Гравитация От хрустальных сфер до кротовых нор

Петров Александр Николаевич

Глава 9. Космология

 

 

Бесконечная в пространстве и времени стационарная Вселенная

Часто можно услышать, что предмет исследования космологии — это Вселенная. Однако понятие Вселенной является слишком общим. Как минимум, это предмет исследования и для астрономии, и для философии. Космологов интересует материальная Вселенная, доступная наблюдениям и исследованиям в прошлом, настоящем и будущем. Космология, в отличие от других естественных наук, занимается изучением Вселенной в максимально больших масштабах. При этом под Вселенной понимается или область мира, охваченная наблюдениями и космическими экспериментами, или физическая Вселенная как целое. Нашей целью является рассказ о тех аспектах космологии, которые так или иначе связаны с представлениями о гравитации.

Фактически, обсуждая воззрения древних греков или переход от геоцентрической системы к гелиоцентрической и т. д., мы обсуждали космологические проблемы того времени. Однако роль тяготения при этом не рассматривалась. Ситуация изменилась с открытием Ньютоном закона всемирного тяготения. На этой основе он строит уже свою модель Вселенной.

В своих «Началах» Ньютон не затрагивает вопросы строения Вселенной, там не обсуждаются перспективы использования теории гравитации в этих целях. Заняться этими проблемами его подтолкнула переписка с молодым священником, капелланом епископа Вор честер с кого, Ричардом Бентли (1662–1742) в 1692–1693 годах. Бентли было поручено прочесть в Лондоне публичные проповеди в защиту христианства. Одной из целей было показать, что гелиоцентрическая система, подтверждённая трудами Ньютона, не противоречит теологической картине мира. Вот он и обратился к Ньютону, как к «первоисточнику».

Отвечая в нескольких письмах, Ньютон рассмотрел случаи конечной и бесконечной Вселенной, в которой действует закон всемирного тяготения, Ясно, что в случае ограниченного количества вещества во Вселенной все составляющие её тела под действием взаимного притяжения должны свалиться к общему центру. Но это не происходит, поэтому Ньютон делает вывод, что Вселенная бесконечна. В бесконечной Вселенной неоднородностей, которые могут играть роль центров гравитационной конденсации, будет также бесконечное множество. Это должно быть механизмом для образования Солнца и других звёзд. В бесконечной Вселенной на любую звезду с каждой из сторон действует бесконечная сила, эти силы уравновешивают друг друга и звезда остаётся в покое. Но такая модель будет неустойчива, потому что любое случайное изменение взаимного расстояния между небесными объектами нарушит равновесие, и они будут двигаться. Но наблюдения того времени свидетельствовали о том, что звезды покоятся. Что уж говорить о временах Ньютона — Эйнштейн и его современники были убеждены, что Вселенная статична! Поэтому Ньютону ничего не оставалось, как привлечь божественную силу: «непрерывно свершающееся чудо требуется для того, чтобы предотвратить падение Солнца и неподвижных звёзд друг на друга под действием гравитации».

Данных, позволяющих сделать предположение о бесконечности, со временем становилось все больше. В 1755 году Иммануил Кант (1724–1804) в одной из своих работ высказал предположение, что наша Галактика (Млечный Путь) может быть вращающимся образованием, которое состоит из огромного количества звёзд. Такая система может удерживаться гравитационными силами той же природы, что и в Солнечной системе. С точки зрения наблюдателя, расположенного внутри Млечного Пути, такое образование будет восприниматься как светлая полоса. Поэтому Кант высказал и следующее предположение: некоторые из туманностей, видимые на ночном небе, могут быть отдельными галактиками. Более поздние исследования английского астронома Вильяма Гершеля подтвердили предположения Канта.

В конце концов, сложилось убеждение, что Вселенная в целом является стационарной, безграничной и бесконечной, существующей бесконечное время, равномерно заполненной звёздами или скоплениями звёзд. Иногда её называют космологической моделью Ньютона Однако она содержит противоречия, Конечно, и сам Ньютон понимал это, признавая, что только божественные силы способны удержать небесные светила от падения друг на друга.

Одним из основных противоречий является «гравитационный парадокс». В конкретной форме он был сформулирован в 1874 году немецким математиком Карлом Нейманом (1832–1925) и чуть позднее независимо немецким астрономом Хуго Зеелигером (1849–1924). Суть в том, что, используя закон всемирного тяготения, невозможно однозначно определить гравитационное воздействие, создаваемое в какой‑либо точке бесконечным количеством вещества вселенной Ньютона Напомним, что обсуждая теорию Ньютона, мы уже установили, что поле тяготения удобно описывать гравитационным потенциалом Изменение (производная) потенциала в пространстве определяет ускорение, которое получает любая масса в поле этого потенциала.

Но при бесконечном количестве материи потенциал становится бесконечным, становится невозможным однозначно представить его производные, то есть определить силу, действующую на конкретную точечную массу. Остаются неопределёнными (или становятся бесконечными) и другие характеристики.

Проблему гравитационного парадокса обсуждали также Яков Зельдович и Игорь Новиков. Общий итог таков. Для однозначного определения гравитационного воздействия на произвольное материальное тело в бесконечной Вселенной с бесконечной массой в рамках ньютоновой гравитации либо недостаточно уравнений, либо нет возможности корректно определить граничные условия для определения констант интегрирования.

Другой парадокс, не менее известный, называется фотометрическим. Он носит имя Шезо–Ольберса. Сначала на него указал ещё в 1744 году швейцарский астроном Жан Шезо (1718–1751), а затем независимо в 1823 году немецкий астроном Вильгельм Ольберс (1758–1840). В чем его суть?

В рамках космологии Ньютона невозможно объяснить, почему ночью темно. Поскольку все пространство заполнено звёздами, то в любом направлении на луче зрения окажется звезда и вся поверхность неба должна представляться ослепительно яркой, подобной, например, поверхности Солнца. Падение с удалением наблюдаемого блеска звезды компенсируется возрастающим количеством звёзд на более удалённой сфере. Предположение, что облака космической пыли экранируют свет далёких звёзд, не разрешает парадокс. Расчёты показывают, что под действием света пыль должна нагреваться и светить так же ярко, как звезды.

 

Расширяющаяся Вселенная

Несмотря на эти парадоксы, парадигма стационарной бесконечной Вселенной не вызывала особых возражений даже в начале XX века. Мало того, большинство учёных, включая и самого Эйнштейна, были уверены, что мир устроен именно так. Однако попытки Эйнштейна найти стационарное космологическое решение своих уравнений не привели к успеху. Поэтому в 1917 году, пытаясь «спасти» ситуацию, он ввёл в уравнения ОТО так называемую космологическую постоянную (см Дополнение 4). Решения модернизированных уравнений оказались неустойчивыми. Любая незначительная флуктуация (а они всегда есть в природе) должна была вывести Вселенную из состояния покоя. Ситуация требовала разрешения.

Новой теорией гравитации заинтересовался наш соотечественник, замечательный математик Александр Фридман (1888–1925), рис 9.1. Он сделал два основополагающих предположения — об однородности и изотропии Вселенной, которые позже были объединены в космологически и принцип. Однородность понимается как одинаковость всех точек Вселенной, например, достаточно малые ячейки пространства Вселенной имеют одинаковое количество материи, давление, кривизну. Изотропия означает, что во Вселенной нет выделенных направлений. (Более подробно понятия однородности и изотропии обсуждены в Дополнении 7). Итак, предполагая, что материя во Вселенной распределена однородно и изотропно,

Рис. 9.1. Александр Фридман

Фридман в 1922–1924 годах нашёл космологические решения уравнений Эйнштейна. Они определяют метрические свойства Вселенной, которая оказывается нестационарной. Расстояния между космическими объектами меняются, Вселенная либо расширяется, либо сжимается.

Такие же решения независимо были найдены Леметром и опубликованы в 1927 году. Эйнштейн выразил своё скептическое отношение к результатам Леметра. При встрече с ним на одном из конгрессов Эйнштейн указал ему на более ранние результаты Фридмана, которые Леметр фактически повторил, то есть не был первым. Известна и фраза, которую Эйнштейн тогда сказал Леметру: «ваши вычисления правильны, но ваше понимание физики отвратительно».

Как показали дальнейшие события, Эйнштейн оказался неправ — решения, найденные Фридманом и позднее Леметром, как раз соответствуют реальной физике расширяющейся Вселенной. К сожалению, Фридман умер рано и не успел развить идеи, связанные с его космологическими решениями. Кроме того, он был математиком и не был хорошо знаком, в отличие от Леметра, с данными астрономии. В дальнейшем именно Леметр предложил теоретическое обоснование новых решений как физик, что сделало теорию знаменитой.

Но решающим аргументом стали представленные в 1929 году итоги наблюдений блистательного американского учёного Эдвина Хаббла (1889–1953), рис 9.2. Наблюдая удалённые галактики, он установил следующую закономерность: смещение линий в спектрах удалённых галактик пропорционально расстоянию до них:

Рис. 9.2. Эдвин Хаббл

где λ — наблюдаемая длина волны линии, λ0 — длина этой же волны в лаборатории, r — расстояние до галактики, с — скорость света, Н0 — постоянная Хаббла, медленно меняющаяся величина, постоянная во всем пространстве на текущую эпоху, z — космологическое красное смещение. Хаббл использовал расстояния до галактик, рассчитанные по видимому блеску цефеид в этих галактиках, собственная светимость которых хорошо известна. В настоящее время способов определения расстояний больше, и закон Хаббла подтверждается для расстояний в миллиарды парсеков. Напомним, что 1 пк (парсек) равен расстоянию до объекта в космосе, параллакс которого с радиуса орбиты Земли равен одной угловой секунде (1 пк = 3,3 св. года).

Объясняется космологическое красное смещение эффектом Доплера. Вспомним, что звук приближающегося поезда выше (частота больше), чем звук удаляющегося.

Аналогично звуковым волнам, такой же эффект имеет место и для электромагнитных волн, в частности, для света: от удаляющегося источника приёмник зарегистрирует свет меньшей частоты (большей длины волны), чем от лабораторного источника, и большей частоты — от приближающегося, Для скоростей значительно меньше скорости света верна формула Доплера: ν = cz. Если сравним её с законом Хаббла, то придём к выводу, что галактики разбегаются и их скорость увеличивается прямо пропорционально расстоянию. Закон Хаббла перепишется в виде:

чем дальше от нас галактика, тем больше её скорость.

Величина z также очень удобна для оценки возраста объекта, от которого пришёл свет. Действительно, z прямо связано с расстоянием, а расстояния — значительные и для их преодоления необходимо значительное время. Поэтому сигнал приносит информацию об объекте на более ранних стадиях расширения, Чем больше z, тем более ранняя эпоха исследуется. Отметим, что для больших z простую формулу Доплера необходимо корректировать с учётом ОТО.

Это открытие заставило раз и навсегда отказаться от понятия статичной Вселенной. Кроме того, предсказанное в решениях Фридмана и Леметра, оно стало ещё одним подтверждением правильности новой теории гравитации.

После открытия Хаббла учёные обратили внимание на распределение скоростей, и обнаружили, что оно изотропно, как и полагалось в решениях Фридмана. Это означает, что наблюдатели, помещённые в различные точки пространства, не обнаружат выделенных направлений. Для каждого из них картина распределения скоростей разбегающихся галактик будет выглядеть как для нас: сферически симметричной. Таким образом, предположения Фридмана были сформулированы в виде космологического принципа, согласно которому в больших пространственных масштабах во Вселенной нет выделенных областей и направлений. Большинство специалистов согласно с тем, что любая модель Вселенной должна ему удовлетворять. По современным наблюдательным данным материя во Вселенной распределена однородно и изотропно на масштабах больших 50–100 Мпк.

Существует три типа решений Фридмана. Каждому из них соответствует свой тип геометрии пространства однородной и изотропной Вселенной. Для первого типа — 3–мерное пространство, в котором мы себя ощущаем в каждый момент времени, оказывается бесконечным, безграничным и с отрицательным знаком кривизны. Такие пространства называют гиперболическими, а в решениях Фридмана значение радиуса кривизны увеличивается со временем. Для второго типа решений 3–мерное пространство также оказывается бесконечным и безграничным, но не искривлённым; его называют плоским. Первый и второй типы решений называют открытыми. Для третьего типа решений 3–мерное пространство является безграничным, но не бесконечным — его объём конечен. Это пространство с положительным знаком кривизны; его называют замкнутым. В качестве наглядного примера можно привести 2–мерное пространство обычной сферы. Замкнутое пространство можно классифицировать как 3–мерную сферу, экзотические свойства которой мы обсудим ниже. Примеры 2–мерных поверхностей разного типа приведены на рис. 8.6.

Тип пространства определяется плотностью энергии (или, эквивалентно, массы материи) во Вселенной. Плотность, при которой пространство плоское, называют критической. Если плотность материи меньше критической, то пространство Вселенной будет первого типа, если больше — третьего, Более детальное обсуждение типа космологических решений в зависимости от критической плотности приведено в Дополнении 8.

Поскольку мы уже немного владеем понятием метрики, то здесь будет полезным символически представить метрику решений Фридмана:

Здесь единственной информативной переменной оказывается величина a(t), которая называется масштабным фактором и показывает, как меняется расстояние между фиксированными частицами в расширяющейся Вселенной. Именно a(t) определяет постоянную Хаббла:

в законе v = Hr. Напомним, что величина H(t) медленно меняется со временем и постоянна в каждый момент во всем пространстве.

Итак, для метрики Фридмана уравнения ОТО превращаются просто в уравнения для a(t), плотности р и давления р материи. Связь между плотностью и давлением задаётся уравнением состояния. При решении этих уравнений определяется поведение a(t) в зависимости от времени. Таким образом, увеличение a(t) и означает расширение.

В большой степени на этом уровне для данного типа моделей роль гравитационной теории заканчивается. Далее, в рамках ОТО, самым важным является определение поведения a(t), что зависит от динамики материи (наполнителя), её взаимопревращений. Дальнейшее изложение будет посвящено именно этому.

Существует различие в характере расширения открытых и замкнутых вселенных Фридмана. В первом случае расширение продолжается, хоть и с замедлением, но бесконечно. На рис. 9.3: кривая I — это гипербола и описывает расширение открытого гиперболического мира, кривая II — это парабола и описывает расширение открытого пространственно плоского мира. В третьем случае расширение в определённый момент сменяется сжатием: кривая III на рис. 9.3 иллюстрирует такое поведение.

Рис. 9.3. Изменение масштабного фактора

Если представления о бесконечных пространствах обычно не поражают воображение и не требуют пояснений, то таковые необходимы для последнего случая. Свойства 3–мерной сферы напоминают свойства обычной 2–мерной сферы — поверхности шара. Представим путешественника, движущегося по меридиану от Северного полюса к Южному. Миновав Южный полюс, путешественник начнёт возвращаться к Северному, но с другой стороны, Точно так же путешественник в «замкнутом мире» 3–мерной сферы, удаляясь от Земли, достигнет полюса мира на 3–мерной сфере, а затем станет возвращаться к Земле, но с другой стороны.

Но что такое полюс (или противоположная точка по отношению к данной) на поверхности Земли — ясно. А что такое полюс 3–мерной сферы? Вот и начнём объяснения с поверхности Земли, Пусть наблюдатель помещён на Северном полюсе Земли. Пусть радиусами (отрезками меридиана, исходящими из полюса) все большей длины он прочерчивает одну за другой концентрические окружности (данной широты), Эти окружности сначала будут увеличиваться, пока не достигнут максимума на экваторе. Затем, с увеличением радиуса, длины этих окружностей начнут уменьшаться! Наконец, когда длина радиуса достигнет полной длины меридиана, длина окружности превратится в ноль! Мы достигнем Южного полюса — противоположного Северному!

Аналогично описывается 3–мерная сфера! Определяя некоторую точку на 3–сфере, как Исходный полюс, и удаляясь от него, исследователь будет описывать концентрические 2–сферы. Сначала площади этих сфер будут увеличиваться, пока не достигнут наибольшей по площади с центром в Исходном полюсе. Эту сферу можно назвать экватором замкнутого 3–мерного мира по отношению к Исходному полюсу. Затем, продвигаясь за экватор, исследователь обнаружит уменынение(!) площадей 2–сфер. Продвигаясь ещё дальше, он максимально удалится от Исходного полюса — там площадь 2–сферы обратится в ноль(!). Это как раз и означает, что он достиг Противоположного полюса.

 

Большой взрыв

Пойдём дальше. Если Вселенная расширяется, то это значит, что раньше она находилась в более плотном состоянии. Проведём экстраполяцию назад по времени в соответствии с решениями Фридмана, В конечном итоге все физические и геометрические характеристики обратятся в бесконечность. Это состояние называется космологической сингулярностью, которая мыслится как некая «точка», где даже понятия пространства и времени не имеют смысла, Однако в предельном смысле сингулярность относят к моменту времени t = 0, с которого начинается «история» фридмановских вселенных. В следующие мгновения скорости разлетающихся частиц чрезвычайно велики, поэтому процесс называют Большим взрывом, к обсуждению которого мы ещё вернёмся. А сейчас важно обратить внимание на следующее. Основы современной космологии, заложенные в 20–30–х годах прошлого столетия Фридманом, Леметром, Хабблом и многими другими, остаются фундаментом современной науки. Но признаемся честно — многие наши современники, даже те, кто интересуется достижениями и развитием науки, эти основы понимают порой превратно. Повседневный бытовой опыт мешает правильно понять реальное устройство мира. Большой взрыв часто воспринимается как взрыв, аналогичный взрыву бомбы, а современное расширение — как разлёт остатков такого рода взрыва. Эта аналогия ошибочна, и мы сейчас обсудим это.

Чтобы представить расширение открытого мира, уместно проводить сравнение с расширением некой бесконечной эластичной простыни. Чтобы представить расширение замкнутого мира, нужно представить надувной шарик. Эти примеры встречаются в каждой соответствующей популярной статье или книжке, но едва ли можно придумать что‑то более наглядное. Остановимся на замкнутом мире и обсудим 2–мерное пространство поверхности шарика с равномерно нанесёнными на неё метками. Представим, что нет пространства вне шарика. Мало того, нет пространства и внутри шарика. Есть только его поверхность! Такой объект безграничен, но не бесконечен (площадь 2–сферы конечна), точно так же, как 3–мерная сфера замкнутого мира Фридмана. Тогда лучи света будут распространяться по поверхности 2–сферы (им некуда деваться, потому что ничего нет, кроме неё), и, находясь на ней, можно наблюдать все, что происходит даже с противоположной стороны. Шарик начинают надувать, его поверхность увеличивается. Метки на шарике разбегаются друг от друга. Что увидит наш 2–мерный наблюдатель? Хотя плотность меток со временем уменьшается, но в каждый момент времени их распределение будет оставаться однородным. Для всех наблюдателей, помещённых в разные точки поверхности, все метки во всех направлениях убегают одинаково. Это — изотропия!

Причём, чем дальше метка от наблюдателя, тем быстрее она от него бежит. И, конечно, на поверхности нет никакого выделенного центра расширения! Качественно такая же модель расширения имеет место для 3–мерного пространства Вселенной.

Научный термин «Большой взрыв» сразу ассоциируется с представлением об обычном взрыве. Но это совершенно неверное сравнение. Что такое взрыв гранаты или бомбы? Возгорание взрывчатки создаёт внутреннее давление, которое значительно превышает внешнее давление атмосферы. За счёт этого вещество снаряда разлетается во все стороны. В такой модели есть выделенный центр, а поэтому чрезвычайно неоднородны и давление, и распределение вещества, Кроме того, нет изотропии — детекторы, расположенные в разных точках пространства зарегистрируют различную картину распределения скоростей разлетающихся частиц, как по направлениям, так и по величине. Высокая степень однородности и изотропии в нынешней картине расширения Вселенной требует ещё большей их степени в эпоху Большого взрыва. Все вместе говорит о том, что в модели Большого взрыва нет выделенного центра — точки, откуда могло бы что‑то разлетаться! То есть Большой взрыв от взрыва обычного отличается принципиально.

Теперь вернёмся к понятию космологической сингулярности, мыслимой как некая исходная «точка». Поскольку какого‑то выделенного центра нет, её нельзя представить как «точку», помещённую в какое‑то внешнее пространство. Это объект «сам по себе» и содержащий в себе ещё не возникшие пространство и время. Здесь, конечно, речь о внешнем пространстве той же размерности, что и наша Вселенная. Тогда, давайте, поместим нашу Вселенную («точку») в пространство большей размерности, и там её «взорвём», как бомбу. Но при этом необходимо признать, что должно быть воздействие внешнего пространства на наше внутреннее и наоборот. Пока такого «взаимодействия» не зарегистрировано, хотя очень активно возможности его проявления и анализируются, и проводятся соответствующие эксперименты, Кроме того, если мы разлетаемся из‑за «реального» взрыва в пространстве большей размерности, то в раннюю эпоху его влияние на нашу Вселенную должно было быть чрезвычайным, и это влияние должно было бы оставить след. Но как показывают космологические исследования, нет необходимости привлекать такого рода экзотические силы, чтобы объяснять явления ранней Вселенной.

Наличие сингулярности в теории долгие годы вызывало и вызывает активную критику. Действительно, смещаясь назад по времени, исследователь достигает таких огромных значений физических характеристик, при которых физика явлений просто неизвестна. Поэтому говорить, что расширение началось с сингулярности, строго говоря, нельзя. Что служит разумным ограничением для предельных значений? С построением квантовой механики к двум основным физическим постоянным, о которых мы уже говорили — гравитационной G ≈ 6,67*10–8 см3/г*с2 и скорости света с ≈ 3 * 1010 см/с, добавилась третья — постоянная Планка h ≈ 3,32*10–27 г*см2/с = 3,32*10–34Дж * с. С их помощью, с использованием всех трёх, стало возможным построение любой физической величины любой размерности, а значение такой величины получило название планковской. Таким образом, планковские масштаб и время имеют значения l ~ 10–33см и t ~ 10–43c. Существуют также планковские плотность, давление и т. д.

Современная физика не может определённо сказать, что происходит на масштабах и в промежутки времени меньше планковских, или при плотностях, давлениях и т. д. — больше планковских. Таким образом, обычно историю развития Вселенной начинают исследовать с некоторого сверхплотного «зародыша», имеющего планковские характеристики. Конечно, вопрос появления самого «зародыша» есть и будет предметом дальнейших исследований.

Например, на основе тех же квантовых представлений при некоторых предположениях предлагаются модели рождения «из ничего». Их основное содержание в том, что Вселенная начинает развиваться из квантовой флуктуации. Важно отметить, что именно модели Фридмана с замкнутым пространством оказываются более подходящими для сценариев квантового рождения Вселенной. Подробнее об этой возможности мы поговорим в главе о гравитационной энергии.

Подведём некоторый итог. Конечно, понятие «Большой взрыв» принципиально отличается от обычных взрывов. Кроме того, это не одномоментное явление, которое происходит в виде разлёта начальной сингулярности, а, скорее, самый ранний период в истории Вселенной, который начинается с планковских масштабов.

 

Новые проблемы космологии

Вернёмся к парадоксам не релятивистской космологии. Вспомним, что причина гравитационного парадокса в том, что для однозначного определения гравитационного воздействия либо недостаточно уравнений, либо нет возможности корректно задать граничные условия. В случае фридмановской космологии независимыми являются два уравнения Эйнштейна. Учитывается также уравнение состояния (связи между плотностью и давлением). Кроме того, на данный момент времени из наблюдений известны плотность и скорость расширения,

Все это однозначно определяет эволюцию масштабного фактора a(t), плотность ρ и давление р. Становится известной геометрия космологического пространства–времени, а значит, тип и динамика 3–мерного пространства, в котором звезды, галактики, скопления галактик ведут себя в соответствии с современными наблюдениями. То есть гравитационного парадокса не возникает.

Теперь зададимся, возможно, провокационным вопросом. А можно ли описать расширяющуюся Вселенную с помощью гравитации Ньютона? Оказывается, можно! Обратимся к опыту Зельдовича. В своих лекциях он всегда старался представить материал простейшим способом, а рассказывая о космологических решениях, по возможности ограничивался теорией Ньютона.

Рис 9.4. Схема расчёта ускорений

Рассмотрим шар радиуса R0 и элемент массы m внутри шара на расстоянии от центра R < R0 (рис. 9.4).

Такая задача рассматривалась ещё Ньютоном. Он же и установил, что сила, действующая на m, определяется массой материи внутри сферы радиуса R, а гравитационное действие внешних областей взаимно компенсируется:

здесь: Μ = (4π/3)R3ρ — масса материи внутри сферы, ρ — плотность материи, распределённая однородно. Следовательно, ускорение

Таким образом, ускорение элемента в точке R пропорционально его расстоянию от центра и не зависит от радиуса шара R0 при любом, сколь угодно большом R0 . Это фактически означает, что соотношение справедливо для бесконечной однородной вселенной.

Но остаётся вопрос: решение было найдено для некоторого центра, в котором ускорение равно нулю, а в других точках имеет вполне определённую величину и направлено к центру. А где такой центр в бесконечной однородной вселенной? На самом деле, никакого выделенного центра нет или, если угодно, таким центром может быть любая точка, Возьмём произвольную точку O' находящуюся на некотором расстоянии RO' от «нашего» центра, ускорение которой aO' =-CRO' . Радиус–вектор и ускорение направлены, разумеется, в разные стороны.

Рис. 9.5. Переход к другой системе координат

Перейдём в систему координат с центром в точке O'

(рис. 9.5). Величины в этой новой системе координат будем обозначать штрихом.

Ускорения в старой и новой системах координат связаны правилом Галилея, которое, если кто забыл, справедливо не только для скоростей, но и для ускорений:

Подставляя в это соотношение выражение для ускорений аА = - CRA и aO' = - CRO' и используя правило сложения векторов R'А = RA — RO' (рис. 9.5), получим:

Следовательно, наблюдатель в точке О' будет видеть ту же картину — все частицы материи имеют ускорение, направленное к нему. Ситуация несколько непривычная — ускорение направлено к центру, но центр «виртуальный», им всегда является точка, в которой находится наблюдатель. Такая ситуация концептуально отличается от ньтоновой, в которой предполагается наличие выделенного пространства, общего для всех наблюдателей.

В приведённом выше расчёте распределения ускорений в однородной вселенной не учитывались начальные скорости. Очевидно, что если начальное состояние статично, т, е. скорости нулевые, то вселенная начнёт сжиматься, плотность и ускорения будут расти.

Рассмотрим ситуацию, когда есть некоторые начальные скорости, направленные от наблюдателя (от «центра»). Для сохранения однородности в постановке задачи необходимо, чтобы начальная скорость была пропорциональна расстоянию от наблюдателя:

здесь H — коэффициент пропорциональности.

Вселенная будет расширяться, но скорость расширения будет падать. Из‑за расширения будет уменьшаться плотность, а, следовательно, и ускорение. Что «пересилит»? Если начальная плотность достаточно велика, или, если угодно, мала начальная скорость, расширение через некоторое время сменится сжатием. При достаточно большой начальной скорости расширение будет продолжаться вечно. Качественно ситуация аналогична, например, рассмотрению стартовавшей с Земли ракеты. При скорости, большей второй космической, ракета может преодолеть притяжение и улететь на бесконечность.

В нашем случае также можно определить критическое распределение скоростей, в данном случае это параметр Нк , при превышении которого сжатие никогда не наступит. Его значение определяется соотношением:

Но точно так же, можно оперировать с критической величиной плотности, рассчитывая её по отношению к параметру Н. Именно так делается при анализе решений Фридмана. Мало того, это соотношение для определения критической плотности полностью совпадает с фридмановским, см. Дополнение 8.

Подведём итог. Оказывается, что законы расширения, определённые Фридманом, полностью совпадают с описанием, представленным только что на основе ньютоновых законов. Таким образом, ещё Ньютон мог представить картину расширения, соответствующую моделям Фридмана. По этому поводу приведём слова Зельдовича: «Величие открытия Фридмана заключается, может быть, не столько в применении общей теории относительности, сколько в отказе от предвзятого представления о стационарности Вселенной».

Объяснение фотометрического парадокса основано на конечности возраста Вселенной. Очень интересно, что такое решение проблемы было предложено задолго до построения ОТО, т. е. конечный возраст Вселенной был просто предположением, плодом интуиции. Скорее всего, приоритет нужно отдать немецкому астроному Иоганну Мёдлеру (1794–1874), заявившему об этом в 1861 году. Математическое изучение этого предположения провёл английский физик Уильям Томсон (1824–1907), более известный как Кельвин. По современным данным возраст Вселенной более 13 млрд лет, следовательно, исключается основное предположение парадокса: бесконечное число звёзд. В реальности их нет дальше границы определённой возрастом Вселенной. Справедливости ради нужно отметить, что это решение проблемы фотометрического парадокса было предложено ещё раньше, и не учёным, а писателем и поэтом Эдгаром По в 1848 году в поэме «Эврика».

Существует ещё один фактор, который снижает яркость неба. Это космологическое красное смещение, о котором речь уже шла.

Но как оказалось, модели, основанные на стандартном (обычном) фридмановском расширении имеют проблемы. Избавились от проблем не релятивистской космологии, зато приобрели новые. Но ничего не поделаешь, в этом и состоит логика развития науки. Итак, фридмановское расширение имеет место тогда, когда пространство заполнено веществом с обычным уравнением состояния, то есть вещество имеет положительное (или нулевое) давление. Получив начальный импульс (что само по себе также является предметом для изучения), планковский «зародыш» далее расширяется по инерции в соответствии с

Рис. 9.6. Причинно связанные области и горизонты

решениями Фридмана. Все решения Фридмана имеют степенной по времени характер расширения: a(t) ~ tx . В зависимости от типа решения (гиперболическое, плоское, замкнутое) и от свойств наполнителя (материи) определяется конкретное значение х, но в любом случае 0 < х < 1, а это означает, что во всех случаях расширение происходит с замедлением. Это взаимное притяжение материи тормозит её разлёт. На настоящий момент весьма точно известны значения важных параметров модели Вселенной. Используя известный закон расширения, мы можем экстраполировать значения этих параметров на ранние времена, сравнимые с планковкими. Проделав это, мы обнаружим некоторые удивительные факты, не имеющие разумного объяснения. Опишем их ниже.

Сначала определим понятие космологического горизонта событий. Пусть в момент времени t = 0 «родилась» вселенная (рис. 9.6). Но для простоты предположим, что эта вселенная не реальная, а «игрушечная», представляет мир Минковского (не расширяющийся и не сжимающийся). Все точки в «начальном» пространстве при t = 0 причинно не связаны. Действительно, они ещё не успели обменяться никакими сигналами, Наблюдатель в любой точке в самый начальный момент ничего не видит из–за того, что никакой свет до него ещё не дошёл. Через момент ∆t появятся области пространства размером ∆х = c∆t, точки которого обменялись сигналами, пунктирные линии на рис. 9.6 обозначают мировые линии световых лучей. Ясно, что со временем такие причинно связанные области растут, на рис. 9.6 область от х1 до х2 стала причинно связанной за время tA . Чем такие области замечательны? Пусть они заполнены каким‑то веществом. В силу случайного рождения оно изначально не однородно и не равновесно. Однако, становясь причинно связанными, эти области имеют большие шансы стать однородными и равновесными, поскольку даже крайние точки могли обменяться сигналами. Вернёмся к наблюдателям. С течением времени они будут видеть все большую часть родившегося мира. Наблюдателю в мировой точке А на рис. 9.6 доступна область а1 а2 , а наблюдателю В в более поздний момент времени — уже область b1 b2 .

Граница принципиально наблюдаемой области пространства называется горизонтом событий для данного наблюдателя. На данный момент времени размеры горизонта и причинно связанной области одинаковы по порядку величины. В случае нашей «игрушечной» вселенной с пространством Минковского горизонт в 2 раза больше причинно связанной области на тот же момент времени, как показано на рисунке.

Теперь перейдём к обсуждению вселенной Фридмана. В отличие от «вселенной Минковского» она расширяется. Вспомним, что расширение имеет степенной характер по времени a(t) ~ tx при 0 < x < 1. Существует ли горизонт событий для такой вселенной? Поведение масштабного фактора a(t) позволяет вычислить расстояние, которое проходит свет за время t, — оно будет пропорционально t. В то же самое время, вселенная Фридмана расширяется с замедлением. Поэтому распространение света «обгоняет рост масштабного фактора», а значит, горизонт событий существует, и в далёком будущем в его пределах окажется любая наперёд заданная частица. Принципиально вселенная Фридмана имеет те же свойства, как и «игрушечная» вселенная Минковского. Размеры горизонта и причинно связанной области одинаковы по порядку величины на каждый момент времени.

Теперь сформулируем проблему горизонта вселенной Фридмана, или её ещё называют проблемой однородности и изотропии. Возраст Вселенной на настоящий момент считается большим 13 млрд лет, отсюда вычисляется современный горизонт, принципиально наблюдаемая область, который имеет порядок 1028 см. Возвращаясь в планковскую эпоху t = 10–43 с, используя закон расширения Фридмана, получим, что тогда наша современная область наблюдений имела размеры порядка 10–3см. Такой объём содержал 1090(!) планковских областей. В планковскую эпоху каждая такая область только что «родилась» и не имела возможности обменяться сигналами с остальными. То есть все они между собой причинно не связаны. Однако, как говорилось, наблюдаемая часть Вселенной весьма однородна и изотропна. Но это означает, что все 1090 начальных планковских областей должны быть одинаковы. В силу неизвестной нам физики можно предположить, что «внутри себя» планковская область однородна и изотропна. Но это же утверждение для 1090 начальных планковских областей невероятно и в рамках фридманов кой космологии объяснения не имеет.

Описание проблемы горизонта на примере план ковких масштабов, хотя и выглядит впечатляюще, кому‑то покажется оторванным от реальности. Часто, чтобы её представить, обращаются к вполне подтверждённым наблюдениям. Для этого мы забегаем вперёд, несколько предваряя рассказ об эволюции материи во Вселенной. Важным периодом является эпоха рекомбинации водорода. С расширением Вселенная остывает, и, естественно, состояние материи меняется. Был период, когда она была заполнена равновесным газом протонов и электронов со

Рис. 9.7. Проблема изотропии реликтового излучения

вместно с электромагнитным излучением (фотонами). Когда температура достаточно понизилась, это было через 300000 лет после Большого взрыва, отдельные протоны и электроны объединились в атомы водорода (момент рекомбинации). Среда стала прозрачной для электромагнитного излучения, которое далее расширяется независимо, Как следствие, в наше время это излучение (реликтовое) наблюдается очень остывшим.

Обратимся к рис. 9.7. Реликтовое излучение приходит к нам с огромного расстояния около 14 млрд световых лет (большой круг). Однако когда это излучение начало свой путь, возраст Вселенной был, как мы отметили, 300 000 лет и за это время обменяться сигналами (пусть световыми) могли небольшие области (маленькие окружности). Два маленьких круга на рисунке никак не могли обменяться сигналами, т, е. они причинно не связаны, Поэтому нет оснований для того, чтобы они имели одинаковые характеристики, скорее, наоборот. Однако реликтовое излучение, которое мы наблюдаем со всей большой сферы, в высшей степени изотропно] Это и есть проблема однородности и изотропии в иной иллюстрации.

Обсудим другую проблему. Каждый из трёх типов расширения глобального пространства Вселенной определяется средней плотностью вещества, заполняющего это 3–мерное пространство. Плоскому случаю соответствует критическая плотность. Если плотность меньше — будет гиперболическое пространство, если больше — замкнутое. Важно иметь в виду, что для каждого момента в эволюции критическая плотность имеет разное значение. Так вот, наблюдения показывают, что с очень высокой точностью современная плотность всего вещества во Вселенной близка к критической, то есть мы живём фактически в плоском пространстве, или (что то же самое) в пространстве с огромным радиусом кривизны. Возвращаясь в планковскую эпоху, получим, что тогда плотность должна была быть близкой к критической с невероятной точностью 1060! Почему так? Объяснить этот факт в рамках обычной фридмановской модели тоже не получается. Это вторая проблема и она называется проблемой плоскостности.

Пойдём дальше. Когда говорилось об однородности — это означало, что видимая часть Вселенной мысленно разбивалась на «кубики», очень мелкие по сравнению со всем наблюдаемым объёмом. Однородность означает, что массы всех таких кубиков одинаковы. Условно говоря, в каждом кубике одинаковое количество галактик. Продолжим операцию. Теперь каждый из уже имеющихся кубиков разобьём на ещё более мелкие по отношению к исходным. Тогда обнаружится, что какой‑то кубик второго порядка малости содержит отдельные галактики, какой‑то скопления и даже сверхскопления галактик, а какие‑то кубики останутся совсем пустыми. То есть обнаружится, что на меньших масштабах Вселенная неоднородна.

Распределение сверхскоплений, скоплений галактик и самих галактик называется крупномасштабной космологической структурой, Известно, что она развивается из флуктуаций плотности, возникших во времена, близкие к планковским. Если мы хотим получить в результате обычного фридмановского расширения ту структуру, которую имеем сейчас, и которая достаточно хорошо изучена, то исходные возмущения план ков с кой эпохи должны быть не произвольными, а очень специфичными. Но для этого нет веских оснований, и это третья проблема — проблема первичных флуктуаций плотности.

 

Инфляция

Как решить эти проблемы? Мы не можем отказаться от того, что Вселенная расширяется от какого‑то очень плотного состояния. Значит нужно подумать о характере расширения. До сих пор рассматривалось состояние вещества с положительным давлением, как в обычной жизни, Однако для физики, тем более для физики в искривлённом пространстве–времени, ситуация с уравнением состояния вещества, в котором давление отрицательно, не является чем‑то экстраординарным, она ничему не противоречит. Именно эта возможность была проанализирована. Было предложено много вариантов, моделирующих такое состояния. Общим для всех моделей является использование подзабытой космологической постоянной (см. Дополнение 4). Разница с величиной, введённой Эйнштейном, в том, что в этих сценариях она является эффективной, то есть её присутствие в уравнениях Эйнштейна обеспечивается тем или иным полем или коррекциями самой геометрической теории. Формально именно такая космологическая постоянная имитирует вещество с отрицательным давлением.

Если предположить, что в послепланковскую эпоху вещество имело отрицательное давление, или что‑то имитировало такое вещество, то расширение будет проходить не по степенному закону с замедлением, а по экспоненциальному a(t) ~ eHt , с «бешеным» ростом масштабного фактора, с очень большим ускорением. Особенность такого расширения в том, что, несмотря на увеличение объёма, плотность заполняющей его энергии остаётся постоянной! Это расширение ведёт к быстрому раздуванию малых объёмов и поэтому называется инфляцией (аналогично раздуванию денежной массы). Продолжительность инфляции определяется временем существования эффективной космологической постоянной. В разных версиях длительность инфляции варьируется, она должна быть более 70–100 планковских времён (10–43 с). Чаще рассматривают модели со значительно большей длительностью, например, инфляция продолжительностью 10–35 с раздувает «зародыш» размером 10–33 см в 101000000000000 раз (это число с триллионом нулей). Этого более чем достаточно, чтобы успешно решить все три основных проблемы фридмановской космологии.

Начнём с проблемы крупномасштабной однородности и изотропии Вселенной. С учётом инфляции весь современный наблюдаемый объём Вселенной оказывается результатом расширения единственной планковской причинносвязанной области доинфляционной эпохи, а не 1090 таких областей. Формально это происходит потому, что при экстраполяции назад по времени мы используем вместе с фридмановским ещё и инфляционный закон расширения. Таким образом, первая проблема решается. Далее, во время инфляционной стадии радиус пространственной кривизны увеличивается настолько, что его последующее увеличение до современного значения путём фридмановского расширения как раз с необходимой точностью соответствует плоскому пространству. И современная плотность оказывается близкой к критическому значению с необходимой точностью. Таким образом, решается вторая проблема. И наконец, в ходе инфляционного расширения произвольные флуктуации плотности приобретают в конце инфляции как раз такие специфические свойства, что в результате послеинфляционного развития они превращаются в наблюдаемую структуру при сохранении крупномасштабной однородности и изотропии То есть разрешается и последняя проблема.

Разрешив проблемы стандартной фридмановской космологии, инфляция, как ранняя стадия в эволюции Вселенной, стала общепризнанной. Впервые эти идеи были высказаны в 1979–1980 годах в работах известного космолога Алексея Старобинского. К настоящему времени существует масса вариантов возникновения и развития инфляции, детали и следствия этого периода эволюции Вселенной очень активно изучаются.

Кроме решения проблем фридмановской космологии, инфляция снимает вопрос: что и почему «взорвалось»? Ничего не взорвалось! Это инфляция разогнала вещество до огромных скоростей. После прекращения инфляции вещество разбегается «по инерции» и фридмановским законам. Таким образом, понятие Большого взрыва в современной интерпретации обычно означает период от образования квантового «зародыша» до завершения инфляции, хотя иногда определяют и более продолжительный период.

Конец инфляционного расширения соответствует моменту прекращения действия механизма, обеспечивающего существование эффективной космологической постоянной.

 

Современное ускоренное расширение

Таким образом, с помощью инфляции модели Фридмана были подправлены на ранних стадиях развития Вселенной. Казалось бы, решив проблемы фридмановской космологии, можно было успокоиться, Но не тут‑то было. В 1998 году два независимых коллектива исследовали

удалённые сверхновые с целью измерения скорости расширения Вселенной. Одна из них, под руководством Сола Перлмуттера, приступила к работе в 1988 году, другая, возглавляемая Брайаном Шмидтом, подключилась к исследованиям в 1994 году. Результат был чрезвычайно неожиданным — оказалось, что Вселенная находится в режиме ускоренного расширения.

Позднее другие группы независимыми методами подтвердили этот результат, так что в настоящее время он не вызывает сомнений. За это открытие Нобелевская премия по физике 2011 года вручена американцу Солу Перлмуттеру, австралийцу Брайану Шмидту и американцу Адаму Рису. Итак, космологическое сообщество стало перед необходимостью подправить и поздние стадии эволюции фридмановских моделей.

Теперь эволюция масштабного фактора выглядит схематически так, как на рис. 9.8. До планковского времени t1 = 10–43 с была эпоха квантового пространства–времени, о которой мы ничего не знаем, в этот момент появилось классическое пространство–время и началась инфляция, которая продолжалась примерно до момента t2 ~ 10–35 с, но и эта оценка приблизительная. Затем наступила фридмановская стадия, которая продолжалась по разным оценкам до t3 ~ 7–9 млрд лет, после чего начинается современное ускоренное расширение, которое мы и наблюдаем в наше время t4~14 млрд лет.

Рис. 9.8. Эволюция масштабного фактора с учётом инфляции и современного ускорения

Причём качественно эта картина является одинаковой как для открытых миров, так и для замкнутых.

Рассказывая о гравитационном взаимодействии, мы не в состоянии (не имеем места) описать все космологические или астрофизические методы, с помощью которых получены те или иные данные. Поэтому часто представляем их без обсуждения способов получения. Как правило, именно эти результаты на настоящий момент не вызывают сомнений. Один из них уже упоминался — это то, что в настоящую эпоху радиус кривизны чрезвычайно велик, то есть кривизна Вселенной весьма близка к нулевой И соответственно, плотность вещества во Вселенной близка к критической. Чатично об этом выводе говорится в Дополнении 8.

Чем же наполнена Вселенная? Это светящиеся звезды, газовые облака, и т. д., то есть обычная материя, состоящая из атомов, которая называется барионной. Также к обычной материи относят излучение, в основном электромагнитное. Однако на долю обычной материи относят всего 4% всей материи Вселенной.

Несколько десятилетий назад было обнаружено, что звезды в галактиках движутся не совсем так, как предписано законами Ньютона (это приближение в данном случае совершенно оправдано). Со временем эти наблюдения подтверждались все надёжнее. Самым подходящим объяснением оказалось предположение, что галактики (или скопления галактик) погружены в некое вещество, создающее гало вокруг этих объектов. Это вещество было названо тёмной материей, а его природа до сих пор не известна. На долю тёмной материи относят 22% всей материи во Вселенной. А чем представлена остальная материя? Открытие ускоренного расширения даёт возможность с определённой уверенностью сказать, что такая субстанция действительно есть.

Она получила название тёмной энергии и представляет собой материю с необычными свойствами, имеет отрицательное давление (которое и обеспечивает расширение, иначе его можно назвать гравитационным отталкиванием). На долю тёмной энергии относят оставшиеся 74% всей материи во Вселенной.

Рис 9.9. Соотношение видов энергии во Вселенной

Надо сказать, что эти проценты не являются совсем уж общепринятыми во всех источниках. Но бесспорно, что порядок соотношений именно такой, рис. 9.9.

Теперь вспомним сценарий инфляции, там тоже было отрицательное давление, которое определялось эффективной космологической постоянной. В нашу эпоху плотность тёмной энергии со временем не меняется, поэтому также можно сказать, что она имитирует некую эффективную космологическую постоянную. Разница в том, что на ранних стадиях эффективная космологическая постоянная поддерживалась определёнными условиями той эпохи и с расширением распалась, а космологическая постоянная современного расширения, если можно так сказать, — долговременная.

Так же как и природа тёмной материи, природа тёмной энергии неизвестна, а поиск ответа на этот вопрос является предметом значительных усилий современных исследований. Но возможны и другие варианты ускоренного расширения, с другими уравнениями состояния, отличными от непосредственного использования эффективной космологической постоянной, однако при этом условие отрицательного давления сохраняется.

С открытием тёмной энергии сильно изменились представления о том, каким может быть отдалённое будущее нашей Вселенной. До этого открытия вопрос о будущем однозначно связывался с вопросом о кривизне трёхмерного пространства. Вспомните: открытые миры Фридмана расширяются бесконечно, для замкнутых — расширение сменяется сжатием. Теперь же понятно, что будущее определяется свойствами тёмной энергии. Поскольку нам эти свойства сейчас известны плохо, то предсказать будущее, хоть бы с какой‑то определённостью, нельзя. Но есть разные варианты.

Если плотность тёмной энергии постоянна во времени, то Вселенная будет всегда испытывать ускоренное расширение, даже если она оказалась пространственно замкнутой. Большинство галактик удалится от нашей на значительно большие расстояние, чем сейчас, и наша Галактика вместе с немногими соседями окажется островком в пустоте.

Если тёмная энергия — это квинтэссенция (это состояние материи не столь жёсткое, как состояние эффективной космологической постоянной с неменяющейся плотностью энергии), то в далёком будущем ускоренное расширение может прекратиться и даже смениться сжатием.

Самая драматическая судьба ожидает Вселенную, если тёмная энергия — это, так называемый, фантом, причём такой, что его плотность энергии возрастает неограниченно. Расширение Вселенной будет все более и более быстрым, оно настолько ускорится, что галактики будут вырваны из скоплений, звезды из галактик, планеты из Солнечной системы. Мало того, электроны оторвутся от атомов, а атомные ядра разделятся на протоны и нейтроны. Такой конец называют большим разрывом. Все это, однако, относится к очень отдалённому будущему даже по космологическим меркам. По разным оценкам в ближайшие 20 млрд лет Вселенная будет оставаться почти такой же, как сейчас.

 

Модель горячей Вселенной

До сих пор мы представляли модели Вселенной в большей мере с точки зрения геометрии и развития этой геометрии во времени. И это вполне соответствует нашей задаче обсуждения гравитационных взаимодействий. Действительно, как мы договорились, в современном научном понимании гравитационные явления должны рассматриваться с позиции искривления пространства–времени. Однако космология без обсуждения эволюции вещества выглядит незавершённой. Необходимо иметь хотя бы общие представления. Поэтому мы кратко изложим основную (наиболее признанную) парадигму эволюции вещества во Вселенной. Она называется моделью горячей Вселенной и предложена в 1948 году Георгием Гамовым (1904–1968). Основная идея состоит в том, что вещество, будучи в начальные моменты очень плотным, должно быть ещё и очень горячим, а по мере расширения остывать.

Прежде всего отметим, что утверждения о самой ранней стадии эволюции Вселенной являются весьма приблизительными. Планковское время 10–43 с считают моментом отделения гравитационного взаимодействия от остальных трёх фундаментальных взаимодействий: электромагнитного, слабого и сильного. Этому времени соответствует планковская температура ~ 1019 ГэВ. Для пояснения, часто температура измеряется энергетическими единицами, как здесь — электронвольтами (эВ), а 1019 ГэВ соответствует 1032 К. С расширением (со временем) температура падает. После «планковского рождения» началась инфляция. Время её завершения приблизительно 10–37 с или более.

После стадии инфляции Вселенная наполнилась обычной материей — известными нам элементарными частицами. В списке известных частиц каждой частице соответствует античастица, например, протову — антипротон и т. д. Но современный мир состоит почти из одних частиц, античастиц — ничтожное количество. Если бы состояние Вселенной после инфляции было строго равновесным, то частиц и античастиц должно было родиться одинаковое количество, они бы все аннигилировали с выделением энергии в виде, скажем, излучения, и нашего мира в современном восприятии не было бы. Прежде всего важно соотношение барионов (это протоны, нейтроны — основа нашего мира) и антибарионов. Но поскольку Вселенная расширяется, то равновесия не возникло, и это, полагают, привело к избытку числа барионов над числом антибарионов, а этот избыток и есть вещество нынешней Вселенной. Момент образования этой асимметрии относят также к моменту окончания инфляции и периоду рождения обычной материи.

Завершением инфляции будем считать время 10–35 с, когда температура остаётся не ниже 1016–1015ГэВ (1029К) и неразличимы взаимодействия различных видов: электромагнитного, слабого и сильного (всех, кроме гравитационного) — они проявляют себя как единое взаимодействие. Этот период называется периодом Великого объединения. С расширением, при температуре ниже 1015 ГэВ, эпоху Великого объединения сменяет эпоха электрослабого объединения, когда только электромагнитное и слабое взаимодействия представляют единое целое.

В момент, когда температура понижается до 100 ГэВ (1017–1016 К) эпоха электрослабого объединения заканчивается, это называют элетрослабым фазовым переходом и он происходит через 10–10с после «рождения». Образуются такие элементарные частицы, как кварки, лептоны, глюоны и промежуточные бозоны. Это состояние называется кварк–глюонная плазма, Такие элементарные частицы, как барионы (протоны, нейтроны, и т. д) и мезоны (пионы, каоны, и т. д.), называются адронами и состоят из кварков. В настоящую эпоху нет возможности увидеть кварки свободными — они «намертво» вморожены в частицы. А в то время они были в свободном состоянии равновесной плазмы. Но Вселенная остывает и при возрасте 10–4с и температуре 100 МэВ (1012–1013К) приходит эра, когда становится возможным слияние кварков в адроны (конфаймент кварков). В эту эпоху состав Вселенной начинает походить на современный; основные частицы — это фотоны, помимо них есть только электроны и нейтрино со своими античастицами, а также протоны и нейтроны. В этот период происходит одно важное событие: нейтрино перестают активно взаимодействовать с веществом (то есть вещество становится прозрачным для нейтрино) и далее расширяются самостоятельно. Возникает реликтовый фон нейтрино. К настоящему времени нейтринный газ должен был остыть до 1,9 К, если нейтрино не имеют массы (или их массы пренебрежимо малы).

При температуре 0,7 МэВ и ниже (1010–109 К) термодинамическое равновесие между протонами и нейтронами, существовавшее до этого, нарушается и отношение концентрации нейтронов и протонов застывает на значении 0,19. Начинается синтез ядер дейтерия, гелия, лития, Момент начала такого процесса (который называется первичным нуклеосинтезом) от «рождения мира» — около 1 секунды. Примерно через 3 минуты после рождения Вселенной температура падает до значений, при которых синтез ядер уже невозможен, и химический состав вещества остаётся неизменным до момента рождения первых звёзд.

Таким образом, для дозвёздного вещества (по числу атомов) предсказывается: Н(75%), 4Не(25%), D (3 * 10–5), 3He(2 * 10–5), 7Li(10–9). Эти цифры хорошо согласуются с новейшими определениями химсостава вещества по линиям в спектрах квазаров на больших красных смещениях.

Важной эпохой в эволюции Вселенной является эпоха рекомбинации водорода. Это произошло через 300 000 лет после начала расширения, Процесс состоял в том, что отдельные протоны и электроны объединились в атомы. Такая среда становится прозрачной для электромагнитного излучения, которое далее расширяется независимо, остывая при этом в соответствии с фридмановским законом. Как следствие, в наше время должно наблюдаться остаточное излучение, спектр которого такой же, как спектр абсолютно чёрного тела, и это излучение должно быть в высшей степени изотропно.

Важные моменты в ранней Вселенной приведены в таблице

В 1964 году американские учёные Арно Элан Пензиас и Роберт Вилсон, испытывая чувствительную радиоантенну, обнаружили очень слабое фоновое микроволновое излучение, от которого никаким образом не могли избавиться. Его температура оказалась равной 2,73 К, что близко к предсказанной Гамовым величине в модели горячей Вселенной. Из экспериментов по исследованию изотропии было установлено, что источник микроволнового фонового излучения не может находиться внутри Галактики, так как тогда должна была бы наблюдаться концентрация излучения к центру Галактики. Источник излучения не мог находиться и внутри Солнечной системы, так как наблюдалась бы суточная вариация интенсивности. В силу этого был сделан вывод о внегалактической природе излучения,

Тем самым гипотеза горячей Вселенной получила, пожалуй, самое веское наблюдательное основание, после чего в ней уже мало кто сомневается. За это открытие Пензиас и Вилсон в 1978 году получили Нобелевскую премию по физике.

Расскажем о реликтовом излучении немного больше. Действительно, его спектр соответствует спектру излучения абсолютно чёрного тела с температурой 2,73 К. Максимальная интенсивность приходится на частоту 160,4 ГГц, что соответствует длине волны 1,9 мм (микроволновое излучение).

Обсуждая основы СТО и ОТО, мы заостряли внимание на том, что в этих теориях в общем случае нельзя выделить в чем‑то особую систему отсчёта. Однако решение для Вселенной — это уже не общий случай, а реликтовое излучение в силу своей всеобщности и изотропии вполне может играть роль такой выделенной системы отсчёта. Фактически оно уже играет роль «каркаса», относительно которого проводят измерения во Вселенной. Существует так называемая дипольная анизотропия. Оказывается, в одной части неба реликтовое излучение чуть теплее, в противоположной — чуть холоднее, разница составляет 6,71 мК (милликельвин). Этот эффект вызван доплеровским смещением частоты из‑за нашей собственной скорости относительно системы отсчёта, связанной с реликтовым излучением. Он соответствует движению Солнечной системы по направлению к созвездию Девы со скоростью ~ 370 км/с. Если учесть этот фактор, то все равно окажется, что реликтовое излучение изотропно лишь до 0,01%. Эта анизотропия сейчас хорошо регистрируется и анализируется, а её изучение оказывается очень важным для изучения эволюции возмущений во Вселенной в целом.

Сразу после рекомбинации ещё не было никаких массивных тел, космических объектов: вещество было рассеяно во Вселенной почти равномерно. Как же из однородной среды образовались звезды, планеты, галактики, скопления галактик? Здесь опять свою роль сыграла гравитация. Там, где плотность была чуть выше средней, сильнее было и притяжение, значит, более плотные образования становились ещё плотнее. Распределение галактик и скоплений галактик во Вселенной называется крупномасштабной структурой. Большой вклад в развитие теории её образования внесли Зельдович и его сотрудники.

По современным представлениям раньше сформировались наименее массивные объекты. Сначала образовались так называемые первые звезды, возможно это было уже через 30 млн лет после Большого взрыва. Затем — галактики и скопления галактик.

Как же происходило формирование крупномасштабной структуры? Выделялись крупные неоднородности с массой около 1015М☉, которые несимметрично (что важно) сжимались с образованием плоских объектов, которые назвали «блинами». Это прообразы скоплений галактик В пространстве блины расположены случайным образом (хаотично), Пересечения блинов образуют сверхскопления в виде нитей, см. рис. 9.10, в результате чего формируется ячеистая структура с размерами ячеек около 50–100 Мпк и толщиной стенок 3–4 Мпк. Образование блинов происходило примерно 13 млрд лет назад.

Эти теоретические выводы блестяще подтвердились. Перечисленные образования были обнаружены в 80–е годы прошлого столетия в результате изучения пространственного распределения галактик.

Рис. 9,10. Крупномасштабная структура Вселенной

Представленная картина образования структуры имеет место для фридмановской стадии расширения. Сейчас мы фактически перешли на стадию доминирования тёмной энергии. Предположим, что давление и плотность тёмной энергии не меняется со временем, т. е. она описывается космологической постоянной. Тогда из общих уравнений для флуктуаций в космологии следует, что рост возмущений не происходит и их размер неизменен. Это означает, что для этого предположения теория не допускает структур больше ныне наблюдаемых, тем более, этот же вывод будет и для фантомного уравнения состояния. В случае квинтэссенции, ситуация не настолько детерминирована.

В целом модель горячей Вселенной подтверждена и является общепризнанной. Однако постоянно появляются новые данные, которые требуют осмысления и коррекции основной модели, постоянно возникают вопросы, которые требуют ответов.