Оптимист против пессимиста
(Начало спора)
Пессимист (П). Это верно, что ты формируешь группу астрономов, физиков, математиков для поиска радиоконтакта с внеземными цивилизациями?
Оптимист (О). Да.
П. Меня магнитом тянет к вам, но одолели сомнения. Не загубить бы безрезультатно «все лучшие годы». Что вы собираетесь делать?
О. Строить радиомост к ним через космическую бездну. Даже два моста. Один будет из формул, графиков, расчетов, догадок, гипотез. Второй — в железе: гигантские антенны, почти бесшумные приемники и мощнейшие передатчики, обучающиеся инопланетной азбуке киберы…
П. А на той стороне бездны кто-нибудь есть?
О. Где-то на далеких планетах вселенной жизнь бьет ключом. А человек стал таким умным: овладел радиоволнами, научился их принимать и передавать, выдумал кибернетику… Сама спираль развития толкает нас к радиоконтакту. Что нам мешает установить его? Навести радиомост к ним?
П. А если мы все-таки единственное разумное творение Природы?
О. Прошу тебя, умерь свое величье, представитель племени землян! В наблюдаемой части вселенной мы насчитываем миллиарды миллионов звезд. Вокруг многих из них, прикованные цепями тяготения, носятся планеты. Их тоже миллиарды! И вот ты считаешь, что только на одной из них могло появиться разумное существо? Например, вот такой Фома неверующий? Ты теорию вероятностей признаешь? Признаешь, что она справедлива для вселенной?
П. Ну, допустим, признаю.
О. Тогда скажи, пожалуйста, могли не повториться условия для возникновения жизни при таком невообразимо гигантском, недоступном нашему воображению числе «опытов» Природы? При этом помни: это не разовая серия опытов. Они происходили и происходят непрерывно вот уже миллиарды лет.
Звезды и их планеты живут — рождаются, развиваются, гибнут, творятся вновь и т. д. И это многократно преумножает то великое разнообразие условий, через которое проходят планеты во времени в разных точках космических просторов.
П. Сдаюсь. Помнится, нас учили: почти невероятное отдельное событие может стать весьма вероятным, если число событий очень велико.
Но ведь они могут еще не знать радиоволн. Может, самые бойкие из них только сейчас внемлют своему великому Ому: ток пропорционален напряжению и обратно пропорционален сопротивлению.
Для них радиоволны — что луч света для слепого.
О. Если принять твою гипотезу, то ты прав. Ведь радиомост в отличие от обычного можно навести, только если «радиосаперы» работают по обе стороны разделяющей пропасти.
Но откуда ты взял свою гипотезу? Из болота своего скептицизма? Именно оттуда?
Скажи мне, одинаков ли приблизительно возраст наблюдаемых звезд?
П. Нет, конечно, он различается на миллионы и миллиарды лет.
О. Что отсюда следует?
П. Ты хочешь, чтобы я сделал вывод, что возраст цивилизаций тоже может отличаться на миллионы и миллиарды лет?
О. Конечно.
П. Но ведь время существования цивилизаций ограничено!
О. Чем?
П. Ну хотя бы внутрипланетными войнами.
О. Чепуха! С этим разумные существа справятся. Даже наша юная цивилизация вскоре будет вспоминать войны, как кошмарный сон человечества.
П. Ну, а духовное увядание: все проблемы разрешены, тайн нет, тоска и скука…
О. Ты же сам в это не веришь. Повторяешь чужие слова. Скажи, настанет день, когда мы будем знать Метагалактику как свои пять пальцев? При этом учти, что ее границы человечество будет все время раздвигать.
П. Ты прав. Но по-твоему, время существования племен разумных существ ничем не ограничено?
О. Ограничено. Во-первых, это увядание звезд-солнц. Грубо говоря, замерзание.
Во-вторых, это изменение условий существования — сильное увеличение радиации, изменение климата, например ледниковый период на Земле, и т. д.
В-третьих, это космические катастрофы — столкновения небесных тел.
П. Вот видишь, я же говорил…
О. Постой. Срок жизни звезд измеряется сотнями миллионов и миллиардов лет. За это время цивилизация может достичь столь высокого уровня техники, что завести ей роман с более молодой звездой и прописаться у нее на жительство не составит труда.
Что касается космических катастроф, то вероятность их исчезающе мала!
П. На какой же уровень развития внеземных цивилизаций надо ориентироваться?
О. Кстати, ты слышал о делении существующих цивилизаций на три типа, предложенном советским астрономом Н. С. Кардашевым?
П. Как можно делить то, о чем мы понятая не имеем?
О. Оказывается, можно. Пока, правда, в нашем распоряжении находится только один экземпляр цивилизации, представителем которой, кстати не очень ярким из-за своего скепсиса, являешься ты.
Ты знаешь, что такое экспонента и экспоненциальное возрастание?
П. Экспонента — это известная зависимость Y = ех . При возрастании X (если X положителен) происходит очень резкое, экспоненциальное возрастание Y. Если я не ошибаюсь, по этому закону растет население земного шара в зависимости от времени.
О. Верно. Так вот количество энергии, потребляемое ежесекундно человечеством, растет из года в год по этому закону. За последние 60 лет этот прирост составляет 3–4 процента в год.
П. Ну и что?
О. А то, что если считать годовой прирост равным только одному проценту, то через 3 тысячи лет ежесекундное потребление будет равно ежесекундному энергетическому выходу Солнца! А через 5 тысяч лет — выходу более миллиона звезд. Такова логика развития нашей цивилизации. Она, наверное, справедлива и для других. Невозможно представить развивающуюся цивилизацию, у которой нет регулярного роста потребляемой энергии.
П. Что же предложил Кардашев?
О. Он разбил технологическое развитие цивилизации на три группы.
I — технологический уровень близок к современному на Земле. Энергопотребление приблизительно составляет 4 · 1019 эрг/сек.
II — цивилизация, обладающая энергией, близкой к излучаемой их звездой. Энергопотребление приблизительно равно 4 · 1033 эрг/сек.
III — цивилизация, обладающая энергией в масштабах своей галактики. Энергопотребление приблизительно равно 4 · 1044 эрг/сек.
П. Постой. Дай перевести дух. Как можно завладеть энергией звезды?
О. Например, с помощью «сферы Дайсона».
П. Кто такой Дайсон? Один из безответственной армии фантастов?
О. Нет. Это американский ученый, профессор Принстонского университета. Он дал инженерный расчет, наметил пути построения и порекомендовал материал для сооружения такой сферы.
П. Расскажи скорей.
О. Пожалуйста. Как ты думаешь, что может ограничить движение вперед высокоразвитой цивилизации?
П. Понятия не имею.
О. Ограниченность вещества и энергии, которые может дать планета этой суперцивилизации. Ведь уже сегодня мы добываем один кубический километр руды в год, а завтра… Тут ведь действует тот же закон экспоненциального возрастания.
П. Значит, настанет затухание цивилизации?
О. Опять у тебя темные очки. Дайсон доказывает, что и энергию и вещество разум может добыть.
П. Как?
О. Представь себе, что вокруг Солнца сооружена гигантская сфера радиусом много миллионов километров. Тогда вся излучаемая Солнцем энергия будет обогревать не беспредельный космос, а окажется сосредоточенной в сфере. Она будет принадлежать ее строителям.
П. А из чего сфера? Из полиэтиленовой пленки?
О. Не дури. Каркас сферы можно собрать, например, из стандартных «кирпичей» — стальных стержней длиной один метр и диаметром в один сантиметр.
П. ???
О. Из 12 таких кирпичей сваривается октаэдр. 100 таких октаэдров составляют один элемент второй ступени. Из 12 элементов составляем октаэдр более крупный и т. д.
П. Потребуется бездна вещества?
О. Верно. Для этого можно разобрать нашу старушку Землю на части. Ее обитатели при этом перекочевывают на новое местожительство — на сферу. Можно, конечно, сохранить Землю как дорогой нам сувенир — все-таки колыбель человечества, — а пустить в переработку одну из ближайших планет.
П. Открыть там рудники?
О. Дайсон предложил другой метод. Вещество само будет отрываться от планеты! Строителям останется чисто рыболовная функция — вылавливать эти глыбищи. Более того, он считает, что и звезды могут быть подвластны нам. В случае крайней нужды можно и у них отнять часть вещества. Хватит им поклоняться!
П. Ты шутишь?
О. Отнюдь. Почитай Дайсона. Он показывает, как это принципиально можно сделать. Правда, надо иметь в виду рискованность операции и не погубить бы жизнь смельчаков при отрыве вещества. Но это задача для физиков и математиков далекого будущего. Дерзкие мысли, а?
П. Потрясающие!
О. А ты сомневался, что не будет работы в будущем.
П. Нелегкая будет работа — монтаж такой сферы!
О. Пустяки. Самый трудный — первый шаг — уже сделан. Корабли типа «Союз» стыковались. Есть первые космические монтажники и сварщики: летчики-космонавты Е. Хрунов, А. Елисеев, В. Волков.
Разве есть принципиальная разница в том, что стыковать и сваривать — корабли или октаэдры?
П. Пожалуй, нет. Но, допустим, цивилизация Y (X оставим для себя, все-таки он возглавляет знаменитое трио X, Y, Z) сварганила такую махину. Далеко отодвинула для себя перспективу оледенения планеты. Как же с помощью этой сферы она будет сигналить? Как будет искать контакт?
О. О, это почти элементарно. Натяни на каркас сферы материал с электрически управляемой прозрачностью и мигай себе либо на всю вселенную, либо только в желаемом направлении (это более экономно).
П. Ты так все убедительно описал, будто видел, как не один десяток таких сфер мигает.
О. Не удивляйся. Увы, пока не видел ни одной!
П. Есть, наверное, теория, которая и это логически объясняет?
О. Теорий нет. Причины, почему их нет, могут быть разные. Например, ближайшие к нам инопланетные существа не достигли этого «сферного» уровня, а достигшие его слишком далеки от нас. Наконец, они могли пойти иным путем.
П. Не следует ли отсюда, что наш радиомост к ним так и повиснет в бездне? Не положить ли его проект в долгий ящик?
О. Наоборот. Раз они нам не мигают своими звездами, значит их надо искать в радиодиапазоне.
П. Почему? Я не уловил логики.
О. Да потому, что соорудить мощный и сверхмощный радиопередатчик в миллион раз легче, чем заарканить свою звезду и мигать ею почти как карманным фонариком (и конечно, менее обидно для гордого Игрека — Солнца).
П. Ну, а какой же у них все-таки уровень развития техники?
О. Наверно, всякий. У некоторых еще не родились свои Максвеллы, Герцы, Поповы (их Кардашев явно обидел — даже не выделил им группы). У других этот этап пройден сотни лет назад. Но должны быть и суперцивилизации, отнесенные ко II и III группам. Они обладают гигантскими энергетическими ресурсами и, наверное, давно уже возвели свою часть радиомоста. Он висит в бездне, скучает, удивляется нашей беспомощности и ждет второй половины.
П. Почему же мы их не слышим?
О. Я уже говорил тебе. Повторю: нужна аппаратура на уровне последних достижений радиоастрономии, радиоэлектроники и кибернетики, постоянная радиослужба неба, упорная, кропотливая работа землян и, конечно, вера в успех. Нужна…
П. Значит, ты за голый, ползучий эмпиризм в поисках? А я надеялся…
О. Куда девались твой такт и твоя пассивность? Ты не даешь договорить.
П. Молчу. Внимаю.
О. Параллельно эксперименту надо развивать теорию взаимного радиопоиска цивилизаций: где искать, как искать, как отличить разумный сигнал, как понять их письмена, как… Только содружество этих двух направлений обеспечит разгадку величайшей из тайн Природы.
П. Но ты, кажется, предлагаешь взвалить активные действия на сверхцивилизации, а нам (иксам) помалкивать и слушать затаив дыхание, так? А что, если все так же будут рассуждать?
О. Нет. Я против молчания. Надо закричать, насколько хватит сегодня нашего голоса в просторы вселенной: «Ау! Мы здесь! Кто вы?..» Может быть, нас и услышат.
П. Сомневаюсь, что наше «ау!» долетит до ближайших звезд. А если и долетит, то когда мы получим ответ?
О. Ответ будет не скоро. В лучшем случае через десять лет, а в худшем — значительно позже.
П. Вот видишь! Какой смысл тогда строить мост?
О. А ты знаешь о второй кардинальной идее Кардашева?
П. Разве он нашел способ ускорить получение ответа?
О. Нет. Это, по-видимому, невозможно.
П. Что же тогда?
О. Он считает, что высокоразвитая цивилизация, понимая ситуацию и не дожидаясь ответа, будет слать информацию о себе: социальный строй, познанные законы природы, уровень техники, тайны искусства…
П. Как? Вот так и будут сыпать, как из рога изобилия, все свои секреты? Даже не зная, упадет ли хоть одно зерно на благодатную почву?
О. Конечно! Они же ушли дальше. Они знают, что почва обязательно найдется, что надо сеять разумное… Более того, высказывается мысль, что передача информации от ушедших вперед к отставшим («обратная связь цивилизации» во времени) или уже является, или будет гигантским ускоряющим фактором в развитии разума во вселенной.
П. Меня все же сбил с толку этот гигантский поток информации. Мы или совсем его не обнаружим, или захлебнемся в нем, ничего не понимая, или ухватимся за хвост последней тайны, непонятной без предыдущих.
О. Конечно, будут и простые «ау!», и сигналы для настоящего заочного обучения их азбуке. Только потом посыплются их тайны. И все будет много раз повторяться. Даже больше, чем некоторые старые фильмы по земному телевидению. Ведь это будет разум, ушедший далеко вперед от нас с тобой, худодум!
П. Худодум? Это обидное словечко ты заимствовал у какой цивилизации?
О. У нашей, земной, русской. Так в старину называли таких, как ты; кто обо всем думает только худо. Жаль, что оно забыто.
П. Вот что, «добродум». Я не верю в этот гигантский поток информации, я не верю…
О. Вот что, Фома неверующий, если ты хочешь серьезно вникнуть в задачу, то давай обратимся к основным параметрам нашего радиомоста, к цифрам и расчетам. Только так можно победить твое неверие.
П. Согласен.
О. Предположим, цивилизация X и цивилизация Y пытаются установить контакт. Можно вычислить потребную мощность…
Здесь мы прервем спор. Нам не хватит ряда понятий для его понимания. Мы с ними познакомимся и к спору вернемся снова.
Зарубки на волне
«Я, электромагнитная волна, имею такие-то частоту, амплитуду и фазу. Источник, меня пославший, находится в таком-то направлении. Какой это источник естественный или искусственный — и зачем он меня послал, мне знать не дано…»
Вот та скудная информация, которую может сообщить в точке приема радиоволна в виде синусоидального колебания при самом пристрастном ее допросе.
Заметим в скобках, что волна по скромности кое-что утаила.
Так, наблюдая изменения частоты во времени, можно установить, движется или покоится пославший ее источник. Если движется, то куда — к нам или от нас?
Далее, наблюдая электромагнитную структуру приходящей волны (или плоскость ее поляризации), можно сделать некоторое заключение о характере излучающего устройства.
И наконец, изменение амплитуды, частоты и фазы волны во времени укажут на какие-то изменения, происходящие либо в самом источнике, либо в среде.
Как заставить волну переносить более богатую информацию? Как заставить ее переносить разумные сигналы — телеграфные, телефонные, телевизионные? Для этого на волне нужно сделать некие пометки или зарубки. Первым таким «дровосеком» был А. С. Попов. Родоначальница всех телеграмм («Генрих Герц») была нанесена на волну с помощью самых грубых зарубок. Текст был передан с помощью азбуки Морзе. Точкам и тире соответствовало излучение волны, паузам отсутствие излучения.
Перейдем к более сложному сигналу. Вы говорите в микрофон и изменяете тем самым сопротивление угольного порошка, а значит, и величину тока в его цепи. Так речь преобразуется в электрический сигнал причудливой формы. Перенесем этот сигнал на волну. Для этого на ней надо «вырубить» в точности весь его узор.
Для такого же переноса телевизионного сигнала потребуется еще более умелый плотник. Кроме переноса сложного ажурного сигнала изображения, нужно еще ухитриться врубить в волну через равные промежутки времени импульсы синхронизации. Без них луч не начертит правильно передаваемую картинку.
Итак, чем сложней сигнал или чем больше он насыщен информацией, тем более искусно надо делать «зарубки».
Но за это сочное русское слово, от которого буквально пахнет лесом и смолой, автору влетит! Последнее время стало модным объявлять себя ревнителем единой, согласованной, утвержденной, гостированной… терминологии. Поэтому будем не рубить волну, а модулировать (изменять).
На приведенном рисунке модулируется амплитуда волны, и метод называется амплитудной модуляцией. Если в соответствии с передаваемым сигналом менять частоту волны, то получим частотную модуляцию, при этом амплитуда волны остается неизменной.
Мы уже установили, что любое колебание, любая волна имеют два изображения — временнóе и частотное. Это напоминает две стороны одной медали.
На предыдущих рисунках показано изменение формы волны во времени при ее модуляции. А что же при этом происходит на второй стороне медали?
О, частотное изображение волны при модуляции существенно портится! Изображение теряет стройность: из идеала стройности оно превращается в толстяка. И чем большую информацию мы передаем в секунду, тем больше обрастает фигура жиром.
Кстати, синусоидальная волна (или колебание) — предел стройности. Она занимает на шкале частот предельно скромное и предельно экономное место. Если никаких изменений (или модуляции) амплитуды, частоты и фазы во времени не происходит, то теоретически такое колебание должно выглядеть бесконечно тонкой линией на шкале частот. За это его физики любовно называют гармоническим. Но фактически всегда имеются какие-то флюктуации этих параметров, и эта линия выглядит несколько размытой.
Как только мы начнем делать зарубки, простите, модулировать волну, так она начинает агрессию на соседние частотные делянки. Так и должно быть. Ведь сложные модулированные колебания являются не чем иным, как суммой ряда гармонических колебаний с разными частотами, амплитудами и фазами. Эти колебания являются обязательными спутниками несущей частоты или переносчика. Спутники появляются, как только появляется модуляция. Вот они и совершают агрессию.
Любопытно, что эту истину доказал французский математик Жан Фурье задолго до открытия радиоволн. Более того, он разработал простой математический аппарат — знаменитый ряд Фурье, — с помощью которого можно любое модулированное колебание разложить на сумму гармонических. Из этого разложения сразу следует, какой частотный участок будет захвачен при модуляции.
Я не знаю, что делали бы диссертанты и докторанты, если бы не спасительное открытие Жана Фурье. Без преувеличения можно сказать, что почти ни одна диссертация в области технических наук не обходится без его метода: сложные колебания и функции разлагаются на простые, трудные интегралы расчленяют на доступные и т. д.
Совет «попробуйте разложить в ряд Фурье» стал универсальным щитом консультантов, когда нет возможности или желания вникнуть в суть неполучающейся задачи аспиранта.
Итак, чем большую информацию мы хотим взвалить на волну, тем больший частотный коридор надо отвести этой волне. И тем большую полосу частот должен охватывать приемник для приема этой информации.
Или, как образно говорят практики, чем больше информации передается в единицу времени, тем шире должно быть «горло» приемника. А чем шире горло, тем, конечно, и больше всяких помех в него проникает.
Но нам пора от сигналов переходить к системе связи, то есть к совокупности элементов, позволяющих передать информацию из одной точки пространства в другую. В природе и технике мы сталкиваемся с великим разнообразием систем связи.
Казалось бы, что общего между передачей телевидения, танцем пчелы, сообщающей этим способом, куда лететь на сбор меда, импульсами радиолокатора и прерывистым излучением пахучего вещества бабочкой, служащего для привлечения зрелых особей противоположного пола?
Немного отвлекаясь, заметим, что «пробивная сила и дальнобойность» этих нежных ароматических систем связи просто поражает. Зарегистрирован случай, когда за одну ночь возле единственной самки большого ночного павлиньего глаза было поймано 125 самцов. Самка находилась в темной комнате. Самцы по запаху слетались со всей округи и через открытое окно проникали к ней. После того как окна закрыли, кавалеры продолжали проникать через дымоход старой печки.
И меж тем передача информации во всех названных системах связи происходит по одним и тем же общим законам.
Впервые единство процессов управления и передачи информации в технике и в живых организмах было показано в работах Норберта Винера и Клода Шеннона.
Сейчас это почти общеизвестно. А при первом чтении их работ буквально дух захватывало от неожиданно нового и широкого взгляда. Смело перебрасывался мост между техникой и живой природой. И надо было идти по нему в природу и учиться у нее, как хранить, передавать и принимать информацию, как строить адаптивные системы, легко приспосабливающиеся к меняющимся условиям. Это «хождение в природу» наблюдается и сейчас.
Упрощенная модель любой системы связи, в том числе и для связи цивилизаций X и Y, представлена на нашем рисунке.
#i_055.png
Из источника в передатчик поступает сообщение, которое нужно послать абоненту. В передатчике создается тот или иной вид переносчика, на который «взваливается» (путем модуляции) информация. После усиления до нужной (или возможной) мощности полученное сложное колебание излучается в окружающую среду с помощью антенны. Возникающая волна или сигнал, пронизывая межзвездные просторы, достигает приемной антенны и воспринимается приемником. Последний усиливает принятый сигнал и производит разгрузку переносчика. Этот процесс, обратный модуляции, именуется детектированием и производится детектором (обнаружителем). В последнее время это слово приобрело за рубежом зловещий смысл в связи с применением при допросах так называемых «детекторов лжи». Ими контролируют пульс, давление крови, ритм дыхания и потоотделение. Апологеты этого прибора утверждают: если человек врет, то под давлением совести и эмоций произойдет резкое изменение хотя бы одного из этих параметров. Фактически такой связи не установлено. Но зато замечено, что подключение такой адской машины к человеку отлично его запугивает и сбивает с панталыку. Этим и пользуются. Наш же детектор — добросовестный разгрузчик информации — ничего общего с «детектором лжи» не имеет и не хочет с ним знаться.
В детекторе переносчик самоотверженно погибает. Дальнейший путь к получателю совершает доставленное им сообщение.
Но в нашей единой блок-схеме системы связи недостает одного существенного элемента: там не отражен злой гений, который преследует сигнал на всем его пути и наносит ему жестокие удары. Часто эти удары наносятся ножом, да еще в спину, и по самую рукоятку. Кто он, этот гангстер среди волн?
Враг номер один
При взгляде на блок-схему связи сразу встает фундаментальный вопрос: на какую дальность может стрелять такая информационная пушка? Всякая волна, раз возникнув в среде, распространяется в ней теоретически беспредельно (точнее, «достигает бесконечно удаленных точек с бесконечно малой амплитудой»). Но из опыта мы знаем, что для всякого источника колебаний (звуковых, световых, радио) имеется предельное расстояние, за которым обнаружить его колебания не удается. В чем же дело? Не обманывает ли нас теория?
Для примирения теории с практикой нужно учесть два фактора. Первый: в среде распространения волн происходит хаотическое тепловое движение молекул и, кроме того, на среду воздействует большое число других источников колебаний, что и создает неизбежный шумовой фон самой среды. Второй: любой приемник колебаний имеет всегда свой уровень собственных шумов. (В этом легко убедиться. Включите приемник, отключите антенну и поставьте регуляторы громкости на максимум: вы услышите шум, похожий на шипение примуса. Это и есть его собственный шумовой фон.) При приеме происходит дружное объединение шумов среды и приемника, а результирующий шум и ограничивает фактическую дальность передачи информации.
Если амплитуда колебаний полезного сигнала становится соизмеримой или меньше уровня фона, то утлая ладья сигнала начинает тонуть в бушующем море помех. Сначала ее только изредка заливает водой, но паруса еще чувствуют ветер источника, и ладья держит правильный курс. По мере удаления от источника сигнал слабеет, волны хаоса шума вздымаются все выше, воду не успевают откачивать, паруса рвутся, рушатся мачты, ладья «без руля и ветрил» становится игрушкой волн шума.
Я не ошибусь, если скажу, что история радиотехники наполовину есть не что иное, как борьба за всемерное увеличение дальности плавания нашей ладьи в волнах помех.
Смею заверить читателя, что этот поединок с хаосом шума, продолжающийся и сегодня, не менее романтичен, чем многовековая борьба человека с морской стихией.
Вспоминаю единоборство двух методов передачи сигналов на радиотрассе Хабаровск — Москва.
Новый метод соревновался с известным. Затаив дыхание, мы следили за приемной аппаратурой в Москве: ведь это был первый «выход в свет» нашего дитяти.
Испытательным сигналом были взяты слова из чудесной песни А. К. Толстого:
При сильном сигнале оба метода безошибочно печатали эти вдохновенные строки. По мере снижения мощности передатчика в Хабаровске шумы начали захлестывать сигнал. Старый метод стал давать перебои: помехи превращали «цветики» в «светики», «голубые» в «глупые» и т. д. При еще меньшей мощности песня превратилась в абракадабру. А новый метод продолжал успешно печатать с редкими ошибками.
Трудно описать нашу тогдашнюю радость! Вся группа — застенчивые меланхоличные теоретики, видавшие виды инженеры и техники, юные студенты и прошедшие всю войну радисты — все пустились в пляс. Помехам, мелькавшим в осциллографе, показывали языки и строили рожи, обнимались… Аппаратурный зал преобразился не то в высшую точку труднейшей и красивейшей вершины, взятой после упорного штурма, не то в хоккейное поле, где в последнюю минуту ответственного и пока ничейного матча вдруг каждый из игроков забивает по шайбе в ворота противника.
Образы качающих головой темно-голубых цветиков и стрелой летящего лихого коня еще долго не покидали нас. Передача велась с большой скоростью. Буквы пробивались электрическими искрами на тонкой ленте из фольги. За сеанс связи вырастала гора этой ленты.
Контроль ошибок шел вручную. Каждому доставался кусок ленты длиной почти в километр, на которой слова песни повторялись, повторялись, повторялись…
Теперь уже читателю ясно, что именно помехи ставят предел дальности связи и являются врагом номер один всех систем передачи информации. Они стоят и на нашем пути к радиоконтакту и делятся как бы на «внутренних» и «внешних» врагов. Познакомимся с ними поближе.
Начнем с «внутренних» — с собственных шумов. Возьмем любой кусок металла — пластину, провод, нить лампочки накаливания и т. д. Многие из читателей и не подозревают, что все это отличные генераторы электрического шума. Он возникает в результате теплового движения заряженных частиц, всегда имеющихся в проводнике. Ведь электрический ток есть не что иное, как движение заряженных частиц.
Так как они находятся в непрерывном хаотическом движении, то и создают на концах любого проводника шумовое напряжение. Как показал давным-давно Найквист, это напряжение тем больше, чем выше температура и величина электрического сопротивления проводника. Полоса частот, в которой «шумит» любой проводник, очень широка. Она перекрывает весь радиодиапазон. Более того, интенсивность шума в любом частотном участке одинакова. Поэтому такой шум, кроме теплового, еще называют белым.
Как белый свет есть смесь всех возможных цветов, так белый шум есть смесь колебаний всех возможных частот. Поэтому, чем в большей полосе частот мы измеряем шумы данного проводника, тем больше будет его уровень.
Итак, любой проводник в приемном устройстве: антенна, соединительный кабель, контур, сопротивление — являются генераторами шума.
Казалось бы, есть простой путь уничтожить все эти генераторы шума. Надо лишь охладить их до температуры абсолютного нуля, то есть до минус 273 градусов Цельсия, тепловое движение частиц прекратится и шум исчезнет. Принципиально это верно. Технически же реализовать данную идею удается пока лишь частично.
Наиболее опасны тепловые шумы элементов приемника еще до входа первого усилительного (или преобразовательного) каскада, где сигнал еще очень слаб.
Второй грозный очаг шумовой опасности в приемнике — это сами усилительные и преобразовательные каскады. В них используются такие электронные приборы, как лампы или полупроводники. Усиление или преобразование сигнала в них достигается за счет того, что слабый сигнал управляет более сильным потоком носителей зарядов. Водопроводный кран есть грубая модель таких устройств, — прикладывая небольшие усилия к вентилю, мы успешно управляем мощной водяной струей.
Вся беда состоит в том, что поток носителей зарядов (в лампах — это поток электронов, в полупроводниках — электронная и «дырочная» проводимость) невозможно сделать строго постоянным. Он колеблется вокруг некоторой средней величины по случайному закону, что, естественно, приводит к непостоянству величины усиливаемого сигнала, или, что то же самое, к появлению шума. По своим характеристикам он близок к тепловому.
Шумы этих двух очагов складываются и образуется результирующий шум приемного устройства. Анализ поединка сигнала и помех в приемнике, когда много отдельных источников шума, сложен. Поэтому применяют такой «ход конем»: реальный приемник заменяют идеальным, в котором нет ни единой шуминки, но на вход этого чудо-приемника включают генератор шума. Его мощность берут такой, чтобы он создавал в нашем бесшумном приемнике такой же шум, какой имел реальный приемник. Следовательно, вынос помех на вход вполне допустим — картина «добра и зла» в приемнике от этого не изменяется.
Десятки лет напряжение шума приемника измеряли в микровольтах (миллионных долях вольта). Сейчас оказалось более удобным измерять его в градусах шкалы Кельвина. В паспорте приемника так и пишут: температура шумов равна, скажем, 50 градусам по Кельвину. Что же значат слова «температура шумов»? Разве есть горячий и холодный шум? Или, вставив термометр в приемник, можно измерить его шумы?
Дело обстоит значительно проще. Если температура шумов 50 градусов, то, подключив на вход приемника сопротивление, равное сопротивлению его входа, и нагрев его до температуры 50 градусов, мы и получим тот самый вынесенный на вход генератор шума в виде шумящего сопротивления. Он будет создавать в приемнике шумы, равные по величине реальным.
Ожесточенная борьба за снижения температуры шумов приемника привела в последнее время к созданию малошумящих приемников. «Ртутный столбик» термометра приемника упал с температуры 1500–2000 до 20–50 градусов по Кельвину, то есть почти в сто раз. Это достигнуто за счет использования новых принципов усиления и преобразования сигналов и «замораживания» входного каскада приемника до температур, близких к абсолютному нулю.
Один из новых видов усилителей — мазер. Это молекулярный усилитель, который работает на принципах, схожих с работой лазера (мы с ними знакомились в главе второй).
Переходим к врагам внешним. Одним из основных его источников является сумма теплового и синхротронного излучения небесных тел Галактики и Метагалактики.
Это излучение имеет непрерывный спектр, и величина его падает с уменьшением длины волны. Значит, для уменьшения помех, создаваемых небесным фоном, надо работать на предельно коротких волнах. Но к сожалению, уменьшение волны приводит к появлению нового вида шумов — квантовых, которые есть результат дискретной или фотонной структуры потоков излучений.
Эти два фактора приводят к тому, что результирующий шумовой фон неба, о котором мы говорили уже, имеет глубокий минимум.
При волнах короче 3 сантиметров появляются шумы атмосферы. Правда, их можно принципиально исключить, вынося приборы за ее пределы.
Шумовой фон достигает максимума, когда радиотелескопы смотрят на центр Галактики (там максимальная концентрация магнитного поля и релятивистских электронов), и минимума — при направлении на ее полюс.
Как и внутренние шумы приемника, внешние шумы также измеряют градусами Кельвина.
Направим радиотелескоп на центр Галактики. Приемник при этом будем перестраивать по частоте и измерять уровень фона на его выходе. Мы получим кривую, приведенную на рисунке (при направлении на полюс минимум будет еще глубже).
Я надеюсь, что Жан Эффель не обидится, что его создание — черт — приобрело, еще одну специальность — олицетворять злые шумовые силы природы.
Землянам опять повезло. Минимальный чертик хорошо совмещается с радиоокном нашей планеты.
#i_058.png
Из кривой следует, что температура фона наименьшая — составляет единицы градусов — в диапазоне волн приблизительно 3–10 сантиметров.
Кроме шумового фона, в радиовселенной много так называемых дискретных источников излучения. Они дают всплески радиоизлучения в отдельных точках неба. Такая помеха попадет в горло приемника, если антенна направлена на этот источник. Тогда уровень внешних помех может резко возрасти (при сильном дискретном источнике). Но это отдельные, редкие точки на небосводе, и их можно в большинстве случаев избежать, изменяя направление антенны или настройку приемника.
Блок-схема системы связи, нарисованная на странице , нереальна. В ней действует только сигнал, а помех совсем нет. Учесть же их можно введением в эту схему генераторов помех, которые выбираются так, чтобы создаваемый ими электрический хаос соответствовал реальному в рассматриваемой системе связи.
Во весь голос
А нельзя ли перекричать помехи? Подавить этого врага грубой силой? Можно. Но этот путь дает успех при не очень больших расстояниях между передатчиком и приемником. Так, вращая ручку настройки приемника, мы замечаем, что местные радиовещательные станции отлично слышны, а дальние еле-еле и искажаются помехами.
Какое же надо превосходство мощности сигнала над мощностью помех? Оно зависит от ряда факторов: от способа передачи и приема, от скорости передачи, от уровня допустимых искажений — и лежит в пределах от 10 до 1000 раз.
Напомним, что мощность передатчика (или источника помех) есть энергия, излучаемая им за одну секунду. То, что волна любого типа по мере удаления от пославшего источника теряет свою силу, известно всем. Но не все отдают себе отчет, сколь быстро это происходит. Мощность волны падает катастрофически — пропорционально квадрату расстояния. А что это значит, знает, наверное, каждый: при увеличении расстояния в два раза мощность уменьшается лишь в четыре раза, но зато увеличение дальности в 100 раз уже дает уменьшение в 10 тысяч раз!
Легко доказать этот закон. Поместим в центре шара свечу. С увеличением его радиуса R освещенность любой внутренней площадки будет слабеть пропорционально квадрату радиуса. Ведь световая энергия свечи должна распределяться на всю сферу, а ее поверхность растет как R2. То же происходит с мощностью радиоволны.
Это один из печальных законов мироздания, встающих на пути радиоконтакта. Остается утешаться тем, что площадь сферы пропорциональна R2, а не R3.
Тут вспоминается диалог двух пассажиров, ударившихся при резком торможении вагона:
— Не мог уж Ньютон в своем законе сделать силу удара не mV2/2, а просто mV/2.
— Ты лучше благодари его за двойку в знаменателе, все-таки синяк в два раза меньше.
Максимальная мощность излучения передатчиков, реализованная на нашей планете в диапазоне радиоокна, достигла уже десятков мегаватт в импульсном режиме и десятков киловатт при непрерывном излучении.
Но эти мощности не позволяют просто перекричать помехи в космических радиолиниях. Значит, надо перехитрить помехи: принять все другие меры для повышения отношения сигнал/помеха в точке приема, а сам сигнал сделать грубым и малочувствительным к «укусам» помех.
«Любит — не любит»
Дальность связи можно резко повысить, если не распылять энергию, несущую информацию, по всей сфере, окружающей источник, а сконцентрировать ее в направлении на корреспондента. Эту благородную миссию выполняют так называемые направленные антенны.
Создание антенн с высокой направленностью является сложной и увлекательной математической и конструкторской задачей. Надо найти такую форму антенны, при которой разбегающиеся во все стороны волны собираются как бы в кулак и бросаются узким пучком на благодарного корреспондента. Для этого надо, чтобы фазы и больших лучей, и маленьких лучиков точно совпали в этом кулаке. Только тогда мощность будет сконцентрирована в пучке.
Я не раз терпел фиаско, пытаясь оторвать антеннщиков от любимой их «игры» с векторами лучей антенного поля и увлечь разработкой новых методов передачи информации. Боюсь, что даже жены ревнуют их к этим векторам.
Пример такого увлечения своим делом являет Григорий Захарович Айзенберг, один из главарей нашей антенной школы. Не случайно студенты валом валят на его лекции. Страсть и знания увлекают и зажигают их.
И не случайно характеристики направленности антенн они составили из… лепестков цветов. Их так и называют на самых серьезных дискуссиях и в учебниках — лепестки.
Но есть одно отличие от цветка. Среди лепестков венчика имеется один большой — главный. Он-то и увеличивает дальность связи. А меньшие, или боковые, — это издержки производства, результат того, что не удается все фазы лучей и лучиков точно согласовать.
По лепесткам диаграммы направленности с еще большим успехом можно гадать о любви. Ведь если повезет, можно попасть на гигантский лепесток!
Итак, чем уже главный лепесток (чем меньше угол α) и чем меньше площадь боковых, тем дальше будет мчаться наша информация.
Угол α зависит от отношения диаметра антенны к длине волны. Чем больше это отношение, тем уже главный лепесток. В сантиметровом диапазоне диаметры антенн достигли уже порядка 100 метров, что уменьшило ширину лепестка направленности до долей градуса. Последнее равносильно увеличению мощности передатчика в десятки тысяч раз (в направлении главного лепестка).
К сожалению, закон квадратичного ослабления мощности с увеличением расстояния, конечно, продолжает действовать и в случае направленной антенны. Ну, а если дальше увеличивать диаметр антенны, будет ли расти дальность связи?
Увеличивать можно, но… направленность может не возрастать. Почему? С увеличением размеров антенны надо повышать точность обработки поверхности «зеркала», как говорят специалисты, антенны. Если увеличивать диаметр, а точность не повышать, то фазы волн не совпадают, лучи не складываются согласно, мощность в точке приема не возрастает. Зеркало становится хоть и большим, но кривым.
Точность при уже достигнутых диаметрах антенн близка к пределу — это микроны. И предел этот ставят колебания температуры и влажности, вибрация, старение материалов.
Увеличение диаметра приемной антенны также увеличивает дальность связи. Чем больше антенна, тем большее число отдельных лучей она суммирует и тем больше будет мощность сигнала на входе приемника.
Таким образом, межзвездную систему связи обязательно должны украшать гигантские антенны на обеих корреспондирующих планетах.
Фокус-покус
Человек непрерывно воспринимает гигантское количество информации. Всю ее можно разделить на два типа. Первый — непрерывная, теперь ее часто называют аналоговой. И второй — дискретная, или прерывная.
Вообразим, что мы на футбольном матче. Раздался свисток судьи. Это типичный пример дискретной информации. Она принимает только два значения — есть свисток или нет свистка. Да или Нет. Такую информацию называют двоичной. Начался матч. Не отрывая взора от поля, вы следите за мячом, за игроками, за воротами. Теперь вы вбираете в себя непрерывную сложную информацию о ходе сражения.
Но вот забит гол! Это тоже пример дискретной двоичной информации — или мяч там, или мимо.
По ходу матча на табло появляются цифры забитых голов. Это тоже дискретная информация, но не двоичная. Она имеет ряд дискретных значений. Число элементов, из которых она набирается, равно десяти. Ее называют десятеричной.
Любую информацию с помощью преобразователей (телевизионные камеры, микрофоны, телеграфные аппараты и т. д.) можно отобразить электрическим сигналом. Эти сигналы, естественно, будут тоже двух типов — непрерывные или дискретные.
Вернемся на минуту снова к нашим зарубкам на волне. Примером сложного непрерывного сигнала может быть телевизионный сигнал. Его можно сравнить по сложности очертаний, например, с кижским Преображенским собором, который, как оказывается, построили гениальные руки только топором и без единого гвоздя.
Простейший двоичный сигнал — Да — Нет — можно представить незатейливым плотницким срубом с проемами.
Каждому ясно, что передать по каналу связи информацию об очертании собора в тысячу раз труднее, чем об очертании сруба. Но оказывается, есть путь сделать первое таким же простым, как второе. Я не ошибся, не заглядывайте в список опечаток.
Для совершения этого фокуса-покуса надо проделать три «истязания» непрерывного сигнала.
Первое истязание. Из сигнала надо выбросить всю «пустую породу», не несущую информации. Для этого в нем обозначаются отдельные его значения, равно отстоящие друг от друга, а остальное все выбрасывается. Эти оставшиеся дискреты, как это ни странно на первый взгляд, хранят всю информацию исходного непрерывного сигнала. Так, для непрерывного речевого сигнала с полосой 3000 гц нужно из него вырезать 6000 равноотстоящих импульсов в секунду. По этим вырезкам можно абсолютно точно восстановить исходный сигнал. В этом состоит основное содержание известной теоремы Котельникова.
У студентов распространено некое неверие в эту теорему. Задаю четкий вопрос на экзамене: точно или приближенно можно восстановить сигнал по отдельным значениям, взятым в соответствии с теоремой Котельникова?
И часто получаю туманные ответы:
С большой точностью.
С некоторой точностью.
С большой вероятностью.
Конечно, приближенно.
Смотря, какой исходный сигнал.
Смотря, что нам надо. И т. д.
Второе истязание. Оно состоит в том, что амплитуды полученных вырезок из сигнала мы передаем не точно, а приближенно. Например, весь диапазон изменения амплитуд сигнала мы разбили на 10 стандартных уровней. Передавая каждый из импульсов, мы смотрим, к какому из этих 10 уровней он ближе, и передаем номер этого уровня. Чем больше число этих уровней, тем точнее будет передан сигнал. Например, речевой сигнал разбивают на 127 уровней. При этом восстановленный на приеме речевой сигнал не отличается от передаваемого без описанных преобразований.
Почему можно допустить передачу приближенного значения амплитуды сигнала вместо точного? Потому что потребитель информации (ухо, глаз, реле и др.) всегда имеет некоторую мертвую зону нечувствительности к небольшим изменениям и отклонения сигнала в пределах этой зоны не замечаются на приеме.
И наконец, третье истязание, последнее. Оно состоит в том, что вместо импульса (приведенного к ближайшему уровню) надо передать просто номер этого уровня. А номера уровней можно передать группой двоичных посылок. Например, для 127 уровней надо взять группу из 7 посылок типа Да — Нет. Меняя взаимное расположение Да — Нет в группе, можно составить 127 различных комбинаций или кодов.
После этих трех преобразований наш сложный, часто ажурный и очень нежный сигнал превратился в грубый, топорный двоичный сигнал. Такое преобразование сложного непрерывного сигнала в простейший дискретный получило название импульсно-кодовой модуляции (ИКМ).
Итак, фокус-покус свершился. Но вы, читатель, естественно, спросите: за счет чего удается добиться упрощения сигнала, оставив объем информации тем же? Собака зарыта, оказывается, в спектре нового сигнала. Он разбух, и разбух не менее чем в 10 раз! Мы как бы прошлись грубым утюгом по сигналу на шкале времени, сгладили его во времени, и от этого он стал более широким по частоте. В новом канале можно было бы уместить 10 непрерывных! Но зато мы получили грубый удобный сигнал! Его прямо можно из канала подавать на электронную машину дискретного действия, с ним можно делать и еще ряд других фокусов, чем мы и займемся позже. Сейчас отметим, что любая информация может быть превращена в простую дискретную и даже в самую простую — двоичную. Проще же двоичной ничего быть не может. Ибо непрерывное повторение да, да, да или нет, нет, нет никакой информации не несет. Она появляется только когда есть и да и нет.
Как грузить информацию?
С момента зарождения радио и потом, в течение почти полувека, информацию взваливали либо на амплитуду, либо на частоту радиоволны. Воздействие на частоту отличается от амплитудной модуляции только тем, что передаваемый сигнал меняет частоту волны.
Но вот появилась новая гениально простая идея. Оказалось, что из непрерывной радиоволны можно вырезать короткие отрезочки (как из бумажной ленты можно настричь много узких полосочек) — импульсы — и грузить информацию на эти импульсы. Ведь у импульсов много параметров, и все их можно менять: амплитуду, ширину, частоту, взаимное расположение и т. д. Так появилось большое семейство импульсных методов модуляции.
Кроме непрерывных и импульсных волн, в последние годы появился новый неожиданный переносчик информации: шум! Да, именно он, тот самый, который является врагом номер один во всех без исключения каналах передачи информации.
Самым удивительным является то, что максимальное количество информации из всех возможных сигналов может тащить на себе именно шум. Это блестяще было доказано творцом теории информации Клодом Шенноном.
Каким же образом заставить шум нести информацию? Ведь все его параметры: амплитуда, частота, фаза — хаотически меняются во времени. В нем не за что ухватиться, нет ни одного устойчивого параметра для загрузки информации.
Все это верно. Но все же есть один устойчивый параметр — это сам хаос. И им, оказывается, можно управлять. Можно, например, на передаче и на приеме поставить простые устройства, которые будут генерировать один и тот же хаос.
Пусть на передаче и на приеме имеется по два таких генератора. Каждая пара (первая и вторая) генерирует свои одинаковые шумы. Далее уславливаемся, что посылку Да будем передавать, включая первый генератор, для передачи Нет — второй. На приеме остается только сличить пришедший шум с двумя местными и решать, что передавалось — Да или Нет.
В настоящее время к упомянутым основным способам модуляции надо добавить еще несколько десятков их модификаций. Это плоды развития теории информации. Я как-то взял лист ватмана и попытался их все собрать воедино и классифицировать. К первому листу пришлось подклеить второй, но и он не уместил всех способов. Листы пестрели всевозможными сочетаниями букв (сокращенные названия способов). В глазах рябило, но стройности не получилось. Дело уперлось, как это часто бывает, в удачный критерий сравнения.
Боюсь, читатель, что если мы здесь начнем снова раскладывать их по полочкам, то увязнем в опасной трясине.
Давайте поступим иначе.
Будем для простоты рассматривать только два вида сигналов: непрерывное гармоническое колебание (переносчик без всякой модуляции) и посылки типа Да — Нет. Первый может использоваться для начальной сигнализации и привлечения внимания. Второй для передачи информации.
Как мы видели, в посылки Да — Нет можно превратить информацию любой сложности. Этот способ передачи является самым грубым и, следовательно, самым стойким против помех. Поэтому использование его в межзвездной связи и вероятно и целесообразно. Наложение посылок Да — Нет на волну мы рассмотрим в следующем разделе.
Теперь обратимся к модному в последние годы в радиотехнике слову: избыточность. Что же такое избыточность? Грубо говоря, это то пятое колесо, которое возят автомобилисты на случай прокола.
Передача определенного количества информации обязательно требует некоторого минимального времени Δt и некоторой минимальной полосы частот Δf (ширина частотного коридора). Можно менять значения Δt и Δf, но их произведение при передаче одной и той же информации должно оставаться постоянным. Так, замедлив передачу в три раза (то есть заняв время 3Δt), можно сузить необходимую полосу в три раза (Δf /3). Но 3Δt · Δf /3 = Δt · Δf = CONST.
Если мы хотим для большей надежности передачи повторить ее, скажем, пять раз, то мы займем время не Δt, a 5Δt. Это и есть передача с временнóй избыточностью: мы занимаем в пять раз большее время, чем минимально необходимое. Можно такое повторение проводить не по времени, а по частоте: передавать одну и ту же информацию на пяти несущих частотах, но для этого потребуется пять передатчиков. Тогда время передачи останется то же, а полоса частот, занимаемая сигналом, станет равной 5Δf. Тем самым мы ввели частотную избыточность.
Простое повторение — это самый накладный метод введения избыточности. Однако есть и более экономные, требующие меньшего увеличения Δt или Δf. Все они являются методами корректирующего кодирования сигналов, когда к посылкам, несущим информацию, приставляют дополнительные, или избыточные, посылки. И это делает чудеса: они могут шепнуть на приеме, какая из информационных посылок до неузнаваемости искажена помехами; более того, при большом числе избыточных посылок они не только угадывают, какая же посылка на самом деле была послана на передаче, но и сами автоматически исправляют искаженную!
В очень ответственных системах применяют иногда одновременно и временную и частотную избыточность.
Интересно отметить, что частотную избыточность легко ввести, заменяя посылки отрезками шума. Изменяя «среднюю скорость» шумового хаоса, можно изменять в широких пределах полосу, занимаемую шумовой посылкой. Такая избыточность рождает удивительные свойства. Например, можно отсечь больше трех четвертей частотного спектра сигнала, а он продолжает трудиться и переносить информацию (как бодро бегущая ящерица с отсеченным хвостом). Это «безразличие» сигнала к своему спектру позволяет чисто хирургически бороться с мощными помехами в полосе частот сигнала. Их безжалостно вырезают с частью сигнала.
Невообразимые дальности межзвездной связи и начальная неизвестность адреса корреспондента потребуют, вероятно, широкого введения избыточности в сигналы этих систем связи.
Да — Нет
Существует множество способов для наложения сигналов Да — Нет на радиоволну.
Какой же из них лучший с точки зрения нашей задачи? Выбор зависит от врага номер один — помехи. Ведь он не дремлет, особенно в длиннющих космических радиолиниях. Оказалось, что лучше всего противостоят помехам сигналы Да — Нет, запрятанные в фазу сигнала, если их фаза сдвинута на максимальный угол — 180 градусов. Это положение было доказано советскими учеными А. Пистолькорсом и В. Сифоровым еще в начале тридцатых годов.
#i_066.png
Человечки на нашем рисунке изображают фазовые посылки. Переход с ног на голову или наоборот соответствует повороту фазы на 180 градусов.
Шли годы, как пишут в романах, а этот способ не находил применения. Все упиралось в смышленый приемник. Он должен четко чувствовать или различать фазы: при одной фазе «говорить» на выходе Да, при другой — Нет. Но ведь фаза — это время, точнее, величина, определяющая положение сигнала во времени. Смещая синусоиду во времени, мы меняем ее фазу. Упрощенную модель фазового канала можно мыслить так. На передаче и на приеме имеются часы. Мы их сверили и внесли поправку на время прохождения радиоволны от передатчика к приемнику. Далее условились, например, так: посылки, приходящие в четные секунды, всегда означают Да, а в нечетные — всегда Нет. В действительности нужны часы, отсчитывающие миллионные доли секунды и автоматически проверяющие, чему соответствует фаза сигнала: Да или Нет.
В толстых пыльных папках патентных библиотек можно найти сотни очень остроумных предложений по построению такого фазового приемника, по созданию точных магических часов на передаче и на приеме. Но ни один из них не давал уверенного приема. Да и Нет вели себя как цирковые акробаты. То они хранили заданное на передаче положение: Да стоит на ногах, а Нет вверх тормашками на руках. То вдруг на некий случайный отрезок времени все Да вставали на руки, а все Нет на ноги. Это происходило и из-за незначительного изменения режима работы приемника, и из-за действия помех. Предугадать эти массовые акробатические номера (названные «обратной работой») было невозможно. Поиски схемы, свободной от этого недостатка, продолжались безрезультатно более 25 лет. Я тоже многие месяцы все свободное время отдавал этой головоломке. Но Да и Нет продолжали издеваться. В конце концов неудачи привели меня к вопросу: а возможен ли такой приемник принципиально?
Удалось строго математически доказать, что хаотический танец Да и Нет неизбежен, а фазовый приемник без «обратной работы» при классических фазовых сигналах — чистейший миф. Магические часы принципиально нельзя заставить идти точно. Было жаль времени и сил, потраченных зря.
Как-то, изнывая от смертельной тоски в очереди, я механически чертил на обрывке газеты сигналы в разных фазах. Действовали силы инерции периода борьбы с «обратной работой». Вдруг совершенно четко, как на киноэкране, я увидел новые фазовые сигналы, которые принципиально устраняют эту проклятую «обратную работу».
Для их формирования, во-первых, надо отказаться от одинаково идущих часов в передатчике и в приемнике. Их надо выбросить на свалку. Отсчет времени или фазы в точку приема должен приносить сам сигнал. В него и надо на передаче врубить метки времени. Но оказывается, это лишнее. Метки уже есть: фаза несущего колебания каждой посылки и есть отличная метка времени.
Во-вторых, для эксплуатации этих меток следует немного изменить метод манипуляции фазы: надо фазу каждой посылки отсчитывать не по единым часам (которые мы уже выбросили), а от фазы ранее переданной (предыдущей) посылки. Например, так: для передачи Нет берем фазу, обратную предыдущей (или сдвинутую от предыдущей на 180 градусов). Соответственно изменяется и метод приема: каждая предыдущая посылка (она же метка времени) хранится в памяти приемника до прихода следующей и сопоставляется с нею в блоке сравнения. Каждая посылка несет свою информацию и одновременно является меткой времени (часами) для приема последующей.
На рисунке верхние человечки изображают посылки, идущие со входа, а нижние — те же посылки, но прошедшие через линию задержки. Если человечки стоят одинаково — оба на ногах или оба на руках, — то передается плюс. Если стоят по-разному, то минус. В этом случае «обратная работа» принципиально устраняется. Даже если произойдет переворот всех посылок на обратные, информация не исказится, поскольку перевернется как данная, так и ей предшествующая посылка, а их соотношение (одинаковые они или разные) сохранится.
Поражала предельная простота метода. Неужели я первый набрел на этот лежащий на самой поверхности способ передачи и приема? Не может быть! Тут, наверное, ошибка в рассуждениях. К утру уже сомнений не было — все получается! Акробатика уничтожена. Да и Нет уже не меняются местами. Но еще три года ушло на то, чтобы создать такой канал связи. Авторское свидетельство было выдано после двухлетнего спора с экспертами. Их сбивала элементарная простота метода.
Сейчас этот метод известен под названием относительной фазовой телеграфии (ОФТ). Он попал в учебники. Слово относительный подчеркивает, что фаза данной посылки отсчитывается относительно предыдущей. ОФТ находит широкое применение в различных системах связи, особенно там, где нужно получить предельную помехоустойчивость (или скорость) передачи.
Мы на ней несколько задержались потому, что из известных методов ОФТ обеспечивает максимальную помехоустойчивость, а следовательно, и максимальную дальность. Это делает возможным ее применение в межзвездной связи.
Ура! Да здравствует контакт!
Окончание спора
О. Предположим, цивилизация X и цивилизация Y пытаются установить контакт. Как, ты думаешь, можно вычислить потребную мощность передатчика?
П. Она же зависит от многих величин, которые мы будем высасывать из пальца!
О. Вынь палец изо рта. Попробуем логически моделировать эту систему связи, опираясь на теорию и практику землян.
П. Но ведь у них техника…
О. Перестань. Техника другая, но законы, понимаешь, З-А-К-О-Н-Ы те же. Скажи мне, от чего зависит предельная дальность радиосвязи?
П. Попытаюсь вспомнить. От мощности передатчика Р — раз. От диаметров передающей и приемной антенны D1 и D2 — два. От температуры шумов на входе приемника Т — три. От рабочей длины волны λ (она определяет уровень внешних помех) — четыре… Вот, кажется, и все.
О. Слона-то ты и не приметил. Хочешь, посылай 1000 телеграмм в час, хочешь, посылай одну в сутки нужна та же мощность, так?
П. Нет, конечно. Чем больше скорость работы, тем полоса пропускания приемника Δf должна быть шире, тем больше он вбирает в себя шумов, тем больше нужна мощность передатчика, чтобы их перекричать.
О. Верно. Но это не все. Дальность еще зависит от того, насколько нам надо перекричать шум. А это, в свою очередь, определяется способом погрузки информации на переносчик. Ведь нам надо выиграть поединок на входе приемника (см. рисунки). Чем способ передачи помехоустойчивей, тем меньшую мощность надо для победы.
П. Конечно.
О. Итак, цивилизация X отстоит от цивилизации Y на расстоянии R световых лет. Подсчитай, пожалуйста, какая нужна мощность для радиосвязи.
П. Но у меня же нет ни единой цифры.
О. Держу пари, что все необходимые цифры лежат в твоем затянувшемся паутиной пессимизма «запоминающем устройстве», то бишь — голове. На какой волне меньше всего шумы Галактики?
П. Они достигают минимума приблизительно при волнах от 3 до 30 сантиметров.
О. Верно. Какой диаметр антенн достигнут в этом диапазоне?
П. Порядка сотни метров.
О. Убедился? Ты все отлично знаешь. Дальше действуй сам. Встряхни свою память. Ведь там уйма сведений валяется без дела. Вот логарифмическая линейка, бумага. А я пока полистаю свежие журналы. Да попутно оцени, сколько звезд находится в сфере радиуса R, считая, что плотность звезд в сфере такая же, как в окрестности солнечной системы.
П. Готово. Вот расчетная формула и результаты.
О. Как же ты их получил?
П. Я считал, что обе цивилизации находятся на уровне, близком к нашему. Поэтому можно принять: диаметры антенны D = 150 метров, длина волны λ = 10 сантиметров, температура шумов T = 10°К, минимальное отношение мощностей сигнал/шум N = 10.
О. А полоса пропускания приемника?
П. Я ее принял равной 10 герцам.
О. Что же это за сигнал?
П. Это либо непрерывное излучение синусоидального переносчика без всякой модуляции, либо с очень медленной модуляцией — несколько посылок в секунду.
О. Какая же нужна мощность?
П. Ближним звездам — десятки киловатт, дальним — миллионы киловатт.
О. Ну вот видишь, ты сам себе доказал, что уже сегодня мы можем прокричать «ау!» ближайшей сотне звезд. Передатчики такой мощности — это уже достижимая почти величина в нашем диапазоне волн.
П. «Ау!»-то, может, и можем, но как быть с посылкой более содержательной информации?
О. А что?
П. Будем говорить о передаче дискретных двоичных сигналов. Весьма вероятно, что именно этот гибкий помехоустойчивый метод будет использоваться. Так вот, если мы захотим увеличить скорость передачи в 100 раз по отношению к принятой в расчете, то нам нужно в 100 раз увеличить мощность передатчика. А ведь 100 посылок в секунду на нашей планете — это телеграфная линия средней скорости. Как же быть с идеей Кардашева?
О. Во-первых, у нас есть еще резервы. Например, ты слышал об уникальной антенне в Пуэрто-Рико? Ее диаметр 300 метров. Использование антенн такого типа может дать снижение необходимой мощности в сотню раз. Далее, мы можем в несколько раз снизить величину N, применяя фазовое телеграфирование и коды, корректирующие ошибки. Во-вторых, можно сложить мощности нескольких передатчиков в эфире…
П. Все равно мы не сможем создать передающее устройство, которое «выплюнет» все достижения нашей цивилизации за короткий отрезок времени. Не хватит пороху!
О. Что ты называешь коротким?
П. Скажем, дни или недели. Нельзя же вбирать эту информацию годами или десятками лет!
О. Да, пожалуй.
П. Вот видишь. Так есть ли надежда?
О. Стоп! Ведь мы с тобой условно считали, что X и Y цивилизации типа земной. Но если мы X, то Y могла уйти далеко вперед! Это может быть даже сверхцивилизация, владеющая сказочными энергетическими ресурсами!
П. Ну и что?
О. А то, что в уравнение связи входит произведение технических возможностей X и Y. Это значит, что мы уже можем принимать не только простейшие сигналы типа «ау!», но и богатейший поток информации от таких цивилизаций.
П. Ты обещал цифры.
О. Пожалуйста. Воспользуемся расчетами Н. Кардашева. Возьмем самый крайний случай. Сверхцивилизация Y решила передать нам, темным иксам, гигантский поток информации объемом, приблизительно равным содержанию всех книг, изданных за время существования человечества. Их число равно 108. Будем считать, что при преобразовании содержащейся в каждой из книг информации в двоичную в среднем потребуется 106 двоичных единиц. Можно всю эту премудрость передать за одни сутки?
П. Никогда!
О. Нет, ты посчитай.
П. Попробую. Значит, общее число посылок Да — Нет за сутки составит 106 × 108 = 1014. В сутках 105 секунд. Следовательно, в секунду надо передать 1014 × 10–5 = 109. То есть в секунду надо прокричать Да — Нет тысячу миллионов раз! Не сорвут ли игреки горло и позволят ли это те общие законы природы, на которых ты так настаивал?
О. Да не бойся ты великанов цифр. Считай дальше. Какое нужно «горло» приемника, чтобы испить всю эту информацию сполна?
П. Можно считать, что полоса пропускания приемника численно равна числу посылок в секунду. Следовательно, нужен приемник с неслыханной полосой пропускания Δf = 1000 мегагерц!
О. Может, ты теперь назовешь законы, которые препятствуют «…выдумать порох непромокаемый» и создать приемник с таким прожорливым горлом?
П. Нет. Но…
О. Но мы же хватили через край. В этом лесу из 1014 Да — Нет запутается, наверное, любая сверхцивилизация. Тут неимоверная избыточность. Фактически нужно передавать в миллионы раз меньшую информацию.
П. Все равно потребуются титанические мощности.
О. А это пожалуйста, ответят тебе сверхцивилизации. Расчеты показывают, что цивилизации II и III типа могут не только аукать на всю Метагалактику, но и легко передать основные свои тайны многим юным или медленно развивающимся цивилизациям. Если, конечно, они покинут болото сомнений и соорудят хотя бы примитивную, свою «приемную» половину радиомоста в космическую бездну.
Ну, хватит терять время. Идешь в группу? Выдай только одну двоичную единицу информации — Да или Нет? К черту всякую избыточность!
П. Да. Но…
О. Я же просил только одну двоичную единицу.
П. Это «но» относится уже к задаче, которую ты мне поставишь.
О. Тогда другое дело!
П. Я ведь всегда больше тяготел к абстракции. Разумной, конечно. Я больше люблю Врубеля, чем, скажем, Пикассо. Одно время я, как буриданов осел, долго стоял между математикой и физикой. Потом отведал того и другого и вернулся к математической куче.
О. Вот и отлично! Нам нужно создать математическую модель хотя бы двух цивилизаций, тех самых X и Y, которые упорно ищут друг друга.
П. Но…
О. За следующее «но» ты будешь избит, и не математически, а чисто физически.
П. Молчу. Буду давить их в себе, как чертят-помех.
О. Ты создашь первую модель такого поиска. Представь игру двух вычислительных машин.
П. В карты?
О. Ну и остряк! Наша игра в тысячу раз интересней! Машины изолированы друг от друга. Единственная связь — через эквивалент межзвездной среды.
П. Математический?
О. Он может быть и математическим и физическим. Это не принципиально.
П. Ну и что?
О. Одна, скажем, излучает сигналы в среду! Зовет. Меняет волны, меняет направления, изменяет временную и частотную избыточность, способы передачи. Шлет сигналы обучения своей азбуке, информацию…
П. А X в это время…
О. Подожди. В межзвездных просторах сигнал слабеет, худеет. Да еще «черти» примешивают к нему свое вредное зелье — помехи. Вот это и получает машина X.
П. Ее задача — разыскать разумный сигнал, принять и запомнить его, обучиться его азбуке, разгадать переданную «клинопись» и выдать ее нам, так?
О. Именно так.
П. А дальше?
О. Дальше сличаем поданную космическую телеграмму с принятой. Ставя X и Y в разные условия, проигрываем сотни вариантов и все ближе и ближе подходим к раскрытию тайны…
П. Все понял.
О. Берешься?
П. Да.
О. П. Ура! Да здравствует контакт!
* * *
Мы с вами, читатель, принадлежа отнюдь не к суперцивилизации, должны пока больше внимания уделять приему информации от цивилизаций, ушедших вперед. Поэтому в следующей главе речь пойдет о поиске сигналов в наших земных условиях.