1. Проблемы астрофизики
Астрономия, древнейшая из естественных наук, многие века ограничивалась чисто описательным подходом: наблюдались звезды и планеты, описывались их взаимоположение и законы движения (небесная механика). Гелиоцентрическая система Коперника предполагала, что планеты Солнечной системы должны быть схожи с Землей, и поэтому иногда высказывались предположения об истории их происхождения. Но звезды и Солнце могут состоять из какого-то особого, звездного вещества, о котором ничего не было известно, а потому наука не могла заниматься строением звезд или выяснением причин их свечения.
Но с открытием спектральных линий в излучении Солнца, а потом и других звезд появляется возможность взглянуть на эти небесные тела более пристально: такие линии уже говорят об их химическом составе, о том, что они, возможно, содержат те же элементы, что и Земля, и можно предположить, что никакого специфического «звездного вещества» вообще нет. Следовательно, появляется возможность думать о процессах внутри звезд или, по крайней мере, на их поверхности.
Так начала формироваться астрофизика, и так возникли ее главные проблемы: каковы состав и структура звезд, каковы источники их излучения, как они меняются в ходе своей эволюции. И тут астрофизика уже переплетается с исследованием строения Вселенной и ее историей, с космологией и космогонией (названия от греческого «космос» — это одновременно и высший порядок, и Вселенная), но эти более общие теории мы пока отложим.
Теория внутреннего строения звезд (1916), развитая в основном Артуром Стенли Эддингтоном (1882–1944), объясняла, почему нормальная звезда типа Солнца не сжимается дальше, несмотря на огромное гравитационное давление (средняя плотность Солнца всего 1,41 г/см3). По его теории, гравитационным силам сжатия противостоит давление электромагнитного излучения внутренних слоев, и из условия равенства этих сил следует, что температура вблизи центра звезды составляет порядка 15 миллионов градусов, а плотность вещества в сто с лишним раз больше средней.
Но как ведет себя вещество при таких температурах и давлениях? Почему и как оно излучает такие потоки электромагнитной энергии? Ясно, что там должны происходить какие-то ядерные реакции, но их природа оставалась совершенно неясной.
Внешние слои Солнца содержат (по массе) 71 % водорода, 26–27 % гелия, и лишь остаток приходится на все остальные элементы. Можно думать, что внутренний состав примерно такой же. Наивысший выход энергии можно было бы получить из такой реакции: четыре атома водорода превращаются в атом гелия (точнее, надо бы говорить не об атомах, а о ядрах, так как в условиях близ центра звезды все атомы полностью ионизованы, т. е. с них сорваны электронные оболочки, и они вместе образуют плазму). Действительно, если взглянуть на таблицу Менделеева, то видно, что атомный вес водорода 1,008, а гелия — 4,003. Следовательно, при такой реакции (4–1,008-4,003) = 0,029 атомной единицы массы может, согласно формуле Эйнштейна, перейти в энергию (на самом деле, несколько меньше, так как в такой реакции должны возникнуть и другие частицы, но это сейчас не существенно).
В 1869 г. Джонатан Г. Лейн (1819–1880) предположил, что Солнце — это гигантский газовый шар и давление в нем возрастает к центру. Отсюда он смог впервые рассчитать температуру на его поверхности: источником светимости, по такой модели, развитой далее лордом Кельвином, является сжатие газового шара. Однако эта модель приводила к очень малому сроку светимости звезд — для Солнца получались какие-то десятки, в крайнем случае, сотни тысяч лет, что вполне укладывается в библейскую хронологию, но никак не согласуется хотя бы с теорией эволюции Дарвина.
Однако как же может быть, чтобы четыре одинаково заряженных протона одновременно преодолели силы кулоновского отталкивания и сблизились настолько, чтобы в игру могли вступить уже ядерные силы? Вероятность такого стечения обстоятельств столь мизерна, что ее не стоит и пытаться рассматривать. Роль могут играть только столкновения двух частиц.
2. Ганс Бете: источники энергии звезд
Именно такой процесс впервые рассмотрел Вайцзеккер в 1938 г.: столкновение двух протонов, при котором образуется дейтерий (или тяжелый водород, ядро которого, дейтон, содержит протон и нейтрон), позитрон и нейтрино (реакцию записывают как р + р → d + e + + v) , между которыми и распределяется энергия, соответствующая формуле Эйнштейна. Дальше он пробовал рассмотреть столкновение двух дейтонов, но вероятности таких двухступенчатых процессов оказались слишком малы.
В 1938 г. на конференции по теоретической физике в Вашингтоне эта проблема заинтересовала Ганса Бете (1906–2005). Быстро освоившись с астрономическими данными и применив свои энциклопедические знания в области ядерной физики, он решил всю задачу за шесть недель. Согласно Бете, после образования дейтерия при столкновении протонов возникший позитрон аннигилирует с электроном (они имеются в плазме), дейтон сталкивается еще с одним протоном и переходит в изотоп гелий-3 (радиоактивный, но с достаточно большим временем жизни); а столкновение двух ядер гелия-3 ведет к образованию уже стабильного ядра гелия-4 с выделением двух лишних протонов. Таким образом, Солнце представляет собой непрерывно действующую водородную бомбу, скрытую под слоем газа толщиной в полмиллиона километров.
В ходе этого исследования Бете рассмотрел такие солнечные характеристики, как температура, плотность, состав, рассчитал ожидаемые скорости реакции и показал, что реакция синтеза по этой цепочке (она называется водородным циклом) идет как раз с такой скоростью, которая обеспечивает наблюдаемое выделение энергии Солнцем.
Его расчеты также показали, что для звезд, более массивных, чем Солнце, в реакции должны участвовать более тяжелые ядра. И Бете рассчитал также другие циклы, заканчивающиеся формированием ядер изотопов углерода и азота.
В 1967 г. Бете был удостоен Нобелевской премии по физике «за вклад в теорию ядерных реакций, особенно за открытия, касающиеся источников энергии звезд». Представляя лауреата, Оскар Клейн, известный теоретик и член Шведской королевской академии наук, отметил широту знаний и интересов Бете и сказал, что некоторые из его открытий в области физики, каждое в отдельности, заслуживали самостоятельной Нобелевской премии. Работа Бете над источниками энергии звезд, сказал Клейн, «представляет собой одно из наиболее важных приложений фундаментальной физики в наше время и ведет к углублению наших знаний о Вселенной».
Отметим здесь, что поиски источника энергии звезд и не могли начаться ранее XX в. В XIX в. писали, что источником нагрева могут служить падения метеоритов на Солнце, а Кельвин рассматривал нагрев вследствие гравитационного сжатия газового шара, но получаемые цифры были слишком малы.
После завершения Второй мировой войны почти все крупные ученые, включая Бете и Ферми, вернулись к довоенным исследованиям. Но перед ними маячила возможность создания более страшного оружия — термоядерного. Многие требовали передать право распоряжения ядерным оружием некоему международному органу, другие считали, что СССР, единственный потенциальный соперник Америки, еще долго не сможет овладеть «секретами» атомного оружия.
Но единственным секретом являлось то, что такая бомба реально существует, а он уже был раскрыт. Важнейшими были технологические ноу-хау: методики очистки материалов. Самостоятельно или с частичной помощью агентурных данных, но уже к 1947 г. в СССР был запущен первый реактор, а вскоре был произведен и первый ядерный взрыв.
Более проницательные ученые, первым из них нужно назвать Э. Теллера, настаивали перед правительством на продолжении и интенсификации работ по созданию термоядерного оружия. Возражения Р. Оппенгеймера и многих других ни к чему не привели, и работы эти были развернуты, но в СССР они начались уже совершенно независимо примерно в то же время или даже раньше.
3. А. Д. Сахаров: водородная бомба
В рамках общего ядерного проекта СССР, руководителем которого был Игорь Васильевич Курчатов (1903–1960), теоретические термоядерные исследования вела группа Я. Б. Зельдовича, автора теории детонации и взрыва. В 1948 г. к этой работе привлекли И. Е. Тамма, а он включил в нее своего недавнего аспиранта А. Д. Сахарова.
По первоначальному замыслу, нужно было соорудить трубу, заполненную дейтерием, в одном ее конце помещалась бы атомная бомба как детонатор. Взрыв этой бомбы должен был привести к внутризвездным температурам, при которых, как считалось, дейтерий «загорится» по типу реакции Вайцзекера и реакция под действием ударной волны пойдет дальше по трубе.
Точные значения распределения температур, как при взрыве атомной бомбы, так и те, что нужны для начала синтеза при столкновениях дейтонов, были неизвестны. Оценки и расчеты (к ним, в частности, привлекли Л. Д. Ландау и И. М. Халатникова) показывали сомнительность успеха при такой конфигурации ядерного запала. Нужно было думать, и думать упорно.
И Сахаров предлагает принципиально новую конструкцию, которую назвали «слойкой»: в центре шара находится запал, атомная бомба, вокруг нее — дейтерий, а оболочка этого шара делается из тяжелого металла, например урана или свинца. Хитрость здесь вот в чем: для реакций синтеза нужны не только высокие температуры, но и высокие давления, а величина давления зависит от количества ударов частиц о стенки сосуда и друг о друга. Но при первоначальном взрыве вещество атомной бомбы и ее оболочек ионизуется, образуется множество разнообразных частиц, и у каждой из них, согласно закону равнораспределения энергии по степеням свободы, одинаковая (приблизительно, так как равновесие не достигнуто) кинетическая энергия, Таким образом, чем более разрушительным будет взрыв запала, тем выше будет давление в первые микросекунды после него.
Это была первая идея, ведущая к цели. Способ сдавливания физики называли (между собой, конечно) «сахаризацией».
Вторая идея, вскоре появившаяся, принадлежит Виталию Лазаревичу Гинзбургу. Уже должно быть ясно, что водородная бомба первого проекта скорее должна была бы называться дейтериевой (или тяжело-водородной), но во всех вариантах заполнять ее газообразным дейтерием или поддерживать сверхнизкие температуры для его сжижения слишком сложно. И вот Гинзбург сообразил, что можно сделать внутреннюю оболочку из такого твердого материала, который сразу же, в мгновение взрыва запала, выдавал бы горючее для термояда (обычное сокращение от «термоядерных реакций»). Для этого он рассмотрел реакцию воздействия нейтронов (их порождает атомная бомба) на изотоп литий-6: его распад на гелий-3 и тритий с выделением энергии. Тритий — это сверхтяжелый изотоп водорода, у него в ядре один протон и два нейтрона, поэтому вероятность его синтеза с дейтоном раз в сто больше, чем при столкновении двух дейтонов. А если в качестве оболочки использовать химическое соединение лития-6 и дейтерия (формула соединения 6LiD, поэтому его назвали «лидочка»), то получается колоссальный выигрыш: все компоненты, нужные для термоядерного взрыва, собраны вместе и притом в твердом виде.
На этом, однако, возможности дальнейшего усиления «слойки» были исчерпаны: для начального взрыва атомного запала вокруг него нужно расположить пороховые заряды, т. е. занять определенный объем, а это не позволяет использовать очень уж много «лидочки» для эффективного термояда — получалось, что энергия взрыва такой бомбы всего раз в десять выше взрыва обычной атомной.
Тут появляется третья идея: атомную «бомбу-зажигалку», надо помещать не внутри, а снаружи, но так, чтобы она приводила к нужному сжатию и нагреву. В отличие от первоначальной трубы, сжатие (точнее, обжатие) и нагрев должны быть всесторонними. Как этого добиться?
Повторим: для равномерного обжатия термоядерного объекта давление должно одновременно включаться со всех сторон, но при взрыве «зажигалки» разлетающиеся частицы, как бы ни ставить отражатели, скорее, достигнут ближней части объекта и вместо взрыва разнесут его в клочья. Значит, нужно предельно уменьшить разницу времен подхода, а этого можно добиться только и только, если сжимать будут не частицы, а… свет! Для этого нужно сделать оболочку в виде эллипсоида вращения (его сечения, эллипсы, научился рисовать юный Максвелл, по эллипсам, согласно законам Кеплера, вращаются планеты вокруг Солнца). Эллипсы обладают таким замечательным свойством, которое, несомненно, знали Сахаров и Зельдович: если в один из двух фокусов поместить светящийся объект, то все лучи, отраженные от стенок, соберутся во втором фокусе, причем все они дойдут до второго фокуса одновременно!
Заметим, что позже конструкции водородных бомб были усовершенствованы, габариты их уменьшены настолько, что они устанавливаются на ракетах. Разработаны также так называемые нейтронные бомбы, не содержащие урановой оболочки и поэтому не создающие долгоживущего радиационного фона, они, вместо соединений лития, содержат тритий и дейтерий, могут использоваться в артиллерии и решать тактические, а не стратегические задачи.
Итак, бомба должна быть эллипсоидом, в фокусах которого находятся запал и объект, нужно только поставить между ними перегородку, задерживающую более ранний подход прямых лучей. Идея завершена, нужно всего лишь ее как следует рассчитать и воплотить в металл, как говорят конструкторы.
В 1950 г. в Москву на имя Сталина поступило с Сахалина письмо от солдата Олега Александровича Лаврентьева, в котором были изложены основные идеи создания водородной бомбы. И хотя у автора было всего семиклассное образование, его идеи были оригинальны, а некоторые даже предвосхищали дальнейшие разработки. 0. Лаврентьев был вызван в Москву, его зачислили на физический факультет, предоставили кураторов по всем предметам, вход в лаборатории, специальную стипендию, но большим ученым он так и не стал, оставшись своеобразной психологической загадкой.
Трудности, которые при этом возникают, конечно, громадные, нужно еще много и много думать, делать и переделывать; над воплощением проекта работает множество людей, физиков — теоретиков и экспериментаторов, химиков, взрывотехников, инженеров, техников (их называют, на немецкий лад, файн-мастерами, т. е. тонкими, особо ловкими) и т. д. Но 22 ноября 1955 г. первая в мире водородная бомба сброшена с самолета — испытания прошли успешно!
Еще до того США испытали 1 ноября 1952 г. на атолле Эниветок неподъемное расположенное на земле термоядерное устройство, сконструированное Э. Теллером. Аналогичное устройство Сахарова было испытано в СССР 12 августа 1953 г. Самая мощная по сей день бомба в истории, разработанная под руководством Сахарова, эквивалентная 50 Мт ТНТ (миллионам тонн тринитротолуола), была взорвана в атмосфере 30 октября 1961 г..
4. Управляемые термоядерные реакции
Реакции ядерного синтеза обладают, по крайней мере, двумя преимуществами перед реакциями деления. Во-первых, исходными продуктами для них может служить если не водород, то дейтерий, а запасы его на Земле, в отличие от запасов урана, неограниченны. Во-вторых, продукты синтеза, в отличие от радиоактивных отходов деления, слабо или совсем не радиоактивны, т. е. исчезает не решенная до сих пор проблема их захоронения.
Поэтому одновременно с разработкой оружия начались исследования возможностей термоядерной энергетики. Первая же проблема, которая возникла, состояла в том, как и где хранить вещество, точнее, плазму заряженных частиц, разогретых до температур, приближающихся к миллионам градусов. (Напомним, что самое термостойкое вещество на Земле остается твердым примерно до 5000. градусов.)
И это была первая проблема, которую еще до работы над бомбой решил А. Д. Сахаров: нужен сосуд, в котором нет материальных стенок, но который не выпустит наружу заряженные частицы. Эту задачу могут выполнить только силовые линии Фарадея — нужно так подобрать магнитные поля, чтобы они заворачивали назад все приближающие к ним заряды — вот вам и сосуд без стенок! Такие «сосуды» назвали магнитными бутылками. Но в любой бутылке есть еще горлышко и дно — через них заряды могут убегать…
Тогда, предложил Сахаров, сделаем сосуд без горлышка и дна — завернем его в тор, т. е. в бублик. Такой ядерный реактор назвали токамак (сокращение от «Тороидальная КАмера с МАгнитной Катушкой», одно из немногих русских слов, вошедших — наряду со словом «спутник» — во все языки мира).
Схожие устройства создаются во многих лабораториях. И если в 1965 г. токамак работал не более одной десятимиллионной секунды, то уже к 1991 г. длительность его работы на смеси дейтерий-тритий дошла до двух секунд, а температура в нем достигла 200 миллионов градусов. Физики уверены, что они в этих исследованиях на правильном пути — нужно терпение, работа и… финансирование. (Стоимость большого токамака, который строят вместе США, Россия, Европейское сообщество и Япония, — порядка 10 миллиардов долларов, но перспективы столь грандиозны, что затраты могут очень быстро окупиться в случае ожидаемого успеха.)
А существуют ли другие возможности для развития термоядерной энергетики?
В 1947 г., как мы говорили, Пауэлл обнаружил в космических лучах след мезона, который затем превращался в чуть более легкую частицу, но не протон и не электрон. Пауэлл решил, что первоначальная частица — это пи-мезон, предсказанный Юкавой переносчик ядерных взаимодействий. Он, по-видимому, превращался в несколько более легкий мю-мезон, тот самый, который еще в 1937 г. нашел К. Андерсон. Поэтому возник вопрос: как они соотносятся друг с другом? (Доказательство справедливости его предположения о распаде пи-мезона на мю-мезон и нейтрино было установлено позже.) Поскольку вопрос оставался дискуссионным, С. Франк в том же 1947 г. опубликовал маленькую заметку о том, что, возможно, самая первая частица, найденная Пауэллом, — это все тот же мю-мезон, но севший на место электрона в атоме.
Сахаров заинтересовался этой заметкой и рассмотрел такую возможность: масса мю-мезона в 207 раз больше массы электрона, значит, радиус мю-мезоатома будет в 207 раз меньше радиуса водорода с обычным электроном на орбите. Поэтому мю-мезоатом как нейтральное образование может так близко подойти к ядру другого атома, что начнется реакция синтеза — и все это при нормальной температуре. Более того, сам мю-мезон в такой реакции не участвует, поэтому он может, сблизив два ядра, полететь дальше и снова привести к такой же реакции. Таким образом, эта частица может играть роль катализатора реакции (от греческого «катализис» — разрешение), но недолговечного — время жизни мюона длится около двух миллионных секунды. Этот процесс Сахаров назвал мю-мезонным (или мюонным) катализом, и с тех пор он интенсивно изучается: планируется, в принципе, строить специальные ускорители, так называемые мезонные фабрики, энергия для которых будет вырабатываться в ходе самой каталитической реакции.
Проблема управляемых термоядерных реакции столь важна, а решение ее столь многообещающе, что время от времени появляются сообщения об их наблюдении в самых экзотических условиях. Так, в начале 1990-х гг. два исследователя сообщили, что они наблюдают такую реакцию при накачке кристалла чистого металла палладия дейтерием: между узлами кристаллической решетки палладия как раз помещаются атомы дейтерия, и, по уверению авторов, они так сближаются, что начинается синтез гелия. К сожалению, это наблюдение не подтвердилось — возможно, авторы были вполне искренни, но у них что-то случилось с аппаратурой.
В конце 1990-х гг. появились новые сообщения. При прохождении мощной ультразвуковой волны через воду в ней, как известно, возникают пузырьки — это явление кавитации. Затем эти пузырьки схлопываются, иногда с грохотом, что говорит о сильном давлении, возникающем в них, — вот это давление, по мнению авторов статей, и приводит к термояду, следы которого они как будто наблюдали. Но и эта сенсация, увы, не подтвердилась.
Еще одна возможность, тоже впервые рассмотренная Сахаровым, — это нагрев малых количеств ядерных реагентов одновременными импульсами мощных лазеров. Лазерный термояд также продолжает исследоваться.