Гравитация От хрустальных сфер до кротовых нор

Петров Александр Николаевич

Глава 6. Общая теория относительности

 

 

Предпосылки построения ОТО

Наконец, переходим непосредственно к тяготению. Специальная теория относительности возникла в результате решения проблем, накопившихся в механике Ньютона. Иная ситуация сложилась к концу XIX века с не релятивисте кой теорией гравитации. Её авторитет, как незаменимого инструмента в небесной механике, не вызывал в то время никаких сомнений. Был известен только один случай, когда теория Ньютона давала неточный результат в расчёте наблюдаемого эффекта. В 1859 году французский астроном Урбен Леверье (1811–1877) обнаружил, что поведение орбиты Меркурия не объясняется ньютоновским законом тяготения. Небесная механика того времени уже позволяла блестяще рассчитывать влияние соседних планет. Из‑за их воздействия орбита Меркурия должна медленно вращаться вокруг Солнца, вследствие чего точка наименьшего удаления планеты от Солнца (перигелий) должна была смещаться на 532» (угловых секунд) в столетие. Но как показал Леверье, перигелий Меркурия смещается за столетие на величину 575», то есть большую ожидаемой на 43». Казалось бы небольшое расхождение, но оно было замечено, поскольку значительно превосходило уровень погрешностей расчётов того времени. Сомнений в самой теории гравитации Ньютона не было. Поэтому возникло предположение, что это расхождение вызвано влиянием неизвестной планеты, расположенной ближе к Солнцу, чем Меркурий. Гипотетическую планету назвали Вулканом и долго пытались её обнаружить.

Релятивистская теория гравитации возникла не в результате необходимости объяснить непонятные явления или данные наблюдений. Скорее это результат бурного развития физики того времени, построения электродинамики и СТО. Они как бы «притащили» за собой и общую теорию относительности (ОТО). С построением СТО стало ясно, что релятивистский принцип относительности должен распространяться не только на электромагнитные явления и механику, но и на гравитационные явления. А гравитация Ньютона этому принципу не удовлетворяет, поскольку она представлена нерелятивистским скалярным полем (для теории Ньютона это будет пояснено позже), распространяющимся с бесконечной скоростью, что противоречит релятивистским воззрениям.

Здесь нужно немного отвлечься и пояснить некоторые термины и понятия, без которых дальше не обойтись — это скалярное и векторное поля. Скалярное поле — это функция (величина), заданная в каждой точке пространства. Например, распределение температуры в некотором теле — это скалярное поле, значение которого определено в каждой точке тела, Векторное поле в 3–мерном пространстве задано, если в каждой его точке определена стрелка. В координатном представлении стрелка определяется тремя величинами, заданными для каждой точки этого пространства. Эти три значения функции в каждой точке представляются компонентами вектора. Примером векторного поля может служить распределение скоростей жидкости или газа, или напряжённостей электромагнитно го поля, о котором мы сейчас говорили. Аналогично скалярные и векторные величины задаются в 4–мерном пространстве–времени. О более формальном определении скалярного, векторного, а также тензорного полей см. Дополнение 1.

 

Первые попытки построения релятивистской теории гравитации

Но вернёмся в до релятивистские времена XIX века, когда не было специальной теории относительности. Несомненно интерес к построению неньютоновских вариантов теории гравитации был вызван успехами электромагнетизма, Сам Максвелл, уже представивший миру уравнения электродинамики и воодушевлённый этим успехом, в 1865 году опубликовал работу, где предположил, что гравитация может быть описана уравнениями, подобными уравнениям электромагнетизма. Однако его вариант теории приводил к отрицательной энергии статического гравитационного поля и отрицательному потоку гравитационной энергии. Это его остановило, и он не стал развивать теорию дальше.

Были и другие попытки. Но мы не ошибёмся, если скажем, что первым учёным, представившим в 1893 году релятивистскую теорию гравитации, был английский математик и физик Оливер Хевисайд (1850–1925). Это теория векторного поля (похожая на электродинамику), инвариантная к преобразованиям Лоренца, хотя сами преобразования Лоренца ещё не были построены. В своей исследовательской деятельности Хевисайд очень много внимания уделял электродинамике. Поэтому его интерес и усилия, направленные на построение аналогичной теории гравитации, вполне объяснимы. Он придал уравнениям Максвелла современный явно лоренц–инвариантный вид — это 4 векторных дифференциальных уравнения (до этого использовались 20 уравнений с 12 неизвестными). А поэтому, тот факт, что он представил лоренц–инвариантные гравитационные уравнения, также не очень удивителен.

Сразу после создания специальной теории относительности, в 1905 году, Пуанкаре представил свои уравнения векторной гравитации, сохраняющиеся при преобразованиях Лоренца и подобные уравнениям Максвелла. Как модель, Пуанкаре рассматривает параллельное движение двух тел, неподвижных друг относительно друга. На основе преобразований Лоренца Пуанкаре выводит ряд инвариантов, сохраняющихся при этих преобразованиях, а затем рассматривает их возможное значение. В теории Пуанкаре получается, что полная сила гравитации имеет два компонента. Один из них, обычный, связан с расстоянием до притягивающего тела, а второй компонент определяется скоростью этого тела и является аналогом магнитной силы в электродинамике. Без второго компонента гравитационной силы нарушилась бы лоренц-инвариантность и известный уже результат о замедлении времени в движущихся системах отсчёта.

Позднее появились подобные работы Минковского и Лоренца и других авторов, целью которых было (как и в работе Пуанкаре) представить модифицированный закон Ньютона в лоренц–инвариантной форме. Это были теории векторного поля, распространяющегося в пространстве Минковского, речь об искривлении пространства–времени пока не шла вообще, Но векторные теории, включая и самую раннюю теорию Хевисайда, не могли объяснить сдвиг перигелия Меркурия, некоторые из теорий были внутренне противоречивы. Как и электродинамика, векторные теории предсказывают генерацию и распространение волн (гравитационных векторных), но в отличие от электродинамики эти волны должны переносить отрицательную энергию, что, конечно, недопустимо. Действительно, простая модель двух связанных тел в пустом пространстве Минковкого, излучая гравитационные волны, будет наращивать полную энергию!? Фактически вечный двигатель!? Такая ситуация возникает из‑за того, что тяготеющие заряды (массы) одного знака притягиваются, в отличие от зарядов в электродинамике. После появления ОТО и подтверждения нескольких её эффектов интерес к векторным теориям пропал. Со временем их перестали активно обсуждать, энтузиазм разрешать их противоречия угас.

Среди релятивистских теорий гравитации, возникших до общей теории относительности, нельзя не упомянуть скалярную теорию Эйнштейна и голландского физика Адриана Фоккера (1887–1972), представленную в 1914 году. Эта теория обобщала аналогичные предшествующие теории. Новаторским было то, что она была первой теорией, инвариантной относительно произвольных преобразований координат и описывала искривлённое пространство–время. Правда, она, как и другие релятивистские скалярные теории, не объясняла всех явлений, которые объясняет ОТО.

 

Принципы построения ОТО

Пришло время начать рассказ собственно об общей теории относительности, о принципах её построения. Сначала вспомним факт равенства инертной и тяготеющей масс, установленный ещё Галилеем, затем подтверждённый Ньютоном и другими учёными, который мы уже подробно обсудили в главе 2. Сейчас это равенство прове

рено с относительной точностью 10-12— 10-13. Этот опытный факт Эйнштейн положил в основу общей теории относительности в качестве одного из ключевых принципов. Обычно его называют слабым принципом эквивалентности. Что из него следует?

Рис. 6.1. Движение в искривлённом пространстве

Если гравитационная масса точно равна инертной, то они могут быть заменены одна на другую как во втором законе Ньютона, так и в законе всемирного тяготения. Из этого следует, что ускорение тела, на которое действуют лишь гравитационные силы, не зависит от массы (или каких‑то других свойств этого тела)! А значит и траектория тела не зависит от его массы. Но тогда, если все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение нужно связать не со свойствами тел, а со свойствами самого пространства в этой точке. Поскольку в общем случае траектории тел, движущихся в гравитационном поле других тел, искривлены, то логично предположить, что пространство, в котором есть гравитационное взаимодействие, также искривлено. Далее, СТО убедительно показала, что пространство и время являются единой физической реальностью, Поэтому описание гравитационного взаимодействия между телами нужно сводить к описанию искривлённого пространства-времени (рис. 6.1).

Но каково свободное движение тела, если пространство–время искривлено? Здесь разумно снова вернуться к СТО и первому закону Ньютона. В инерциальной системе отсчёта такие тела движутся прямолинейно и равномерно. В искривлённом пространстве аналогом прямых линий являются геодезические.

Рис. 6.2. Линии кратчайшего расстояния на сфере

Их теория подробно разработана математиками XIX века.

Основной вклад внёс немецкий математик Бернхард Риман (1826–1866). В искривлённом пространстве нет параллельных линий в понимании Евклида, сумма углов треугольника не равна 180°. Для примера рассмотрим поверхность Земли — это сфера, которая является 2–мерным пространством положительной кривизны. Что такое геодезическая на поверхности Земли? Это не прямая линия на карте, а дуга большого круга, который проходит через центр Земли (рис. 6.2). Именно с помощью такой дуги определяется кратчайшее расстояние между двумя точками на Земле. Сумма углов треугольника на поверхности Земли оказывается больше 180°.

Снова вспомним, что в релятивистской теории пространство и время не рассматриваются (не существуют) раздельно. Поэтому разумно рассматривать не траектории тел, а их мировые линии на пространственно-временной диаграмме. Инерциальному движению в плоском пространстве–времени соответствуют мировые линии, которые тоже прямые. А каковы мировые линии в искривлённом пространстве–времени? Опираясь на слабый принцип эквивалентности, Эйнштейн предложил принцип движения по геодезическим. Он звучит в одном из определений так: если нет других воздействий, кроме гравитационного, то тело движется свободно, по инерции, его мировая линия в пространстве–времени является геодезической. Геодезические линии, соответствующие мировым линиям физических тел, скорость которых меньше скорости света, оказываются линиями наибольшего собственного времени, то есть времени, измеряемого часами, жёстко связанными с телом. Вспомним, что при обсуждении «парадокса близнецов» мы уже установили, что максимальное собственное время, требуемое для перемещения в плоском пространстве из одной мировой точки в другую, соответствует движению по прямой. Современные эксперименты подтверждают движение тел по геодезическим линиям с такой же точностью, как и равенство гравитационной и инертной масс. Отметим, что часто слабый принцип эквивалентности и принцип движения по геодезическим не разделяют.

Обсудим слабый принцип эквивалентности. Свободное движение какого‑либо тела по инерции в поле тяготения является обобщением свободного движения в инерциальной системе отсчёта в пространстве Минковского. Для такого движения взаимные ускорения всех свободных тел в ближайшей окрестности равны нулю. То есть собственная система отсчёта исходного тела локально является инерциальной.

Приведём пример, несколько избитый, но наглядный. Представим закрытую со всех сторон кабину лифта. Если удерживающий её трос вдруг оборвётся, то кабина вместе со всем содержимым начнёт свободно падать под действием силы тяжести, все тела в ней будут ускоряться совершенно одинаково. Наблюдатель, находящийся внутри такой кабины, не почувствует веса своего тела, а окружающие его предметы будут свободно «парить» в воздухе или двигаться прямолинейно и равномерно, не испытывая ускорений. Для стороннего взгляда все тела внутри кабины ускоряются точно так же, как и она сама (именно этот факт доказал Галилей), И поэтому всё в лифте для внутреннего наблюдателя окажется невесомым. Какие бы опыты он не проводил внутри кабины, он не сможет с их помощью установить, падает ли лифт на Землю или свободно парит в космическом пространстве.

Итак, внутри лифта (в небольшом объёме) наблюдатель ощущает себя вполне в пространстве Минковского и локально может использовать координаты Лоренца, Его мировая линия в этих координатах — это вертикальная линия вдоль оси ct. Следовательно, ускорение для наблюдателя в лифте отсутствует, а значит, отсутствует и «гравитационная сила». Но во внешней для лифта системе отсчёта эта же мировая линия (геодезическая) будет выглядеть как кривая.

Пусть пространство искривлено, как это определить? Если запустить из двух близких точек два тела параллельно друг другу, то, двигаясь по геодезическим, они начнут либо сближаться, либо удаляться друг от друга. Этот эффект называется девиацией геодезических. Как это осознать? Если два путешественника начнут перемещаться по двум близким меридианам, начиная от экватора, то они будут сближаться и встретятся на полюсе. Это как раз говорит о том, что поверхность Земли, имея форму сферы, искривлена. Если бы радиус Земли увеличился, то кривизна уменьшилась бы, ведь поверхность Земли стала бы площе. Аналогично, в пространстве–времени девиация геодезических определяет его кривизну.

Математически кривизна определяется так называемым тензором кривизны Римана, величиной, которую нельзя обратить в нуль никакими преобразованиями координат, если пространcтво–время искривлено. Это понятие исключительно геометрическое. Пространство–время становится искривлённым всегда, когда содержит материю в том или ином состоянии, так или иначе расположенную и движущуюся тем или иным образом. Однако оно может быть искривлено и в отсутствии материи! Для плоского пространства–времени тензор кривизны равен нулю.

Необходимо обсудить ещё один принцип, который чаще называют сильным принципом эквивалентности. Существуют разные его формулировки, приведём нечто усреднённое.

Малая по размерам локальная система отсчёта, находящаяся в гравитационном поле, неотличима от такой же системы, но ускоренной относительно инерциальной системы отсчёта, связанной с пространством Минковского.

Обычно этот принцип иллюстрируют следующим образом. Находясь в кабине, стоящей на поверхности Земли, наблюдатель ощущает свой обычный вес и замечает, что все предметы совершенно одинаково ускоряются по направлению к полу. Если же кабина, снабжённая реактивным двигателем, вместе с наблюдателем переместится в космическое пространство, где будет двигаться с ускорением, в точности равным гравитационному ускорению у поверхности Земли, то наблюдатель снова обнаружит, что все свободные предметы падают на пол с тем же самым ускорением и опять почувствует свой нормальный вес. В такой закрытой кабине невозможны никакие эксперименты, которые позволили бы наблюдателю отличить явления, связанные с тяготением, от явлений, характерных для ускоренного движения.

Часто считают, что этот принцип тоже лежит в основе общей теории относительности Однако это не так однозначно. Даже сейчас, почти через 100 лет после создания ОТО, в профессиональной литературе время от времени выходят статьи с обсуждением роли этого принципа. Даже его название является предметом дискуссии.

Приведём один из аргументов, который вносит некое сомнение в само представление об эквивалентности в этом случае. Основным отличием пространства–времени ОТО от пространства–времени СТО является его кривизна, которая (как было сказано) определяется тензором кривизны. В пространстве–времени СТО этот тензор тождественно равен нулю, поэтому пространство Минковского называют плоским. Если применить сильный принцип эквивалентности (а понятию «эквивалентность» придать абсолютный смысл) для описания движения в ускоренной системе в пространстве Минковского, то нужно будет сказать, что от плоского пространства–времени мы перешли к искривлённому пространству–времени ОТО. Но это невозможно, поскольку невозможно воссоздать из нулевой кривизны ненулевую лишь переходом между системами отсчёта. «Малые размеры системы отсчёта» в определении принципа не могут быть оправданием, поскольку кривизна — понятие локальное, она определяется в каждой точке.

Хотя в окончательную форму теории Эйнштейна сильный принцип эквивалентности не вошёл, исторически он сыграл большую роль в становлении ОТО. Эйнштейн при разработке теории активно его использовал. Также, если в принципиальном плане нельзя из плоского мира сделать искривлённый просто переходом в другую систему отсчёта, то многие эффекты теории Эйнштейна действительно имеют место в ускоренных системах отсчёта.

В качестве принципов построения теории, конечно, необходимы принципы соответствия. В чем они должны состоять? В случае слабых гравитационных полей (малой кривизны пространства–времени) и малых (по сравнению со световой) скоростей уравнения релятивистской теории гравитации должны перейти в уравнения гравитации Ньютона (их полевую форму мы обсудим несколько ниже). То есть предсказания общей теории относительности должны совпасть с результатами применения закона всемирного тяготения Ньютона с небольшими поправками, которые становятся значительными по мере увеличения напряжённости поля и увеличения скоростей, В случае отсутствия гравитации (нулевая кривизна) уравнения новой теории тяготения должны перейти в уравнения СТО.

Наконец, иногда в качестве принципов, на основе которых была построена ОТО, упоминают ковариантность — требование, чтобы уравнения теории имели один и тот же вид во всех координатных системах. Это требование в определённом смысле является обобщением лоренц-инвариантности в СТО.

 

Построение ОТО

Фактически все принципиальные предпосылки и необходимые требования для формулировки уравнений гравитационного поля в ОГО мы обсудили. Было осознано, что гравитационное взаимодействие выражается в искривлении пространств а–в реме ни, а искривляется пространство-время под воздействием материк Оказалось также, что и тела, и материя в целом, воздействуют на прост ранет вовремя не только своей массой (или, эквивалентно, энергией), но и состоянием движения, напряжениями внутри тел, взаимодействием между разными видами материи. Больше деталей о материальных источниках можно найти в Дополнении 2. С другой стороны, искривляя пространство–время, материя движется (взаимодействует) уже в пространстве–времени искривлённом самой собой То есть пространство–время в общем случае не является безучастной ареной, на которой кипят страсти физических взаимодействий, а само становится динамическим объектом и во всем участвует. Уравнения Эйнштейна как раз устанавливают правила воздействия материи на пространство–время и наоборот.

Эти уравнения были построены и представлены Эйнштейном в работах 1915 и 1916 годов на основании аргументов изложенных выше. Практически одновременно они были представлены немецким математиком Давидом Гильбертом (1862–1943). Научные интересы Гильберта во многом были связаны с математической физикой. С большим интересом он следил за попытками Эйнштейна создать общую теорию относительности, основанными на логике анализа физических явлений. Это вдохновило его на поиски строгого математического подхода к построению уравнений, которые и были выведены из, так называемого, принципа наименьшего действия. В общем, Гильберт имел планы «заковать физику» в рамки аксиоматического подхода. Но несмотря на впечатляющие результаты в построении уравнений гравитации, этот глобальный замысел Гильберта не удался. До сих пор ведутся споры о приоритете, однако мы считаем, что одни исследования дополняют другие. Если можно так сказать, то Эйнштейн проник в самую глубину физических явлений, а Гильберт дал аппарат, позволяющий исследовать их более эффективно.

Логика построения уравнений Эйнштейна и их конкретный формальный вид даны в Дополнении 3, а здесь мы разъясним основные понятия ОТО, к которым будем часто обращаться в основном тексте. Вернёмся к понятию интервала, который был введён для пространства Минковского. В отличие от плоского пространства, в искривлённом пространстве–времени расстояние между двумя мировыми точками в общем случае невозможно определить как конечную длину отрезка прямой. Необходимо перейти к измерениям в малой окрестности мировой точки {к бесконечно малым величинам). Тогда квадрат интервала пространства Минковского между двумя бесконечно близкими точками перепишется как квадрат элемента интервала (уже бесконечно малой величины) в виде:

Элемент пространства Минковского имеет такой простой вид ещё и потому, что здесь используются координаты Лоренца, то есть декартовы координаты в совокупности с временной координатой. Этот же квадрат элемента интервала (часто его все равно называют «интервал») может быть записан в более формальном виде:

Здесь a, b = 0,1,2,3; a нулевой координате обычно приписывают смысл временной, умноженной на скорость света: x0 = ct Величина ηab является диагональной (отличны от нуля только элементы на диагонали) матрицей 4x4,

и называется метрикой Минковского. формальная запись интервала перейдёт в уже привычную, если использовать простое правило суммирования по повторяющимся индексам, например: тa пa = т0 п0 + m1 п1 + т2 п2 + т3 п3 . Метрика ηab ) задаёт способ измерения расстояний в пространстве Минковского в лоренцевых координатах.

Давайте «искривим» координаты (сделаем их произвольное преобразование), тогда интервал примет вид:

Величина gab также называется метрикой и фактически задаёт способ измерения расстоянии в пространстве Минковского, но в тех координатах, в которых она определена.

Важно отметить, что элемент ds, так же как и сам интервал, инвариантная величина, то есть его значение остаётся тем же в любых координатах, Метрика gab — это тоже матрица 4x4, но теперь в общем случае она уже не диагональна, её компоненты g00, g01, g11, g12… могут быть какими‑либо функциями времени и пространственных координат, см. Дополнение 1.

В искривлённом пространстве–времени способ измерения расстояний между мировыми точками такой же, как в плоском в криволинейных координатах — с помощью элемента интервала. Разница в том, что для пространства Минковского возможен переход от gab к простому диагональному виду ηab во всем пространстве–времени, а для искривлённого — нет. Однако в малой окрестности отдельного свободно падающего наблюдателя такой переход возможен. Ведь согласно слабому принципу эквивалентности он ощущает себя в инерциальной системе отсчёта! Искривление не позволяет связывать мировые точки прямыми, поэтому мировые линии (геодезические или нет), соединяющие события, будут в общем случае кривыми. Их длина вычисляется с помощью бесконечно малых элементов интервала и последующего интегрирования.

Как элемент интервала, так и длина мировых линии (их полный интервал), также являются инвариантными по отношению к преобразованиям координат.

Пространственно–временные измерения и фиксация метрических свойств осуществляются также с помощью света. Скорость света не зависит от скорости излучателей, а для каждого локального наблюдателя, измеренная в его собственной системе отсчёта, имеет одно и то же стандартное значение с. При измерениях самым важным является то, что для света элемент интервала ds в силу инвариантности всегда равен нулю.

Если в наше время спросить даже не самого сведущего, но все таки образованного, человека: уравнения Эйнштейна — это уравнения чего? С большой вероятностью получишь ответ, что это уравнения гравитационного поля. А что такое гравитационное поле мы фактически только что рассказали — это поле метрики gab , или метрического тензора.

Именно это поле даёт возможность построить величины, определяющие искривление пространства–времени. Тензорное поле определяется аналогично тому, как определяются скалярное и векторное поля. Задать поле метрического тензора означает, что в каждой мировой точке пространства–времени нужно задать набор функций, каждая из которых соответствует одной из компонент матрицы, представляющей этот тензор.

Решить уравнения Эйнштейна — это значит найти коэффициенты gab . Но гравитационные уравнения должны решаться вместе с уравнениями для материи, состояние и движение которой также должны стать известными, как результат найденного решения. Также часто решают гравитационные уравнения в вакууме, то есть для областей пространства–времени, где нет материи. Тогда задачей является определить только метрику gob , анализ которой даст всю информацию об искривлении пространства-времени, его геодезических и т. д. Решение уравнений ОТО с большими деталями обсуждается в Дополнении 4.

После того как решение уравнений ОТО найдено, необходимо обратиться к принципам соответствия, которые были определены в конце предыдущего параграфа. Первый из них касается соответствия теории гравитации Ньютона. Принцип звучит чётко и довольно жёстко. Но так и должно быть, если мы не хотим ошибиться в интерпретации решений новой теории. Теория Ньютона в данном случае играет роль критерия.

Уже сейчас очень полезно для последующего изложения записать простые формулы этого соответствия. Мы уже говорили, что гравитация Ньютона представлена скалярным полем (потенциалом) φ. Для точечной массы М (или сферически распределённого вещества) скалярное поле вне вещества определяется как φ = -GM/r, где r — расстояние до центра тела. Тогда сила, действующая на тело массы m в этом потенциальном поле, определяется стандартной формулой закона всемирного тяготения:

Движение тел в таком поле хорошо изучено. Как найти соответствие с движением тел в ОТО? Для этого нужно найти пространство–время, геодезические которого, в приближении малых скоростей и слабого поля φ, соответствуют движению тел в теории Ньютона. Такое пространство–время легко находится, его метрика в обсуждаемом приближении имеет в сферических координатах простую форму:

В силу сферической симметрии мы опустили угловую часть, оставив только временную и радиальную. Эту метрику иногда называют метрикой «пространства–времени Ньютона». Здесь g00 = 1 + 2φ/c2 = 1 — 2GM/rc2 . Если нет тяготеющего центра, т. е. масса М = 0, то поле φ исчезает и метрика обращается в метрику пространства Минковского.

Этим мы отметили соответствие для движения тел в теории Ньютона и ОТО. Но также необходимо показать, что для слабых гравитационных полей и малых скоростей уравнения релятивистской теории гравитации должны перейти в уравнения гравитации Ньютона. Но что такое уравнения тяготения Ньютона? Очевидно, что это должны быть уравнения для поля φ. Здесь приходится идти обратным путём. Мы знаем, какое поле создаётся каждой отдельной частицей. Если у нас имеется произвольное распределение плотности вещества р в пространстве, то для каждой точки нужно выписать соответствующее значение φ. А общее поле Φ в каждой точке пространства просто сложится из всех отдельных φ. Тогда получится, что поле Φ в каждой точке удовлетворяет уравнению:

Оказывается, что при всех ограничениях соответствия уравнения ОТО, действительно, сводятся к этому единственному уравнению.

Но на проблему связи между теориями можно посмотреть и с другой позиции. Сила Ньютона — это обычная сила, которая растягивает пружину динамометра, давит на поверхность Земли, держит, как на «цепочках» (или «резинках»), планеты в Солнечной системе. В ОТО ситуация другая. Представим, что нас одарили «божественной» способностью воспринимать искривлённое прост ранет вовремя. При этом мы в состоянии фантастически осознать, где там проходят геодезические (по аналогии с тем, что нашего реального восприятия достаточно, чтобы оценить, что шайба, брошенная по гладкой поверхности катка, движется равномерно и прямолинейно). Тогда для нас понятие гравитационной силы исчезло бы вообще. Все заменилось бы геометрией. Вместо воображаемых «цепочек», на которых Солнце «тащит» планеты, мы увидели бы нечто, похожее на воронку, в которой планеты свободно (по инерции) обращаются вокруг Солнца (рис. 6.3). Если какой‑нибудь планете придать достаточно большую скорость, то она «выскочит» из воронки (а на языке гравитации Ньютона — преодолеет солнечное притяжение) и улетит в космос. Проявление же силы тяготения в быту мы интерпретировали бы как препятствие движению по геодезическим. Так, и пружина динамометра, и поверхность Земли, препятствуют такому движению.

Рис. 6.3. Движение планеты

Теперь мы можем также пояснить фразу, прозвучавшую значительно ранее: «общая теория относительности не опровергла теорию Ньютона, а дополнила её для описания режимов (систем), которые во времена Ньютона и вообразить‑то было невозможно». Как и самые ранние представления о тяготении, так и теория Ньютона — это все‑таки попытки описать известные проявления гравитационного взаимодействия. Да, теория Ньютона позволила открыть новые планеты, Но это результат приложения все того же закона всемирного тяготения, который фактически интерпретируется как известное решение уравнений Ньютона. Уравнения ОТО поставили исследователей совершенно в другую ситуацию. Внешне простые, они оказались весьма сложными для поиска решений, которых оказалось великое множество. Часто не менее сложной оказалась интерпретация новых решений: если одни из решений были некими обобщениями гравитирующих моделей теории Ньютона, то другие «и вообразить‑то было невозможно». К последним, например, можно отнести решения для чёрных дыр, присутствие которых во Вселенной уже доказано. Но об этом немного позже.

Принцип соответствия специальной теории относительности связан с уравнениями для материи. При «отключении кривизны» эти уравнения, построенные в искривлённом пространстве–времени, должны перейти в уравнения в плоском пространстве Минковского. Мы это не конкретизируем, но приведём простой пример. Если в одном из решений в искривлённом пространстве–времени частица движется по кривой геодезической, то при «отключении» кривизны (гравитации) движение частицы переходит в движение по прямой — это очевидно.

 

Об Эйнштейне

О жизни Альберта Эйнштейна написано очень много. Мы ограничимся лишь некоторыми эпизодами и случаями из его жизни.

Интересной является история присуждения Нобелевской премии. Здесь нужно напомнить о работах Эйнштейна, которые были опубликованы в 1905 году.

«К электродинамике движущихся тел» — статья, которая вместе с работами Пуанкаре, стала основой СТО.

«Об одной эвристической точке зрения, касающейся возникновения и превращения света» — статья, объяснявшая явление фотоэффекта и ставшая фундаментом квантовой теории. Именно за этот результат была присуждена Нобелевская премия за 1921 год.

«О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно–кинетической теорией теплоты» — работа по броуновскому движению, существенно продвинувшая статистическую физику.

Эти работы не только показали его силу теоретика, но и изменили лицо всей физики. А уже в 1915 году Эйнштейну удалось завершить построение ОТО. Основания для номинации на Нобелевскую премию были весомые. Однако, несмотря на очевидную значимость достижений, Эйнштейн не очень подходил для кандидата. Поскольку он был теоретиком, то зримая польза от полученных результатов была неочевидной. Мало того, его гражданская позиция пацифиста с левым уклоном была не в его пользу. Не последнюю роль играли и еврейские корни… И, наконец, только очень узкому кругу учёных достижения Эйнштейна были понятны, они в то время были совсем «непубличными».

Но в ноябре 1919 года результаты наблюдений солнечного затмения подтвердили предсказания ОТО. Вся мировая пресса взорвалась сенсационными сообщениями. Эйнштейн стал знаменитостью. Его приглашали с лекциями в университеты всего мира, от США до Японии. Тем не менее, на Нобелевский комитет это действовало мало, и премию за 1920 год ему не присудили.

Как сейчас известно, основным противником присуждения премии Эйнштейну был влиятельный член Нобелевского комитета, офтальмолог Альвар Гульстранд (1862–1930). Он был талантливым физиком–самоучкой, занимался преломлением света в сложных оптических системах, включая глаз, и получил Нобелевскую премию за 1911 год по физиологии и медицине. С 1911 по 1929 годы он был членом Нобелевского комитета по физике (с 1922 — председателем). Как знаток классической геометрической оптики, Гульстранд имел своё мнение по поводу как СТО, так и ОТО, и изо всех сил противился: «Эйнштейн не должен получить Нобелевскую премию, даже если этого требует весь мир!»

Возможно, Эйнштейн и не получил бы премию, если бы не другой шведский физик — Карл Вильгельм Озеен (1879–1944). Он сам был специалистом в очень узкой области, но как профессор одного из университетов Швеции мог принять участие в номинации кандидатов. Озеен собирался номинировать на премию Нильса Бора (1885- 1962), но тот также был теоретиком и имел мало шансов в Нобелевском комитете. Однако при объединении эйнштейновского объяснения фотоэффекта и борове кой модели атома водорода получался результат, противопоставить которому было нечего. Это была теория о строении вещества, прочно стоящая на экспериментальном фундаменте.

10 ноября 1922 года было объявлено, что премия за 1921 год присуждается Эйнштейну «за его заслуги в области теоретической физики, и в особенности, за объяснение фотоэлектрического эффекта». В отдельном письме от Шведской Академии наук были слова: «…не учитывая при этом Baum работы по теории относительности и теории гравитации, которые будут оценены после их подтверждения в будущем». Одновременно (!) премия за 1922 год была присуждена Нильсу Бору «за его заслуги в исследовании строения атомов и излучения, испускаемого ими». Эйнштейн не присутствовал на церемонии вручения — он направлялся в Японию читать лекции о теории относительности. Его нобелевская лекция, которую зачитал представитель Германии, тоже была о теории относительности.

Закончим рассказ несколькими штрихами. В домашнем кабинете Эйнштейна стоял небольшой телескоп. Когда его спрашивали: зачем? Он обычно отвечал:

Нет, это не для звёзд. Телескоп принадлежал бакалейщику, ранее жившему здесь. Приятная вещь. Я его берегу как игрушку.

Всем известна фотография «с языком», сделанная 14 марта 1951 года в 72–й день рождения Эйнштейна. После празднования в Принстонском университете вместе с друзьями супругами Эйде лот он сел в автомобиль. Машину окружили репортёры и просили Эйнштейна улыбнуться. Но вместо этого он, очень уставший, высунул язык.

Впоследствии эта фотография понравилась и самому Эйнштейну.

Альберт Эйнштейн брал 1 доллар за простой автограф и 5 — за подпись на памятной вещи. Он был звездой своего времени, в этом не приходится сомневаться, и иногда зарабатывал до 1000 долларов за день. Все эти деньги шли на благотворительность.

Всю жизнь Эйнштейн выступал как активный противник насилия, противник войн. Его образ в конце жизни похож на образ мудреца, познавшего мир, и почти святого. В определённом смысле это так и было. Однако его близким было не совсем легко с ним. Вот как он сам определяет своё место в мире и обществе:

Я никогда по–настоящему не принадлежал ни к какой общности, будь то страна, государство, круг моих друзей и даже моя семья. Я всегда воспринимал эти связи как нечто не вполне моё, как постороннее, и моё желание уйти в себя с возрастом все усиливается. В такой самоизоляции есть привкус горечи, но я не жалею о том, что лишён понимания и сочувствия со стороны других людей. Конечно, из‑за этого я что‑то теряю, но обретаю куда больше, а именно: независимость от общепринятых привычек, мнений и предрассудков. Я свободен от соблазна воздвигнуть здание своего душевного спокойствия на столь шатком фундаменте.

Альберт Эйнштейн умер в Принстоне 18 апреля 1955 года от аневризмы. Он отказался от операции, не желая менять естественный ход вещей.