Стандарты изобретательства

Петров Владимир

Глава 4. Класс 2. Развитие вепольных систем

 

 

4.1. Подкласс 2.1. Переход к сложным веполям

Стандарт 2.1.1. Цепные веполи

Если нужно повысить эффективность вепольной системы, задачу решают превращением одной из частей веполя в независимо управляемый веполь и образованием цепного веполя. См. схему (4.1).

Пример 4.1. Автоматическая система голосования

Система включает в себя необходимое количество одинаковых элементов системы, соответствующее участкам голосования, связанных между собой.

Пример 4.2. Ультразвуковой скальпель

Ультразвуковые технологии достаточно широко применяются в медицине. Но существует проблема фокусировки луча в малой области. Оптоакустический преобразователь, разработанный в Мичиганском университете, содержит фокусировочный элемент из упругого полимера, покрытого слоем углеродных нанотрубок, которые поглощают лазерное излучение и преобразуют его в тепло. Под действием этого тепла полимерный элемент расширяется, генерирует и фокусирует в очень узкую область (75 мкм в поперечнике и 400 мкм по оси) ультразвуковой пучок частотой 15 МГц, создавая в ней зону кавитации с амплитудой давления более 50 МПа. Такой «ультразвуковой скальпель» позволит проводить более точные медицинские операции, чем традиционные инструменты.

Стандарт 2.1.2. Двойные веполи

Если дан плохо управляемый веполь и нужно повысить его эффективность, причем замена элементов этого веполя недопустима, задача решается постройкой двойного веполя путем введения второго поля, хорошо поддающегося управлению. См. схему (4.2).

Пример 4.3. Самоподдерживающийся генератор электроэнергии

Электрические колебания в металлической «внутренней катушке» испускают индуктивные фотоны по направлению к одной или нескольким «усиливающим катушкам», состоящим из фотопроводника, металлического проводника с легированным полупроводниковым покрытием, или сверхпроводника.

Электроны, обладающие малой инерциальной массой в усиливающей катушке (-ах), получают из «промежуточной катушки» поперечную силу, не имеющую противодействующей силы, что исключает эту силу из закона сохранения энергии. Электроны с малой массой в «усиливающей катушке (-ах)» получают повышенное ускорение, пропорциональное отношению нормальной массы электрона к меньшей массе.

Вторично испускаемая энергия индуктивных фотонов увеличивается пропорционально повышенному ускорению электронов, возводится в квадрат. К примеру, коэффициент усиления индуктивной энергии фотоэлектронов селенида кадмия (CdSe), в котором нормальная масса электрона составляет 0,13x, равен 59x.

Усиленная энергия индуктивных фотонов из «усиливающей катушки» возбуждает колеблющуюся электрическую энергию в одной или нескольких металлических «выходных катушках». Выходная электроэнергия превышает входную, если большая часть усиленной энергии индуктивных фотонов направлена на выходные катушки, а не на промежуточную катушку в качестве противодействующей силы.

После того как внешний источник энергии начинает возбуждать колебания, возврат избыточной энергии делает устройство самоподдерживающимся генератором электроэнергии, который можно использовать для полезных целей.

Рис. 4.1. Самоподдерживающийся генератор электроэнергии.

Патент США 2012/0080888

Задача 4.1. Дрон

Условия задачи

Дроны сегодня используются не только для выполнения полезных операций, но и таких, как контрабандная доставка наркотиков и других предметов в места лишения свободы, полеты над военными объектами и т. д.

Как не допустить это?

Разбор задачи

Использовать стандарт 2.1.2.

Решение

Компания Department 13 разработала устройство перехвата управления беспилотниками Mesmer. Оно получает доступ к протоколам связи дронов, как это было предложено Defense Advanced Research Projects Agency (DARPA), используя при этом радиочастоты и технологию Bluetooth. Эта система подвергает дроны принудительной посадке.

Антидрон-технология может захватывать данные телеметрии и видео, передаваемые обратно оператору. Это также потенциальная возможность идентификации.

 

4.2. Подкласс 2.2. Форсирование веполей

Стандарты подкласса 2.2 представляет собой механизмы исполнения законов увеличения степени управляемости и динамичности.

Стандарт 2.2.1. Переход к более управляемым полям

Если дана вепольная система, ее эффективность может быть повышена заменой неуправляемого (или плохо управляемого) рабочего поля управляемым (хорошо управляемым) полем, например, заменой гравитационного поля механическим, механического — электрическим и т. д. Эта закономерность показана на рис. 1.6.

Пример 4.4. Светильник

Хемилюминесценция использована фирмой «Ремингтон Армс (Remington Arms)» для создания лампы, в которой свечение возникает при воздействии кислорода воздуха на некоторые химические активные вещества.

Пример 4.5. Компьютерная мышка

В компьютерной мышке механическое движение шарика, который позволял отследить за движением руки, заменили считыванием информации с помощью лазера.

Стандарт 2.2.2. Дробление В 2

Если дана вепольная система, ее эффективность может быть повышена путем увеличения степени дисперсности (дробления) вещества, играющего роль инструмента. Эта закономерность показана на рис. 1.7.

Пример 4.6. Компьютерные вычисления

Обширные вычисления (например, в области астрономии) могут выполняться значительно быстрее, если их разбить и обработать на многих компьютерах, даже если используется только время простоя.

Пример 4.7. Режущий инструмент

Компания Iscar (Израиль) выпускает режущие инструменты с заменяемой режущей частью (рис. 4.2а), имеющей несколько режущих граней. Когда одна грань затупляется, то режущую часть поворачивают другой гранью. После того как затупляются все грани, заменяют режущую часть, а не весь инструмент. Iscar выпускает токарные резцы (рис. 4.4б), фрезы (рис. 4.2в), сверла (рис. 4.2г).

Рис. 4.2. Режущие инструменты фирмы Iscar

Стандарт 2.2.3. Переход к капиллярно-пористым веществам (КПМ) .

Эта тенденция изложена в п. 1.1.

Пример 4.8. Защита насаждений от заморозков

Растения и посевы покрывают полимерной «шубой» из пены, защищая их от заморозков. Она безвредна для растений, долго держится, хорошо защищает почву от мороза, а при необходимости без затруднений смывается водой.

Пример 4.9. Металлическая микрорешетка

Команда ученых из университета Калифорнии в Ирвине, лаборатории HRL и Калифорнийского технологического института разработали синтетический пористый металлический материал. Это сверхлегкая форма пенометалла, который имеет малую плотность вплоть до 0,9 мг/см3 — самую низкую для твёрдого вещества. До этого самой низкой плотностью обладали аэрогели — 1,0 мг/см³.

Материал практически полностью восстанавливает себя после сильного сжатия.

Стандарт 2.2.4. Динамизация

Если дана вепольная система, ее эффективность может быть повышена путем увеличения степени динамизации, то есть перехода к более гибкой, быстро меняющейся структуре системы. Закон увеличения степени динамичности изложен в, а закономерность дробления — в главе 1.

Пояснения.

1. Треугольным символом с волнистой линией обозначена динамичная вепольная система, перестраивающаяся в процессе работы.

2. Динамизация В2 чаще всего начинается с разделения В2 на две шарнирно соединенные части. Далее динамизация идет по линии: один шарнир — много шарниров — гибкое В2.

3. Динамизация П в простейшем случае осуществляется переходом от постоянного действия поля (или П совместно с В2) к импульсному действию.

Пример 4.10. Тренировка спортсменов

Предлагается интерактивный способ тренировки спортсменов, например футболистов.

За команду противника «играют» изображения, создаваемые излучателями света, установленными на дронах, летающих над игровым полем по заданной тренером программе, создавая определенные ситуации.

Пример 4.11. Управление амортизатором

На горных велосипедах имеется система автоматического управления амортизатором, подстраивающаяся под конкретные условия дороги. В гидроцилиндре установлены пьезоэлектрические датчики для управления потоком жидкости в гидроцилиндре, тем самым они автоматически управляют степенью амортизации.

2.2.4.1. Использование фазовых переходов

Эффективная динамизация системы может быть осуществлена за счет использования фазовых переходов первого рода (например, замерзание воды или таяние льда) или второго рода (например, эффект «памяти формы»).

Задача 4.2. Радиолокационная станция

Условие задачи

Имеется мощная радиолокационная станция (РЛС) с довольно массивной антенной большой площади. Антенна закреплена на валу, но поворачивается на нем очень редко и потому не имеет привода, а разворачивается вручную. После разворота антенна на валу крепится с помощью фиксирующего устройства и болтового соединения. Усилия для удержания массивной антенны на валу нужны значительные, и поэтому приходится болты затягивать достаточно сильно, но из-за сильной затяжки вал деформируется и повернуть его в следующий раз становится практически невозможным. Как быть?

Разбор задачи

Использовать стандарт 2.2.4.1.

Решение

Вал удерживается в легкоплавком веществе, которое расплавляется при развороте. В изобретении догадались на конце вала сделать поплавок. Тогда в расплавленном состоянии жидкость будет поддерживать антенну и ее будет легче выставлять в новое положение.

Пример 4.12. Болтовое соединение

Способ изготовления болтового соединения, преимущественно для работы в условиях вибраций, включает нанесение на рабочую часть заготовки болта материала с эффектом памяти формы (ЭПФ) типа нитинол. После нанесения нитинола производится накатка резьбы при температуре мартенситных превращений (-150 °С) и сборка конструкции. После сборки узла болтового соединения осуществляют его кратковременный нагрев до температуры (80—120) °С до возникновения между резьбовой частью болта, покрытой нитинолом, и резьбовой частью соединяемых элементов прессовой посадки, надежно работающей в условиях вибраций. В случае необходимости в болтовом соединении с болтом, покрытым нитинолом, используют обычную гайку с резьбой, при нагреве которой обеспечивается соединение по прессовой посадке.

В результате повышается надежность болтового соединения, работающего в условиях вибрации, и снижается вес конструкции (рис. 4.3).

Рис. 4.3. Болтовое соединение. Патент РФ 2 256 108

1 — болт; 2 — слой нитинола; 3, 4 — соединяемые детали.

Стандарт 2.2.5. Структуризация полей

Если дана вепольная система, ее эффективность может быть повышена переходом от полей однородных или имеющих неупорядоченную структуру к полям неоднородным или имеющим определенную пространственную структуру (постоянную или переменную):

Пояснения.

Значок # над буквой П указывает, что поле имеет определенную пространственно-временную структуру.

Пример 4.13. Осаждение капель пара

Для охлаждения теплой воды применяются градирни. Пар подается в градирню, проходя по трубе градирни, конденсируется и стекает в виде струек вниз, тем самым отдавая тепло стенкам градирни, которое может использоваться в дальнейшем. Однако часть пара выбрасывается в атмосферу. Особенно подвижны аэрозоли с малым размером частиц.

Для удержания этих частиц в градирне создаются стоячие волны. Стоячие волны получают генерацией акустический волн, направленных к стенкам градирни и отраженных от стенок волн.

Капли воды соединяются и стекают по стенкам градирни.

Таким образом, полностью используется имеющееся тепло.

Пример 4.14. Изменение атмосферных условий

Активное воздействие на атмосферные процессы с целью вызывания осадков. Воздействуют на атмосферу над заданным районом электромагнитным излучением в виде импульсов в момент времени, когда заданный район оказывается в соответствующем ему центре ночной стороны Земли

(рис. 4.4).

Рис. 4.4. Изменение атмосферных условий. Патент РФ 2 058 071

1 — генератор; 2 — излучатель; 3 — механизм поворота излучателя; 4 — луч; 5 — поверхность Земли; 6 — слой ионосферы; 7 — заданный район.

2.2.5.1. Пространственная структура поля

Если веществу, входящему в веполь (или могущему войти), должна быть придана определенная пространственная структура, то процесс следует вести в поле, которое имеет структуру, соответствующую требуемой структуре вещества:

Пример 4.15. Обработка металлических материалов

Обработку выполняют от источника постоянного тока в жидкой токопроводящей рабочей среде с регулированием длительности импульса тока. В качестве жидкой токопроводящей рабочей среды используют реологическую жидкость. Длительность импульса тока регулируют вязкостью рабочей среды. Длительность пауз между импульсами тока регулируют по времени восстановления максимального тока в импульсе. Изобретение позволяет повысить производительность, точность обработки, расширить технологические возможности электрохимического процесса в пульсирующем токе.

2.2.5.2. Использование стоячих волн

Если надо перераспределить энергию поля, например с целью концентрации, или, наоборот, создать зоны, где действие поля не проявляется, следует перейти к использованию стоячих волн.

Пример 4.16. Оборудование для скважин

Механические примеси вредно влияют на работу оборудования в скважине.

Для снижения этого вредного влияния создаются акустические стоячие волны. Для создания акустических колебаний используют магнитострикционное оборудование, требующее подвода электричества при помощи кабеля и генератора ультразвуковых частот.

В предлагаемом устройстве предлагается преобразовывать низкие частоты от работы оборудования с помощью четвертьволновых резонаторов.

Пример 4.17. Хроматограф

Принцип функционирования хроматографа состоит в том, что по всей хроматографической колонке внутри нее или на ее стенках создают периодическую последовательность стоячих волн колебаний с длиной волны, сопоставимой (и менее) с размером поперечного сечения хроматографической колонки, после чего анализируемую пробу пропускают через созданную последовательность стоячих волн.

Стандарт 2.2.6. Структуризация веществ

Если дана вепольная система, ее эффективность может быть повышена переходом от веществ однородных или имеющих неупорядоченную структуру к веществам неоднородным или имеющим определенную пространственную структуру (постоянную или временную):

Пояснения.

Значок # над буквой В указывает, что вещество имеет определенную пространственно-временную структуру.

Пример 4.18. Структуризация жидкостей

Структуризация и активизация жидкостей осуществляется с помощью воздействия электромагнитных полей (сильного магнитного, электрического и импульсного светового). Активизация жидкостей, в частности воды и жидких полимеров, приводит к улучшенным свойствам в химических и биологических процессах, в которых используются активированные жидкости.

Активированные жидкости, в частности вода, способствуют уменьшению щелочности, кислотности или жесткости воды, снижению содержания бактерий в загрязненной воде, увеличению времени схватывания и прочности бетона на сжатие, а также повышению скорости роста и жизнеспособности растений. При активации воды наблюдалось физиологическое воздействие на клетки и вирусы, а также на людей.

Пример 4.19. Структура воды

С. В. Зенин впервые построил геометрическую модель структурированной воды, а затем, используя контрастно-фазовый микроскоп, получил изображение этой структурированной воды. На полученной фотографии хорошо видна ее ячеистая структура. Структурной единицей воды является кластер, состоящий из клатратов, природа которых обусловлена дальними кулоновскими силами. В структуре кластеров закодирована информация о взаимодействиях, имевших место с данными молекулами воды. В водных кластерах за счет взаимодействия между ковалентными и водородными связями между атомами кислорода и атомами водорода может происходить миграция протона (Н+) по эстафетному механизму, приводящая к делокализации протона в пределах кластера.

Вода, состоящая из множества кластеров различных типов, образует иерархическую пространственную жидкокристаллическую структуру, которая может воспринимать и хранить огромные объемы информации.

В случае с водой переносчиками информации могут быть физические поля самой различной природы. Так, установлена возможность дистанционного информационного взаимодействия жидкокристаллической структуры воды с объектами различной природы при помощи электромагнитных, акустических и других полей.

Пограничный слой воды проявляет физические свойства, отличные от окружающей «объемной» воды, в частности большую электропроводность, меньшую по величине теплоемкость и т. д. Отличия в физических свойствах пограничной и объемной воды, как следует из экспериментальных данных, нелинейно возрастают при приближении к поверхности.

В статье высказаны гипотезы:

— вода в живом организме присутствует только в форме пограничной воды;

— каждая биологическая структура формирует пограничную воду со свойствами, зависящими от молекулярной и пространственной структуры ее поверхности.

2.2.6.1. Введение экзотермических веществ

Если нужно получить интенсивное тепловое воздействие в определенных местах системы (точках, линиях), в эти места следует заранее ввести экзотермические вещества.

Пример 4.20. Самонагревающиеся контейнеры

Контейнеры работаю на принципе экзотермической реакции.

Тепло генерируется в ходе химической реакции оксида кальция (CaO) с водой, в результате получается гидроксид кальция Ca (OH) 2. Затем он вступает в реакцию с присутствующим в воздухе углекислым газом (СО2), при этом опять образуется карбонат кальция (он же известняк, CaCO3) и вода. То есть исходные компоненты возвращаются в первоначальное состояние. Причем реакция нейтральна в плане выработки CO2.

Такие контейнеры известны давно, еще в 1934 году в США был выдан патент. Совершенствование такого типа контейнеров продолжается до сегодняшнего дня. Многие компании выпускают разнообразные контейнеры для разогревания жидкостей, например кофе и разнообразной пищи.

 

4.3. Подкласс 2.3. Форсирование согласованием ритмики

Данный подкласс является реализацией закона согласования.

Стандарт 2.3.1. Согласование ритмики П и В 1 (или В 2 )

В вепольных системах действие поля должно быть согласовано по частоте (или сознательно рассогласовано) с собственной частотой изделия (или инструмента).

Пример 4.21. Компьютерная томография

Компьютерная томография сердца может быть размыта из-за движения сердца. Синхронизация с ЭКГ (электрокардиограммой) вносит коррективы.

Пример 4.22. Ритм работы

Работа конвейерной линии согласуется с последовательностью работы на различных автоматах, выполнением отдельных операций, с общим графиком работы и т. п.

Пример 4.23. Дом на кинематическом фундаменте

Здание стоит на толстых опорах, внизу к ним прикреплены железобетонные катки, которые не имеют жесткой связи с фундаментом, а опираются на железобетонные подушки с выемкой. По принципу действия такая система напоминает игрушку-неваляшку — при толчках здание отклоняется от положения равновесия, а затем возвращается обратно. Это самая простая из систем сейсмоизоляции, но весьма эффективная: дом по собственной частоте получается длиннопериодическим, и короткопериодические толчки просто «не замечает».

Это пример на рассогласование .

Стандарт 2.3.2. Согласование ритмики П 1 и П 2

В сложных вепольных системах должны быть согласованы (или сознательно рассогласованы) частоты используемых полей.

Пример 4.24. Блютуз

При передачи данных через Bluetooth могут возникать помехи, чтобы избежать их, происходит частая смена несущей частоты. Частота меняется в соответствии с псевдослучайной последовательностью чисел, известной как отправителю, так и получателю.

Пример 4.25. Массаж

Предложено массаж тела делать в ритме сердечных сокращений.

Стандарт 2.3.3. Согласование несовместимых или ранее независимых действий

Если два действия, например изменение и измерение, несовместимы, одно действие осуществляют в паузах другого. Помните: паузы в одном действии должны быть заполнены другим полезным действием.

Пример 4.26. Многозадачный компьютер

На многозадачном компьютере задачи с более низким приоритетом обрабатываются в паузах между обработкой высокоприоритетных задач.

Пример 4.27. Cвязь

Раньше по одному проводу передавали одну информацию (один сигнал). Затем передавали несколько сигналов на разных частотах.

При передаче импульсных сигналов между импульсами одной информации помещали импульсы другой информации.

 

4.4. Подкласс 2.4. Феполи (комплексно-форсированные веполи)

Подкласс описывает способы применения магнитного поля, ферромагнитных частиц, магнитной и реологической жидкостей.

Стандарт 2.4.1. «Протофеполи»

Если дана вепольная система, ее эффективность может быть повышена путем использования ферромагнитного вещества и магнитного поля:

Пояснения.

1. Стандарт о применении ферромагнитного вещества, не находящегося в измельченном состоянии. Речь идет о «протофеполях», «полуфеполях» — структуре на пути к феполям.

2. Стандарт применим не только к простым веполям, но и к комплексным, а также к веполям, включающим внешнюю среду.

Пример 4.28. Магнитная подушка

Поезда на магнитной подушке левитирует за счет отталкивания одинаковых магнитных полюсов, при этом используется линейный двигатель. Его располагают или на поезде, или на пути, или там и там.

Пример 4.29. Шины автомобиля

Компания Goodyear разработала концепцию инновационных шин под названием Eagle-360, имеющих сферическую форму.

Шины прикреплены к автомобилю с помощью магнитной подвески (магнитной левитации). В каждом колесе установлен электромотор и аккумулятор, а оставшееся пространство заполнено армированным пенопластом.

Эти шины позволяет автомобилю двигаться во всех направлениях, что способствует лучшей маневренности и парковке в городских условиях. У них значительно меньший износ, так как колесо изнашивается по всей сферической поверхности.

В колесе установлено много датчиков, которые определяют состояние дороги и погодных условий и передают эти данные другим машинам и системе управления дорожным транспортом.

Шины имеют рисунок протектора, напоминающий структуру поверхности мозгового коралла (рис. 4.5а). Эта поверхность твердеет при сухой погоде и смягчается при влажной, обеспечивая оптимальное управление автомобилем и предотвращая аквапланирование.

Рис. 4.5. Концепция шины компании Goodyear

Рис. 4.6. Концепция автомобиля со сферическими шинами

Пример 4.30. Удержание детали

Фиксация и ориентация деталей в магнитном поле. Например, винт удерживается на конце намагниченного наконечника отвертки.

Стандарт 2.4.2. Феполи

Чтобы повысить эффективность управления системой, необходимо перейти от веполя или «протофеполя» к феполю, заменив одно из веществ феррочастицами (или добавив феррочастицы) — стружку, гранулы, зерна и т. д. — и использовав магнитное или электромагнитное поле. Эффективность управления повышается с увеличением степени дробления феррочастиц, поэтому развитие феполей идет по линии «гранулы — порошок — мелкодисперсные феррочастицы». Эффективность повышается также с увеличением степени дробления вещества, в которое введены феррочастицы. Развитие здесь идет по линии «твердое вещество — зерна — порошок — жидкость»:

Пояснения.

1. Переход к феполям можно рассматривать как совместное применение двух стандартов-2.4.1 (введение ферровещества и магнитного поля) и 2.2.2 (дробление вещества).

2. Превратившись в феполь, вепольная система повторяет цикл развития веполей — но на новом уровне, так как феполи отличаются высокой управляемостью и эффективностью. Все стандарты, входящие в группу 2.4, можно считать своего рода «изотопами» нормального ряда стандартов (группы 2.1—2.3). Выделение «фепольной линии» в отдельную группу 2.4 оправдано (во всяком случае, на этом этапе развития системы стандартов) исключительным практическим значением феполей. Кроме того, «фепольный ряд» удобен как тонкий исследовательский инструмент для изучения более грубого «вепольного ряда» и прогнозирования его развития.

Пример 4.31. Терапия

К больным клеткам осуществляется селективная доставка магнитных наночастиц. Лечение осуществляется с помощью гипертермии (нагрев локальных мест), воздействуя на доставленные магнитные частицы, например, токами высокой частоты.

Пример 4.32. Обработка скважины

Для повышения эффективности обработки скважины в пласт закачивают ферромагнитную жидкость с ферромагнитными частицами и поверхностно-активным веществом и воздействуют на пласт вращающимся магнитным полем.

Стандарт 2.4.3. Магнитная жидкость

Эффективность феполей может быть повышена путем перехода к использованию магнитных жидкостей — коллоидных феррочастиц, взвешенных в керосине, силиконе или воде. Стандарт 2.4.3 можно рассматривать как предельный случай развития по стандарту 2.4.2.

Пример 4.33. Биологическая магнитная жидкость

Биологическая магнитная жидкость включает магнитную коллоидную дисперсную фазу. Она распределена по всей жидкой дисперсионной среде. Дисперсная фаза может состоять из магнитных частиц, покрытых сшитыми, биологически совместимыми полимерами.

Биологически совместимые полимеры могут быть связаны посредством ковалентных связей с биологически активными макромолекулами. Это может быть достигнуто путем ковалентного связывания иммуноглобулина с биологически совместимыми полимерами, а затем присоединения к иммуноглобулину антител с предопределенной специфичностью.

Эти антитела с помощью магнитные частицы могут быть нацелены на желаемые клетки для различных медицинских применений.

Магнитные частицы могут состоять из ядер магнетита с покрытиями кобальта или кобальта и бора. Кроме того, магнитные частицы могут быть изготовлены из кобальта и бора, причем бор находится в концентрации, достаточной для активации излучения.

Магнитный коллоид может быть образован путем включения биологически совместимого полимера в коллоид, который образуется путем восстановления магнитной металлической соли.

Коллоид преимущественно получают в многостадийном процессе для достижения очень однородных размеров частиц. Магнитный коллоид может быть также получен путем образования биологически несовместимого магнитного коллоида и медленного добавления коллоида к энергичному биологически совместимому полимеру.

Эти биологические магнитные жидкости полезны, например, при отделении раковых клеток от нормальных клеток в трансплантатах костного мозга, а также и в будущей области технологии переноса генов, а также в очистке геномного материала,.

Пример 4.34. Датчик уровня жидкости

Датчик измерения уровня жидкости, содержит корпус, выполненный в виде трубы, в котором коаксиально установлен полый стержень, образующий с корпусом герметичную полость, в которой размещена токопроводящая обмотка, расположенная на поверхности стержня и выполненная в виде одной или нескольких секций витков, причем каждая секция соединена электрически с приемником сигналов и содержит более одного витка, а поплавок установлен внутри стержня и содержит носитель, выполненный из материала с запасом плавучести относительно измеряемой среды.

Носитель имеет закрытую или открытую полость, в которой размещена магнитная жидкость.

Датчик, устанавливаемый в емкости для измерения, например, уровня нефти, работает следующим образом (рис. 4.7). В исходном положении при отсутствии в емкости нефти поплавок 6 с магнитной жидкостью 9 находится в крайнем нижнем положении. При повышении уровня нефти поплавок 6 с магнитной жидкостью 9 начинает перемещаться внутри стержня 2. Магнитная жидкость 9 попадает в магнитное поле, создаваемое измерительной обмоткой 4, намотанной на поверхность стержня 2. При этом возникает более сильное магнитное поле ориентированных частиц жидкости, которое воздействует на приемник сигналов 5, измеряя уровень жидкости в резервуаре.

Для контроля над ограничением налива жидкости в закрытый резервуар используют измерительную обмотку 4 из двух витков (или двух секций). Когда поплавок 6 доходит до уровня нижнего витка (или нижней секции), изменяя индуктивность магнитного поля, поступает предупредительный сигнал на приемник сигналов, а когда поплавок 6 дойдет до верхнего витка (или верхней секции), поступает сигнал на отключение налива жидкости.

Рис. 4.7. Датчик

1 — корпус; 2 — полый стержень; 3 — герметичная полость; 4 — токопроводящая обмотка; 5 — приемник сигнала; 6 — поплавок; 7 — носитель; 8 — полость; 9 — магнитная жидкость.

Стандарт 2.4.4. Использование капиллярно-пористых структур в феполях

Эффективность феполей может быть повышена за счет использования капиллярно-пористой структуры, присущей многим фепольным системам.

Пример 4.35. Магнитная пена

Описываются разные варианты магнитных пен в жидком и твердом состоянии.

Магнитная пена может существенно повысить эффективность сбора гидрофобных загрязнений с поверхности воды или твердого тела, например, для удаления тонкой нефтяной пленки с водной поверхности. Жидкая магнитная пена гидрофобна и может сохранять на воде устойчивость в течение десятков минут, в то время как процесс всасывания нефти в пену длится несколько минут. Быстрое всасывание нефти пеной дает возможность практически сразу собирать и удалять с поверхности воды пену с помощью магнитных подборщиков, а высокая скорость генерации пены — наносить пену повторно. Пена может производиться в больших количествах на месте удаления загрязнения (например, морских судах или в портах), что является особенно актуальным, поскольку в соответствии с рядом соглашений многие порты должны быть оборудованы оборудованием и устройствами для сбора разлитой нефти.

Пример 4.36. Магнитная пена Солнца

По данным полученным от зондов Voyager 1 и Voyager 2 ученые пришли к выводу, что на границе солнечной системы имеются большие магнитные пузыри, образующие магнитную пену. Каждый пузырь имеет диаметр около 16 млн км (расстояние от Земли до Солнца).

Стандарт 2.4.5. Комплексные феполи

Если нужно повысить эффективность управления системой путем перехода к феполю, а замена веществ феррочастицами недопустима, переход осуществляют построением внутреннего или внешнего комплексного феполя, вводя добавки в одно из веществ:

Пример 4.37. Цементный раствор

Для улучшения качества цементного камня в цементный раствор вводят наноферромагнитные добавки в количестве 0, 03—0,07% и воздействуют магнитным полем.

Пример 4.38. Химические реакции

Скорость протекания химических реакций можно увеличить, если в химические реагенты ввести ферромагнитные частицы и воздействовать электромагнитным полем.

Стандарт 2.4.6. Феполи на внешней среде

Если нужно повысить эффективность управления системой путем перехода от веполя к феполю, а замена веществ феррочастицами (или введение добавок в вещества) недопустима, то феррочастицы следует ввести во внешнюю среду и, действуя магнитным полем, менять параметры среды, а следовательно, управлять находящейся в ней системой (ст. 2.4.3):

Пример 4.39. Развитие эмбриона птицы

Для более интенсивного развития эмбриона и увеличения выводимости цыплят на яйцо воздействуют магнитным полем.

Предложен способ и устройство для воздействие постоянным магнитным полем.

Воздействие переменным магнитным полем.

Воздействие вращающимся электромагнитным полем. Для этого коробку с яйцами помещают в статор электродвигателя.

Пример 4.40. Магнито-абразивное полирование (МАП)

Эффективная обработка абразивным инструментом осуществляется с помощью введения в качестве обрабатывающей внешней среды ферромагнитный абразив и магнитного поля, управляя усилием прижима каждого зерна по отдельности.

В результате достигается очень высокое качество поверхности. На операциях финишного полирования пластин монокристаллов кремния (подложки для производства интегральных схем) процесс МАП с использованием ферроабразивного порошка «железо-алмаз» обеспечивает шероховатость поверхности с высотой неровностей менее 20 ангстрем, т. е. МАП позволяет формировать поверхность с величиной неровностей в 2…4 атомных слоя.

Стандарт 2.4.7. Использование физических эффектов

Если дана фепольная система, ее управляемость может быть повышена за счет использования физических эффектов.

Пример 4.41. Насос

Действие насоса основано на эффекте Кюри.

Рабочий ход поршня, нагнетающего перекачиваемую среду, совершается под действием магнита. В верхнем положении поршня магнит нагревается солнечными лучами, подаваемыми концентраторами через прозрачную крышку цилиндра, до температуры выше точки Кюри. Магнитная сила исчезает, и поршень опускается под действием силы тяжести. При этом открывается обратный клапан и перекачиваемая среда вытесняется в надпоршневое пространство. Здесь она охлаждает магнит, его сила вновь появляется и процесс повторяется.

Стандарт 2.4.8. Динамизация

Если дана фепольная система, ее эффективность может быть повышена путем динамизации, то есть перехода к гибкой, меняющейся структуре системы:

Пример 4.42. Измерение толщины

Толщину стенок полых изделий из немагнитных материалов измеряют, вводя в изделие надувную оболочку, покрытую ферромагнитной пленкой, обладающей незначительным магнитным сопротивлением.

Оболочку раздувают сжатым газом, пока она плотно не прижмется к внутренней поверхности изделия. На наружной поверхности изделия установлен индуктивный преобразователь с незамкнутой цепью.

Прижатая к внутренней поверхности ферромагнитная поверхность через стенку изделия замыкает магнитную цепь преобразователя.

По величине магнитного сопротивления, фиксируемого измерительной схемой, судят о толщине стенки изделия в месте установки преобразователя (рис. 4.8).

Рис. 4.8. Измеритель толщины. А. с. 792 080

1 — эластичная оболочка; 2 — ферромагнитное покрытие; 3 — контролируемое изделие; 4 — индуктивный преобразователь с незамкнутой магнитной цепью; 5 — измерительная схема.

Стандарт 2.4.9. Структуризация

Если дана фепольная система, ее эффективность может быть повышена переходом от полей однородных или имеющих неупорядоченную структуру к полям неоднородным или имеющим определенную пространственную структуру (постоянную или переменную):

Пример 4.43. Магнитная формовка

На 35-м Всемирном конгрессе литейщиков проф. А. Виттмозер впервые сделал доклад о магнитной формовке. При данном способе изготовления формы применяется ферромагнитные частицы размером 0,3—0,5 мм. После уплотнения формы вибрацией она помещается в постоянное магнитное поле, которое обеспечивает магнитную связь между частицами наполнителя, что придает форме необходимую прочность, предотвращая ее разрушение при заливке металла. Магнитная формовка получила применение в США, Японии и в странах Западной Европы для производства серийных отливок из различных сплавов. Швейцарская фирма «Brown Bovery» организовала серийное производство полуавтоматических установок магнитной формовки.

Пример 4.44. Литейная форма

Для приготовления литейной формы в опоку устанавливают форму и заполняют предварительно намагниченным ферромагнитным формовочным материалом и воздействуют переменным магнитным полем, уплотняя формовочный материал.

Переменное магнитное поле, взаимодействуя с формовочным материалом в опоке, приводит его в псевдотекучее состояние. При этом происходит равномерное распределение формовочного материала по объему опоки, распадаются отдельные слипшиеся комки, материал заполняет пустоты, узкие пазы, полости модели и уплотняется.

Стандарт 2.4.9.1. Структуризация

Если веществу, входящему в феполь (или могущему войти в феполь), должна быть придана определенная пространственная структура, то процесс следует вести в поле, со структурой, соответствующей требуемой структуре вещества:

Пример 4.45. Программируемые макароны

В MIT научились программировать форму макаронных изделий. Для этого используются два слоя желатина с разной плотностью. Более плотный слой впитывает в себя больше влаги и сильнее разбухает, изгибая пластину пасты (макаронного изделия). Сверху желатина нанесли полоски целлюлозы, практически не впитывающей влагу. Окончательная форма макаронного изделия определялась узором этих полосок (они могли располагаться параллельно, радиально, на отдельных участках пластины пасты) и формой пасты (круг, прямоугольник и т. д). Форма приобреталась при опускании изделия в горячую воду. Такой подход сокращает расходы на доставку. В упаковке с обычной формой пасты 67% объема занимал воздух.

В данном изобретении обошлись без феррочастичек и магнитного поля, поэтому, строго говоря, это не данный стандарт, а просто структуризация.

Стандарт 2.4.10. Согласование ритмики в феполях

Если дана «протофепольная» или фепольная система, ее эффективность может быть повышена согласованием ритмики входящих в систему элементов.

Пример 4.46. Электронный парамагнитный резонанс (ЭПР)

Научное открытие №85 «Установлено неизвестное ранее явление квантовых переходов между электронными энергетическими уровнями парамагнитных тел под влиянием переменного магнитного поля резонансной частоты (явление электронного парамагнитного резонанса)».

ЭПР — это отклик магнитных атомов, молекул или электронов на радиоволны. Он имеет резонансный характер. Резонанс возникает, когда частота радиоволны совпадает с частотой вращения магнитного момента атома. Последняя зависит от силы внешнего магнитного поля и от электрических и магнитных микрополей в самом веществе. Поэтому, меняя силу поля, нетрудно создать условия для парамагнитного резонанса. Тело начнет сильно поглощать, преломлять и отражать радиоволны. Наблюдая любое из этих явлений, легко установить присутствие в нем даже ничтожного количества магнитных частиц и, самое главное, определить тончайшие особенности структуры микрополей внутри вещества, что невозможно сделать другими физическими методами. Благодаря этому ЭПР широко используется в физике твердого тела, ядерной физике, химии (для изучения обширного класса веществ, называемых радикалами), биологии, медицине, технике. В качестве примеров можно привести спектрометр, магнетометр.

На основе явления резонансного поглощения СВЧ излучения создан, например, квантовый парамагнитный усилитель (мазер), использующийся для осуществления дальней космической связи, работают гигантские радиоастрономические интерферометры, служащие для изучения звездных источников радиоизлучения. На ЭПР основаны поиск и технологическая проверка веществ, составляющих основу квантовых генераторов и усилителей. Испытание активного вещества квантового генератора с помощью ЭПР позволяет заранее определить пригодность его для работы.

Пример 4.47. Ядерный магнитный резонанс (ЯМР)

Например, явление ЯМР широко используются в физике, химии и медицине, пример — магнитно-резонансная томография (МРТ).

Это явление используется как расходомер, для исследования скважин (ядерно-магнитный каротаж) и т. д.

Стандарт 2.4.11. Эполи

Если введение ферромагнетиков или намагничивание затруднены, следует воспользоваться взаимодействием внешнего электромагнитного поля с контактно подведенными или неконтактно индуцированными токами или взаимодействием этих токов между собой.

Пример 4.48. Сепарация частиц

При добыче золота применяют гравитационные методы, однако частицы металла меньше 0,2 мм практически не улавливаются.

Для улавливания маленьких частиц золота используют электродинамический сепаратор путем воздействий двух импульсных магнитных полей. Причем второй импульс подается с задержкой.

Устройство имеет две соосные катушки.

Пример 4.49. Электромагнитная катапульта

Для разгона самолета на авианосце используются катапульты. Для этих целей сейчас используются паровые катапульты. Основной принцип таких катапульт это движение поршня с помощью пара.

Уже давно задумывались о другом, более современном принципе действия катапульт. Стали разрабатывать электромагнитную катапульту. Принцип ее действия — линейный электродвигатель.

В 2015 году испытали такую систему для авианосца Джеральд Форд (Gerald R. Ford). Она получила название EALS (Electromagnetic Aircraft Launch System).

Задача 4.3. Контроль состояния троса

Условие задачи

Контроль состояния троса лифта проводится его периодическим осмотром, что требует выведения лифта из эксплуатации. Во время осмотра выявляют обрывы прядей троса. Этот трудоемкий способ не гарантирует обнаружение внутренних повреждений.

Как быть?

Разбор задачи

Использовать стандарт 2.4.11.

Решение

Контроль состояния троса выполняется с помощью измерения электрического сопротивления троса.

Электрическое сопротивление каждого троса пропорционально площади его поперечного сечения.

Такое решение устраняет необходимость выведения лифта из эксплуатации и повышает качество и надежность проверок троса. Электрическое сопротивление каждого троса пропорционально площади его поперечного сечения, что является индикатором его оставшегося ресурса. Система Pulse в лифтах OTIS Gen 2 постоянно контролирует электрическое сопротивление троса, чтобы определить момент, когда его следует заменить. Также система считывает текущую загрузку кабины, так как сила натяжения троса влияет на его сопротивление.

Стандарт 2.4.12. Рео-жидкость

Особая форма эполей — электрореологическая суспензия (взвесь тонкого кварцевого порошка, например в толуоле) с управляемой вязкостью. Если неприменима феррожидкость, может быть использована электрореологическая жидкость.

Пример 4.50. Гидравлическая муфта

Для управления пробуксовкой ведущих колес транспортного средства с гидравлической муфтой блокировки дифференциала в качестве рабочей жидкости применяется электрореологическая жидкость, а элементы муфты электроизолированы между собой.

Пример 4.51. Гидродинамическая передача

Регулировка гидродинамической передачей может быть улучшена, если в качестве рабочей жидкости используют электрореологическую жидкость и управление осуществляется изменением напряжения.