Сварка чугуна
Чугун – это сплав железа с углеродом, где, в отличие от стали, углерода много – около 2–5 %. В зависимости от количества углерода в сплаве различают белые, серые, ковкие и высокопрочные чугуны.
Белые чугуны на изломе имеют почти белый цвет. Весь углерод в них находится в связанном состоянии в виде карбида железа – цементита Fe3C. Цементит хрупок, имеет высокую твердость (выше твердости напильника), не поддается механической обработке режущими инструментами и как конструкционный материал практически не применяется. Используется для получения ковких чугунов и сталей.
Серый чугун – это не сплошной металл, а пористая металлическая губка, поры которой заполнены рыхлым неметаллическим веществом – графитом. Такая структура неблагоприятна для сварки, она не встречается ни в одном другом металле. На изломе он имеет серебристый цвет из-за наличия пластинчатых включений графита, включающего в себя половину всего углерода (остальной углерод находится в связанном состоянии). Серые чугуны содержат: 3,2–3,5 % углерода; 1,9–2,5 % кремния; 0,5–0,8 % марганца; 0,1–0,3 % фосфора и менее 0,12 % серы.
Пример обозначения серого чугуна: СЧ32–52. Буквы обозначают серый чугун (СЧ), первое число обозначает предел прочности при растяжении (32 кгс/мм2, или 320 МПа), второе число – предел прочности при изгибе. Относительное удлинение при разрыве серого чугуна практически равно нулю. Это характеризует его как непластичный материал.
Хорошо обрабатывается режущим инструментом. Температура плавления, в зависимости от количества углерода, составляет 1100–1250 °C.
Ковкий чугун – название условное. Он не поддается ковке, так как имеет повышенную пластичность и вязкость. Получают его длительным отжигом белого чугуна. В структуре содержит: 2,4–3,0 % углерода в виде графита хлопьевидной формы; 0,8–1,4 % кремния; 0,3–1,0 % марганца; менее 0,2 % фосфора; не более 0,1 % серы.
Ковкий чугун обладает повышенной прочностью при растяжении и высоким сопротивлением удару, он менее склонен к трещинообразованию. Пример обозначения ковкого чугуна: КЧ45–6. Буквы обозначают ковкий чугун (КЧ), первое число – предел прочности при растяжении (45 кгс/мм2, или 450 МПа), второе – относительное удлинение в процентах (6 %).
Высокопрочный чугун содержит графит шаровидной формы и имеет наиболее высокие прочностные свойства. Содержит: 3,2–3,8 % углерода; 1,9–2,6 % кремния; 0,6–0,8 % марганца; до 0,12 % фосфора и не более 0,3 % серы. Высокопрочный чугун получают путем введения добавки-модификатора – магния в жидкий расплав, что способствует образованию графитных включений шаровидной формы. Механические свойства такого чугуна приближаются к свойствам углеродистых сталей, а литейные свойства выше (но ниже, чем у серых чугунов). Пример обозначения высокопрочного чугуна: ВЧ45–5. Буквы обозначают высокопрочный чугун (ВЧ), первое число обозначает предел прочности при растяжении (45 кгс/мм2, или 450 МПа), второе – относительное удлинение в процентах.
Свариваемость чугуна можно характеризовать как противоречивую. При оценке физической свариваемости чугун следует отнести к группе хорошо свариваемых материалов, а при оценке по технологической свариваемости, когда требуется сварное соединение без снижения качества основного металла и металла шва, он является трудносвариваемым сплавом. Основные причины, ухудшающие свариваемость чугуна, следующие.
1. Возможность образования в шве и околошовной зоне хрупких и труднообрабатываемых структур отбела (т. е. появления участков с выделениями цементита той или иной формы) и закалки с очень высокой твердостью.
2. Повышенная текучесть и низкая пластичность затрудняют удержание расплавленного металла от вытекания и формирование шва. Это также создает напряженное состояние структуры и приводит к трещинам.
3. Чугун не имеет пластического (тестообразного) состояния и при достижении температуры плавления мгновенно переходит из твердого состояния в жидкое, а при охлаждении – из жидкого в твердое. Поэтому он поддается сварке только в нижнем положении шва.
4. Образование пористости за счет большого количества окиси углерода и быстрое затвердевание расплавленного металла – причина того, что газы не успевают выйти. Интенсивное газовыделение из сварочной ванны, которое продолжается и на стадии кристаллизации, может приводить к образованию пор в металле шва.
5. «Рост» чугуна, т. е. склонность серого чугуна к необратимому увеличению объема на 3–5 % при нагреве его до 300–500 °C, приводит к деформациям, иногда – к трещинам.
6. Вследствие окисления кремния на поверхности сварочной ванны возможно образование тугоплавких оксидов, что может приводить к непроварам.
При охлаждении чугун расширяется. Повышенная склонность чугуна к образованию хрупких структур связана в основном с высоким содержанием в нем углерода. Это явление особенно проявляется при дуговых способах сварки. При локальном нагреве чугуна создается перепад температур в теле, вызывающий термические напряжения.
Зато при газовой сварке обеспечивается бóльшая зона плавного нагрева и меньшая скорость охлаждения, поэтому образование структур закалки и отбела сварного стыка менее вероятно.
Чугуны очень неоднородны по своему химическому составу и сильно засорены различными примесями, поэтому результаты сварки чугунных деталей одинаковой марки могут быть различны. Нужно помнить и о том, что никому в производстве еще не удавалось получить равнопрочное чугунное сварное соединение.
Нужно помнить, что есть виды чугунных изделий, чугуны которых практически не поддаются сварке. Например, не поддается сварке так называемый горелый серый чугун – подвергшийся длительному воздействию высокой температуры (например, плита на печке), кислот, пара и т. п. Из-за пористости чугуна в подобных случаях окисление проникает на всю толщину металла, обволакивая металлические зерна пленкой окислов и делая металл рыхлым, механически непрочным и главное – не смачивающимся никаким жидким металлом. При попытке сварки дугой в стыке от температуры образуются (скатываются) шарики полуметалла, а стык на их объем углубляется, и получается канавка. Плохо также свариваются чугуны с черным изломом.
Технологические трудности сварки чугуна породили множество способов и разновидностей его сварки: чугун можно сваривать дуговой сваркой металлическим или угольным электродами, газовой сваркой, термитной сваркой, заливкой жидким чугуном, порошковой проволокой и т. д. Но ни один способ не является вполне приемлемым для всех случаев, встречающихся в практике. Поэтому сварку чугуна применяют только при ремонтных работах и при устранении мелких дефектов в отливках. Причем лишь газовая сварка является одним из относительно надежных и несложных способов, позволяющих получить наплавленный металл, по свойствам близкий к основному металлу. Это объясняется термическими процессами при сварке, меньшей вероятностью появления в зоне сплавления отбеленного чугуна.
В зависимости от температуры предварительного подогрева различают сварку с подогревом до высокой температуры (горячая сварка), с небольшим подогревом (полугорячая сварка) и без подогрева (холодная сварка).
Горячая сварка чугуна. Горячая сварка – это разработанный еще в XIX веке И. Г. Славяновым способ, успешно используемый до настоящего времени. Основными недостатками горячей сварки чугуна являются большая трудоемкость и тяжелые условия труда сварщиков, правда, этим достигается высокое качество сварного шва.
При горячей сварке изделия предварительно нагревают до 600–700 °C. При сварке крупных изделий можно применять местный подогрев. При подготовке дефектного места к сварке его тщательно очищают от загрязнения, разделывают для образования полости, легко доступной для сварки, устраивают формовку для предотвращения вытекания металла из сварочной ванны. Формовку выполняют графитовыми или угольными пластинками, скрепленными формовочной массой из кварцевого песка, увлажненного жидким стеклом, или другими формовочными материалами. Формовку производят в опоках. Форму просушивают при постепенном изменении температуры от 60 до 120 °C, после чего изделие подогревают. Применяют несколько способов ручной горячей сварки чугуна.
Ручную дуговую сварку покрытыми электродами используют в мелкосерийном производстве, при заварке дефектов в труднодоступных местах. При сварке покрытыми электродами с чугунным стержнем на переменном или постоянном токе прямой полярности обеспечивается стабильно хорошее качество. Перед началом заполнения заформованного участка первую порцию расплавленного металла рекомендуется выплеснуть для удаления неметаллических включений. Сварку ведут на токах 900–1000 А.
Для заварки мелких дефектов при полужидком металле сварочной ванны следует применять покрытые электроды со стержнем из углеродистой стали ∅ 5 мм. Сварку производят на постоянном токе прямой полярности силой 200–250 А с использованием стандартного оборудования. Механические свойства металла сварного соединения аналогичны свойствам основного металла.
Газовую сварку чугунных деталей выполняют нормальным пламенем или пламенем с небольшим избытком ацетилена. У деталей толщиной до 5 мм разделку кромок не делают, а у изделий толщиной свыше 5 мм производят разделку кромок под углом 70–90°. Диаметр прихваток 5–6 мм. После нагрева до 500–700 °C в начале сварки пламя горелки устанавливают почти вертикально таким образом, чтобы ядро пламени находилось на расстоянии 2–3 мм от поверхности свариваемого металла. По мере выполнения сварки горелку наклоняют под небольшим углом. Вид пламени – нормальное или слегка науглероживающее. Его тепловую мощность выбирают исходя из расхода ацетилена 120 дм3/ч на 1 мм толщины свариваемого металла.
В качестве присадки применяют чугунные прутки марки А диаметром 4, 6, 8, 10 мм и длиной 250–450 мм. Для облегчения выделения газа металл сварочной ванны необходимо непрерывно помешивать присадочным прутком. С целью удаления образовавшихся при сварке окислов и улучшения процесса сварки используют специальные флюсы (табл. 36). Для получения сварного соединения со свойствами, аналогичными свойствам основного металла, следует уменьшить скорость охлаждения путем отвода пламени сварочной горелки от поверхности свариваемого металла на 50–60 мм, подогревая наплавленный металл пламенем в течение 1–1,5 мин. Для уменьшения внутренних напряжений в массивных деталях сложной конфигурации их рекомендуется вторично подогреть до 600–700 °C и постепенно охладить.
Газовую сварку с местным подогревом до 300–500 °C применяют, когда место сварки и характер конструкции позволяют использовать местный подогрев без появления трещин и напряжений в свариваемых изделиях. Подогрев выполняют сварочными горелками, паяльными лампами и другими возможными средствами. Состав газового пламени и его мощность при сварке выбирают такие же, как и при сварке с общим подогревом. В качестве присадки применяют чугунные прутки марки Б диаметром 4, 6, 8, 10 и 12 мм и длиной 250–450 мм. Места сварки после окончания процесса медленно охлаждают, покрывая асбестом или засыпая песком.
Полугорячая сварка. Когда требуется исправить небольшой дефект сложной детали или дефект, расположенный на массивной детали в тонком месте, где укорочение от нагрева при сварке не встречает большого сопротивления, можно применять электродуговую сварку с предварительным нагревом до 250–400 °C (полугорячую сварку). Такой подогрев свариваемой детали способствует замедленному охлаждению металла шва и прилежащих к нему зон после сварки. По технике выполнения и применяемым материалам полугорячая сварка не отличается от горячей.
Детали перед сваркой нагревают в термических печах, горнах или с помощью газовых горелок ацетиленокислородным пламенем. При подогреве газовой горелкой необходимо следить за равномерностью нагрева подогреваемой поверхности.
Полугорячую сварку чугуна можно осуществлять низкоуглеродистыми стальными электродами с покрытиями типа МР-3, УОНИИ-13, стальными электродами со специальным покрытием, чугунными электродами и ацетиленокислородным пламенем с применением чугунных присадочных прутков. При сварке сквозных трещин или при заварке дефектов, находящихся на краю деталей, необходимо применять графитовые формы, предотвращающие вытекание жидкого металла из сварочной ванны. Во время сварки следует непрерывно поддерживать значительный объем расплавленного металла в сварочной ванне и тщательно его перемешивать концом электрода или присадочного стержня. Для замедленного охлаждения заваренные детали засыпают мелким древесным углем или сухим песком.
Холодная сварка. Сварка называется холодной потому, что изделие перед сваркой не проходит общий подогрев до высоких температур, а подогреву подвергаются лишь зона сварки и свариваемые кромки до температур 350–500 °C в зависимости от габаритов изделия и толщины стенок.
Существует значительное число способов холодной электродуговой сварки чугуна: стальными электродами, стальными электродами со специальными покрытиями, чугунными, медными и прочими электродами. Стержни для электродов делаются преимущественно из цветных металлов и сплавов, например меди, медно-никелевых и железоникелевых сплавов.
Холодную сварку чугуна стальными или чугунными электродами применяют лишь в редких случаях при ремонте неответственных чугунных изделий небольших размеров с малым объемом наплавки, не требующих после сварки механической обработки. Сварное соединение неоднородно по структуре, часто не обладает достаточной плотностью и имеет низкую прочность.
Сварку электродами с защитно-легирующими покрытиями выполняют с V– или Х-образной разделкой кромок. Для устранения неравномерного разогрева детали сваривают отдельными участками вразбивку. Длина отдельных наплавленных участков сварного шва не должна превышать 100–120 мм. После наплавки отдельных участков им дают возможность остыть до температуры 60–80 °C.
Хорошие результаты получают при сварке электродами с покрытием УОНИИ-13/45 на постоянном токе обратной полярности. Также для сварки чугуна получили распространение медно-железные, медно-никелевые и железоникелевые электроды.
Ручная сварка электродами из цветных металлов на медной основе получила широкое распространение для заварки трещин с обеспечением хороших прочностных показателей свариваемых деталей. Сварку ведут электродами ОЗЧ-2 и СТЧ-3 на постоянном токе прямой полярности в нижнем или наклонном положениях небольшими участками длиной 30–80 мм «вразброс» для предупреждения чрезмерного местного перегрева детали. Основной металл при этом проплавляют минимально. Каждый валик после остывания следует очистить и проковать.
Зазоры между кромками при заварке трещин рекомендуется заплавлять стальными электродами. Возобновляют сварку после охлаждения места сварки до 50–70 °C. Длина дуги у электродов ОЗЧ-2 должна быть предельно короткой. Применяют электроды ∅ 4–7 мм, силу тока соответственно 140–300 А. Сварку электродами со стержнем из сплава на основе никеля используют для устранения мелких дефектов, прежде всего, когда требуется обеспечить обрабатываемость сварного соединения, а также его цвет, аналогичный цвету основного металла. Обычно применяют электроды со стержнем из медно-никелевого сплава, который называют монель-металлом: ОЗЧ-З, ОЗЧ-4, ОЗЖН-1, МНЧ-2 и СТЧ-2. Основная марка таких электродов – МНЧ-2 (70 % никеля, 28 % меди).
Сварку электродами ОЗЧ-З и МНЧ-2 на постоянном токе обратной полярности производят короткими швами длиной 30–50 мм с проковкой каждого шва и перерывами для охлаждения. При сварке электродами ОЗЧ-З ∅ 2,5–5 мм сварочный ток 60–150 А, а электродами МНЧ-2 ∅ 3–5 мм – 90–190 А (из расчета 30–40 А на 1 мм диаметра электродного стержня). При заварке крупных дефектов или наплавке больших объемов металла используют также электроды ОЗЖН-1. Электродами ОЗЧ-З наплавляют первый и последний слой, а промежуточные слои наплавляют поочередно электродами ОЗЖН-1 и ОЗЧ-З. Техника и режимы сварки электродами ОЗЧ-1, ОЗЖН-1 и ОЗЧ-З аналогичны. Эти электроды рекомендуются для наплавки последнего слоя при заполнении разделки электродами ОЗЧ-З. То же относится и к электродам СТЧ-2 и МНЧ-2. Сварку ведут электродами ∅ 3–6 мм, сварочный ток соответственно 85–240 А.
Холодная сварка чугуна медно-никелевыми электродами ведется короткими валиками (40–50 мм) с перерывами для охлаждения до температуры 60–70 °C. Высота валика не менее 4 мм, причем каждый валик прочеканивается ударами ручного молотка. Если проковка недоступна или невозможна, то применение медных электродов нецелесообразно. Наплавку валика выполняют только в нижнем положении. При выполнении всех рекомендаций сварка обеспечивает до 70 % прочности основного металла и плотность сварного соединения.
Некоторые дефекты, расположенные по краям, а также «бобышки» и платики можно наплавлять полужидкой ванной с принудительным формированием. Используют силу тока в 1,5 раза больше по сравнению с током при послойной сварке. Мелкие дефекты на обрабатываемых поверхностях заваривают электродами с карбидообразующими элементами в покрытии, например ЦЧ-4. Сварку ведут на минимальном токе электродами диаметром более 4 мм из расчета 23 А на 1 мм диаметра электрода. Ток постоянный, полярность обратная. Кромки рекомендуется облицовывать не более чем в 2 слоя с последующим заполнением объема стальными электродами типа Э42 и Э42А.
Когда не требуется механическая обработка сварных соединений и не оговаривается их прочность, рекомендуется сварка стальными электродами, применяемыми для сварки низкоуглеродистых сталей, а также электродами ЦЧ-4 или электродами со стержнем на основе никеля. Сварку производят отдельными участками на минимальном режиме с перерывами для охлаждения основного металла. При толщине детали до 20 мм разделка кромок необязательна. При большей толщине угол разделки 90–120°.
Для получения равнопрочного с основным металлом соединения непосредственно по месту работы детали без ее демонтажа в завариваемое место устанавливают в шахматном порядке стальные шпильки. При толщине стенок детали до 10 мм диаметр шпилек составляет 6 мм, до 20 мм – 10 мм, для более толстых – 16 мм. Сварку выполняют участками 40–50 мм с перерывами для охлаждения и минимальной глубиной проплавления.
Для качественной сварки серого чугуна нужны специальные электроды, которых, как правило, нет и достать их трудно. В аварийной ситуации, например для экстренного ремонта котла, можно использовать обыкновенные электроды для переменного тока. Производят сварку как обычно, но через каждые 2–3 см шов надо охлаждать солидолом.
Сварка без предварительного нагрева изделий из высокопрочного и ковкого чугуна имеет свои особенности – высокопрочный чугун обладает повышенной склонностью к отбеливанию и большой прокаливаемостью, а ковкий чугун имеет повышенную графитизацию, что затрудняет смачиваемость поверхности при сварке. Сварку можно выполнять до и после термической обработки. До термической обработки изделия сваривают электродами УОНИИ-13/45 и УОНИИ-13/55, а после нее – электродами со стержнем на основе никеля.
Газовую холодную сварку применяют, когда при нагревании и охлаждении детали могут свободно расширяться и сжиматься, не вызывая значительных остаточных напряжений. Технология холодной и горячей сварки в основном одинакова. Вид пламени – нормальное или слегка науглероживающее. Расход ацетилена составляет 100–120 дм3/ч на 1 мм толщины металла, тепловая мощность пламени – максимально возможная. Перед сваркой необходимо подогреть завариваемые кромки пламенем горелки.
Сварку проводят как левым, так и правым способами, в зависимости от толщины деталей, с применением флюсов (см. табл. 36) и присадочных материалов в виде прутков марок А и Б. Шов формируют в нижнем положении. После сварки горелку в течение 2–3 мин медленно отводят от сварного шва. Место сварки защищают асбестовыми листами или песком.
При заваривании дефектов сварку рекомендуется проводить отдельными сварочными ваннами длиной 20–50 миллиметров.
Газовая пайкосварка. Нагрев чугуна при сварке приводит к значительным деформациям изделия, поэтому на последних операциях механической обработки сварных соединений используют не сварку, а пайкосварку – промежуточный процесс между сваркой и пайкой. Заключается она в том, что до температуры плавления нагревают не свариваемый металл, а легкоплавкий (820–860 °C) присадочный материал, смачивающий свариваемые кромки.
Низкотемпературная пайкосварка выполняется ацетиленокислородным пламенем, которое позволяет выполнять независимый, раздельный нагрев основного и присадочного металлов, флюсов. Вид пламени – строго нормальное. Вместо ацетиленокислородного пламени можно использовать пропано-кислородное. Его тепловую мощность выбирают исходя из расхода пропана 60–70 дм3/ч на 1 мм толщины металла.
Перед пайкосваркой изделие прогревают до 300–400 °C в печи, а при небольших размерах изделия – пламенем газовой горелки. С места сварки должны быть удалены загрязнения (окислы, жир и др.). Кромки разделывают механическим путем, как и при сварке. При разделке сквозных трещин притупление должно быть не более 1,5 мм. Места сварки зачищают до металлического блеска.
Подготовленные к сварке кромки обжигают пламенем горелки с избытком кислорода для выжигания графита на поверхности кромок, чтобы улучшить смачиваемость чугуна припоем и сцепление металлов. На нагретую поверхность наносят слой специального флюса марки ФСЧ-2 или МАФ-1 (табл. 37). Специальные чугунные присадочные прутки марки НЧ-2 или УНЧ-2 (табл. 38) также покрывают флюсом, предварительно подогрев их.
Признаком готовности кромок к пайкосварке является равномерное растекание расплавленного флюса по кромкам (это 800–850 °C). Конец присадочного прутка разогревается и опускается во флюс, при этом пламя горелки не должно отводиться от места нагрева, а на кромки нужно периодически подавать флюс. На горячий пруток налипает нужное количество флюса. Затем расплавляется конец прутка с флюсом. Капли расплавленной присадки растираются тонким слоем по поверхности разогретых кромок этим же прутком. При соприкосновении капли с кромкой соединения на поверхности кромки повышается температура, так как капля отдает свою часть теплоты. Под действием флюса и пламени капли жидкого припоя хорошо растекаются по кромкам тонким слоем, заполняя поры и пустоты в чугуне, обеспечивая улучшение прочности сцепления.
Отрицательное влияние свободного графита на кромках при смачивании уменьшается активными добавками во флюсе.
Можно применять пайкосварку латунными припоями . Этот метод отличается тем, что рабочая температура процесса составляет 650–780 °C (т. е. практически температура смачивания поверхности металла), что не изменяет существенно структуру чугуна, а значит, не вызывает термических внутренних напряжений. Соединяемые кромки должны быть шероховатыми, так как гладкие поверхности латуни плохо смачиваются и сцепление латуни с чугуном недостаточно прочное. Углерод тоже препятствует смачиванию латунью, поэтому его выжигают с кромок окислительным пламенем или покрывают кромки пастой из железных опилок, борной кислоты и нагревают кромки пламенем горелки до 750–900 °C. Способ выжигания углерода окислительным пламенем проще и используется чаще.
Пайкосварка состоит в следующем: нагрев кромок до красного цвета, обработка флюсом, облуживание нормальным пламенем или немного окислителем. Пайкосварка выполняется в слегка наклонном положении снизу вверх, чтобы расплавленная латунь не закрывала луженые участки. Лучшие результаты достигают при левом способе сварки. Расстояние между ядром пламени и концом прутка должно составлять 2–3 мм, угол между горелкой и деталью – 20–30°. После сварки изделие медленно охлаждают под слоем асбеста или в песке.
В качестве присадочных материалов берут латунь Л63, ЛОK59–1-03 или ЛОМНА 49–05–10–4–0,4 по ГОСТ 16130–90. Испарению цинка препятствует пленка окислов кремния, а также избыток кислорода в пламени. Без применения мер защиты угар цинка составит 5 %, а цинковый дым ядовит для организма человека. Соединения при такой пайкосварке получаются почти равнопрочные с низкоуглеродистой сталью.
Снижение рабочей температуры достигается применением специальных флюсов, например марки ФПСН-1 и ФПСН-2. Флюсом нейтрализуется вредное действие свободного графита. При температуре плавления флюсов 600–650 °C они являются индикаторами начала процесса при пайкосварке, т. е. сигналом для расплавления припоя. Флюс применяют в виде пасты, разведенной водой, или в виде порошка.
Наплавленный металл сразу же после сварки проковывают при температуре 600 °C ручным медным молотком.
Для исправления мелких дефектов на последующих операциях механической обработки применяют также газопорошковую пайкосварку . Исправляемую поверхность нагревают газовой горелкой до 300–400 °C, этой же горелкой напыляют слой порошкообразного сплава, не доведенного до расплавления, на напыленную поверхность наплавляют порошкообразный сплав. Деталь нагревается незначительно, сохраняя окончательные геометрические размеры. Порошковые материалы (например, сплавы НПЧ-1 и НПЧ-2) подают к месту сварки через горелку.