Броня

инейному кораблю приходится выдерживать мощные удары противника. Ведь и неприятельские корабли вооружены орудиями главного калибра. А неприятельские самолеты могут поразить палубу линейного корабля тяжелыми бомбами.

Поэтому броневая защита современного линейного корабля – это важнейшая часть его устройства. Броня должна надежно защищать все жизненные части корабля, его машины, вооружение. Для этой цели важны не только большая толщина и высокое качество броневых стальных плит; нужно, чтобы эти плиты были расположены наиболее целесообразно, чтобы вся система бронирования была устроена наилучшим образом, чтобы она оказывала наибольшее сопротивление ударам противника, чтобы его снаряды не пробивали брони.

Когда строили первые броненосцы, задача эта решалась просто: корабль опоясывали по борту железной броней равномерной толщины, а сверху по палубе настилали более тонкие железные плиты. Палубная! броня соединялась с поясной по ее верхнему краю.

Получалось так, что на корабль надевали огромную металлическую шапку; она закрывала всю надводную часть корабля и спускалась немного ниже ватерлинии. Снаряды неприятельских пушек, куда бы они ни попали – в борт или в палубу, встречали преграду. В те времена этого было достаточно, – ведь тогда снаряды не пробивали брони. Но вскоре пушки взяли свое, и пришлось подумать не только об утолщении брони, об улучшении ее металла, но и об усовершенствовании ее устройства.

Схема развития броневой защиты линейных кораблей до первой мировой войны

Тогда придумали простое и в то же время .очень полезное улучшение: края палубной брони у самых бортов корабля опустили книзу и соединили с нижней кромкой бортовой брони.

Таким образом, неприятельский снаряд, попавший в борт, должен был пробить две брони – и бортовую и палубную. Но первая броня намного уменьшала силу снаряда, поэтому палубная броня хорошо выдерживала удар и надежно защищала корпус корабля. Но возникла другая опасность: в пробоины в бортовой броне могла проникнуть вода и нарушить устойчивость корабля. Надо было помешать этому, не дать воде разлиться по всей броневой палубе. Тогда кораблестроители придумали еще одно устройство. Они пересекли броневую палубу многими непроницаемыми для воды переборками, продольными и поперечными. Получилось много отдельных камер. Если вода попадала в одну камеру, юна уже не могла проникнуть дальше.

Скоро выяснилось, что при стрельбе с большой дистанции снаряды попадают в корабль сверху и разрушают сразу много камер. Эту опасность устранили тем, что настлали поверх переборок вторую броневую палубу. Получилась своего рода броневая коробка с многочисленными отделениями внутри. Такая защита полностью оправдала себя и существовала еще во время первой мировой войны. В морских сражениях этой войны стальные защитные коробки броненосцев по нескольку часов сопротивлялись тяжелым снарядам главного калибра противника.

Какой же толщины достигала броня в те годы? Для бортовой брони существовало и существует теперь простое правило: броня в том случае хорошо выдерживает удары снарядов, если ее толщина больше или примерно равна калибру стреляющих по ней орудий. Калибр главной артиллерии линейных кораблей даже 30 лет назад доходил до 380 миллиметров, поэтому и толщина бортовой брони была очень большой, а вес ее измерялся тысячами тонн.

Нельзя было защищать корабль и сверху такой броней. Ведь площадь палубы линейного корабля очень велика, еще много тысяч тонн легло бы своей тяжестью на его корпус, перегрузило бы его. Кроме того, и не нужно было защищать палубу очень толстой броней: снаряды всегда попадали в палубу под острым углом, поэтому сила их удара была меньше, чем при попадании в борт (о причине этого явления речь будет впереди). А самолеты-бомбардировщики тогда еще де завоевали себе признания. Вот почему палуба линейного корабля защищалась более тонкой броней.

Обычно бронировали не одну палубу, а две: верхнюю более тонкой броней, а нижнюю более толстой. Общая их толщина не превышала 90-125 миллиметров. Когда снаряд попадал в верхнюю палубу, он пробивал ее и при этом разрывался на тысячи осколков. Эти осколки уже не обладали такой силой, чтобы пробить нижнюю броню.

Но время шло. Увеличивались калибры главных орудий, их дальнобойность, скорость полета их снарядов и, следовательно, сила их ударов. А самолеты-бомбардировщики превратились в подлинную грозу боевых кораблей.

Пришлось кораблестроителям снова усиливать пассивную защиту корабля – его броню, палубную и бортовую. Но как это сделать? Можно было бы изготовить для линейных кораблей еще более толстые броневые пояса и палубные настилы. Но по этому пути нельзя было идти далеко: ведь каждое утолщение брони – это сотни и даже тысячи тонн новой тяжести, нагруженной на корабль. Если бы кораблестроители шли только по этому пути, пришлось бы отказаться от части вооружения, корабль оказался бы слабым, тихоходным. Значит, надо было не только утолщать броню, но и, повышая качество ее, улучшать устройство – целесообразнее, экономичнее распределять ее. Тогда -уже после первой мировой войны – и придумали одно простое улучшение устройства брони. В чем оно заключалось?

Представим себе, что снаряд попал в броню корабля, бортовую или палубную, с близкого расстояния. Снаряд должен был пробить броню, но все же отскочил и упал в воду. Почему? Может быть, броня слишком толста или изготовлена из особенно прочной стали?

Нет, броня оказалась обычной толщины и качества. Может быть, что-нибудь случилось с пушкой или зарядом? Нет, и здесь все в порядке. В чем же причина неудачного попадания?

Оказалось, что снаряд «плохо» попал в броню, не прямо, а очень косо, поэтому броня и осталась непробитой.

Выходит, что в момент попадания пробивная сила снаряда может меняться.

Предположим, что в момент удара о броню нам удалось сфотографировать броню и; снаряд. На фото получилось, что снаряд как бы чуть- чуть вонзился в броню. Полная пробивная сила удара получится, если снаряд «вонзится» и «станет» на броне прямо, как фигура на шахматной доске.

В этом случае угол между осью снаряда и поверхностью брони будет равен 90°. Если же снаряд «вонзится» слегка наклонно, угол этот уменьшится, но тогда уменьшится и пробивная сила удара. Чем более наклонно будет попадать снаряд, тем меньше будет и пробивная сила удара. Наконец, может случиться и так, что снаряд попадет в броню совсем наклонно, под углом 30° или даже еще меньше. Тогда огромный снаряд, ударивший по броне о невероятной силой, просто скользнет по ее поверхности и упадет-в море. Так и произошло в том случае, о котором рассказано выше.

Угол, под которым снаряд попадает в броню, называется «углом встречи» снаряда с броней. Малый угол встречи и является причиной слабого удара снаряда по броне. Величина угла встречи всегда играла важную роль в расчетах кораблестроителей, когда они проектировали броневую защиту большого боевого корабля.

Когда понадобилось усилить сопротивление брони не только путем ее утолщения, что вызывало увеличение ее веса, кораблестроители решили искусственно уменьшить угол встречи снаряда с броней, сделать его более острым. Они наклонили бортовую броню наружу, как бы отвалили борт сверху к воде. Теперь снаряд должен был попадать в броню настолько косо, что сила его удара уменьшалась.

Кораблестроители сделали очень интересный расчет. Оказалось, что броня, наклоненная на 10°, сопротивляется удару снаряда так, как будто ее толщина увеличилась на 10 процентов, на одну десятую часть своей величины. Поэтому и не пришлось особенно увеличивать толщину бортовой брони. Так, например, броня толщиной всего 370 миллиметров могла служить так же, как броня толщиной примерно 406 миллиметров. Значит, если линейный корабль был вооружен орудиями калибром 406 миллиметров и мог ожидать встречи с таким же противником, для него была достаточной броня толщиной 370 миллиметров. Так могло быть соблюдено правило равенства между калибром главной артиллерии и толщиной брони.

Все же в наши дни толщина наклонной поясной брони новейших линейных кораблей у наиболее жизненных частей выросла до 406 миллиметров, а это значит, что она сопротивляется ударам, как броня толщиной 446 миллиметров.

Броня башен оставалась вертикальной. Так как башни защищают основную силу линейного корабля – его главную артиллерию, то их опоясали более толстой броней. Па новейших линейных кораблях толщина башенной брони доходит до 457 миллиметров.

Но не все новые линейные корабли строятся с наклонной броней, на некоторых остается прежняя вертикальная бортовая броня. Дело в том, что при наклонной броне становятся шире и броневые палубы, для их изготовления требуется больше стали и вес палубной брони увеличивается. Поэтому некоторые кораблестроители предпочитают вертикальную поясную броню, пусть даже более толстую. Все же в последние годы наклонная броня завоевывала себе много сторонников.

Труднее было усиливать палубную броню, а она-то и нуждалась в особенно большом укреплении. Старый враг палубной брони – пушечный снаряд – сделался намного грознее. И не только потому, что снаряд стал тяжелее, летел быстрее, ударял сильнее. Главная причина скрывалась в том же угле встречи. Дистанции артиллерийского огня выросли. Огромные снаряды, выброшенные сверхмощными орудиями, забирались на высоту в несколько километров и падали на корабль

сверху, точно авиабомба. Теперь угол встречи снаряда с палубной броней сделался достаточно большим и сила удара очень выросла. А авиабомба – новый враг палубной брони – попадала в палубу почти пряма и ничего не теряла в силе своего удара. Все это заставило кораблестроителей крепко задуматься о толщине и об устройстве палубной брони.

Стальной ящик

Как же бронируется современный линейный корабль?

Представьте себе огромный стальной ящик без дна. Длина ящика – около 150 метров, ширина -около 35 метров. Его стенки – толщиной в до 457 миллиметров, а крышка – до 150 миллиметров. Теперь вообразите, что вам удалось вставить его как раз в середину линейного корабля по его длине. При этом получилось так, что крышка немного выше ватерлинии, а стенки опускаются немного ниже нее. Такой бронированный «ящик» действительно существует на всех линейных кораблях. Внутри этого «ящика» и под ним и находятся все жизненные части корабля: машины, погреба боеприпасов. Сквозь крышку «ящика» проходят толстые бронированные трубы. Это – стволы башен и. дымовых труб. Все это бронированное сооружение называется «цитаделью».

Продольные стенки «ящика» – это и есть главная бортовая броня.. Но этот основной броневой пояс корабля не покрывает всего борта.. Носовая и кормовая части и борта над цитаделью гораздо менее защищены. Это сделано для экономии веса брони. Но зато сильно защищены- отдельные важнейшие «артерии» корабля: дымовые кожухи, подачные трубы башен, элеваторы, рулевые приводы и все, что служит для непрерывного поддержания боеспособности «плавающей крепости».

Поперечные стенки «ящика» – траверзы – стягивают концы бортовой брони и замыкают ее. Крышка «ящика»-это «главная», самая толстая броневая палуба корабля. Под ней помещается еще одна броневая палуба – ее называют «противоосколочной». Если снаряд или бомба, пробьет главную палубу и взорвется, осколки встретят на своем пути «противоосколочную» палубу. Над главной броневой палубой иногда настилают еще одну тонкую броневую палубу – ее называют «взводной». Назначение этой третьей палубы – вызвать взрыв снаряда (или бомбы) еще до того, как он ударит по главной палубе.

Общая толщина броневых палуб новейших линейных кораблей достигает 250 миллиметров.

Кроме бортов, палуб и башен, забронированы также отдельные командные помещения корабля: боевая рубка, посты управления огнем и другие места, где сосредоточивается управление боевыми частями.

Схема бронирования современного линейного корабля

Цитадель защищает центральную часть корабля. Но ведь в бою может случиться, что машины и погреба останутся в целости, а нос или корма корабля или надводная часть его среднего борта будут разворочены снарядами. В отверстия проникнет вода, корабль начнет крениться и может даже пойти ко дну. Поэтому хорошо бы защитить надежной броней весь корабль. Но невозможно защитить весь корабль такой же толстой и надежной броней, как и наиболее жизненные его части. Корабль просто не мог бы выдержать и перемещать невероятную тяжесть, которая выросла бы до огромной величины. Поэтому некоторые кораблестроители немного уменьшают толщину брони главного броневого пояса (по ватерлинии от крайней носовой до крайней кормовой башни). Но за этот счет они опоясывают носовую и кормовую части более тонкой, но все же еще достаточно прочной броней толщиной около 100 миллиметров. А над главным броневым поясом надевают на корабль еще один или два броневых пояса тоже более тонких, толщиной 100-150 миллиметров. Более тонкая броня не защитит от бронебойных снарядов, но все же пробоины будут меньше и их будет легче заделать. А от фугасных снарядов и тонкая броня может защитить.

Как же изменился вес брони, насколько он увеличился? Вертикальная броня, защищающая борта и башни, не особенно утяжелилась. Ведь и в первую мировую войну толщина брони доходила до 380 миллиметров. А вот горизонтальная палубная броня сделалась намного тяжелее. Палубная броня в 1914 году весила около 2000 тонн, а теперь на новейших линейных кораблях она стала тяжелее в четыре-пять раз. А общий вес брони старых линейных кораблей был не больше 10 000 тонн, а новейших – 20 000 тонн и даже больше. Вот какую огромную тяжесть приходится нести на себе линейному кораблю для защиты от снарядов и авиабомб.

Против подводного удара

Не только снаряды мощных орудий угрожают линейному кораблю. Торпеды и мины-оружие подводных лодок и эсминцев, катеров и самолетов-торпедоносцев – наносят ему еще более разрушительные удары.

Эти удары наносятся снизу, под водой, они опасны тем, что в пробоины немедленно врывается огромное количество воды.

Еще к началу первой мировой войны считалось, что даже одна такая рана смертельна для корабля. Но боевая практика этой войны показала, что судостроители научились защищать корабли своего рода подводной «броней». Во многих случаях одиночные минные и торпедные удары оказывались не смертельными, а только надолго выводили корабль из строя. А между первой и второй мировыми войнами устройство подводной «брони» намного улучшилось, и она стала еще надежнее.

Как устроена эта «броня»?

Конечно, речь идет не о стальной броне, а о другом способе защиты корабля под водой. Прежде всего нужно знать, как действует на корпус корабля удар мины или торпеды.

Мина взорвалась. Это значит, что весь ее заряд – около 300 килограммов сильнейшего взрывчатого вещества – мгновенно сгорел, превратился в газы, сжатые оболочкой. Газы разрывают оболочку, вырываются наружу во все стороны, в том числе и в сторону корабля-цели. Но вода не сжимается, а сопротивляется давлению газов. Поэтому именно корпус корабля получает мгновенный удар в днище или в подводную часть борта. Этот удар пробивает насквозь, ломает, кромсает обшивку корабля. Получается пробоина величиной в несколько квадратных метров. Легко можно себе представить, какая огромная масса воды вливается в такое отверстие. Подсчитано, что на глубине 6 метров через отверстие в один квадратный метр в одну секунду вливается немного меньше 11 тонн воды. Если во-время не преградить доступ воде, корабль быстро пойдет ко дну.

Итак, борт или днище корабля пробиты. Вода устремилась в пробоину и сокрушает все на своем пути: если на этом пути встретятся жизненные части корабля, она разобьет их, сметет, уничтожит.

Торпеда нанесла свой удар по подводной защите корабля

1 – броневой пояс корабля; 2 – утолщение и защитные переборки; 3,4-помещения, «заполненные водой или нефтью; 5 – торпеда, нанесшая свой удар на 4-6 метров ниже ватерлинии

Но как велик «путь» газов, на какое расстояние от центра взрыва хватит их силы? Боевая практика и опытные взрывы показали, что сила газов опасна на расстоянии 7-8 метров. Она быстро «выдыхается», гораздо быстрее, чем растет расстояние от центра взрыва. Тогда и решили строить корабли так, чтобы жизненные части были» подальше от бортов и днища, недосягаемыми для подводного взрыва. Кроме того, на его пути ставят препятствия; эти препятствия преграждают путь газам и воде, защищают корабль от потопления и повреждений и в то же время так устраиваются, чтобы сила взрыва поскорее истощилась. Какие же это препятствия?

Прежде всего это обшивка борта – тонкие листы высококачественной стали. Затем – воздушное пространство. Здесь смесь из газов и воды свободно расширяется и теряет часть своей силы. Но все же сохранившейся силы еще достаточно, чтобы разрушить переборку, которая отделяет воздушное пространство от внутренних помещений корабля. С меньшей силой газы и вода вломятся дальше и… попадут в следующую камеру. Здесь уже не воздух, а вода, нефть, губчатая резина, пробка, целлюлоза. Новая камера отделена от следующих помещений броневой переборкой толщиной 37-50 миллиметров. Уменьшившаяся сила газов и воды почти полностью расходуется на преодоление «начинки» второй камеры. К броневой переборке прорывается только небольшой ее остаток. Но так велика начальная сила взрыва, что и этот остаток еще достаточно могуч, чтобы сокрушить вторую переборку. Поэтому ее изготовляют из особенно прочной и упругой стали. Свойства этой стали напоминают резину. Когда остаток силы взрыва* давит на броневую переборку, она прогибается, выпучивается, но не дает трещин, не пропускает воду. Может все же случиться, что и; броневая переборка не выдержит и даст течь. Тогда на пути воды, на расстоянии примерно 0,5 метра, вырастает третья легкая переборка, которая остановит обессилевшую воду. Если же и эта переборка окажется неплотной и через нее просочится вода, она попадает в последнюю узкую камеру. Отсюда насосы быстро выкачивают воду.

В последнее время, чтобы еще больше отдалить центр взрыва от жизненных частей корабля, на борту ниже ватерлинии устраивают особые выпуклые наделки. Они торчат по бокам корабля и внутри разделены водонепроницаемыми переборками на отделения. Эти отделения заполнены воздухом и водой. Когда в корабль попадает торпеда или j борта взрывается мина, наделка на два метра отдаляет центр взрыва ют корпуса и ослабляет его разрушительную силу.

Все перечисленные камеры и переборки, сталь, воздух, вода, нефть, губчатая резина и другие материалы – все это образует подводную защиту корабля, его подводную «броню». Толщина этой «брони» доходит до 8 метров. Она настолько хорошо защищает линейный корабль, что одиночные минные или торпедные удары не могут нанести ему решающего поражения или даже лишить его боеспособности. Даже несколько таких ударов, нанесенных через известные промежутки времени, не могут вывести корабль из строя. Пока длятся эти промежутки времени, успевают «залечить» нанесенную «рану». Только одновременный удар трех-четырех торпед в один борт может оказаться гибельным для линейного корабля постройки последних лет.

Подводная «броня» – русское изобретение.

Русский корабельный инженер Р. Р. Свирский исследовал (перед первой мировой войной) явления, связанные с подводными взрывами, и пришел к мысли о подводной «броне» в виде промежуточных камер, отделяющих центр взрыва от жизненных частей корабля и ослабляющих силу удара по переборкам. Свирский подробно разработал п предложил свой проект подводной защиты кораблей от минно-торпедных ударов. И на этот раз. как во многих других случаях, талантливая работа русского инженера завязла в бюрократических топях царских канцелярий.

Потребовалось много лет. прежде чем подводная «броня» появилась на кораблях как средство надежной защиты от подводного удара.

Толстая броня и камеры подводной защиты все же не всегда спасают корабль от глубоких пробоин. Нужны еще новые преграды для воды, проникшей через пробоины.

Для этого поперек корпуса, от днища до палуб, ставятся огромные переборки. Каждая из них как бы отсекает часть корабля и отделяет ее от остальной части корпуса. Переборки эти водонепроницаемы, они не пропускают воды. Если вода проникает в одно из «отсеченных» отделений, она не распространяется дальше по длине корабля. Но ведь нужно преградить воде путь и по ширине корпуса. Для этого вдоль корабля, почти по всей его длине, устанавливаются еще продольные переборки. Получается, что корпус корабля разделен глубокой решеткой на много отдельных клеток, которые называются отсеками. Вода, попавшая в один отсек, не может проникнуть в следующий. Поэтому только небольшое количество воды попадает в корабль – ее можно выкачать насосами после заделки пробоины. Отсеков на корабле много, примерно 70-80. Все они водонепроницаемы, и даже двери и люки, соединяющие их между собой, так устроены, что не пропускают воды.

Теперь, когда мы уже знаем, как устроена подводная защита корабля, разрежем его по вертикали в самой середине. Мы увидим, что котлы и турбины линейного корабля, источники энергии его движения и боеспособности, находятся в центре. Дальше по направлению к бортам расположились камеры с нефтью, затем система переборок и подводной защиты и, наконец, противоминные наделки. Их называют еще «булями». Дно корабля также делается двойным, а иногда и тройным. Вот почему так трудно потопить линейный корабль подводным ударом.

Подводный охранитель

Как и в боях на суше, на море тоже приходится расчищать путь от расставленных под водой мин. Для этой цели существуют специальные корабли – тральщики. Но бывает, что впереди линейного корабля нет тральщиков. Кроме того, тральщики, занятые вылавливанием мин, не могут развивать большую скорость. Значит, и кораблям, которые следуют за тральщиками, приходится сбавлять свой ход. Бывает, что нельзя этого делать, а, наоборот, необходимо развить полную скорость. В таком случае никак нельзя пользоваться помощью тральщиков; приходится линейному кораблю самому расчищать себе путь. Вот почему на линейном корабле есть свой собственный защитник от мин – «параван», или, как его еще называют, «параван-охранитель».

Он устроен очень просто. У киля корабля, почти у самого носа, прикрепляется длинный металлический канат-трос. Как длинный ус, этот канат отходит на 35 метров в обе стороны от носовой части – форштевня корабля. Всего «усы» охранителя захватывают полосу в 60-70 метров. Трос не тонет: на конце каждого «уса» прикреплен особый механизм. Это и есть «параван». Внутри паравана находится прибор – гидростат. Он так устроен, что поддерживает весь механизм и трос на определенной, заранее выбранной глубине. Кроме того, около паравана пристроен специальный стальной нож – резак. Вода сопротивляется движению троса, или, как его называют минеры, тралящей части паравана. Поэтому трос немного отстает, «усы» отгибаются назад и образуют небольшой угол с продольной осью линкора.

Параван-охранитель линейного корабля

Параван – это защита против так называемых якорных мин. Мина удерживается на определенной глубине при помощи троса-минрепа, прикрепленного к якорю на дне. Этот якорь устроен в виде тяжелой тележки. Тралящая часть паравана, его «усы», встречаясь с минрепом, как бы перегибает его. Затем минреп скользит по тралящей части, точно по наклону, и приближается к резаку, который пересекает, рубит его. Трос падает на дно, а мина всплывает на поверхность довольно далеко, в 15-25 метрах от корпуса корабля и ее тут же обезвреживают.