Беседы о новой иммунологии

Петров Рэм Викторович

Иммунология старая — иммунология новая

 

 

Странное сочетание слов: новая иммунология. И можно ли вообще так говорить: «новая физика», «новая математика»?

Иммунология старая и новая

— Можно или нельзя — понятия относительные. Вам кажется, что нельзя, а один из старейших международных журналов, «Nature», то есть «Природа», вот уже больше десяти лет выходит с подзаголовком «Новая биология». Так что незачем спорить о правомерности словосочетаний: новая иммунология или новая биология. Это уже жизнь.

— Но если есть новая, значит, существует и старая иммунология, ненужная, выброшенная за борт развитием науки.

— Почему же ненужная и выброшенная? Крайне нужная, обогащенная и по–новому понятая, она стала еще более ценной.

Такие или почти такие диалоги приходилось слышать не раз. И самому в них участвовать. Не могу понять почему, но факт остается фактом: многие исследователи, работающие в области классической иммунологии и занимающиеся созданием вакцин против тех или иных заразных болезней, обижаются, когда в их присутствии говорят о новой иммунологии. Как будто бы зачеркивают их науку.

Это неверно!

Иммунология

Новая иммунология выросла из классической, из той, которая изготовила прививки против оспы, бешенства, сибирской язвы и так далее. Из той, которая уже принесла человечеству золотые яблоки, а новая еще только обещает.

Примеры ликвидации с помощью вакцин таких страшных инфекций прошлого века, какими были оспа, сибирская язва, чума, столь часто приводятся в качестве триумфов иммунологии, что уже перестали производить впечатление. Этих инфекций давно нет. Стоит ли о них говорить? Нужны новые примеры.

Есть и новые…

Откроем книгу Оганеса Вагаршаковича Барояна «Итоги полувековой борьбы с инфекциями в СССР». В 1955–1956 годах была передана в практику достаточно эффективная вакцина против коклюша и дифтерии. В то время ежегодно дифтерией заболевало не менее 150 тысяч детей. За 10 лет прививок болезнь полностью ликвидирована. Коклюшем заболевало по 700–800 тысяч детей ежегодно. За тот же период времени коклюша практически не стало.

Полиомиелит…

В 1959–1960 годах в Советском Союзе иммунизировали всех детей. Уже к 1961 году число заболеваний упало с 22 тысяч до 4000. В 1963 году заболело всего 1000 человек, а к 1967 году полиомиелит был ликвидирован. Спасены от смерти или тяжелейших пожизненных параличей более 20 тысяч детей ежегодно. 100 тысяч за пять лет!

Впрочем, наиболее впечатляющие расчеты приводит Бернард Цинадер — канадский иммунолог, многолетний президент Всемирного общества иммунологов. Они касаются Соединенных Штатов Америки. С некоторой долей американского цинизма Цинадер все переводит на доллары.

Национальный доход, который получает страна от среднего американца, равен 226 тысячам долларов, от одной американки — 45 тысяч. В случае смерти мальчика или девочки они не принесут этого дохода. В случаях несмертельного исхода полиомиелита даже парализованные люди смогут работать, но не более чем с 50–процентной эффективностью. Работоспособность инвалидов средней степени принята при расчетах за 75 процентов, а легкой — за 90.

И вот что получилось.

За период 1955–1961 годы (а в США вакцинация началась на год позже, чем у нас) полиомиелитом заболели 154 тысячи человек. Из них 12500 умерли, 36 400 получили тяжелую степень инвалидности из–за неизлечимых параличей, 58100 — среднюю степень. 32 700 — легкую. Только 14 300 выздоровели полностью.

Потеря национального дохода составила 6,4 миллиарда долларов. Да еще 300 миллионов стоило лечение больных и содержание инвалидов. Итого 6,7 миллиарда.

Стоимость вакцинации, включая цену вакцины, зарплату врачей и администрации, а также всю исследовательскую работу по созданию препарата, составила 0,65 миллиарда долларов. Даже если из 6,7 миллиарда вычесть 0,65, то все равно каждые 6 лет иммунология дает стране более 6 миллиардов долларов. По 1 миллиарду в год! Только за счет ликвидации полиомиелита.

Программа «Аполлон», закончившаяся высадкой людей на Луну, стоила 25 миллиардов долларов. Иммунология могла бы оплатить расходы.

Этот расчет Цинадер приводит в учебнике иммунологии, чтобы не забывали, как много дала эта наука человечеству. А впереди еще вакцины против гриппа, инфекционной желтухи и многого другого. Я уверен, и против рака тоже.

 

Старая иммунология — это прививки против инфекционных заболеваний

— Если я правильно понял, старая иммунология — это прививки против заболеваний, вызываемых микробами и вирусами?

— Да, наука о невосприимчивости к инфекционным болезням. Так ее определил Илья Ильич Мечников в конце прошлого столетия.

— Но несколькими строчками выше упомянута прививка против рака. Это тоже старая иммунология?

— Нет, иммунология рака — раздел новой иммунологии. Раздел, который демонстрирует неразрывную связь наук.

Сегодня можно говорить о старой или новой иммунологии, не нарушая преемственной связи между ними. Чтобы разобраться, чем новая иммунология отличается от старой, необходимо вспомнить зарождение иммунологии.

Родники знания берут начало из практической деятельности человека. В древние и средние века человек был несравнимо более зависим от стихийных сил природы, нежели сегодня. И основным бичом человечества вплоть до не столь далекого XIX века были эпидемии. Чума, холера, оспа бушевали на планете, унося больше человеческих жизней, чем самые опустошительные нашествия скифов, гуннов или татар. И практика подсказала человеку, как бороться против эпидемий.

Показательна, например, история победы человека над оспой. Китайцы утверждают, что способ предохранения от оспы известен им с начала XI века. Они вводили в ноздри здоровым людям оспенные струпья больных. Так же предохраняли себя сиамцы. Приблизительно в то же время в Персии оспенную прививку проводили в банях, где служители втирали купающимся в разрезы кожи оспенный порошок из струпьев. В XVIII веке черкесы и грузины, желая сохранить красоту своих дочерей, делали им уколы в различные места кожи иголками, смоченными в жидкости из оспенных язв.

Дождь

Задолго до рождения иммунологии как определенного научного направления было известно, что такими заболеваниями, как ветрянка, корь, свинка, дети болеют только один раз. Чисто практический опыт указывал на то, что организм способен вырабатывать защитные свойства против инфекции, если ранее был контакт с ней.

Опыт накапливался и послужил предтечей экспериментальной иммунологии. Ее зарождение связано с именем английского врача Эдуарда Дженнера. На своей родине в Глучестершире Дженнер заметил, что люди, заражавшиеся ранее «коровьей» оспой, оказываются защищенными от «человеческой» оспы. Человек проницательный и образованный, Дженнер почувствовал в этом явлении рациональное начало и взялся за экспериментальную разработку метода борьбы с инфекцией.

В 1788 году он опубликовал свои исследования. Дженнер доказал, что заражение человека натуральной оспой после того, как ему была привита «коровья» оспа, не вызывает развития «черной заразы». После нападок и недоброжелательных актов со стороны скептиков и религиозно настроенных обывателей метод противооспенной прививки по Дженнеру был принят повсеместно. Им пользуются и сейчас. Состоит он в том, что на кожу наносят вирус «коровьей» оспы.

Крупнейший французский ученый XIX века Луи Пастер стоит у истоков теоретической иммунологии. Отправным положением Пастера, определившим все его успехи, было признание факта, что инфекционные заболевания вызываются микроорганизмами. Он смело обобщил это представление, доказав его справедливость для болезней пива, вина, шелковичных червей, животных, человека. Познав эту истину, ученый использовал виновников заболеваний в борьбе с самими заболеваниями.

Кому посчастливилось быть на юге Франции, тот, конечно, постарался посетить два маленьких городка. Один носит название Доль. Здесь родился Пастер, один из самых великих людей Франции. Родился в небольшом двухэтажном домике, который так тесно прижат к реке, что задняя дверь его и задние воротца двора открываются прямо на воду. С порога можно зачерпнуть воды или прополоскать белье. Веранда нависает над рекой. Посетителю кажется, будто он на корабле.

Второй городок носит название Арбуа. Сюда переселился Пастер после женитьбы, здесь он вел свои первые научные работы. Как говорят французы, Пастер трижды спас Францию. В Арбуа он ее спас в первый раз. Произошло это в 1865 году, когда Пастер открыл причины болезни пива и вина, разорявшей французских виноградарей и пивоваров. Он научил их пастеризовать вино и пиво.

До сих под в Арбуа плодоносит большой, несколько гектаров, виноградник, принадлежавший Пастеру, вернее, его жене. Первое вино, подвергшееся пастеризации, было получено с этого участка. С тех пор прошло сто лет. Арбуа, как и Доль, привлекает к себе миллионы туристов. Они пьют прекрасное вино и чувствуют себя приобщенными к великому таинству, открытому Пастером. А современный владелец всех виноградников Арбуа Генри Мейер чтит память Пастера.

В 1973 году, когда ученые всего мира собрались во Франции, чтобы отметить 150–летие со дня рождения Пастера, Мейер устроил большой прием не столько в их честь, сколько в честь Пастера. Многие ученые получили звание почетных пэров города Арбуа. Это неофициальная пэрия, это пэрия во славу вина. У нее свой трехцветный флаг из трех полос — зеленой, желтой, красной, — трех символов: виноградная лоза, солнце, вино. Кусочек этого флага на дипломе почетного пэра. На такой же трехцветной ленте, надеваемой через плечо, тяжелая бронзовая медаль, утверждающая, что ты — пэр города Арбуа. На лицевой ее стороне — барельеф нимфы с виноградными гроздьями вместо волос, на оборотной — две руки с кубками и надпись «PAIRJE des vins d'ARBOJS».

Второй раз Пастер спас францию, вернее французских шелководов, в 1868 году, когда обнаружил причину распространившихся по стране болезней шелковичных червей. В третий раз он спас животноводов, изготовив вакцину против сибирской язвы, уносившей ежегодно сотни тысяч коров, лошадей, овец, коз. Это произошло сразу после 1881 года, года рождения открытой им науки — иммунологии.

В 1881 году Пастер создал общий принцип разработки предохранительных прививок путем введения ослабленных микробов. Пастером и его сотрудниками были найдены методы предупредительной вакцинации не только против сибирской язвы, но и против куриной холеры, свиной краснухи, бешенства. Впоследствии были получены вакцины против многих других инфекций — чумы, холеры, полиомиелита и т. д.

Итак, к концу XIX столетия выяснилось главное: при помощи прививок ослабленными культурами возбудителей инфекции можно создать иммунитет к определенному инфекционному заболеванию. Однако за счет каких механизмов создается иммунитет, что лежит в основе естественной и приобретенной невосприимчивости, не знали. Вскрыть механизмы иммунитета было суждено другим ученым.

Наука об иммунитете родилась из суровой жизненной необходимости — преодолеть инфекционные заболевания. Огромная армия исследователей направила свои силы на изучение механизмов невосприимчивости к инфекции, на познание того, как организм защищает себя. В связи с этим и определение иммунологии звучало приблизительно так: иммунология — наука о факторах и механизмах, обусловливающих невосприимчивость человека и животных к инфекционным микроорганизмам.

Более жизненно необходимое научное направление трудно найти. И все–таки процветание и долголетие любого научного направления возможны лишь в том случае, если оно не замкнулось одной задачей, а смогло расширить сферу своего влияния, проникнуть в смежные и даже довольно далеко отстоящие научные дисциплины.

Образно говоря, от того, насколько «инфекционность» одной науки и «восприимчивость» других соответствуют друг другу, зависит процветание конкретного научного направления.

Углубленное изучение механизмов иммунитета привело к объединению иммунологии с другими биологическими дисциплинами. Например, изучение строения антител (с их помощью организм расправляется с чужеродными пришельцами) породнило иммунологию с биохимией и молекулярной биологией. Возникла самостоятельная область иммунологии — иммунохимия. Исследование клеток, которые вырабатывают антитела и участвуют в иммунных реакциях, оказалось сопряженным с интересами цитологии и гистологии, морфологических дисциплин, изучающих строение клеток и тканей. Возникла иммуноморфология. Но главное: иммунология познакомилась и породнилась с генетикой, наукой о наследственности.

Казалось, все противоречит самой возможности участия наследственных механизмов в развитии иммунных реакций. Действительно, человек, переболевший оспой, никогда повторно ею не заболевает. Он приобретает иммунитет на всю жизнь. Но его дети к этой болезни так же восприимчивы, как был он сам до заболевания. Все люди в детстве переболевают корью и становятся иммунными на всю жизнь. Но когда у них самих появляются дети, оказывается, что они неиммунны. Дети заражаются и заболевают корью. Все прямо говорит: приобретенный иммунитет не наследуется, генетика тут ни при чем.

И все–таки эти две науки встретились. Сама способность реагировать оказалась под жестким генетическим контролем. К концу 60–х годов нашего века были открыты гены иммунного ответа. Их назвали IR генами от слов immune respanse — иммунный ответ. Есть у тебя ген IR–1 — ты способен реагировать на определенную чужеродную субстанцию, проникшую в организм; нет этого гена — не способен. Есть ген IR–2 — способен реагировать на другую субстанцию, и так далее. Родилась иммуногенетика.

К этому же времени возникли принципиально новые разделы иммунологии. Прежде всего это трансплантационная иммунология, иммунология рака, иммунопатология. Именно эти направления иммунологии призваны решать задачи первостепенной важности. Именно в этих направлениях с наибольшей силой выявились принципы генетического анализа механизмов, препятствующих успешной пересадке органов от одного человека к другому, факторов, подавляющих раковый рост, и т. д.

Новая иммунология — это прежде всего иммунология, о которой можно сказать как о биологической дисциплине, породнившейся с генетикой. Если говорить строго, то вся современная иммунология связана иммуногенетикой в единое целое.

Действительно, причины отторжения органа при пересадках — генетические, механизм отторжения — иммунный; причины возникновения раковых клеток — генетические, механизмы, включающиеся в борьбу с раковым ростом, — иммунные; причины разной степени чувствительности к инфекционным микроорганизмам — генетические, а механизмы, побеждающие инфекцию и создающие невосприимчивость, — иммунные.

Сейчас старая, или, как ее стали называть, инфекционная, иммунология лишь один из равноправных членов блестящей когорты наук, в которой бок о бок стоят иммунохимия, иммунопатология, трансплантационная иммунология, иммунология рака. Обратите внимание — иммуногенетика в этот ряд не включена. Иммуногенетика — основание, на котором расположены все указанные науки.

 

Союз иммунологии с другими научными отраслями — это еще не новая иммунология

— И все–таки я не могу согласиться с тем, что союз одной научной отрасли с другой, даже если на их стыке возникает новая область знаний, делает каждую из этих отраслей новой.

— Вы хотите сказать, что я должен более серьезно обосновать сочетание слов «новая иммунология»?

— Да, хочу. Потому что новое — это значит новое. Что–то такое, чего не было раньше.

— Я продолжу. Что–то такое, о чем иммунологи даже не думали, не считали целью своих интересов. А оно возникло и оказалось самым главным. Оказалось, иммунитет создан совсем не для того, чтобы противостоять инфекциям.

Современную иммунологию называют новой не только потому, что у нее появились новые цели, но и потому, что она по–новому осмыслила сама себя. В наши дни нельзя считать главной, а тем более единственной задачей иммунитета защиту организма от микробов — возбудителей инфекционных болезней.

Новое осмысление иммунологии началось после 1944 года, после публикаций работ английского исследователя, лауреата Нобелевской премии сэра Питера Медавара.

Шли тяжелые военные годы. Советский народ вел священную войну. Воевали с гитлеровской Германией и наши союзники. В их числе была Англия. Тревожные ночи стояли в Лондоне. Фашистские самолеты–снаряды еще не умели перехватывать над Ла–Маншем. Они врезались в ночные лондонские кварталы. Лондонцы прозвали это оружие «летающими газовыми магистралями». Взрывы и пожары, возникавшие без объявления воздушных тревог, производили впечатление аварий магистральных газопроводов. Госпитали заполнились сотнями обожженных лондонцев.

Молодой профессор зоологии Лондонского университета оставил кафедру и пошел работать в один из госпиталей, лечить раненых и обожженных. Он стал пересаживать донорскую кожу вместо обожженной. Но чужая кожа не хотела приживаться. Почему?

Самолеты–снаряды научились расстреливать над Ла–Маншем. «Газовые магистрали» перестали летать. Проблему лондонских ожогов решили не врачи, а инженеры, создавшие радиолокаторы. Но вопрос: «Почему чужая кожа не приживается?» — остался для Медавара главным научным вопросом. В серии опытов на кроликах он показал, что отторжение пересаженной кожи относится к разряду иммунологических явлений.

Ремонт

В 1945 году было окончательно доказано, что иммунитет — это такие силы организма, которые защищают его не только от микробов; они защищают от всех генетически чужеродных клеток и тканей, от пересаженной кожи, от пересаженного органа, например почки.

По словам Лесли Брента, одного из учеников Медавара, он, Медавар, нанес явление отторжения пересаженных тканей на карту иммунологии. Проблема несовместимости генетически чужеродных тканей при пересадках оказалась иммунологической.

В последующее десятилетие генетики вывели особые породы лабораторных животных, в частности мышей. Эти породы получили название чистых линий. Все животные в пределах одной чистой линии идентичны. Как идентичны близнецы. Тождественны во всем! Пересаженные друг от друга ткани и органы животных приживаются, потому что они не несут элементов генетической чужеродности.

Особи одной чистой линии чужеродны особям другой линии. Многие гены у них различны. Иммунитет узнает генетическую чужеродность и отторгает ткань. Создание все новых чистых линий привело к появлению конгенных линий. Генетические различия между этими линиями всего лишь в один ген.

Пересадки тканей между представителями конгенных линий закончились отторжением. Стало очевидным, что иммунитет срабатывает на чужую клетку или орган даже в том случае, если эта клетка или орган отличаются всего по одному гену, то есть по минимальному генетическому признаку.

Перед исследователями встал вопрос: для чего такая строгость? Для чего существует столь жесткая цензура, которая умеет отличать чужеродность по минимальному признаку, то есть по одному гену?

Вот этот вопрос, который сформулировался к началу шестидесятых годов, и сделал иммунологию новой. Каждый задавший себе этот вопрос с неизбежностью отвечал, что такая жесткая цензура всего генетически чужого создана природой, конечно, не для того, чтобы построить какие–то препятствия для хирургов, пересаживающих органы. Природа создала эту строгую цензуру для каких–то гораздо более серьезных целей.

Эти цели оказались весьма существенными. Человеческий организм состоит из 1013 клеток. Это огромное сожительство генотипически идентичных друг другу клеток, возникших из одной оплодотворенной клетки и содержащих в себе одинаковые наборы генов. Но все в природе подвержено изменениям. Гены тоже.

Случайные изменения генов называются мутациями. Клетка, в которой произошла мутация гена, становится мутантом. Мутация — явление редкое, но среди скопления клеток всегда есть мутанты. Их частота примерно один на миллион, то есть 1 : 106. Если в человеческом теле 1013 клеток, то в каждый данный момент в нем может быть 107 мутантов. Десять миллионов клеток с иными (и, возможно, опасными) свойствами! Десять миллионов изменников! А если они начнут размножаться? Если примутся выполнять не ту работу, которая требуется организму? Не так ли возникают рак и некоторые другие неинфекционные болезни?

Кто–то должен справляться с этими изменниками. Теперь мы знаем кто — иммунитет. Ведь именно он умеет распознать и уничтожить чужака, даже если тот отличается всего одним геном. К этому сводится главная цель иммунитета — иммунологический надзор, иммунологический контроль за внутренним постоянством организма.

 

Организм с его иммунной системой уподобить какому–либо кибернетическому устройству с обратной связью и со способностью к самоохранению.

— Нельзя ли организм с его иммунной системой уподобить какому–либо кибернетическому устройству с обратной связью и со способностью к самоохранению в меняющихся условиях внешнего мира?

— Можно, но, чтобы аналогия была правдоподобной, необходимо ввести одно обязательное условие.

— Какое же?

— Необходимо условиться, что для внутренней и внешней связи машина пользуется словами, составленными из 20 букв. Запас слов ограничен, и машина ни в коем случае не может использовать чужое слово, не входящее в ее запас.

Вообразим машину, которая знает сто слов. Ими она запрограммирована при рождении. Ими она пользуется, чтобы отдать ту или иную команду своим частям и получить ответ. Машина даже может сочинять стихи. Но ей все время нужно восстанавливать запас слов, истраченных на команды или на стихи. Ведь однажды использованное слово навсегда исчезает из словаря. Его уже нет. А без этого слова какая–то команда не сможет быть передана одной из частей машины. Стихи тоже перестанут получаться. Поддерживать свое активное существование сколько–нибудь долго машина не сможет. Мы не вложили в нее бесконечного количества копий каждого из ста слов. А она тратит каждое слово после однократного использования. Как только кончится запас любого из ста слов, выключится управляемый этим словом узел или блок. Машина станет. Она не сможет разумно реагировать и писать стихи.

Но у нашей машины есть специальный канал, по которому из внешнего мира поступают целые фразы — конгломераты слов. Назовем их табличками со словами. В этом канале таблички разбиваются на отдельные буквы. Получается котел, наполненный всеми буквами латинского алфавита. Из этих букв машина строит свои сто слов и тратит их на всевозможные жизненные нужды.

Машина могла бы заимствовать из внешнего мира готовые слова. Да нужное слово не вдруг услышишь. И если пойти по такому пути, то в машину смогут проникать посторонние слова, не входящие в ее сотню. Посторонние слова будут создавать шумы. Посланное в качестве команды лишнее или неправильное слово та или иная реагирующая часть машины в лучшем случае не воспримет. В худшем случае реакция будет неправильной. Стихи утратят смысл. Машина погибнет.

Техника

А если посторонние слова и фразы, или, как мы их назвали, таблички, все–таки попадут в машину? Если они проникнут, минуя естественный путь — канал, в котором эти таблички разбиваются на составляющие их кирпичики–буквы? Что нужно иметь машине, чтобы сохранить свою целостность? Необходимы специальные устройства, расположенные по всему телу. Они есть.

Распознающий механизм абсолютно строг и не выключается никогда. Любая проплывающая табличка внутреннего или внешнего происхождения подвергается цензуре. Таблички прочитываются. И если в них хоть одно слово чужое или в своем слове стоит не та буква, дается команда, и табличка выкидывается из машины. Это правило строжайше соблюдается, так как оно жизненно обусловлено. Чуждая информация может вывести из строя важную часть или всю машину.

 

Что будет, если в каналы связи машины ввести информацию, записанную китайскими иероглифами.

— Следовательно, если мы искусственно введем в каналы связи машины табличку с любыми из ее ста слов, эту табличку цензура пропустит?

— Конечно.

— А если с отдельными буквами, не сложенными в слова?

— Тоже пропустит. Ведь чужая информация не проникает. Если на табличке ничего не будет записано, ее тоже не выбросят. Она не представит опасности и может быть использована для собственных записей.

— Ну а если ввести в машину, минуя естественный путь, табличку, записи на которой сделаны не латинским шрифтом, а китайскими иероглифами? Пропустит ее цензура или отдаст команду, и машина ее выбросит? Заподозрит ли она какой–либо смысл в иероглифах или решит, что табличка пустая?

Мы говорим о некой машинной модели живого существа, обладающего иммунитетом. Прототипы этой машины — мы с вами и все другие обитатели планеты Земля: и птицы, и земноводные, и рыбы. Слова — это основной жизненный субстрат. Для всего живого на Земле таким субстратом являются белки. Сто слов — это сто условных белков живого организма. Буквы, из которых складываются слова, — аминокислоты.

Самые разнообразные белки человеческого тела и тела кролика, кошки, лошади и лягушки, орла и окуня составлены из двадцати основных аминокислот — алфавита белковых слов. И как из малого количества букв алфавита складывается бесконечное число совершенно различных по смыслу слов и фраз, так из двадцати аминокислот получается бесконечное число разнообразных по форме и свойствам белковых молекул земных организмов.

Каждый организм строит свои «сто слов», типичные только для него белки. Строит по матрицам–генам, которые находятся в ядрах клеток. Набор генов каждого организма–индивидуума уникален и неповторим. Уникален и неповторим и узор белковых молекул. Итак, у любого организма свои «сто слов». Он использует их в процессе своего существования, а поистратив, строит снова.

Канал, по которому в нашу машину поступают буквы из внешнего мира, — аналогия с пищеварительным каналом животных. В нем, как и в машине, попадающие извне с пищей чужеродные белки–слова, или, как мы их назвали, таблички, разбиваются на составляющие их буквы–аминокислоты. Это необходимо потому, что узор чужих белков иной. Они построены под влиянием чужеродной генетической информации, тоже уникальной, а следовательно, иной, по чужим чертежам, чужим матрицам. Их сначала необходимо разбить на составляющие буквы–аминокислоты, чтобы сложить свои слова.

Иммунитет

Теперь представим, что в организме появляется белок, который не мог быть создан под влиянием собственной генетической информации. Иммунологическая цензура в тот же миг отдаст приказ, иммунологической армии уничтожить его и выкинуть из организма. Начинается выработка антител, разрушение и отторжение пришельца. Будь то микроб, или чужеродные клетки крови, или чужеродные белки, или пересаженные ткани и органы. А если машина сама случайно ошибется и неправильно построит свое слово, напишет с ошибкой, если произойдет опечатка, цензура расценит его как чужое и уничтожит или выкинет.

Таким образом, если раньше главной задачей иммунной системы считалась защита организма от инфекций, то после 1945 года, после работ в области трансплантационной иммунологии, сформировалось новое понимание. Главная задача иммунитета — уничтожение клеток, которые генетически отличаются от собственных, будь то клетка чужая или клетка собственного тела, изменившаяся в генетическом отношении. А поскольку микроб тоже чужеродный биологический агент, действие иммунных механизмов распространяется и на него. Иммунитет — это способ защиты внутреннего постоянства организма от живых тел и веществ, несущих на себе признаки генетически чужеродной информации.

Имеются различные формулировки главной миссии иммунитета. Наиболее четкие две: первая принадлежит нобелевскому лауреату Фрэнку Бернету, вторая — научному обозревателю английского радио Дэвиду Уилсону. По Бернету, главная задача иммунитета — распознавание своего и чужого. Эта формулировка требует некоторых пояснений. Необходимо подчеркнуть, что, скажем, для человека чужими считаются не только микробы или клетки организма иного вида, но и клетки любого другого человека, даже матери, отца или брата.

Уилсон, не искажая научной сути, а, напротив, делая ее более точной, доводит формулировку до вершины образности. В его интерпретации главная миссия иммунитета — отличать «Я» от «не Я». Любая клетка, любой белок или ткань должны уничтожаться, если это «не Я». Иными словами, иммунная система признает своими только свои субстанции: «Я или не Я», и никаких компромиссов.

Суша, вода и воздух нашей планеты заселены сотнями тысяч видов живых существ. Среди них самые представительные микроорганизмы — бациллы, бактерии, вибрионы, кокки, вирусы. Их мириады. Человек живет в мире микроорганизмов; иммунитет — его пропуск в этот мир. Такова суть старой иммунологии, которая занималась изучением защиты организма от инфекционных болезней. Квинтэссенция новой иммунологии в другом: иммунитет не только пропуск во внешний мир, но и гарантия от внутренней измены. А это значит, что ненормальная работа иммунной системы может быть причиной многих болезней. Среди них рак, ревматические поражения суставов, астма, некоторые виды малокровия, болезни щитовидной железы, бесплодие, красная волчанка и другие кожные заболевания. Ряд болезней новорожденных связан с иммунологическим конфликтом между матерью и плодом (резус–несовместимость) и с недоразвитием иммунной системы.

Недаром новую иммунологию называют «лекарством от всех болезней». Правда, о «лекарстве» говорить рано. Скорее это «надежда на лекарство» от многих болезней.

Вопрос о «китайских иероглифах» представляет собой одну из проблем новой иммунологии.

Иммунитет как способ защиты от всего биологически чужеродного возник в результате развития жизни на Земле. Основа жизни на нашей планете — белки. Вспомним опять таблички машины, исписанные белковыми словами, состоящими из букв–аминокислот. Наша цензура знает лишь этот земной аминокислотный алфавит. И охрана порядка строится в соответствии со знакомыми явлениями.

А если жизнь на других планетах зиждется на иных принципах? Если она строит иной тип генетической информации — не аминокислоты и белки? Способна ли наша иммунологическая цензура, веками обученная лишь аминокислотному алфавиту, столкнувшись с мельчайшими, может быть микроскопическими, наверняка непонятными обитателями иной планеты, распознать чужаков? Это мы и должны выяснить. Она может пропустить их, приняв таблички с «китайскими иероглифами» за пустые. А тогда они размножатся в крови и тканях и могут погубить человека.

Помните, в «Войне миров» Герберта Уэллса пришельцы с Марса гибнут от невинных, неболезнетворных земных бактерий?

 

Неужели исследования космоса действительно поставили перед иммунологами серьезные задачи?

— Более чем серьезные. И не только на перспективу, но и на сегодня. Возникла целая отрасль — космическая иммунология. Это одна из самых современных связей иммунологии.

Конечно, говорить «иммунология и космос» не совсем верно. Иммунология вступает в связь не с самим космическим пространством. Не будем придираться к словам. Понятно, что речь идет о космической медицине и биологии самых последних лет.

В наиболее краткой и приближенной форме задачи космической медицины: изучить влияние космического полета — невесомости, ускорения, космической радиации на человека; обеспечить нормальную жизнедеятельность организма в герметически замкнутом пространстве корабля, а в будущем и на других планетах и небесных телах.

Содружество

Возникает масса биологических проблем. А перед иммунологией встает вопрос: как поведет себя в необычных условиях космического полета одна из важнейших систем человеческого организма — иммунологическая система защиты от микробов? Будет ли устойчивость организма к бактериям и вирусам столь же надежна, как в нормальных условиях жизни на Земле?

Вопрос может показаться излишним. Ведь и результаты известных всему миру космических полетов не дают оснований опасаться инфекционных осложнений.

Но нельзя забывать: мы живем в такое время, когда первый этап завоевания космоса, освоение и исследование околоземного космического пространства, завершается. Следующий этап — освоение ближайших небесных тел, в частности, планет солнечной системы. А наименьшее из возможных расстояний от Земли до Марса — 78 миллионов километров.

С медико–биологической точки зрения главная особенность следующего этапа — длительность. Она–то во многом и определяет задачи, стоящие перед космической биологией и медициной. Космическая медицина и биология наших дней должны изучить и обеспечить длительные космические полеты, продолжающиеся месяцы и годы. С наступлением эры длительных космических полетов возникают новые биологические проблемы. В частности, иммунологические: взаимодействие человеческого организма и микробов во внеземных условиях. Это уже целая отрасль науки — космическая иммунология.

По меньшей мере три предпосылки определяют возникновение этой отрасли.

Во–первых, люди путешествуют в космических кораблях и везут с собой обязательных бесплатных пассажиров — микробов — обитателей их кишечника, кожи, рта и других полостей организма. Кабина корабля, замкнутое пространство, своеобразная ампула, в которую помещены и герметически закрыты люди с микробами. Стерилизация человека невозможна хотя бы потому, что ряд микробов выполняет жизненно важные для организма функции — ферментативные, витаминообразующие и прочие, и расстаться с ними нам будет не просто тяжело, сегодня это абсолютно невозможно. Вместе с тем многие представители нормального микробного населения нашего тела, безусловно, носители зла. Либо всегда, либо при определенных условиях. Например, стафилококки, стрептококки, кишечная палочка, возбудители газовой гангрены, вирусы.

В условиях закупоренной «ампулы» — кабины процессы циркуляции и удаления микробов будут иные, чем в обычных наземных условиях. Возникнут изменения в микробных ассоциациях воздуха, поверхностей кабины и в теле человека. Изменение привычных, индивидуальных для данного человека микробных сообществ может произойти также вследствие тесного контакта космонавтов между собой опять же в герметизированном пространстве. Встает ранее не существовавшая проблема заражения одного человека микробами, безвредными для другого. Но у первого они могут вызвать различные болезненные состояния.

Недавно были опубликованы данные советских исследователей об условиях длительного обитания людей в герметических пространствах, имитирующих условия полета. Выяснилось, что количество микробов, в том числе и болезнетворных, возрастает как в окружающей среде, так и на теле человека.

Таким образом, в условиях длительных космических полетов реально возможны изменения нормального микробного населения тела космонавтов и окружающего их пространства. Ожидаются изменения обычных микробных ассоциаций и чрезмерное накопление отдельных форм бактерий. По–видимому, в результате, например, мутаций, возникающих под влиянием ионизирующих излучений, изменятся также и свойства микробов.

Иммунологию волнует, какие виды микроорганизмов займут главенствующее положение в этих новых ассоциациях, какие типы внутри этих видов. И кто может явиться наиболее вероятным и частым болезнетворным агентом? Эти вопросы ставятся не для удовлетворения научной любознательности. Решение их должно ответить: против каких возбудителей необходимо вакцинировать перед полетом?

Второе, что интересует космическую иммунологию: действие условий длительного полета на невосприимчивость к возбудителям инфекций, в том числе и к представителям обычной микрофлоры тела человека. Ведь в космических кораблях человек окажется под влиянием необычных, длительно действующих факторов: невесомость или искусственная гравитация, специальная диета и искусственная атмосфера, вынужденное ограничение подвижности, влияние космической радиации и др. И как поведет себя иммунологическая защита при всех этих странностях, пока известно мало. Может быть, эти факторы окажутся настолько неблагоприятными, что защитные силы организма ослабнут? Да и в микрофлоре тела и кабины неизбежно произойдут сдвиги, о которых говорилось выше.

Основной путь решения этих вопросов — моделирование необычных условий космического полета на Земле и изучение их воздействия на иммунитет. Надо выяснить, сколь эффективна будет вакцинация. Вскрыть механизм действия этих условий на основные иммунные процессы. Космическая иммунология должна не только решить эти задачи, но и найти пути предотвращения возможных осложнений.

Третья предпосылка — почти фантастика. Но она не менее важна, а со временем может стать ведущей проблемой космической иммунологии. Речь идет о возможном столкновении человека с внеземными формами жизни. Отправляясь в космос, мы отправляемся почти в неведомое. Кто знает, что будет при очередном полете и особенно при залете куда–нибудь?

Иммунологов прежде всего интересуют встречи с микробами. Фантастов — контакты с разумными существами. Но встречи с микробами могут оказаться более фееричны, необычны и фантастичны по своим результатам, что писатели еще пожалеют об упущенных возможностях. Неизвестные микробы могут помочь ликвидировать болезни, создать безумно чудесных качеств напитки, сделать человека светящимся в темноте. Это первое, что приходит в голову. А если поработать, то можно дойти до совершенно сногсшибательно заманчивых выдумок.

В конце концов микробы, наиболее вероятно, станут первыми встретившимися нам аборигенами. Рано или — поздно такое столкновение произойдет. Проблемы, возникающие в связи с этим, имеют самое тесное отношение к экзобиологии — науке о жизни за пределами нашей планеты. Иммунологию прежде всего интересует, что произойдет, когда встретятся землянин и совсем–совсем чужой микроб. Сумеет ли человеческий организм быть столь же невосприимчивым к чужим микробам, как и к своим, земным? Вот в чем вопрос.

Иммунитет как способ защиты организма возник вследствие эволюции жизни в конкретных земных условиях. Реакции иммунитета направлены на отторжение или нейтрализацию всего чужого, проникающего в организм, — вирусов, бактерий, животных клеток, тканей, белков. Но чтобы включились реакции иммунитета, посторонние тела (живые или мертвые) должны быть распознаны и признаны чужеродными.

Первая задача защитных сил — сказать: свой или чужой. Любые клетки или их продукты принимаются за чужое и включают реакции иммунитета, если они несут генетически чужеродную информацию. Для этого они должны быть построены из зволюционно знакомых для иммунных механизмов молекул, а признаки их чужеродности записаны земным «шрифтом».

Степень универсальности иммунитета неизвестна. Если внеземные микроорганизмы и продукты их жизнедеятельности не несут химических группировок, позволяющих человеческим иммунным механизмам определить их как чужеродных, если они не будут распознаны и не включат защитные реакции, возможно безудержное размножение чужих микробов в крови и тканях человека. Что тогда?

Еще раз вспомним Герберта Уэллса. «Война миров». Пришельцы с Марса погибают от невинных земных бактерий. Сегодня уэллсовская фантазия превращается в реальную научную проблему. Иммунология уже сейчас имеет настораживающие в этом отношении факты. Как говорится, иммунология уже «получила сигнал».

Нам уже абсолютно ясно: иммунитет стимулируется чужеродными веществами — антигенами. Синтезированы очень большие молекулы полипептидов, состоящие из основных компонентов белка — аминокислот. При определенной величине и составе молекул эти искусственные полипептиды становятся антигенами. Но при одном условии: если они составлены из таких же в оптическом отношении аминокислот, из каких построено все живое на Земле. Из аминокислот, отклоняющих плоскость поляризованного света влево, из левовращающих изомеров.

Правовращающие соединения имеют абсолютно то же химическое строение. Лишь одна группировка расположена под иным углом ко всей молекуле. И этого достаточно, чтобы сложное органическое вещество, составленное из правовращающих молекул, не воспринималось как чужое, не стимулировало иммунологических реакций! Земной организм, построенный на основе левовращающих соединений, не может распознать (или делает это несовершенно) чужеродное вещество, составленное из правовращающих аминокислот.

Ясно первое, что нас волнует: чужая жизнь, которая рознится от нашей всего лишь вращением плоскости поляризованного света. Всего лишь! А что, если микроорганизмы других миров построены на основе правовращающих соединений и наш иммунитет окажется бессильным перед ними?

Задачи космической иммунологии в этой области чрезвычайно трудны и интересны: моделирование возможных реакций млекопитающих на различные природные и искусственные высокополимерные соединения. Ибо, какова бы ни была форма внеземной жизни, она обязательно связана с высокополимерными соединениями. Изыскание путей стимуляции иммунитета по отношению к необычным полимерам, изыскание путей превращения неантигенных соединений в антигены и иммунологические исследования объектов из космоса — вот этапы космической иммунологии в этой области.