Кто вы?

Петрович Николай Тимофеевич

Глава I

Одинок ли род людской?

 

 

 

Звезды, горы и мы

Общежитие института связи. В одном из «пеналов» с двумя койками и кучей книг на полу шла ожесточенная борьба. То теоремы К. Шеннона и В. Котельникова увлекали и побеждали тоску по горам и летнюю московскую жару. То наплывали на сознание сверкающие вершины и манящие прелести ледников, и тогда теория информации отступала. В эти периоды мысли путались, к. п. д. падал ниже нуля, но два аспиранта упорствовали. Несмотря на то, что еще весной была дана клятва — лето принести в жертву науке, поединок добра и зла к концу июля порядком измотал нас. Решила дело телепатия. В один и тот же миг, не проронив ни слова, мы оба бросились к рюкзакам, набили их чем попало и ринулись на юг…

Тянь-Шань. Цирк ледника Туюк-Су медленно погружался в ночь. В небо причудливой пилой врезались острые скальные башни. Забив не один десяток крючьев, мы только что спустились с одной из них прямо на ледник к своему биваку. Здесь нас ждали чудеса комфорта — палатка, спальные мешки, вода и консервы.

Хотелось наконец поспать, не сидя или болтаясь на скальных крючьях, а вытянувшись и расслабив каждую мышцу. Пальцы, стертые на наждачных скалах, ныли. Хотелось успокоить их в тепле спального мешка. Хотелось…

Но как порыв горного ветра гасит спичку, так очарование южного неба погасило все эти «хотелось». Не было сил оторваться от этого бесконечно загадочного звездного полотна. Кристально чистый горный воздух стал какой-то огромной линзой. Звезды казались совсем рядом. Небо впервые открыло нам всю свою красоту.

Нас обуревали тысячи вопросов о звездах, об иных мирах, о далеких туманностях, о возможных собратьях по разуму, по любви к горам…

На счастье, в нашей группе был молодой астроном Коля. Мы начали терзать его вопросами. Сначала он сонно отвечал на них. Потом что-то в нем встрепенулось. То ли он разглядел в нас настоящих, алчущих знаний слушателей, то ли его охватила гордость за свою древнейшую и увлекательнейшую профессию, но сонливость с него как рукой сняло. Бросив прощальный взгляд на спальный мешок, он начал вдохновенный рассказ. Наглядным пособием было само небо, указкой — ледоруб, ориентирами — врезавшиеся в небо снежные купола и шапки, скальные иглы и пики, ледовые стенки и гребни.

Это была одна из самых увлекательных лекций, которую мне когда-либо приходилось слушать. У лектора не было ни плана, ни конспекта. Но видимо, вдохновение и знания с лихвой заменяют все это.

Коля, переходя от одного созвездия к другому, от одной раскрытой загадки неба к другой, еще не разгаданной, увлекал нас все сильней и сильней.

Элементарные астрономические истины, зазубренные в школе, но так и не осмысленные, превращались в этом горном планетарии в волнующие откровения.

Так, доведенный до нашего сознания неоспоримый факт «разбегания галактик» — стремительный, нарастающий с расстоянием бег друг от друга звездных систем — привел нас в полное замешательство. Ведь за этим циклом, как следует из уравнений, может, должен последовать цикл «сбегания галактик»!

Уже золотились макушки вершин, когда Коля кончал свою лекцию:

— Вам, вероятно, знакомы имена братьев-близнецов, смертного Кастора и бессмертного Поллукса. Когда погиб Кастор, Поллукс отдал ему половину своего бессмертия. Неразлучные братья стали проводить один день на сверкающем Олимпе, а другой — в царстве мрачного Аида. Их соединяла истинная дружба. Они могли бы составить прекрасную альпинистскую связку.

На небе есть вечный памятник братьям — созвездие Близнецов, названное так в их честь. Кастор и Поллукс — две самые яркие звезды этого созвездия. Древние астрономы считали звезду Кастор одиночной. Сегодня мы знаем, что Кастор состоит из трех пар двойных звезд, совершающих сложное движение вокруг общего центра тяжести. Две пары образованы горячими голубыми гигантскими звездами. Третья состоит из холодных карликовых звездочек красноватого цвета. Если есть планеты у этих звезд, то их небо украшено шестью солнцами разных размеров и разных свечений! А обитателей этих планет, если они, естественно, есть, обогревают и ласкают шесть Солнц! Сколько новых тем для стихов и песен!

Лекции продолжались еще несколько вечеров, конспектов мы не вели, но материал я прекрасно помню и сегодня. Эти лекции и пробудили во мне интерес к астрономии, космической радиосвязи, к проблеме установления контакта с обитателями иных миров. Коля еще несколько лет был моим спутником в горах Тянь-Шаня. Один сезон мы вместе искали две вершины в створе, чтобы из-за одной из них точно всходило Солнце: это было необходимо ему для проверки некой новой гипотезы. В следующем — он увлекался измерением количества космической пыли, выпадающей на вершинах. Нас, восходителей, он снабжал банками для сбора вершинного снега, а — мы, попадая в тяжелые ситуации, иногда забывали на вершинах о банках, но, боясь обидеть Колю, набирали снег где-нибудь внизу. Грехи наши искупает то, что кривые удельного содержания пыли в функции высоты в опубликованных им работах идут все же везде монотонно.

Таковы истоки этой книги. Правда, тогда возможность установления контакта с другими цивилизациями выглядела очень далекой, почти фантастической. Ведь все это было до того, как русское слово «спутник» вторглось во все языки мира, до того, как впервые были дерзко порваны цепи земного тяготения.

Десять лет космической эры принесли удивительные плоды. Умный робот, созданный в нашей стране, уже достиг Венеры! И не только достиг. Он был первым корреспондентом, который взял интервью у этой загадочной очаровательной незнакомки!

Советские и американские космонавты стали частыми гостями в околоземном пространстве. Их корабли все дальше удаляются от нашей планеты.

На рыхлой пористой поверхности Луны, этой покровительницы всех влюбленных, уже появились отпечатки ног двух смельчаков — Н. Армстронга и Э. Олдрина. Покидая ее, они оставили скромную записку: «Здесь человек с планеты Земля впервые ступил на Луну. Июль 1969 г. Мы явились с миром и от имени всего человечества». Это значит, что мечты и идеи К. Э. Циолковского о завоевании человеком солнечной системы начинают воплощаться в жизнь.

Мысль о том, что мы не одиноки во вселенной, стара как мир. Она высказывается уже более 25 веков. Но только сейчас появились возможности экспериментально проверить эту волнующую всех гипотезу. База для этого уже сформировалась. Это космические полеты землян, успехи радиоастрономии, развитие теории информации и кибернетики, достижения радиоэлектроники.

Мы стоим на пороге радиоконтакта с иными цивилизациями. Установление его будет гигантской вехой в истории человечества.

Когда он будет? Неизвестно. Это может быть сегодня, может быть завтра, может быть через десятки лет.

Но известно другое.

Чем шире и глубже будет идти научный поиск, чем больше умов, особенно юных и горячих, в него вклинится, тем быстрее контакт будет.

Вот почему я пишу эту книжку.

С чего мы начнем? Конечно, с аналогии. Вообразим, что мы вдруг очутились в неведомой точке неведомой нам страны. Мы хотим познать эту страну. Хотим раскрыть некоторые ее тайны. Первое, что надо сделать, следуя известным правилам, — обратиться к карте этой страны. С ее помощью охватить страну в целом, узнать составные элементы и, главное, каким-то образом определить свою «точку стояния» или свой адрес на карте.

Так мы и поступим.

Где мы?

Если вы ночью увидите человека, считающего звезды, не смейтесь над ним. Он совсем не стремится объять необъятное, он просто добывает знания. Даже в ясную безлунную ночь он насчитает их не более 2–3 тысяч. Счет заметно усложнится при вооружении глаз биноклем. Число различимых светил возрастет до десятка тысяч.

Пойдем дальше. Заменим бинокль мощным современным телескопом, а глаз — высокочувствительной фотопластинкой. Число различимых светящихся точек на небе фантастически возрастет. Оно станет равным 3 000 000 000. Три миллиарда звезд!

Такие числа мы будем записывать принятым компактным способом, который сводится к счету числа нулей и записи их в виде степени числа 10. Вместо 100 будет 102, вместо 50 000 будет 5 · 104. Следовательно, наше число различимых звезд примет совсем скромный (лишь по записи!) вид — 3 · 109.

Но это еще не все. Подавляющее число звезд из-за своей удаленности не различается телескопами. Они нам кажутся лишь в виде светящихся звездных скоплений, туманностей и т. д. Поэтому общее число звезд можно приблизительно оценить только с помощью статистических методов. Эти методы дают общее число звезд, равное 1021! (Речь идет, конечно, только о видимой части вселенной.)

Дадим каждой из этих звезд нежное имя или скучный номер и попытаемся занести их в единую книгу. Сколько страниц содержал бы этот звездный справочник? Их оказалось бы больше, чем страниц во всех книгах, напечатанных на нашей планете за всю историю человечества. Знаменитый однотомный словарь Вебстера, содержащий 600 тысяч слов на 3500 страницах, рядом с этим космическим справочником выглядел бы песчинкой по сравнению с самой высокой вершиной Земли — Джомолунгмой.

Несмотря на такое количество звезд, непосильное нашему воображению, главное качество вселенной все же пустота. На каждый кубический сантиметр вещества приходится 1030 кубических сантиметров почти пустого пространства.

Это есть следствие гигантских просторов вселенной. Так, наиболее удаленные от Земли звезды и их скопления расположены настолько далеко, что их лучи достигают наших телескопов спустя миллиарды лет.

В связи с огромными расстояниями, разделяющими звезды, встает естественный вопрос: связаны ли как-то звезды между собой или это просто хаотически разбросанные в пространстве изолированные сгустки материи?

Оказывается, звезды группируются в огромные системы, именуемые галактиками (пишутся с малой буквы). Но одна такая система гордо пишется с большой буквы. Этой счастливицей является Галактика, в которой обитаем мы с вами, читатель.

Выделение нашей системы отнюдь не связано с ее исключительностью в семье галактик. Просто своя рубашка оказалась ближе к телу и в земной астрономии.

Наша звездная система — это известный нам с детства Млечный Путь (название происходит от буквального значения греческого слова «галактика» — млечный, молочный). Состоит этот Путь из «млечных» братьев нашего Солнца, которых в этом семействе набралось ни мало ни много, как 1011.

Чем же можно измерить межзвездные расстояния? Ведь земные меры длины здесь безнадежно малы. Человек нашел блестящий выход. Измерителем расстояний стал световой луч. Почему именно он? Потому что луч света, как и радиоволна, движется с предельно возможной в природе скоростью — около 300 000 километров в секунду.

Единицей расстояний стал путь, который пробегает световой луч не за секунду, и не за час, и не за сутки, а за… год! Имя этой единице — световой год. Лента с «космической рулетки» в один световой год будет сматываться целый год, если ее начало ухитриться зацепить за световой луч или квант. Но если зацепим начало нашей ленты за современный космический корабль, летящий со второй космической скоростью (11,19 километра в секунду), то ему придется разматывать ленту длиной в один световой год ни много ни мало — 27 000 лет!

На фоне грандиозной длины в один световой год размеры нашей солнечной системы выглядят более чем скромно. Так, вспышку на Солнце мы видим с запаздыванием всего лишь на 8,3 минуты, время, которое требуется световым лучам для преодоления расстояния Солнце — Земля. Луч этой вспышки достигнет самой удаленной планеты — Плутония — меньше чем за 6 часов.

Выразим световой год в привычных для людей, путешествующих по земному шару, километрах. Умножая расстояние, пробегаемое световым лучом в секунду, на число секунд в году, находим, что световой год равен 9,5 · 1012 километров, то есть почти десять тысяч миллиардов километров.

Возьмем в руки «мерительную рейку» длиной в одни световой год (9,5 · 1012 километров) и попробуем измерить диаметр нашей Галактики. Оказывается, нам пришлось бы отложить эту рейку 85 тысяч раз. Следовательно, он составляет 85 тысяч световых лет.

Галактика по современным наблюдениям имеет форму гигантской спирали, толщина которой в 12 раз меньше диаметра. Точное определение ее структуры затруднено тем, что Солнце — одна из звезд этой же системы. Поэтому земляне могут наблюдать Галактику только изнутри и практически только из одной точки пространства (наблюдения с космических кораблей и с разных точек земной орбиты не меняют дела, поскольку при этом наше положение в Галактике меняется ничтожно).

Где-то на задворках Галактики, в одном из крайних витков этой спирали, затеряна наша солнечная система, которую когда-то земляне наивно считали центром мироздания.

Наша Галактика окружена другими галактиками. Наблюдения и расчеты для видимой части вселенной показывают, что их число также огромно — 1010.

Очертания наблюдаемых галактик, часто называемых внегалактическими туманностями, весьма разнообразны.

Ближайшая к нам галактика — туманность Андромеды — удалена от нашей «всего лишь» на величину, превышающую миллион световых лет. По красоте и величине она достойна прекрасной дочери Кассиопеи, чье имя она носит. Как все красавицы, Андромеда, естественно, не могла обойтись без внешних украшений. Их роль успешно выполняет свита из четырех существенно меньших звездных систем — спутников. По структуре туманность Андромеды — исполинская звездная спираль, сходная с нашей, но превосходит ее по размерам.

Если обратиться снова к нашей аналогии, то галактики можно уподобить огромным городам, разбросанным на колоссальные расстояния друг от друга. В области этих «городов» средняя плотность вещества существенно возрастает. Тяготеющие друг к другу «города» образуют более крупные соединения. Так, наша Галактика вместе с туманностью Андромеды, Магеллановыми Облаками и рядом других объединяются в так называемую Местную систему галактик.

Все наблюдаемые галактики образуют колоссальную звездную систему — Метагалактику.

По мере совершенствования приборов и методов наблюдения человек в конце концов охватит всю Метагалактику. Тогда может создаться видимость исчерпания существующих миров.

Но, проникая еще дальше в бесконечные просторы, человек откроет другие метагалактики, другие скопления материи, и так без конца…

Как упражнение к этому разделу давайте вместе, читатель, составим адрес жителя нашей планеты. Письмо пусть следует к нам из области вселенной, лежащей за пределами Метагалактики. Получателем письма пусть будет первая в солнечной системе женщина летчик-космонавт, имя которой вместе с именем Юрия Гагарина перешагнет, наверное, пределы солнечной системы.

Вот этот многоэтажный адрес.

Это и есть наша «точка стояния» в таинственной стране, имя которой — вселенная. Дальнейшее развитие науки будет ее уточнять и повышать многоэтажность нашего адреса.

Очерченный контур окружающего мира можно назвать «статическим». На самом деле это не так. Все галактики находятся в стремительном движении.

Куда несемся?

Говоря о галактиках, нельзя утаить одно из фундаментальных явлений вселенной — закон всеобщего разбегания галактик. Эта удивительная закономерность была открыта на основании эффекта Допплера. Вспомните традиционный рисунок из учебника физики. На платформе стоит одинокий пассажир. Мимо него мчится паровоз с огромной коптящей трубой. Из гудка вырывается облако пара. Пассажир слышит резкое понижение тона гудка при прохождении паровоза мимо него. Этот же эффект изменения частоты колебаний при движении источника справедлив и для световых волн.

Напомним опыт И. Ньютона. Обыкновенный белый свет, проходя через стеклянную призму, разлагается на отдельные цвета, составляющие спектр. Сильней всего преломляются красные лучи, слабее всего — фиолетовые. Между ними расположатся оранжевый, желтый, зеленый, голубой и синий цвета. При изучении спектра различных галактик был обнаружен потрясающий факт. Спектры оказались сдвинуты по отношению к земному в сторону красного цвета. Величина этого сдвига Δ не одинакова у различных галактик. Сдвиг не наблюдался только у нескольких самых близких к нам галактик.

После ожесточенных дискуссий и тщательных измерений было найдено объяснение: это проявление эффекта Допплера. Галактики удаляются от нас, и это понижает частоту излучаемых ими световых колебаний. Поэтому спектр сдвигается в красную сторону. Если бы они приближались к нам (об этой «страшной» перспективе мы поговорим позже), то спектры сдвигались бы в фиолетовую сторону.

Измерение величины Δ привело ко второму изумительному открытию. Чем больше расстояние r до галактики, тем больше смещен ее спектр в красную сторону.

Установлена прямая пропорциональность между расстоянием до галактики r и скоростью ее удаления v. Если одна из галактик находится от нас в 1000 раз дальше, чем другая, то и скорость ее удаления от нас в 1000 раз больше!

Следовательно, подсчет скорости удаления любой галактики элементарно прост. Надо лишь умножить расстояние между галактиками на некий постоянный для всех галактик коэффициент, и мы получим скорость их разбегания. Этот коэффициент, определение которого явилось очень сложной задачей и потребовало ряда существенных коррекций, обозначают через H — первая буква фамилии американского астронома Эдвина Хаббла (Hubble). Согласитесь, что это не слишком щедрая дань ученому, открывшему в 1929 году закон разбегания галактик. Поэтому лучше, когда H называют постоянной Хаббла.

Из закона разбегания галактик следует, что когда-то (когда именно, это зависит от значения постоянной Хаббла H) было начало этого разбегания.

По одной из самых ходовых гипотез, плазменное облако, породившее все наблюдаемые галактики с невероятно высокой температурой, плотностью и излучением, было некогда сосредоточено в относительно малом объеме (мы еще вернемся и к облаку и к этому «некогда»). Взрыв взрывов этого облака и дал наблюдаемое сегодня разбегание галактик.

Так эффект понижения тона гудка удаляющегося паровоза привел нас к одной из гипотез образования вселенной!

Попробуем определить момент этого исторического взрыва.

Не останавливаясь на очень любопытных методах определения постоянной Хаббла и истории ее измерения, приведем ее современное уточненное значение:

H  = 75  км/сек мпс .

Здесь мпс сокращенное обозначение мегапарсека. Один парсек (пс) составляет почти 3,26 светового года, а один мегапарсек (мпс) равен 106 пс.

Это значит, что если взять, например, расстояния между галактиками r = 1 мпс, то скорость их удаления друг от друга составит:

V  =  Н  ·  r  = 75  км / сек .

Есть основания считать, что с момента взрывного образования галактик скорость V не претерпевала заметных изменений. Это дает ответ на вопрос: «Когда произошел взрыв?»

Он непосредственно следует из приведенного примера.

Две галактики разбежались друг от друга с момента взрыва на расстояние в один мегапарсек. Скорость их разбегания постоянна и равна 75 километрам в секунду. Разделив пройденный путь на скорость разбегания, мы получим время, в течение которого галактики разбегаются, — 15 миллиардов лет (15 · 109). Значит, взрыв произошел 15 · 109 лет тому назад.

До взрыва степень сжатия материи и ее температура достигали колоссальных значений. Это состояние материи получило название «горячей вселенной».

Вычисленное нами время существования Метагалактики — 15 · 109 лет — находит удивительное подтверждение на нашей планете. Процесс распада радиоактивного урана и превращения его в свинец является теми природными часами, которые могут отсчитывать такие колоссальные отрезки времени. Оценка содержания урана и свинца в минералах позволила оценить возраст Земли. Полученное число меньше, но того же порядка, что и возраст Метагалактики.

Бег галактик от земного наблюдателя отнюдь не значит, что мы занимаем какое-то центральное положение во вселенной, в Метагалактике. Это можно наглядно пояснить, надувая резиновый шар. Наблюдатель в любой точке на этом шаре будет видеть, что с повышением давления все остальные точки шара от него удаляются, и чем дальше они от него отстоят, тем быстрее удаляются.

Кроме рассмотренного общего движения галактик, каждая из них имеет еще свое индивидуальное: от нас, к нам и в любом другом направлении. Из-за этого некоторые близкие галактики приближаются к нам, а не удаляются. У них индивидуальная скорость, направленная к нам, больше скорости разбегания (которая на малых расстояниях мала). Так, туманность Андромеды приближается к нашей Галактике со скоростью 143 километра в секунду.

Почему явление взаимного удаления галактик так взбудораживает при первом знакомстве? Тут два фактора. Первый — мы знаем от наших далеких предков, что видимая нами картина неба практически та же, что и при постройке египетских пирамид или при битвах Спартака. Второй — скорость разбегания по земным масштабам велика, она в десятки раз больше скорости ракет, преодолевающих могучую силу земного тяготения. Это и создает замешательство — галактики быстро разбегаются, и тем не менее картина неба остается такой, какой была давным-давно! Ларчик открывается просто. Наше земное мышление не всегда управляется с потрясающими расстояниями в Метагалактике. На этой сверхгигантской арене разбегание галактик столь мизерно меняет расстояние между ними на малом интервале существования нашей цивилизации, что прошедший ряд поколений не имел возможности заметить эти изменения.

Активный читатель этой книжки (верю, что вероятность такого события заметно больше нуля) легко может убедиться в этом, преодолев элементарные расчеты.

Согласно взрывной теории все галактики приблизительно сохраняют ту скорость, которую они получили в момент взрыва или в начале своего разбегания (фактически она замедляется силами взаимного притяжения). Галактики, получившие максимальную скорость в момент вселенского катаклизма, наиболее удалены от нас. Так как в среднем галактики равномерно распределены в окружающем нас пространстве, то они образуют непрерывно расширяющуюся сферу.

Самое удивительное, читатель, что мы с вами легко можем определить радиус этого невообразимо гигантского шара. В самом деле, скорость самой «быстроногой» (может — «быстрокрылой») из галактик принципиально не могла превысить скорость света. Следовательно, для предельной оценки мы и возьмем эту скорость. Тогда, умножая ее на время, прошедшее с момента катаклизма, мы получим искомую величину. Ее называют волнующе кратко — радиус мира, который в этом случае будет равен 13 миллиардам световых лет, или 12,3 · 1022 километров.

Вот с каких предельно удаленных расстояний можно ожидать поступления световых и радиоизлучений в Метагалактике!

Теория происхождения вселенной от некогда произошедшего разового взрыва является далеко не единственной. С ней конкурирует теория «пульсирующей» вселенной, оперирующая понятием кривизны пространства и базирующаяся на общей теории относительности. В ней предполагается равномерное распределение масс в пространстве. Анализ сил тяготения в такой системе приводит к выводу, что вселенная не может находиться в «статическом» состоянии. Она должна либо расширяться, либо сжиматься. Получаемая модель допускает чередование этих фаз. В настоящее время вселенная переживает фазу расширения.

Но как ни манят эти теории, увлекающие часто сильнее, чем приключения Шерлока Холмса и майора Пронина, вместе взятые, мы вынуждены поставить на этом точку.

Будем считать, что закончили беглое знакомство с общей картиной мира и можем перейти к интересующим нас частностям в этой все расширяющейся сфере. Наш путь лежит к тем звездам, у которых могут быть планеты с разумными существами.

Но как их выделить из общей массы звезд? Чтобы подступиться к этой задаче, необходимо вникнуть в «личную жизнь» звезд. Это мы и сделаем.

О, будь хорошей девочкой…

Что же такое звезды?

Это самосветящиеся небесные тела шарообразной формы, состоящие из раскаленных до очень высокой температуры газов. Они братья и сестры нашей близкой звезды — Солнца.

Ласковыми светящимися голубыми огоньками они выглядят потому, что удалены от нас дальше, чем Солнце, в сотни тысяч, миллионы и миллиарды раз.

Процессы, происходящие в звездах, сложны и разнообразны. Но оказалось, что два простых параметра звезды определяют ее основные свойства. Это температура поверхности звезды T и ее диаметр D. Первый параметр определяет количество энергии, излучаемой единицей поверхности (она пропорциональна четвертой степени температуры). Второй — полную поверхность звезды.

По этим двум параметрам легко найти полную энергию, отдаваемую звездой L. Ее еще называют светимостью звезды.

Величина T для различных звезд меняется значительно и лежит в интервале 1000–50 000 градусов шкалы Кельвина. (По этой шкале за нулевую принята температура минус 273 градуса обычной шкалы Цельсия. Но при столь высоких температурах, как у звезд, переход от одной шкалы к другой незначительно меняет дело.)

Подавляющее число звезд имеет температуру порядка 3500 градусов по Кельвину (дальше мы не будем уточнять шкалу). Наша любимая и воспетая, кажется, всеми без исключения поэтами Земли звезда имеет такие параметры:

Температура 6000 градусов, диаметр 700 000 километров.

Мощность этого источника света настолько велика, что его лучи легко пронизывают 150 миллионов километров, отделяющих нашу планету от светила, не теряя своей чудодейственной силы. Восход Солнца или появление его из-за туч всегда наполняет энергией и радостью обитателей Земли.

«Мы — дети солнца! Это оно горит в нашей крови, это оно рождает гордые, огненные мысли, освещая мрак наших недоумений, оно — океан энергии, красоты и опьяняющей душу радости!» Этот горьковский гимн Солнцу, вероятно, лучший из возможных.

Но нас ведь интересуют дети — планеты — других светил. Обратимся к ночному небу. Вся небесная сфера для удобства ориентировки разбита на 88 участков-созвездий. Они очерчены отрезками прямых линий и напоминают сложные выкройки. Каждое созвездие имеет характерные яркие звезды и свое имя. Каких названий тут только нет! Из одних животных можно было бы создать зоопарк: Дельфин, Дракон, Единорог, Жираф, Летучая Рыба, Пегас, Райская Птица и даже Феникс.

Яркие звезды каждого созвездия обозначаются буквами греческого алфавита, а самые яркие из них имеют свои названия. Так, Полярная звезда есть альфа Малой Медведицы. В созвездии Кита есть получившая сенсационную известность одна из ближайших к нам звезд — тау Кита и т. д. Звезды немного потусклее обозначаются буквами латинского алфавита или цифрами.

Наблюдая за звездами, мы увидели бы, что они светятся разным цветом. Так, Сириус, или самая яркая на нашем небе звезда (альфа в созвездии Б. Пса — пишется: альфа Б. Пса), имеет голубовато-белое свечение. Звезда Альдебаран в созвездии Тельца (альфа Тельца) излучает красноватый свет. Желтое свечение наблюдается у ближайшей к нам звезды — альфы Центавра. Солнце тоже дает желтое свечение. Почему же звезды светятся по-разному?

Исследования показали, что ни различия в химическом составе, ни в структуре внешней газовой оболочки не оказывают значительного влияния на видимый цвет. Решающим фактором здесь является температура звезды.

Именно температура определяет, какой участок спектра является доминирующим у той или иной звезды. Так, нагревая кусок железа, мы будем наблюдать сначала красное свечение, затем желтое и наконец доведем его до «белого каления».

По характеру излучаемого спектра звезды разбиты на семь спектральных классов. Запомнить последовательность классов легко, если воспользоваться плодами студенческой смекалки. Их дают первые буквы слов в фразах: «Один битый англичанин финики жевал, как морковь» — для русского алфавита, «Oh be a fine girl, kiss me!» («О, будь хорошей девочкой, поцелуй меня») — для английского алфавита. Эти классы даны в таблице.

Наше Солнце принадлежит к классу G.

Одним из величайших достижений астрономии XX века, которое сравнивают с открытием периодического закона Менделеева, является установление определенных закономерностей между светимостью звезд L и их спектральным классом. Эта зависимость известна под названием диаграммы Герцшпрунга — Рессела.

Оказалось, что 90 процентов всех звезд расположено на этой диаграмме в диагонально идущей полосе. Поэтому ее назвали «главной последовательностью». Основная особенность звезд главной последовательности — приблизительная прямая пропорциональность между температурой и массой звезды и обратная пропорциональность между температурой (или массой) и временем жизни звезды на этой последовательности.

#i_014.png

Кроме главной, мы видим на диаграмме ряд других последовательностей (сверхгиганты, красные гиганты, белые карлики). Как следует из диаграммы, наше Солнце находится в центральной части главной последовательности (класс G).

В процессе эволюции звезды совершают сложный путь по диаграмме «спектр — светимость», связанный с коренным изменением их структуры. Но при этом основное время звезда пребывает на главной последовательности, почему ее иногда называют домом, или обителью, звезд. Что творится в этом доме, мы разберем в следующем разделе. А пока, уставший читатель, давай отдохнем. Если сейчас вечер, то погасим в комнате свет. Откроем окно. Полюбуемся звездами. Оценим установленный гигантским трудом факт: весь этот чарующий хаос далеких и близких, слабых и сильных светил собирается на нашей диаграмме в единую могучую реку — главную последовательность. Мы находимся где-то в ее средней части.

Судьбы звезд

Единой точки зрения на процесс образования звезд пока нет. Согласно наиболее распространенной гипотезе они образуются путем конденсации облаков из газо-пылевидной межзвездной среды. Наблюдения показывают, что этот процесс идет во вселенной и сейчас.

Под действием сил тяготения из возникшего облака вскоре образуется сравнительно плотный непрозрачный газовый шар. Он еще не светится, но под действием тех же сил продолжает сжиматься, его температура повышается и образуется так называемая протозвезда — слабо светящееся тело. Температура протозвезды еще невелика, но уже появляется свечение. Протозвезда находится пока на нашей диаграмме правее главной последовательности. Местоположение определяется ее массой (см. на стр. 22).

Дальнейшее увеличение сжатия приводит к уменьшению диаметра и к еще большему повышению температуры. Звезда передвигается влево к главной последовательности. Когда температура в центре звезды достигает нескольких миллионов градусов, там возникают термоядерные реакции. При некоторой температуре дальнейшее сжатие прекращается, звезда становится стационарной (устойчивой) и оказывается на главной последовательности. На этом заканчивается первый этап эволюции звезды. Время сжатия протозвезды, как обычно пишут астрономы, «сравнительно невелико — порядка нескольких десятков миллионов лет».

Наступает самый любопытный с позиции нашей темы второй этап эволюции. Звезда, пребывая на главной последовательности, сохраняет приблизительно постоянную температуру и светимость, что создает благоприятные условия для возникновения и развития жизни на ее планетах.

По мере выгорания водорода в центре звезды, то есть превращения водорода в гелий, происходит некоторое смещение ее вправо на главной последовательности. Чем больше масса звезды, тем быстрее происходит это выгорание. Второй этап эволюции заканчивается, когда водорода в центральной части остается не более одного процента. Ядро звезды становится гелиевым.

Третий этап. Для звезд с массой, близкой к солнечной, он протекает примерно так. По мере увеличения гелиевого ядра звезды ее радиус и светимость растут. Радиус звезды может увеличиться до десяти раз. Звезда становится красным гигантом, или сверхгигантом. При температуре порядка 30 миллионов градусов весь водород во внутренних частях звезды выгорает. Дальнейшее повышение температуры до 100–140 миллионов градусов приводит к выгоранию гелия, или гелиевой термоядерной реакции (превращение гелия в углерод). Гелиевая стадия выгорания значительно короче водородной во времени. Расширение оболочки приводит к тому, что наружные слои уже не удерживаются силой собственного тяготения звезды и отделяются от нее. Такое явление наблюдается в двух видах: медленное истечение (оболочка «плывет») или быстрое (вспышки новых и сверхновых звезд). При этом ядро не претерпевает заметных изменений и образуется типичный белый карлик (почти не содержащий водорода). Плотность вещества в центре его достигает сотен и тысяч килограммов на кубический сантиметр. Температура снаружи звезды — порядка тысячи градусов, а в центре — порядка миллионов. Наконец, после остывания белый карлик перестает светиться и превращается в черного карлика.

Этот контурный рисунок жизненного пути звезды, конечно, весьма схематичен и варьируется в зависимости от массы и типа звезды. Но он поможет нам при оценке возможной длительности существования цивилизаций.

Знакомство с этой картиной эволюции звезд потрясает. Потрясает дерзкое проникновение человеческого гения в жизнь невообразимо далеких светил. Потрясают методы, позволившие заглянуть на миллиарды лет назад и вперед в судьбы звезд. Потрясают установленные гигантские масштабы времени и пространства наблюдаемого «звездного театра». И мгновенно рождает каскад вопросов:

— На каком этапе эволюции находится наша дорогая звезда?

— Как скоро начнется заметное остывание Солнца?

— Когда начнется переход Солнца в красный гигант и уничтожит ли это все живое на Земле?

Дабы успокоить взволнованных читателей, скажем, что в ближайшие миллиарды лет земной цивилизации с этой стороны ничто не угрожает (других врагов цивилизации мы коснемся ниже). А для убедительности подтвердим это некоторыми цифрами.

Установлено путем исследования земной коры, что возраст Земли составляет 4,5 · 109 лет (почти пять миллиардов лет!). Солнце, по-видимому, никак не может быть «моложе» Земли.

Основная волнующая нас величина — это длительность пребывания Солнца на главной последовательности, или длительность интервала времени, в течение которого Солнце находится в устойчивом температурном режиме.

На основе теоретического построения модели звезды типа нашего Солнца и расчета времени протекания рассмотренных выше процессов сделана следующая оценка времени жизни звезд на главной последовательности.

Осмыслив эту таблицу, даже самый сдержанный читатель должен, во-первых, бурно возрадоваться тому факту, что наше Солнце имеет массу  , а, например, не 20  . Последнее привело бы к излучению столь огромных мощностей, что запасы водородного горючего были бы израсходованы буквально за десяток миллионов лет. И если на планетах такой звезды могла зародиться жизнь, то за краткое время пребывания на главной последовательности этой звезды она так и не успела бы покинуть свою колыбель — «питательный бульон» (к этому историческому блюду мы еще вернемся).

Во-вторых, если даже вычесть срок, уже прожитый Солнцем на главной последовательности, — он составляет величину порядка 5 миллиардов лет, — то остается гигантская величина порядка 8 миллиардов лет. Выходит, что Солнце израсходовало немного больше трети времени, отведенного ему для бытия на главной последовательности. Еще предстоит прожить остальные две трети. И только после этого начнется величайший катаклизм в солнечной системе — превращение нашего светила в красный гигант и уход навсегда с главной последовательности. При этом диаметр Солнца, вероятно, увеличится в десятки раз, а его светимость — в сотни. Необходимые естественные условия существования живой материи на Земле в известных нам сегодня формах, по-видимому, нарушатся. Но сверхфантастическая техника того периода, как говаривали в старину — «будя она будет», сумеет создать необходимые для жизни искусственные условия или эвакуировать обитателей Земли на планеты более молодых звезд главной последовательности. Тем более что этот переходный период нашей звезды займет несколько сот миллионов лет.

Вероятно, схема трагического финала нашего светила уже бросила тень грусти на читателя. Это вполне понятно. Ведь мы любим наше Солнце. Мы его дети. Многие поколения землян поклонялись Солнцу, приносили ему жертвы, пели ему гимны, давали разные имена этому божеству — Ра, Митра, Гелиос…

Но все это будет так невообразимо не скоро, что нет оснований грустить сейчас об этом. Нет оснований еще и еще раз мысленно пробегать трехсерийную ленту «Конец Солнца» («Красный гигант», «Белый карлик», «Черный карлик»). Давайте лучше вместе, читатель, пожелаем нашей звезде дальнейшего процветания на главной последовательности в оставшиеся миллиарды лет.

Теперь мы вплотную подошли к вопросу о планетных системах звезд, об их темнокожих (несветящихся) спутниках.

Темнокожие спутники

Высокая температура звезд, естественно, зачеркивает всякую возможность органической жизни на них. Исключение, может быть, составляет самый последний этап эволюции звезды — превращение ее в черного карлика. Но это особый вопрос, и мы его коснемся ниже. Следовательно, в пределах главной последовательности, где длительный устойчивый температурный режим создает благоприятные условия, жизнь может развиваться только на темных планетах или темнокожих спутниках звезд. И конечно, далеко не на всех.

Отсюда коренной вопрос нашей проблемы: «У многих ли из наблюдаемых звезд имеются планеты?»

Слабая светимость и малые размеры планет почти полностью исключают при современном уровне техники прямое их наблюдение. Речь идет, конечно, не о планетах солнечной системы. Однако имеется несколько косвенных путей обнаружения планет. Один из них связан с так называемыми двойными звездами.

Двойная звезда — это две связанные в единую систему звезды, вращающиеся вокруг общего центра масс. Если бы Земля оказалась планетой такой системы, у нас было бы два Солнца! И возможно, человек не знал бы, что такое сон и что значит видеть золотые сны…

Очень образно обрисовал двойные звезды наш известный астроном Б. А. Воронцов-Вельяминов, школьным учебником которого я так плохо (да и многие из читателей, наверное, тоже) воспользовался в свое время: «Среди них мы встречаем такие пары, которые напоминают двух близнецов, настолько составляющие их звезды похожи во всем друг на друга. Встречаются пары звезд, похожие и на карикатуру, где неразлучны между собой слон и моська. Обычно в таких случаях слон — огромная, яркая, но холодная и красная звезда, а моська — его спутник — маленькая, слабенькая, но горячая и голубоватая.

Представьте себе, что мы — жители планеты, которая обращается вокруг одной из таких звезд. Какие изумительные картины разворачиваются там на небе! Из-за горизонта встает, например, красный громадный круг солнца, в сотни раз больший видимого поперечника нашего. За ним встает маленькое голубоватое солнце и постепенно исчезает за массивной спиной своего патрона, чтобы потом снова из-за нее вынырнуть. Или же там настает день, залитый красным светом, как у нас на закате солнца, а вместо ночи затем наступает голубой день. Может быть, иногда голубое солнце проходит перед красным и сияет, как голубой бенгальский огонь на красном фоне».

Двойные звезды являются нередким явлением и составляют более половины видимых звезд.

Двигаясь по сложным орбитам, они то сближаются, то удаляются. Это позволяет, наблюдая их, измерять со сравнительно высокой точностью аномалии в их движении, которые могут быть вызваны невидимыми нам планетами этих звезд. Так была открыта, например, планета в двойной звезде 61 Лебедя с массой М = 0,01. Позднее были обнаружены планеты еще у 11 двойных звезд. Изучение двойных звезд и планет утвердило точку зрения, что нет, по-видимому, принципиального различия в происхождении двойных звезд и планетных систем. Отсюда следует, что если двойные звезды весьма распространены в природе, то и планетные системы не должны составлять редких исключений.

Далее, изучение момента количества движения для звезд главной последовательности приводит к любопытному заключению. Момент количества движения есть произведение трех параметров звезды: массы, экваториальной скорости и радиуса.

При переходе от спектрального класса А к спектральному классу F (см. на стр. 22) наблюдается странно резкое уменьшение момента количества движения звезд. Согласно земным законам физики, а их справедливость для вселенной в основном доказана, изолированная система не может сама изменить свой момент количества движения. Отсюда возникает логическое предположение — по мере изменения температуры звезд и перехода их в спектральный класс F у них имеет место процесс образования планет. Породившая планеты звезда отдает заметную часть своего момента количества движения планетам. На примере солнечной системы мы видим, что, хотя суммарная масса всех планет составляет только 1/700 солнечной, 98 процентов всего момента солнечной системы связаны с движением планет и только 2 процента с вращением Солнца. Малая скорость вращения Солнца на экваторе (2 метра в секунду, то есть в 15 раз меньше, чем скорость Земли на орбите) есть следствие сравнительно большого удаления планет от Солнца и больших скоростей их движения.

Несмотря на то, что процесс образования планет, связанный с изменением моментов звезд, пока не ясен, наблюдаемый факт резкого изменения моментов звезд является весомым аргументом в пользу распространенности планетных систем во вселенной.

Таким образом, наше Солнце — рядовая звезда Галактики со своим блестящим эскортом из 9 планет — не является в этом смысле чем-то уникальным: планетные системы у звезд распространенное явление во вселенной.

Но далеко не все орбиты планет лежат в «зоне жизни» своей звезды, где есть температурные условия для зарождения и развития жизни.

Зона жизни

Живой организм — сложная и нежная система. Он гибнет и при очень высокой и при очень низкой температуре. Жизнь может существовать только в ограниченном интервале температур. Вокруг каждой звезды можно очертить зону, где это условие выполняется. Чем больше масса звезды, тем выше ее температура (для звезд главной последовательности) и тем больше эта зона, которую называют «зоной жизни». Зона эта отстоит тем дальше от своего светила, чем больше его масса. Как у костра: чем он сильнее пылает, тем дальше мы отходим от него, но тем больше зона, где приятно греться.

Глубокие исследования зон жизни провел Су Шу Хуанг, американский ученый. По его вычислениям, звезды большой массы живут так мало на главной последовательности (хотя это миллиарды лет!), что на их планетах эволюция неживой материи в живую и ее дальнейшее развитие не успевает произойти. С другой стороны, звезды нижней ветви главной последовательности имеют столь малую массу, а следовательно, низкую температуру и узкую зону жизни, что вряд ли орбиты планет находятся в этой узкой зоне.

Если провести эту зону для солнечной системы, то в нее попадают Венера, Земля и Марс. При этом орбита Венеры лежит около внутренней границы, а орбита Марса вблизи внешней границы зоны жизни.

В итоге Хуанг выделяет из звезд главной последовательности, отбросив звезды с очень большой и очень малой массой, группу с наибольшими шансами на зарождение и развитие живой материи. Это звезды средних размеров трех спектральных классов на диаграмме «спектр — светимость» (см. на стр. 22), а именно: звезды класса F, звезды класса G и звезды класса K. По счастливому совпадению все эти звезды вращаются медленно. Они, по-видимому, отдали свой момент вращения планетам при их образовании. А так как звезды этого класса имеют значительные зоны жизни, то, вероятно, часть их планет должна лежать на орбитах внутри этой зоны. Первый любопытный факт — наше Солнце, звезда спектрального класса G, лежит точно в центре этой группы. Второй любопытный факт — орбита планеты Земля лежит в средней части зоны жизни Солнца.

Определенный интервал температур является необходимым условием жизни, но далеко не единственным. Известные нам сегодня формы живой материи не могут существовать без воздуха и воды.

Вода плюс воздух

Наиболее вероятное место зарождения жизни — это океан (тут и «питательный бульон», и защита от жесткого излучения — см. ниже). Наличие гидросферы на планете является одним из условий зарождения жизни. Но чтобы удерживать воду на своей поверхности, планета должна быть достаточно велика.

Те же соображения относятся и к атмосфере. При очень маленькой массе планеты воздушная оболочка из кислорода не может существовать — она улетучится.

С другой стороны, очень большая масса планеты также может воспрепятствовать возникновению эволюции жизни из-за огромной величины силы тяжести. Следовательно, планеты с очень малой или очень большой массой должны быть исключены из рассмотрения. Расчеты Хуанга показывают, что с точки зрения удержания атмосферы с кислородом радиус планет должен лежать в интервале 1000–20 000 километров. Это отнюдь не значит, что все планеты с таким радиусом обитаемы. Но он указывает на возможность жизни. Кроме того, имеет значение и ряд других факторов. Один из них — химический состав планеты. Например, маловероятно возникновение жизни на планете, не содержащей таких элементов, как углерод.

Читатель, наверное, и не подозревал, что необходимо так много условий для зарождения жизни. По счастливой случайности все они с надежным запасом имеются на Земле. Мы к ним настолько привыкли, что не замечаем их удивительного сочетания.

Теперь, вооруженные полученными знаниями, мы можем сделать следующий шаг: оценить число таких счастливых сочетаний в окружающих Землю просторах. Начнем с «ближней зоны». Во-первых, очертим сферу ну, скажем, радиусом в 16 световых лет вокруг нашей солнечной системы (число это взято произвольно). Во-вторых, попытаемся оценить вероятность выполнения в ней условий, необходимых для развития жизни.

Плачь, скрипка моя, плачь…

Чем меньше расстояние от нас до ближайшего очага цивилизации, тем, естественно, быстрее и легче установить контакт с ее создателями.

Фантасты давно заселили все ближайшие небесные тела — Луну, Марс, Венеру, Сатурн и т. д. разумными обитателями, облик которых чаще всего списан с землян с теми или иными вариациями. Здесь же нам, как это ни грустно, придется развеять миф о столь близком соседстве с обитателями иных миров. Грусть эта вполне понятна. Так же как человек — «животное общественное» — тяготеет к коллективу, так, по-видимому, и любая цивилизация, достигнув определенного уровня развития, тяготеет к иным цивилизациям, к контакту с ними.

Если отрешиться от фантастики и стать на научную почву, то сегодня никто всерьез не ожидает найти разумную жизнь еще где-нибудь в пределах солнечной системы. Сказанное не исключает возможность обнаружения следов угасших цивилизаций, например, на Марсе. Но это уже иной разговор, это уже сфера науки будущего — «космической археологии».

Исследования планеты Венера блестяще подтвердили эту мысль (температура у поверхности 350–400 градусов Цельсия выше нуля, а атмосфера состоит почти из одного углекислого газа). Поэтому свой взор мы должны обратить к ближайшим звездам, к соседям Солнца.

Анализируя «небольшую» зону, окружающую солнечную систему, радиусом в 16 световых лет, Су Шу Хуанг пришел к следующему. С точки зрения достаточного количества тепла и света ближайшая к нам звезда альфа Центавра, находящаяся от нас на расстоянии 4,3 светового года, вряд ли имеет «орбиты жизни». Она является тройной, и невозможно представить орбиту планеты, освещаемую тремя солнцами, с необходимыми устойчивыми температурными условиями.

Всего в очерченной нами сфере к настоящему времени обнаружено 47 звезд. Среди них четыре — Сириус, Альтаир, Процион и альфа Центавра — хорошо видны невооруженным глазом, еще шесть звезд можно с трудом различить без астрономических труб, остальные же 37 звезд можно обнаружить только в телескоп.

Сириус и Процион оказались двойными звездами и должны быть исключены из рассмотрения по тем же соображениям, что и альфа Центавра.

Если исключить звезды-карлики спектрального класса M, которые дают слишком мало тепла (Хуанг допускает, что у этих звезд может случайно появиться планета с орбитой малого радиуса внутри зоны жизни, но считает это событие маловероятным), то остаются только две звезды «на подозрении»: эпсилон Эридана и тау Кита. Созвездия, к которым принадлежат эти звезды, показаны на приведенном рисунке. Обе эти звезды находятся на расстоянии 11 световых лет. Их яркость приблизительно в три раза меньше солнечной.

Заметим, что ряд астрономов и до работ Хуанга отмечали звезду тау Кита как звезду, подобную Солнцу и, возможно, имеющую обитаемые планеты.

Как мы увидим дальше, именно с этой звезды начались первые эксперименты на Земле по поиску сигналов от обитателей других миров.

Таким образом, вероятность наличия жизни в этом радиусе весьма мала, но отнюдь не исключена. Существенное увеличение вероятности может дать поиск в радиусе порядка сотен световых лет, где число звезд резко возрастает.

Но… есть еще одна смелая мысль, которая, быть может, заметно изменит сделанные оценки. Кроме «детей солнца» или «детей своей звезды», возможно, существуют и «дети тьмы» или «дети, не имеющие своей звезды».

Дети тьмы

В 1962 году английский астроном X. Шепли выдвинул гипотезу о возможности жизни на остывших звездах. Эти тела занимают промежуточное положение между звездами и планетами. Шепли утверждает, что образования этого типа во вселенной весьма многочисленны. Они движутся по самостоятельным орбитам — в отличие от планет, которые лишь спутники своих звезд. В районе Солнца их, по-видимому, нет, так как незаметно их гравитационное действие на орбиты внешних планет.

При определенной массе такого тела может наступить равновесие между отдаваемой им энергией и поступающей из его центра, а при такой ситуации кора будет твердой и вода на ее поверхности будет жидкой. По оценке Шепли, размеры подобных тел должны превосходить Юпитер по крайней мере в десять раз. Он же утверждает, что на этих «планетах» возможны подходящие условия для возникновения жизни. «Какие странные организмы могут развиваться в отсутствие знакомого нам солнечного излучения! — восклицает Шепли. — Они не знают естественного света близкой звезды, не знают света своего солнца. Это воистину „дети тьмы“. Но ведь и на Земле есть существа, предпочитающие тьму свету. Хорошо известный пример тому, но далеко не единственный, летучая мышь. Использование эхолокации позволяет ей даже более точно ориентироваться ночью, чем многим другим животным днем. Второй пример — это методы ориентирования дельфинов и других морских обитателей на значительной глубине, где слабая освещенность. Все это может найти применение в условиях бессолнечного существования.

Однако огромная сила тяжести на поверхности этих темнокожих островов вселенной может затруднить развитие жизни и загнать ее в моря и океаны.

Развитие инфракрасной астрономии и радиоастрономии возможно скоро позволит уверенно обнаруживать такие тела».

В заключение своей работы Шепли пишет, что ближайшая к нам жизнь за пределами солнечной системы, по-видимому, находится не на планете, вращающейся вокруг звезды, а на одном из этих одиноких странников космоса.

Так как идея Шепли еще не получила научного подтверждения, то мы не будем ее учитывать в дальнейших оценках. Вместе с тем очень хотелось бы верить в нее, так как она увеличивает наши шансы на успех. Пусть это будет пока нашим неучтенным запасом.

Теперь, читатель, давайте сломаем стенки нашей «маленькой и душной» комнаты в 16 световых лет, где оказалось так мало возможностей для обнаружения инопланетных цивилизаций, выйдем в космические просторы и попытаемся сделать ту же оценку в самом широком масштабе.

Сколько их?

Можно ли на основании проведенных выше астрономических и астрофизических данных и некоторых логических рассуждений сделать количественную оценку возможного числа цивилизаций — дать, так сказать, ответ на вопрос: «Сколько их может быть?» За эту задачу брались ученые различных стран, и все они приходили к выводу — мы не одиноки в космосе. Количественные оценки были разные. Проследим ход этих любопытных рассуждений. Заглянем в полученные числа.

Оценка В. Г. Фесенкова и А. И. Опарина. Подводя итог своему исследованию распространенности жизни во вселенной, советские ученые академики В. Г. Фесенков и А. И. Опарин делают приближенную количественную оценку этому явлению.

Схема их рассуждении такова. Пусть общее число звезд равно некоему числу А. Выделим из них одиночные звезды с орбитами планет, близкими к круговым (такие орбиты обеспечивают устойчивую температуру планет). Получаем число звезд, приблизительно равное А /10. Если исключить из них звезды очень молодые и очень старые, около которых маловероятно существование жизни, то получаем величину А /100. Считая, что только у одной из десяти этих звезд орбиты планет проходят через «зону жизни», получаем А /1000. Затем надо учесть массу планет. Это условие очень жесткое: для зарождения и развития жизни планета должна иметь не слишком большую, но и не слишком малую массу. Можно ориентировочно считать, что это условие выполняется в среднем у одной из ста отобранных звезд. Значит, «на подозрении» остается только А /100 000 из общего числа звезд. Учет дополнительных факторов требует уменьшения этой цифры еще в десять раз. Получаем А /1 000 000.

Итак, итоговая цифра — из миллиона взятых наугад звезд только одна в среднем будет, возможно, иметь жизнь на своих планетах. Но ведь число звезд неимоверно велико. В одной только нашей Галактике их порядка 100 миллиардов. Следовательно, ожидаемое число обитаемых миров в Галактике составит величину порядка 100 тысяч.

Как тут не вспомнить слова Ф. Энгельса: «Вселенная должна быть гигантским резервуаром жизни».

Оценка Хорнера. Немецкий ученый сделал оценку возможного числа цивилизаций на основе теории вероятностей. Этот подход, несмотря на ряд спорных и чисто субъективных допущений, представляет безусловный интерес. Хорнер вводит новую важную величину l — время существования технически развитой цивилизации или время ее технической эры. (Началом технической эры можно, например, считать освоение радиоволн. Любопытные вычисления, которые мы вынуждены здесь опустить, приводят к следующему. Величина l существенно влияет на долю звезд, у которых в настоящее время имеется технически развитая цивилизация, на среднее расстояние между ними и на возможность установления контакта между цивилизациями.

Чем больше величина l, тем большее число цивилизаций «перекрывается» во времени, тем большее число цивилизаций одновременно существует в любой момент времени.

Для оценки величины l Хорнер вводит пять гипотез развития цивилизаций и произвольно приписывает каждой определенную вероятность ее осуществления. (Вероятность того или иного события можно определить как отношение случаев, благоприятствующих данному событию, к общему числу случаев. Например, рассмотрим такую картину. Из 100 научно-популярных книг только 5 получили общее признание и оценку «увлекательные». Если взять первую попавшуюся из этих 100, то вероятность увлечься ею составит:

P  = благоприятствующие случаи/общее число случаев = пять книг/сто книг = 0,05 = 5 %,

то есть весьма невелика. Этот пример почему-то навеял грусть на автора.)

Первая гипотеза — гибель всего живого на планете. Это может произойти в результате какой-либо космической катастрофы, сильной внешней радиации и др. Ей приписывается вероятность 0,05. То есть из 100 сообществ разумных существ в пяти гибнет и цивилизация и сама жизнь.

Вторая гипотеза — гибель только сознательной жизни. Это может быть возврат человека к своим предкам обезьянам, самоуничтожение в результате войн на планете и др. Хорнер приписывает этому исходу вероятность 0,6. То есть более половины цивилизаций кончает именно так.

Третья гипотеза — вырождение разумных существ. По-видимому, имеется в виду как физическое, так и умственное вырождение. Ей приписывается вероятность 0,15.

Приблизительно ту же вероятность — 0,2 — имеет четвертая гипотеза: потеря интереса к технике. Это отказ от всяческого прогресса. Но такое состояние неустойчиво. Скорей всего это будет возврат в прошлое — пещеры, каменные топоры, поклонение божествам и огню…

Наконец, пятая гипотеза — неограниченное развитие — имеет вероятность, равную нулю (поэтому ее нет на рисунке).

Сумма вероятностей равна единице (0,05 + 0,6 + 0,15 + 0,2 + 0 = 1). А это означает, что выдвинутые гипотезы исчерпывают все возможные пути развития цивилизации. С подобными гипотезами и их вероятностями, пронизанными неверием в силу разума, согласиться, конечно, нельзя.

Пусть читатель сам разделается с пессимизмом автора гипотез. Мы же коснемся этой темы в пятой главе.

На основании этих пяти возможных исходов цивилизации и принятых вероятностей Хорнер определяет среднее время существования технически развитой цивилизации или длительность ее технической эры. Она равна 6500 годам (lср = 6500). То есть с момента, скажем, освоения радиоволн цивилизации в среднем существуют приблизительно шесть тысячелетий. Период не такой уж малый, если учесть бурно нарастающий темп развития цивилизаций.

Далее, делая ряд спорных допущений, определяется доля звезд с технически развитыми цивилизациями, или вероятность P их существования. Она равна P = 2,6 · 10–7. (Знак минус перед показателем степени числа 10 означает, что единицу надо разделить на единицу со столькими нулями, каков показатель степени. Например: 10–3 = 1/1000; 10–5 = 1/100 000.) При этом время, прошедшее с момента образования звезды и до появления на ее планете технически развитой цивилизации, полагается равным 1010 лет.

Следовательно, при принятых предположениях в среднем только вокруг одной из трех миллионов взятых наугад звезд существует разумная жизнь нашего или выше уровня развития.

В этом подсчете, кроме того, предполагается, что при второй и третьей гипотезах на той же самой планете «на обломках» старой цивилизации может развиваться новая.

Хорнер также вычисляет среднее расстояние между «разумными» звездами. Оно получается неутешительным — порядка 1000 световых лет. Остается надеяться на «разброс от среднего» (см. главу IV).

Наконец, вычисляется вероятность встретить в космосе цивилизацию в той же фазе развития, что и наша. Она оказалась равной 0,005.

Алые паруса надежды

Помня об экономии сил и времени читателя, мы не будем углубляться в методику оценок, сделанных другими учеными. Приведем их в окончательном виде, пользуясь графиком, предложенным австралийским астрономом Р. Брейсуэллом. Строится он так. Во-первых, задаемся различным произвольным числом одновременно существующих цивилизаций N в Галактике. На графике N взято в гигантском диапазоне от 10 до 1010. Во-вторых, для выбранных значений вычисляется, зная объем Галактики, среднее расстояние между цивилизациями d. При этом полагаем равномерное их размещение.

Далее, число одновременно существующих разумных сообществ растет с увеличением длительности технической эры существования каждой из них. Учет этого явления сделан простейшим приближенным путем — взята прямая пропорциональность между N и длительностью технической эры: чем больше N, тем больше длительность эры.

Таким образом, график устанавливает зависимость числа цивилизаций в нашей звездной системе от вариации среднего расстояния между ними. Для освоения его рассмотрим два примера.

Первый. Пусть число цивилизаций велико, например N = 1010 (и время технической эры так же велико — 1010 лет). Тогда из графика получаем среднее расстояние d = 10 световым годам. Очаги разума близки друг к другу, и контактировать легко.

Второй. Пусть N мало, скажем, 104. Из графика получаем d = 1000 световых лет. Поиск друг друга становится трудным — искать надо на гигантских расстояниях среди миллионов «нецивилизованных» звезд.

На графике точками нанесены оценки числа цивилизаций в Галактике, полученные различными учеными. Как получены некоторые из этих чисел, мы показали выше.

Наиболее оптимистическую оценку дает К. Билс: N = 1010. Наиболее пессимистическую — Хорнер: N = 4 · 104.

Эти оценки относятся к нашей Галактике. Если говорить о всей видимой вселенной, то необходимо сделанные оценки, при предельно грубом подсчете, умножить на число галактик. Это число в наблюдаемой части вселенной, как уже отмечалось, составляет 1010.

Разброс оценок различных ученых на пять порядков указывает на значительную их субъективность. Однако все они сходятся, безусловно, в одном — род человеческий далеко не одинок в нашей звездной системе, а тем более во вселенной. Из полученных оценок следуют еще два важных вывода.

Во-первых, вероятность существования разумной жизни на ближайших к нам звездах (в радиусе порядка 10 световых лет) невелика ввиду малого числа звезд в этом объеме. Вместе с тем это отнюдь не исключает возможность такого события.

Во-вторых, с увеличением радиуса поиска до сотен и тысяч световых лет число звезд резко возрастает и шансы на успех существенно повышаются.

Как же производить этот поиск? Какие есть пути установления контакта с ближайшими очагами разума?

Имеются три принципиальные возможности:

прямой контакт,

роботконтакт,

радиоконтакт.

Контакт с помощью световых пучков, назовем его лазерконтактом, отнесен к третьей группе. Сопоставление радиоконтакта и лазерконтакта будет дано в четвертой главе.

Сравним кратко эти три дороги, на которые рано или поздно выйдет человек.

Прямой контакт, или баррикады «но»

Раскроем первый попавшийся под руку фантастический роман на космическую тему. С очень большой вероятностью мы встретим там такую сцену.

Молодой землянин с умным мужественным лицом, украшенным часто бородкой (может, мода на бородатых юнцов отсюда и пошла?), помахав с борта космического корабля невесте и прочим жителям планеты, стремительно стартует.

Он летит к обитателям далекой звезды для установления прямого контакта. Все предельно просто: «Прилетел, увидел, установил». Однако на пути осуществления этой мечты встают гигантские баррикады различных «но».

Первая из них — невообразимо большие расстояния. Пытаться их победить можно, располагая звездолетом со скоростью, близкой к скорости света.

Попробуем полететь к ближайшей звезде — альфе Центавра на самом быстроходном корабле, уже созданном человеком. Это корабли типа «Союз» и «Аполлон», развивающие вторую космическую скорость, равную приблизительно 11 километрам в секунду. Свет преодолевает расстояние Земля — альфа Центавра за 4,3 года. Отношение скоростей С/V покажет приблизительно, во сколько раз время полета нашего корабля будет больше, чем светового луча. Получаем время полета… боюсь испугать читателя… более 100 тысяч лет!

Вот к какому «но» привела наша попытка слетать к ближайшей звезде-соседке.

Нельзя ли существенно форсировать скорость наших ракет? Скорость корабля тем выше, чем больше скорость газов, выбрасываемых из сопла двигателя. Современные ракетные двигатели создают тягу за счет сгорания химического топлива. Расчеты показывают, что предельные скорости истечения газов здесь достаточно малы. Используя их, можно обеспечить полеты только в пределах солнечной системы. Выход за ее пределы требует новых двигателей.

В этом состоит очередное «но».

Достижение скорости, близкой к световой, требует создания реактивной тяги с потоком частиц, движущихся также со скоростью, соизмеримой со световой.

Идея такого двигателя уже обошла страницы многих журналов: это фотонный двигатель. На корабле создается установка, излучающая мощный поток световых частиц — фотонов. Под действием реактивной силы корабль получает стремительное движение в обратную сторону. Дьявольски просто! Но нужен бортовой источник электромагнитного излучения неслыханной мощности. Принципиально он может базироваться на использовании ядерных реакций, аннигиляции вещества и др. Но это огромная, пока не решенная проблема.

Кроме того, при достижении высоких скоростей коварную роль начинает играть так называемое число Циолковского. Это отношение начальной массы корабля (на старте) к конечной (на финише). Чем ближе скорость корабля к скорости света, тем больше должно быть это число.

Пусть корабль со скоростью V, близкой к С, летит по замкнутому маршруту Земля — туманность Андромеды — Земля. Если стартовая масса корабля, скажем, 6 миллионов тонн, то на финише он должен иметь массу лишь в 1 грамм!

Фантастичность таких чисел на современном уровне техники очевидна. Если лететь на фотонной ракете к ближайшей звезде — альфе Центавра и обратно, то здесь более обнадеживающая ситуация. Соотношение масс старта и финиша будет порядка сотен.

Далее, если заставить корабль набирать скорость очень быстро, то его земные пассажиры могут стать жертвой… собственного веса. Уже при ускорении в 20 м/сек2 (удвоенное земное ускорение) на бедного пассажира будет взвален рюкзак, приблизительно равный его весу. Заметно переступать эту черту при длительных полетах рискованно. Следовательно, набор скорости корабля и, конечно, ее сброс должны идти сравнительно медленно у любых кораблей, даже фотонных.

А можно ли, набрав в конце концов некоторую скорость, выключить двигатель для экономии горючего и лететь по инерции?

Конечно, можно. Но тогда вылезает другое «но»: плохое использование удивительной «машины времени Эйнштейна». В отличие от фантастического творения Уэллса, эта машина реальна. Хотя она пока подтверждена только измерениями в мире быстрых элементарных частиц, нет сомнения, что будущие полеты также докажут справедливость этой идеи. Принцип работы этого сжимателя времени прост: чем ближе скорость корабля к скорости света, тем медленнее течет время для его обитателей. Это и приводит к известному «парадоксу близнецов» или к ситуации, когда возвратившийся из дальних звездных странствий отец окажется значительно моложе своего сына.

Сжатие времени на корабле создает принципиальную возможность совершать в течение одной жизни полеты к очень далеким звездам. Но для этого потребуется длительная работа двигателя, разгоняющего корабль до скорости, близкой к скорости света. Значит, потребуется большой расход топлива, значит…

Еще целый ряд «но» связан с защитой галактического корабля от разрушения при столкновениях с частицами межзвездной среды. На субсветовых скоростях столкновения с мельчайшими частицами может вызвать грандиозную катастрофу.

Подведем итоги. Мы, читатель, являемся современниками первого этапа в освоении космоса. Человек создал технику, которая позволит ему в ближайший исторический отрезок освоить околосолнечное пространство. Для полета к другим звездам и поиска прямых контактов с обитателями иных миров необходима новая, неизмеримо более совершенная техника.

Но ты можешь возразить, сказав: «Ведь должны быть сверхцивилизации, которые достигли этой техники? Могут они прилететь к нам?»

Да, могут! Однако обилие «но», далеко не полностью нам сегодня известных, и наша затерянность в звездных россыпях делает вероятность этого события очень малой.

Таким образом, прямой контакт с обитателями иных цивилизаций, во всяком случае по нашей инициативе, отодвигается в далекое будущее. (У меня сохранилась переписка с Е. Д. Айсбергом по проблеме контакта. Его талантливые популярные книги «Радио? Это очень просто!», «Телевидение? Это очень просто!», «Цветное телевидение? Это почти просто!» переведены с французского на русский язык и пользуются успехом. Под давлением рассмотренных «но» он пришел к фатальной концепции: природа поставила баррикады на пути контактов, чтобы исключить войны между цивилизациями. Наивность такой трактовки не требует комментариев. По-видимому, ожидать выхода в свет следующей его книжки «Контакт? Это очень просто!» нет оснований.)

Роботконтакт

Этот вид контакта отличается от прямого тем, что в нем не участвуют живые существа.

Некая высокоразвитая цивилизация направляет в сторону подозреваемых в наличии разумной жизни участков неба звездолеты-роботы. Им задается точная программа. Например, прилететь в намеченную звездную систему, стать искусственным спутником звезды (или одной из планет) и начать передавать информацию из своего запоминающего устройства. Информация может постепенно нарастать по сложности, что поможет уловить ее логику. Робот сможет сообщить, чей он посол, передав, например, телевизионную картинку своего созвездия. Такой космический робот снимает ряд «но». Отпадет труднейшая проблема возвращения космонавтов на родную планету. Длительность полета может быть значительно больше срока жизни пославших существ. Допустимые ускорения могут быть значительно больше. Энергию робот может получать от звезды, в гости к которой он прилетел. Излучаемые им радиосигналы будут неизмеримо мощнее, чем излучаемые с планеты, его пославшей.

Все это делает несколько более вероятным появление таких роботов в просторах той или иной звезды, чем живых колумбов космоса. Надо следить за сигналами, приходящими на Землю извне. Может, такие роботы давно нам сигналят, но мы их не слышим. Мы слабо следим за небом.

Радиоконтакт

Как будет показано ниже, радиоволна и есть тот идеальный галактический корабль, который так нужен нам для контакта. Он движется со скоростью света. Не требует разгона и торможения. Не подвержен действию сил тяготения. Принципиальный его недостаток — он не может перевозить материальные тела. Единственный груз, который на него можно взвалить, — информация.

А разве этого мало? Любой накопленный опыт в освоении законов природы или в социальном устройстве общества можно передать с помощью информации.

В создании этого галактического радиокорабля имеются свои трудности. Но они неизмеримо меньше, чем при организации прямых контактов или контактов роботами.

Поэтому дальнейшие главы книги будут посвящены именно этому виду контактов.