Не всегда с задачей переноса рисунка на заготовку можно справиться методами, описанными в предыдущей главе. Особенно это касается рельефных, трехмерных элементов, где перенос плоского изображения способен лишь определить граничный контур того или иного фрагмента. Кроме того, такое копирование чужих рисунков требуется далеко не всегда. Во-первых, вы можете создать свой собственный орнамент, а во-вторых, некоторые узоры легче и интереснее построить заново, чем перерисовывать из книги или журнала. И здесь на помощь придут правила геометрических построений, которые, вероятно, многие забыли сразу после сдачи школьных экзаменов. Попробуем вспомнить эти полезные правила.
Применение принципа золотого сечения
Главной задачей в поисках художественного образа или идеи являются размеры и пропорции. Говоря о пропорциях (соотношении размерных величин), мы учитываем их в формате плоского изображения (картина, маркетри), в соотношениях габаритных размеров (длина, высота, ширина) объемного предмета, в соотношении двух различных по высоте или длине предметов одного ансамбля, в соотношении размеров двух явно выделяющихся частей одного и того же предмета и т. д.
В классике изобразительного искусства на протяжении многих веков прослеживается прием построения пропорций, называемый золотым сечением, или золотым числом (этот термин ввел Леонардо да Винчи). Принцип золотого сечения, или динамичной симметрии, заключается в том, что отношение между двумя частями единого целого равно отношению его большей части к целому (или соответственно целого к большей части).
Математически это число получают с помощью формулы (√5+1)/2, что в результате дает 1,6180339… или, после округления, 1,62. Это число означает соотношение большей величины в пропорции к ее меньшей величине. Более точно это отношение выражается следующим образом: 5:3, 8:5, 13:8, 21:13 и т. д., или 2,2:3, 3:5, 5:8,8 и т. д.
В графике золотое сечение выражается соотношением отрезков, которые получаются при различных построениях. Простое и удобное построение в золотом сечении показано на рис. 11, а: если к диагонали полуквадрата добавить его короткую сторону, то получится величина в отношении золотого числа к его длинной стороне.
Пропорция двух величин золотого сечения создает зрительное ощущение гармонии и равновесия. Есть и другое гармоничное соотношение двух смежных величин, выражаемое числом 1,12. Оно является функцией золотого числа: если взять разность двух величин золотого сечения, разделить ее также в золотой пропорции и каждую долю добавить к меньшей величине исходного золотого сечения, то получится число 1,12 (рис. 11, б). В таком соотношении часто расположены «полочки» (средние элементы) в написании букв, например Н, Р, Я, А и др., используются пропорции высоты и ширины для широких букв. Это отношение повсеместно встречается и в природе.
Рис. 11. Применение золотого сечения: а – геометрическое построение прямоугольника в золотом сечении 1,62: 1 и золотое число 1,62 в отношении отрезков а и b; б – графическое построение функции золотой пропорции 1,12: 1; в – золотые пропорции строения гармонично развитого человеческого тела; г – построение кленового листа; д – рамки, построенные по различным закономерностям.
Золотое число наблюдается в пропорциях строения тела гармонично развитого человека (рис. 11, в): длина головы делит в золотом сечении расстояние от талии до макушки; коленная чашечка также делит расстояние от талии до подошвы ног; кончик среднего пальца вытянутой вниз руки делит в золотой пропорции весь рост человека; отношение фаланг пальцев – тоже золотое число. Это же явление наблюдается и в иных конструкциях природы: в спиралях моллюсков, в венчиках цветков и др.
В резьбовых орнаментах растительные мотивы, особенно изображения листьев, – наиболее популярные элементы. Все листья, как правило, выполняются в пропорциях золотых чисел 1,62 и 1,12. Для примера на рис. 11, г, представлено строение листа клена. При соотношении ширины к длине в 1,12 лист имеет несколько пропорций с числом 1,62. Это так называемая десятка гармоничных пропорций кленового листа: AD/BC = EF/BC = EF/OD == OD/OM = OD/AO = OM/MD = BC/NP = NP/RS = RS/TU == 1,62; KL/AD = 1,12.
За основу построения такого листа взяты две трапеции, у которых отношение высоты и длины основания выражается золотым числом. Строение листа может быть описано такими основными соотношениями: OD = BC; EF = AD; OM = AO; NP = AO; KL = 1,12AD; AD/BC = 1,62; RS = NP/1,62; TU = RS/1,62.
Варианты поиска гармоничной пропорции можно рассмотреть на примере рамки (рис. 11, д). Внешние размеры рамки (изображенной слева) золотой пропорции не дадут: отношение ее длины и ширины (330 × 220) несколько меньше золотого числа, а именно равно 1,5, а ширина поперечных звеньев (84 и 94) соответственно увеличена по сравнению с боковыми сторонами (63). Но это позволяет выйти на размеры помещенной в рамку картины, дающие пропорции золотого сечения (152 × 94). Отношение же ширины нижнего звена рамки (94) к ширине ее верхнего звена (84) подогнано к другому золотому числу – 1,12. Кроме того, отношение ширины нижнего звена (94) к ширине бокового (63) близко к 1,5.
Правило золотого сечения не всегда дает решение проблемы композиции, но оно незаменимо при нахождении нужных пропорций, гарантированно проверенных практикой. Эти гармоничные пропорции надо уметь выявить и подчеркнуть конструкцией и формой изделия.
Таким образом, удалось сохранить пропорции картины, формата рамки и ее элементов приближенными к классической гармонии.
Если же длинную сторону рамки увеличить до 366 мм за счет ширины нижнего звена (130), то отношение внешних размеров рамки (366/220) и отношение поперечных звеньев (130/84) будет приближено к золотому числу 1,62 вместо 1,12. В результате получится новая композиция (рамка, изображенная справа), которая может быть применена в каком-либо ином изделии, но для рамки возникает желание сделать ее короче. Закройте ее нижнюю часть линейкой настолько, чтобы глаз «принял» получившуюся пропорцию, и мы получим длину 330 мм, то есть вернемся к исходному варианту.
Деление окружности на равные части
Деление на 3 части (рис. 12, а). Из конца диаметра окружности проводят дугу радиусом R, равным радиусу окружности. Дуга образует на окружности две необходимые точки. Третья точка находится на противоположном конце диаметра.
Деление на 4 и 8 частей. При делении окружности на 4 части помогут циркуль и линейка, с помощью которых необходимо провести два взаимно перпендикулярных диаметра (рис. 12, б). Если провести один диаметр и из одного его конца описать дугу несколько большую, чем радиус R, а из противоположного конца диаметра провести другую дугу этого же радиуса, то, соединив точки их пересечения прямой линией (которая пройдет через центр), получим второй диаметр, перпендикулярный первому. Точки пересечения перпендикулярных диаметров с окружностью делят ее на 4 равные части.
Для деления окружности на 8 равных частей (рис. 12, в) необходимо построить две пары взаимно перпендикулярных диаметров.
Рис. 12. Деление окружности на равные части: а – на три части; б – на четыре части; в – на восемь частей; г – на пять частей (1-й способ); д – на пять частей (2-й способ); е – на шесть частей; ж – на семь частей.
Деление на 5 частей. Деление окружности на 5 частей можно выполнить несколькими способами. Первый способ (рис. 12, г) предполагает использование циркуля и линейки. Сначала уже известным способом необходимо провести два взаимно перпендикулярных диаметра. После этого радиус R нужно разделить пополам: из крайней точки пересечения горизонтального диаметра необходимо провести дугу радиуса R и через две точки, образовавшиеся при пересечении этой дуги с окружностью, провести прямую линию – она разделит горизонтальную линию радиуса R пополам. Из точки деления (½R) проводят дугу радиусом r (равным расстоянию от точки ½R до точки пересечения окружности с вертикальным диаметром). Эта дуга пересечет вторую половину горизонтального диаметра в точке С. Отрезок, равный расстоянию от точки С до точки пересечения окружности с вертикальным диаметром, будет соответствовать стороне вписанного в окружность искомого пятиугольника. Необходимо установить циркуль на величину, равную длине этого отрезка, и из верхней точки пересечения окружности с вертикальным диаметром провести дугу заданного радиуса – точка ее пересечения с окружностью будет следующей вершиной пятиугольника. Из найденной вершины нужно провести еще одну дугу заданного радиуса – это будет третья вершина пятиугольника, из которой, в свою очередь, нужно будет провести следующую дугу, и так пока окружность не будет разделена на 5 равных частей. Если после этого провести очередные пять дуг заданного радиуса, но начиная из нижней точки пересечения окружности с вертикальным диаметром, то окружность разделится на 10 равных частей. Кроме того, на рис. 12, г, выделен отрезок СО на горизонтальном диаметре, соответствующий 1/10 окружности, то есть если на окружности последовательно провести 10 дуг радиусом, соответствующим величине отрезка СО, окружность также разделится на 10 равных частей.
При втором способе (рис. 12, д) на диаметре окружности с помощью уже известного приема необходимо найти точку, которая разделит радиус R пополам. Из этой точки проводят прямую линию до пересечения с концом диаметра (точки С). Затем из точки R/2 проводят дугу радиусом, равным ½R, до ее пересечения с проведенной линией в точке Е. Далее циркулем из точки С проводят дугу радиусом, равным отрезку CE, до ее пересечения с окружностью в точках А и В. Отрезок АВ – грань пятиугольника. Теперь остается провести из точек А и В дуги радиусом, равным величине отрезка АВ, чтобы последовательно разделить окружность на 5 частей.
Существует также способ деления окружности на 5 частей с помощью транспортира. К радиусу R окружности необходимо приложить транспортир, построить центральный угол 72° (360: 5 = 72) и провести из центра прямую линию до точки ее пересечения с окружностью. Полученную точку необходимо соединить с точкой пересечения радиуса R на окружности – данный отрезок будет стороной пятиугольника. Проведя из обеих точек дуги радиусом, соответствующим длине данного отрезка, можно разделить окружность на 5 частей.
Деление на 6 и 12 частей (рис. 12, е). Из точек пересечения окружности с вертикальным диаметром проводят две дуги, радиус которых равен радиусу окружности. Пересечение дуг на окружности образует точки, которые последовательно соединяются хордами. В результате образуется вписанный в окружность шестиугольник. Для разделения окружности на 12 частей делают такое же построение, но только на двух взаимно перпендикулярных диаметрах.
Деление на 7 частей (рис. 12, ж). Из конца любого диаметра проводят вспомогательную дугу радиусом R. Через точки ее пересечения с окружностью проводят хорду, равную стороне правильно вписанного треугольника (как на рис. 12, а). Половина хорды равняется стороне вписанного в окружность семиугольника. Теперь достаточно последовательно отложить на окружности несколько дуг радиусом, равным половине хорды, чтобы разделить окружность на 7 частей.
Деление на любое количество частей (рис. 13). В данном случае окружность разделена на 9 частей.
Через центр окружности проводят две взаимно перпендикулярные прямые. Один из диаметров, например CD, по линейке делят на нужное количество равных частей (в данном случае 9), точки нумеруют. Далее из точки D проводят дугу радиусом, равным диаметру данной окружности (2 R), до пересечения с перпендикулярной прямой АВ. Из точек пересечения А и В проводят лучи, но так, чтобы они проходили только через четные или только через нечетные (как в данном случае) номера. При пересечении с окружностью лучи образуют точки, которые делят окружность на нужное количество частей (в данном случае 9).
Рис. 13. Деление окружности на любое заданное количество частей.
Сопряжения
Сопряжение двух полос разной ширины изображено на рис. 14, а. Радиус внешней дуги задается или подбирается. Точки сопряжения прямой и дуги (во всех случаях) лежат на перпендикуляре, опущенном из центра дуги на прямую. Заметим кстати, что точки сопряжения двух любых дуг находятся на линии, соединяющей их центры.
Построение окружности большого диаметра
Построение окружности небольшого диаметра производят с помощью циркуля, что не вызывает затруднений. В то же время возможность построения окружности большого диаметра ограничена размером циркуля. Выйти из затруднения поможет комбинация из карандаша, нити и гвоздя (рис. 14, б). Радиус окружности в этом случае регулируется длиной нити.
Рис. 14. Сопряжения, окружности и овалы: а – выполнение сопряжения линий; б – построение окружности большого диаметра; в – определение центра окружности методом отрезков; г – определение центра окружности с помощью прямоугольных треугольников; д – построение овалов в пропорции золотого сечения; е – построение овалов по заданным осям; ж – построение овоида.
Определение центра окружности
Один из способов определения центра окружности представлен на рис. 14, в: на окружности выбирают любые три точки (А, В, и С), соединяют их двумя или тремя отрезками и делят эти отрезки пополам с помощью перпендикуляра к ним. Точка пересечения перпендикуляров является центром окружности. Чем ближе отрезки к диаметру окружности, тем точнее получится результат построения.
Второй способ (рис. 14, г) основан на том, что любой прямой угол, вершина которого находится на окружности, опирается на ее диаметр. Несколько таких прямых углов, построенных с помощью угольника, определят центр окружности – это будет точка пересечения гипотенуз прямоугольных треугольников.
Подобное построение удобно для определения центров на больших окружностях или на торцах цилиндров, например на спилах ствола дерева. Построение будет точнее, если гипотенузы треугольников пересекаются под углом, близким к прямому.
В обоих случаях найденный центр окружности желательно проверить с помощью циркуля.
Построение овалов
Существует несколько способов построения овалов. Один из них заключается в сопряжении дуг. Если овал задан его длиной, то построение лучше делать в пропорции золотого сечения, как показано на рис. 14, д. Отрезок АВ делят на четыре части, в результате чего образуются точки О1 и О2. Центр О3 получается в точке пересечения дуг из О1 и О2 радиусом, равным величине отрезка О1О2. Чтобы построить более широкий овал, отрезок АВ необходимо разделить на 3 части.
Построение овала по заданным осям показано на рис. 14, е. Центры сопрягаемых дуг в данном случае находятся на линии, которая проходит через середину отрезка АЕ. Последовательность построения отрезка АЕ обозначена цифрами 1 и 2.
Построение овоида
Овоид – овал, имеющий одну ось симметрии. Построение овоида показано на рис. 14, ж, где последовательность выполнения обозначена цифрами 1, 2, 3. Чтобы овоид был более удлиненным, центры дуг О1 и О2 отдаляются. Их положение определяется по желанию.
Построение эллипсов
Силуэты овала и овоида не всегда устраивают резчика. Более строгую форму имеет эллипс. Самое простое и распространенное построение эллипса показано на рис. 15, а.
В данном случае производят обвод карандашом с помощью нити, концы которой прикреплены к гвоздикам. Гвоздики вбивают в точки фокусов эллипса F1 и F2. Длина нити должна соответствовать длине отрезка АВ. Форма эллипса определяется отношением его осей. Фокусы эллипса при этом располагаются следующим образом: из точки D циркулем делают засечки на отрезке АВ. Радиус циркуля должен быть равен отрезку АО, то есть большой полуоси. Этот способ очень удобен для построения крупных эллипсов или же тогда, когда есть возможность забить в основу гвозди. Следует отметить, что данное построение может быть не всегда точным.
Наиболее универсальный способ построения эллипса, который не требует нитей и гвоздей, представлен на рис. 15, б. Для построения берут полоску бумаги с ровным обрезом (лучше всего согнуть бумагу вдоль). На полоске бумаги, у ее кромки, делают засечки: расстояние от точки 1 до точки 2 соответствует длине отрезка АО; расстояние от точки 1 до точки 3 соответствует длине отрезка DO. Полоску с засечками перемещают по полю эллипса таким образом, чтобы точки 2 и 3 находились на линиях осей или на их продолжении. В результате получается последовательное перемещение точки 1 по линии эллипса. Полученные в результате чертежа точки отмечают карандашом и соединяют с помощью лекала или от руки.
Удобно строить точки только на четверти эллипса (рис. 15, в). Затем циркулем подбирают радиус для дуги, которая совпадает с большинством точек в крутой части эллипса. Второй радиус – для пологой части эллипса – строят аналогично. В результате построения полученные дуги немного не будут стыковаться. Эти участки доводят от руки. Радиусы, подобранные на четверти эллипса, определяют полные дуги с обеих сторон эллипса. Симметрия и строгость кривой при этом гарантированы. Главное условие для подобного построения – расположение осей точно под прямым углом друг к другу.
Чтобы более точно приблизить кривую к эллипсу, используют более двух сопрягаемых дуг. Например, на участке стыка двух дуг, которые использовались для построения, можно провести третью (рис. 15, г). Для этого из точек 2 и 3 на данном участке эллипса проводят перпендикуляры к осям. Точку их пересечения 4 соединяют с точкой 1. На этой линии будет лежать центр дуги данного участка эллипса. Касательная к эллипсу пройдет в точке 1 и будет перпендикулярна линии 1–4.
Подобные построения используют, например, при изготовлении резных рамок. Если взять ширину рамы одинаковой по всему периметру (рис. 15, д, 1), то она не будет смотреться правильно построенной. Так же плохо воспринимается зрительно и рама, у которой коэффициенты соотношения осей во внешнем и внутреннем эллипсах одинаковы (рис. 15, д, 2). Наиболее удачной композиционно выглядит рама, где для внешнего эллипса малой осью будет средний размер между малыми осями первого и второго случаев (рис. 15, д, 3). Это даст приблизительно 8 % уменьшения ее величины по отношению к первому случаю или 8 % увеличения по сравнению с малой осью второго случая.
Рис. 15. Построение эллипсов: а – простое построение; б, в – построение по принципу эллипсографа; г – построение касательной к эллипсу; д – силуэт эллиптической рамки в пропорциях золотого сечения: 1 – одинаковая ширина по всему периметру; 2 – одинаковое отношение осей внешнего и внутреннего эллипсов; 3 – усредненное соотношение осей эллипсов.
Построение куполов
В практике резьбы достаточно часто встречаются всевозможные типы куполов и формы луковичных глав в виде наконечников и концовок.
Схемы построения куполов представлены на рис. 16. Построение луковичной главы в первом варианте заключается в сопряжении двух окружностей. За модуль здесь берется 1/10 диаметра главы. Второй и третий варианты отличаются между собой величиной радиуса очерковой дуги при вершине главы. Радиус в первом варианте равен радиусу исходной сферы. Все построения луковичных глав выполняются в пропорциях золотого сечения.
Рис. 16. Построение куполов: а – построение простых куполов; б – построение луковичной главы.
Построение спирали
Спиралью называется плоская кривая, описываемая точкой, удаляющейся от центра при совершении кругового движения в плоскости чертежа вокруг центра спирали. На практике различают спирали с постоянным и постепенно возрастающим расстоянием между завитками. Обычно спирали строят по точкам и вычерчивают с помощью лекала.
Для того чтобы расчертить спираль, необходимо наметить не менее двух ее центров. Если вычерчивают спираль из трех или более центров, то обычно центрами спирали являются вершины правильного треугольника или правильного многоугольника. Каждую дугу проводят из последующей вершины до пересечения с лучом из угла треугольника или многоугольника. Радиус при этом каждый раз увеличивается на длину, равную длине стороны треугольника или многоугольника.
Рассмотрим, например, как начертить так называемую «архимедову спираль» (рис. 17, а). Для этого нужно провести горизонтальную линию и отметить на ней две точки О1 и О2, отстоящие одна от другой примерно на 3 мм. Поставив ножку циркуля в одну из этих точек (О1), проведите дугу радиусом 3 мм (R1), равную половине окружности. Концы этой дуги должны опираться на горизонтальную ось (в данном примере – сверху).
Затем перенесите ножку циркуля во вторую из отмеченных точек и увеличьте его раствор так, чтобы карандаш попал в конец первой дуги. Снова проведите половину окружности радиусом R2, опирающуюся на горизонтальную линию, но уже с противоположной стороны (снизу). Таким же образом, переставляя ножку циркуля то в первую, то во вторую точку и каждый раз увеличивая его раствор, продолжайте разворачивать спираль. На рис. 17, а, изображено четыре полных оборота.
Для построения спирали, имеющей три центра (рис. 17, б), находящихся на равных расстояниях один от другого, необходимо предварительно построить равносторонний треугольник 1–2–3 (заштрихован) и продолжить его стороны так, как это показано на рисунке (линии 1–1’, 2–2’ и 3–3’).
Из центра 1 проводим дугу 3–1’ радиусом R1, равным длине стороны треугольника, до пересечения с продолжением стороны 1–1’. Затем из центра 2 описываем дугу радиусом R2 = 2R1 до пересечения с продолжением стороны 2 (линия 2–2’). После этого из центра 3 проводим дугу радиусом R3 = 3R1 до пересечения с продолжением стороны 3 (линия 3–3’) в точке 3’. После этого возвращаемся в центр 1 и продолжаем построение в такой же последовательности, каждый раз увеличивая радиус дуги на величину стороны треугольника.
Рис. 17. Построение спиралей: а – «архимедова спираль» с двумя центрами; б – трехцентровая спираль; в – эвольвента круга; г, д – ломаные (хордовые) спирали.
Аналогично выполняют спирали с четырьмя, пятью и т. д. центрами.
Эвольвента круга (рис. 17, в) – это плоская кривая, образуемая точкой на прямой, которая перемещается без скольжения по неподвижной окружности заданного радиуса. Эта кривая иногда называется разверткой окружности. Построение эвольвенты начинается с деления заданной окружности на произвольное число равных частей, например 12. В каждой точке деления проводим касательные к окружности. На каждой из этих касательных последовательно откладываем длину окружности, равную πd/12: в точке 1 – πd/12, в точке 2 – 2πd/12, в точке 3 – 3πd/12 и т. д. На касательной к точке 12 откладываем длину окружности, равную πd. Соединяя последовательно плавной кривой по лекалу полученные на касательных точки 1’, 2’, 3’ и т. д., получим кривую, называемую эвольвентой.
Схема построения ломаных спиралей показана на рис. 17, г, д. Они строятся так же, как и циркульные, но дуги заменяются соответствующими хордами.