая применима к гравитационным волнам — но нелокальность такова, что, как оказывается, эта мера может иногда становиться ненулевой в плоских областях пространства-времени, расположенных между двумя всплесками излучения (совсем как «глаз» урагана), где пространство-время на самом деле полностью лишено кривизны (см. Пенроуз, Риндлер [1986]) (и где, следовательно, оба тензора — ВЕЙЛЬ и РИЧЧИ — равны нулю)! В таких случаях мы, по-видимому, вынуждены придти к заключению, что если эта масса-энергия вообще должна быть локализована, то она с необходимостью должна быть сосредоточена в этом плоском пустом пространстве — области, совершенно свободной от материи или полей любого рода. При таких любопытных обстоятельствах наше «количество материи» либо локализовано там , в самых пустых областях пустого пространства — либо ее вообще нигде нет!

Такое заключение кажется чистейшим парадоксом. Но мы знаем, что этот вывод непосредственно вытекает из тех сведений о природе «реальной» материи нашего мира, которые дают наши лучшие классические теории (а это действительно превосходные теории!). Согласно классической теории — не говоря уже о квантовой, к изучению которой мы скоро приступим — материальная реальность оказывается субстанцией гораздо более расплывчатой, чем казалось прежде. Задача ее количественного измерения — и даже само ее существование — связана только локально! Если такая нелокальность с необходимостью учета чрезвычайно тон — кажется вам загадочной — приготовьтесь к еще более сильным потрясениям!