Сварочные работы. Практическое пособие

Подольский Юрий Федорович

Особенности сварки различных металлов

 

 

Сварка малоуглеродистых сталей обычно не создает особых трудностей. Технике сварки таких материалов посвящен весь предыдущий раздел. Здесь же будут рассмотрены специфические особенности свариваемости различных металлов, в т. ч. сталей.

 

Понятие свариваемости металлов

Принципиальная возможность сварки двух или нескольких твердых тел связана с их взаимной растворимостью в жидком состоянии, поскольку процесс диффузии между разными сплавами в твердом или жидком состоянии возможен при наличии растворимости одного или нескольких элементов свариваемых сплавов (в твердом или в жидком состоянии). Причем полная нерастворимость металлов в жидком состоянии исключает возможность растворимости их в твердом состоянии. Образование между ними какого-либо сварного соединения становится невозможным без помощи иного связывающего тела. Очевидно, лучше всего свариваются материалы с неограниченной взаимной растворимостью.

Однако при сварке плавлением нередко материалы хорошо свариваются и без всякой взаимной растворимости. Связано это с тем, что в сварочной ванне образуется расплав типа механической смеси, и при кристаллизации на зернах каждого из материалов, как на подложке из расплава, будут преимущественно надстраиваться атомы того же самого материала. В результате переход от каждого материала к материалу шва не будет резким, а изменение свойств при переходе через шов будет плавным.

В то же время при сварке давлением в твердом состоянии свариваемость таких материалов будет плохой. Отсутствие взаимной растворимости исключает взаимодиффузию, а при отсутствии жидкой ванны нет и перемешивания. В результате стык будет являться гетерогенной границей с невысоким, как правило, комплексом механических свойств. Поэтому качество сварки должно зависеть в первую очередь от способа диффузионного смешивания свариваемых тел в жидком состоянии, а в конечном счете – от технологических приемов процесса сварки.

Реакция свариваемых материалов на технологический процесс сварки и возможность получения сварных соединений, удовлетворяющих условиям эксплуатации (т. е. без трещин, пор и других дефектов), называется свариваемостью. Причем свариваемость не является свойством тела самого по себе, безотносительно к другому телу. Понятие свариваемости двух или нескольких тел включает в себя отношение их между собой по способности образовывать сварное соединение между собой или с помощью других тел.

Критерием хорошей свариваемости является способность сохранения сварным соединением специальных физических, механических свойств – равнопрочности, жаростойкости, коррозионной стойкости, антифрикционности, вязкости и т. д.

Свариваемость определяют три группы факторов:

● химический состав и структура металла, наличие примесей, степень раскисления, подготовительные операции (ковка, прокатка, термообработка деталей);

● сложность формы и жесткость конструкции, масса и толщина металла, последовательность выполнения сварных швов;

● вид сварки и сварочные материалы, режимы термических воздействий на основной материал.

Свариваемость различных металлов и сплавов неодинакова. Свариваемые металлы должны иметь близкие физические, механические, термические, химические свойства, близость коэффициентов термического линейного расширения металлов в стыке.

При определении свариваемости исходят из физической сущности сварки и отношения к ней металлов. Степень свариваемости металла считается более высокой, если для сварки можно применить различные ее способы и различные режимы при каждом способе, как, например, у низкоуглеродистой стали.

Единого показателя свариваемости металлов нет. Для качественной сварки металлы должны обладать свойствами принципиальной (физической) и технологической свариваемости.

Принципиальная, или физическая, свариваемость – это способность металлов в условиях сварки образовывать соединение на основе взаимной кристаллизации. Принципиальной свариваемостью обладают все однородные металлы. Не свариваются металлы, не обладающие взаимной растворимостью, они образуют не межатомные связи, а хрупкие химические соединения. Например, свинец и медь образуют несмешивающиеся пары.

Необходимо также условие сходности металлов, например, по атомному весу, температуре плавления и др. По этим причинам не свариваются алюминий и висмут. Медный сплав и титан, а также сталь и титан не обладают взаимной растворимостью, но задача их соединения решена с применением металловставок, например, медь + тантал + титан; титан + ванадий + сталь. Металл вставки образует смешивающиеся пары с обоими свариваемыми металлами. Но принципиального соединения еще мало, так как нужно еще и качество по прочности. При соединении сваркой несмешивающихся металлов, например железа со свинцом, меди со свинцом и др., зоны сплавления и атомного сцепления не будет, произойдет лишь «слипание» металлов.

Технологическая свариваемость – совокупность свойств основного металла, определяющих чувствительность его к термическому циклу сварки и способность при данной технологии сварки образовывать сварное соединение надлежащего качества по прочности и вязкости без применения специальных технологических приемов (подогрева, отжига и т. д.).

Технологические факторы, ухудшающие свариваемость:

● резкое отличие материалов деталей по свойствам (химическому составу, теплофизическим параметрам, механическим свойствам);

● образование при сварке оксидов, пористости, газовых раковин;

● возникновение значительных напряжений;

● наличие геометрических дефектов (несплавлений, подрезов, резких переходов толщин изделия и т. п.).

Словосочетание «плохая свариваемость» не означает, что плохо проходит сам процесс сварки, формирование шва. Смысл слов «хорошая» и «плохая» свариваемость в том, какой будет эксплуатационная пригодность сварного узла после сварки.

Важнейшими критериями свариваемости являются стойкость против образования горячих и холодных трещин и склонность образовывать закалочные структуры в ЗТВ как самой ослабленной области в сварном соединении. Вследствие нагрева до температуры 1100–1400 °C структура металла в этой зоне крупнозернистая с пониженными механическими свойствами (пластичностью и ударной вязкостью). Эти свойства тем ниже, чем крупнее зерно и шире зона перегрева (как при газовой сварке).

 

Сварка сталей

 

По свариваемости стальные материалы обычно подразделяют на 4 группы: хорошо, удовлетворительно, ограниченно и плохо сваривающиеся (табл. 32). Иногда вводят пятую: не сваривающиеся (данным способом сварки).

Наиболее существенное влияние на состояние ЗТВ и свариваемость оказывает углерод, способствующий образованию закалочных структур, и легирующие элементы – хром, вольфрам, молибден и ванадий. Последние ухудшают свариваемость за счет образования карбидов (служащих концентраторами напряжений) и за счет понижения критических скоростей закалки.

Углерод до 0,25 % почти не оказывает влияния на свариваемость. При большем содержании значительно ухудшает ее – увеличивает твердость и уменьшает пластичность, приводит к закаливаемости ЗТВ и к появлению трещин, к увеличению количества газовых пор в процессе окисления при сварке.

Марганец при содержании до 1 % не ухудшает свариваемость и не затрудняет сварку. В качестве хорошего раскислителя он способствует уменьшению содержания кислорода в стали. Однако при содержании более 2,5 % свариваемость ухудшается, так как повышается твердость стали, появляются закалочные структуры, могут быть трещины.

Кремний – до 1 % вводится как раскислитель и не влияет на свариваемость. Но при содержании кремния более 2,5 % свариваемость ухудшается, так как образуются тугоплавкие оксиды, ведущие к появлению шлаковых включений, повышаются прочность и твердость, а вместе с этим и хрупкость.

Хром – до 0,6 % не отражается на свариваемости. При содержании хрома более 1 % свариваемость ухудшается, особенно при повышении содержания углерода.

Никель – в обычных углеродистых сталях содержание никеля составляет до 0,3 %, а в высоколегирующих – до 28 %. Никель, вместе с прочностью, увеличивает пластичность как исходной стали, так и шва, и не ухудшает, а даже улучшает свариваемость.

Молибден – в сталях от 0,5 до 3,0 % существенно увеличивает прочность и ударную вязкость стали, но ухудшает свариваемость, повышает склонность к образованию трещин в шве и в ЗТВ.

Медь – содержание ее в сталях до 1 % улучшает свариваемость, повышает их прочность, пластические свойства, ударную вязкость и коррозионную стойкость.

Титан и ниобий в количестве до 1 % вводят в хромистые и хромоникелевые стали для улучшения свариваемости. В бóльших количествах они могут ухудшить свариваемость. Титан при этом способствует образованию горячих трещин.

 

Трещинообразование при сварке

Отсутствие холодных или горячих трещин при сварке является основной характеристикой свариваемости. Трещины, образующиеся при температурах выше 800–900 °C, называются горячими, а при температурах ниже 300 °C – холодными.

Холодные трещины образуются под влиянием закалочных явлений, присутствия атомов водорода и остаточных растягивающих напряжений. Чувствительность сварного соединения к образованиям холодных трещин оценивают эквивалентным содержанием углерода в детали. Для этого используют эмпирические формулы, из которых наиболее распространенная имеет вид:

Сэкв = С + Mn/6 + (Cr+V+Mo)/5 + (Ni+Cu)/15,

где С, Мn, Cr, V, Mo, Ni, Сu – массовые доли углерода, марганца, кремния, ванадия, молибдена, никеля и меди, %.

При Сэкв ≤ 0,45 – свариваемость хорошая для легированных сталей.

При Сэкв ≤ 0,49 – свариваемость хорошая для низкоуглеродистых сталей.

При Сэкв > 0,45 до 0,5 – свариваемость удовлетворительная, но сталь склонна к образованию холодных трещин и необходим предварительный подогрев свариваемого изделия до температуры Т = 350(Собщ – 0,25)½, где Собщ – общий эквивалент углерода, зависящий от Сэкв и толщины S свариваемых деталей: Собщ = Сэкв(1 + 0,005S).

При Сэкв > 0,5 до 0,6 – свариваемость ограниченная, требуются подогрев и отжиг, или нормализация.

При Сэкв > 0,6 до 0,8 – свариваемость плохая.

Пример . Допустим, нужно определить возможность сварки деталей толщиной 5 мм из стали 40ХН.

Для этого понадобится справочник по маркам сталей. Для стали 40ХН содержание С = 0,36–0,44; Mn = 0,5–0,8; Cr = 0,45–0,75; Ni = 1–1,4; Cu ≤ 0,3; ванадий и молибден не содержатся.

Для расчета возьмем средние значения химических элементов в этой стали.

Сэкв=0,4+0,65/6+0,6/5+1,4/15 ≈ 0,72 > 0,45. Следовательно, детали перед сваркой необходимо нагревать.

Собщ = 0,72(1+0,005 × 5) ≈ 0,74. Таким образом, детали нужно нагреть перед сваркой до температуры Т=350(0,74–0,25)½ ≈ 245 °C.

Формул для определения Сэкв существует около десятка, и достоверность их, в принципе, весьма относительная, так как формулы эти эмпирические, т. е. без вывода. Вот некоторые из них:

1. Рекомендованная ГОСТ 27772–88 формула для всех сталей:

Сэкв = С+ Mn/6 + Si/24 + Cr /5 + Ni/40 + Cu/13 + V/14 + P/2.

2. Уточненная формула для всех сталей:

Сэкв = С + Мn/6 + Сr/6 + Si/5 + Cu/7 + Р/2 + Ni/12 + Mo/4 + V/5.

3. Для малоуглеродистых сталей:

Сэкв = С + Мn/6 + 0,024S, где S – толщина свариваемой кромки (наибольшей).

4. Для легированных сталей:

Сэкв = С + Mn/20 + Ni/15 + (Cr + Mo + V)/10 + 0,024S, где S – толщина металла.

5. Для различных сталей:

Сэкв = С + Мn/6 + Сr/3 + Ni/15 + V/5.

Во всех формулах количество указанного элемента дается в процентном содержании, затем выполняется вычисление.

В процессе кристаллизации металла шва в ЗТВ могут возникать горячие трещины. Они проходят по границам кристаллитов и вызывают межкристаллитное разрушение. Чувствительность сварного соединения к образованию горячих трещин (HCS) вычисляют по формуле:

При HCS < 4 горячие трещины не образуются. Для высокопрочных сталей коэффициент HCS должен быть менее 1,6–2,0.

 

Сварка низкоуглеродистых и углеродистых сталей

Низкоуглеродистые стали (С < 0,25 %) хорошо свариваются, а сварные соединения легко обрабатываются режущим инструментом.

Электросварку ведут электродами типа Э42 и Э46. В большинстве случаев не требуются специальные меры, направленные на предотвращение образования закалочных структур. Однако при сварке угловых швов на толстом металле и первого слоя многослойного шва для повышения стойкости металла к кристаллизационным трещинам может потребоваться предварительный подогрев до температуры 120–150 °C.

Для сварки рядовых конструкций из низколегированных сталей обычно применяют электроды типа Э42А, а ответственных – типа Э50А, что обеспечивает получение металла с достаточной стойкостью к кристаллизационным трещинам и требуемыми прочностными и пластическими свойствами.

Распространенные стали типа 15ХСНД при сварке склонны к образованию закалочных структур. Для предупреждения перегрева и закаливания рекомендуется многослойная сварка с большим интервалом времени между наложением слоев. Дуговую сварку металла толщиной 2 мм и более выполняют электродами УОНИИ-13/45, УОНИИ-13/65 на постоянном токе обратной полярности. Для изделий толщиной более 15 мм после сварки необходима термообработка – высокотемпературный отпуск (550–650 °C).

Газосварка углеродистых сталей. Низкоуглеродистые стали обладают хорошей свариваемостью в широком диапазоне значений тепловой мощности пламени. Вид пламени – нормальное. Его тепловую мощность при левом способе сварки выбирают исходя из расхода ацетилена 100–130 дм3/ч на 1 мм толщины свариваемого металла, а при правом способе – 120–150 дм3/ч.

Сварку проводят как левым, так и правым способами без флюса с использованием в качестве присадочного материала сварочной проволоки следующих марок:

● Св-08 и Св-08А – для неответственных конструкций;

● Св-08Г, Св-08ГА, Св-10ГА и Св-14ГС – для ответственных конструкций.

Для уплотнения и повышения пластичности наплавленного металла после сварки применяют проковку и последующую термообработку шва. Проковку рекомендуется осуществлять при температуре светло-красного каления (800–850 °C) и заканчивать при температуре темно-красного каления. Термической обработке после сварки подлежат ответственные и толстостенные конструкции.

Сварка углеродистыхсталей. Углеродистая сталь делится на высоко-, средне– и низкоуглеродистую в зависимости от количества углерода в ней. Высокоуглеродистые стали содержат 0,5–1 % С, среднеуглеродистые – 0,3–0,5 %.

При электросварке среднеуглеродистых сталей возможно образование трещин как в основном, так и в наплавленном металле. Трудность сварки таких сталей заключается в обеспечении необходимого термического цикла для улучшения ЗТВ. Для получения качественных соединений перед сваркой необходим подогрев изделия. Чем больше углерода в стали, тем выше должна быть температура предварительного подогрева. Подогрев выполняется симметрично сварному шву на ширину 50–80 мм от оси шва до температуры 100–350 °C. После сварки изделие вновь помещают в печь, нагревают его до 675–700 °C, медленно охлаждают вместе с печью до 100–150 °C. Дальнейшее охлаждение изделия возможно на воздухе. При термических воздействиях (подогрев и т. п.) необходимо учитывать и температуру окружающего воздуха, чтобы скорость охлаждения была медленной – не более 50 °C в секунду, во избежание образования трещин.

Тип электрода для сварки по прочности должен быть не ниже прочности основного металла: марок УОНИИ-13/45, УОНИИ-13/55, УОНИИ-13/65, УП-1/45, ОЗС-2, УП-2/45, ВСП-1, МР-1, ОС 3–4 и др. Сварку электродами УОНИИ-13/55, ОЗС-2, ВСП-3 можно выполнять только на постоянном токе обратной полярности. Применение электродов ВСП-1, МГ-1, ОЗС-4 позволяет использовать любой род тока. Перед сваркой электроды необходимо просушить при температуре 150–200 °C.

При механизированных способах сварки нужно применять проволоку малых диаметров (например, 1,2 мм) с минимальной погонной энергией. Большая глубина проплавления для таких сталей неприемлема, так как происходит оплавление основного металла в больших объемах, при этом усложняются режимы сварки и при малейших отклонениях ухудшается качество.

Для газовой сварки среднеуглеродистых сталей нужно нормальное или слегка науглероживающее пламя. Его тепловая мощность должна быть меньше, чем при сварке низкоуглеродистых сталей (расход ацетилена 75–100 дм3/ч на 1 мм толщины металла).

Сварку сталей при содержании углерода до 0,45 % проводят без флюса, а при 0,45–0,6 % – с флюсами следующих составов, %:

● прокаленная бура – 100;

● карбонат калия – 50, гидроортофосфат натрия – 50;

● борная кислота – 70, карбонат натрия – 30.

В качестве присадочного материала используют проволоку марок Св-08ГА, Св-10ГА и Св-12ГС.

При толщине металла свыше 3 мм осуществляют общий подогрев изделия до температуры 250–350 °C или местный подогрев горелками до температуры 600–650 °C.

Сварку выполняют только левым способом, чтобы уменьшить перегрев основного металла. Для улучшения механических свойств сварного соединения шов проковывают при температуре 850–900 °C с последующим высокотемпературным отпуском при температуре 600–650 °C.

 

Сварка высокоуглеродистых сталей

Высокоуглеродистыестали с содержанием углерода 0,48–0,70 %, как правило, не применяются для сварных конструкций как непригодные. Из этих сталей изготавливают различные детали, которые подвергаются наплавке для повышения износостойкости, как новые, так и при восстановлении (ремонтные), например валки прокатных станов, подкрановые колеса мостовых кранов и т. п.

Технология электросварки высокоуглеродистых сталей обязательно предусматривает предварительный подогрев до 350–400 °C, иногда сопутствующий подогрев и последующую термообработку. Сварку выполняют узкими валиками небольшими участками. Сварка при температуре окружающей среды ниже 5 °C и на сквозняках недопустима.

Определение марки стали довольно точно можно произвести по пучку искр, образующемуся при ее обработке на наждачном круге. Форма и длина нитей искр, цвет искр, форма пучка различны для разных марок стали:

● малоуглеродистая сталь – непрерывные соломенно-желтые нити искр с небольшим количеством звездочек на концах нитей;

● углеродистая сталь (с содержанием углерода около 0,5 %) – пучок светло-желтых нитей искр со звездочками;

● инструментальная сталь У7 – У10 – расходящийся пучок светло-желтых нитей с большим количеством звездочек;

● инструментальная сталь У12, У13 – плотный и короткий пучок искр с очень большим количеством «разветвленных» звездочек;

● инструментальная сталь с содержанием хрома – плотный пучок темно-красных нитей искр с большим количеством желтых звездочек; звездочки сильно «разветвленные»;

● быстрорежущая сталь с содержанием хрома и вольфрама – пучок прерывистых темно-красных нитей искр, на концах которых более светлые звездочки каплеобразной формы;

● пружинная сталь с содержанием кремния – широкий пучок темно-желтых искр с более светлыми звездочками на концах нитей;

● быстрорежущая сталь с содержанием кобальта – широкий пучок темно-желтых нитей искр без звездочек.

Газосваркой высокоуглеродистые стали плохо свариваются из-за образования трещин в закалочных структурах основного металла. Вид пламени – нормальное или слегка науглероживающее. Его тепловую мощность выбирают исходя из расхода ацетилена 75–90 дм3/ч на 1 мм толщины металла.

Сварку выполняют левым способом без поперечных колебаний мундштука горелки с применением флюсов и проволок тех же марок, что и при сварке среднеуглеродистых сталей. Обязателен подогрев до температуры 250–350 °C. После сварки рекомендуется проковка шва с последующей нормализацией или отпуском.

 

Сварка легированных сталей

 

Легированными называются стали, которые в своем составе содержат легирующие элементы, придающие сталям специальные свойства. Приобретая новые качества от легирования, они способны воспринимать высокие нагрузки, противостоять действиям агрессивных сред и высоких температур.

 

Технология сварки низколегированных сталей

Низколегированные стали содержат до 0,23 % углерода, легирующие добавки (до 2 %) и иногда называются сталями повышенной прочности. Низколегированные жаропрочные стали содержат легирующие элементы – молибден, вольфрам, ванадий.

Разработка марок легирующих сталей выполняется по принципу обеспечения хорошей свариваемости. Широкое применение имеют стали 09Г2, 09Г2С, 10ХСНД, 15ХСНД и многие другие.

Особенности сварки низколегированных сталей. Эти материалы ведут себя при сварке так же, как и низкоуглеродистая сталь, но имеются отличия при действии термических циклов.

1. Больше склонность к росту зерна в околошовной зоне, особенно при перегреве.

2. Больше склонность к подкалке при повышенных скоростях остывания.

3. Стойкость металла шва против образования горячих трещин ниже из-за наличия легирующих элементов.

4. Чувствительность к концентраторам напряжений и даже к тепловым «ожогам».

При электросварке низколегированные стали имеют незначительное отличие от низкоуглеродистых. Оно заключается в правильном выборе электродов, флюсов и присадочного электродного материала с учетом прочностных характеристик стали, а также в уменьшении погонной тепловой энергии при сварке.

Величина требуемой энергии выбирается по формуле

Q пог = Q эф /v св = (0,24 × I св × U д × η д )/v св ,

где Qпог – погонная тепловая энергия (берется из таблиц) в кал/см, в среднем Qпог = 8000 / 23 000 кал/см в зависимости от марки свариваемой стали;

vсв – скорость сварки, м/ч;

Qэф – эффективная тепловая энергия;

Iсв – величина сварочного тока;

Uд – рабочее напряжение дуги;

ηд – КПД дуги;

0,24 – коэффициент перевода из электротехнических единиц в тепловые, кал/(Вт∙с).

Из формулы видно, что чем больше скорость сварки, тем меньшей мощности требуется погонная энергия.

Низколегированныежаропрочные стали сваривают в основном электродами или сплошной (специальной) сварочной проволокой в защитных газах – чаще в смесях аргона и углекислого газа (90/10 %). Электродные стержни применяют из сварочной проволоки Св12М (и ей подобных) с содержанием молибдена до 0,7 %.

При сварке жаропрочных сталей подогрев считается обязательным при толщине более 10 мм. При сварке жестких конструкций, например труб, подогрев до 200 °C считается совершенно необходимым.

При сварке хромомолибденовых сталей технологический процесс сложнее, так как после сварки необходима термообработка в виде нормализации и высокого отпуска. После термообработки жаропрочная сталь может находиться на уровне равнопрочности. Погонная энергия ограничена. Начало и конец шва должны быть на технологических планках, а не на изделии.

Сварку хромистых безникелевых нержавеющих сталей ведут на мягких тепловых режимах, с малой скоростью охлаждения сварного соединения. Для сварки применяют электроды с фтористо-калиевыми покрытиями. Сварку ведут на постоянном токе при обратной полярности. При сварке хромистых сталей большой толщины (10–15 мм) применяют предварительный и сопутствующий подогрев до 300–350 °C, а после сварки – отпуск при температуре 700–720 °C.

Хромистые и хромоникелевые стали очень чувствительны к нагреву. В интервале температур 400–900 °C в этих сталях происходит образование карбидов хрома – химического соединения хрома с углеродом. Поэтому содержание хрома уменьшается, сталь теряет антикоррозионные свойства. Хром способен легко окисляться, образовывая тугоплавкий шлак и затрудняя сварку. Хромистые и хромоникелевые стали имеют низкую теплопроводность, и этим объясняется их большая склонность к короблению. Поэтому сварка хромоникелевых сталей ведется так, чтобы не было перегрева основного металла и большого объема сварочной ванны.

Сварочный ток по возможности пониженный. Дуга короткая, сварка без поперечных колебательных движений, многослойными швами. Необходимо жестко закреплять детали, чтобы предотвратить коробление свариваемого изделия. Оптимальная скорость охлаждения хромоникелевых и в особенности хромистых сталей для создания благоприятной структуры шва и околошовной зоны должна составлять 3,0–5,0 °C в секунду. При этом пригодны любые технологические способы, способные тормозить скорость охлаждения.

При сварке сталей марок 03Х18Н9Т и 06X15Т толщиной до 2 мм применяют флюсы таких составов:

● 80 % плавикового шпата и 20 % ферротитана;

● 80 % буры и 20 % оксида кремния.

Флюс разводят в воде и в виде пасты наносят на кромки и обратную сторону шва за 15–20 мин до сварки.

Особенно важно в процессе сварки равномерно и симметрично распределять по всему изделию малыми дозами тепловложение от сварочной дуги, тогда не будет перегревов и деформаций. Порядок, последовательность и направление небольших по протяженности швов должны быть четко указаны в технологическом процессе.

При газовой сварке низколегированные строительные стали 10ХСНД и 15ХСНД обладают хорошей свариваемостью. Вид пламени – нормальное. Его тепловую мощность выбирают исходя из следующих значений расхода ацетилена на 1 мм толщины металла:

● при левом способе сварки – 75–100 дм3/ч;

● при правом – 100–130 дм3/ч.

Сварку осуществляют как левым, так и правым способами без флюса с применением в качестве присадочного материала сварочной проволоки марок Св-08, Св-08А и Св-10Г2.

Для улучшения механических свойств металла шва его проковывают при температуре светло-красного каления (800–850 °C), а затем осуществляют нормализацию.

Низколегированные теплоустойчивые стали (молибденовые 12М, 15М, 20М и 2MJI, хромомолибденовые – 12ХМ, 15ХМ, 20ХМ и 30ХМ) способны закаливаться на воздухе. При газосварке происходит выгорание хрома и молибдена.

Вид пламени – нормальное, расход ацетилена – 100 дм3/ч на 1 мм толщины металла.

Сварку проводят как левым, так и правым способами без применения флюса с использованием в качестве присадочного материала сварочной проволоки марок Св-08ХНМ, Св-10ХНМА, Св-18ХМА, Св-08ХМ и Св-10ХМ. Рекомендуется предварительный подогрев стыка до температуры 250–300 °C.

При толщине металла до 5 мм сварку осуществляют за один проход с минимально возможным числом перерывов. При вынужденных перерывах перед возобновлением сварки необходимо подогреть весь стык до температуры 250–300 °C. По окончании сварки пламя горелки следует медленно отвести вверх от стыка, чтобы газы полностью выделились из расплавленного металла. Затем сваренные детали нагревают горелкой: соединения из молибденовой стали – до температуры 900–930 °C, а из хромомолибденовой – до 930–950 °C. После нагрева изделия охлаждают на воздухе.

Низколегированные хромокремнемарганцовистые стали (20ХГС, 25ХГС, 30ХГС, 30ХГСА и 35ХГС) имеют склонность к закалке. Выгорание хрома и кремния приводит к образованию оксидов, шлаков и непроваров.

Вид пламени – нормальное, расход ацетилена 75–100 дм3/ч на 1 мм толщины металла.

Сварку проводят преимущественно левым способом без флюса. Для неответственных конструкций используют сварочную проволоку Св-08 и Св-08А; для ответственных – Св-18ХГСА, Св-19ХГС, Св-13ХМА, Св-18ХМА.

Сварку рекомендуется выполнять без перерывов, не задерживая пламя горелки на одном месте. Для снижения уровня деформаций сварку осуществляют от середины шва к краям обратноступенчатым способом. Для устранения образования трещин в металле шва и околошовной зоне изделия после сварки медленно охлаждают.

 

Особенность сварки среднелегированных сталей

Эти стали отличаются тем, что содержание углерода в них наполовину меньше, и они содержат как обязательный легирующий элемент хром – до 5 %. Остальные легирующие элементы – молибден, ванадий, вольфрам, ниобий.

В жаропрочных сталях имеет место сложное, комплексное легирование. Оно позволяет упрочнить феррит, а после сварки и термообработки получить сварные конструкции с высокой прочностью порядка 60–200 кг/мм2.

Широкое применение получили стали 30ХГСА (хромомарганцовистая), 30ХН2МФА и подобные им.

При электродуговой сварке технологические рекомендации для низколегированных и среднелегированных сталей в принципе одинаковы.

Хромокремнемарганцовистые стали. Среднелегированные конструкционные стали повышенной прочности 20ХГСА, 25ХГСА, ЗОХГСА и 35ХГСА при сварке образуют закалочные структуры. В зависимости от толщины металла применяют однослойную и многослойную сварку с малыми интервалами времени между наложением слоев. Для сварки применяют электроды со стержнями Св-18ХГС, Св-18ХМА или низкоуглеродистую проволоку Св-08А с покрытием типа НИАТ-ЗМ, ЦЛ-18–63, ЦЛ-30–63, ЦЛ-14, УОНИИ-13/85. Изделия, сваренные из стали 25ХГСА, нагревают до температуры 650–880 °C с выдержкой в течение 1 ч на каждые 25 мм толщины и охлаждают на воздухе или в горячей воде.

Трудности сварки:

● повышенная вероятность появления холодных трещин в околошовной зоне, реже – в наплавленном металле вследствие повышенного содержания углерода и других элементов; сопротивляемость околошовной зоны холодным трещинам снижается из-за резкого различия ее свойств и свойств металла шва;

● повышенная вероятность образования в металле шва кристаллизационных трещин, обусловленная повышенным содержанием серы, углерода;

● необходимость получения равнопрочного сварного соединения вступает в противоречие с необходимостью уменьшения содержания углерода в металле шва по условиям трещинообразования;

● разный химический состав основного металла и шва затрудняет выбор режима термообработки. При грамотном подборе присадочного материала, защитного газа, электродов, при правильно выбранном технологическом процессе сварные соединения получаются качественными и надежными. Рекомендуется применять многослойную сварку по принципу «слой на слой», с перекрытием ⅓ предыдущего слоя, но не во всю ширину шва в окончательном виде.

Варианты технологического процесса:

1. Для сварки деталей ответственного назначения из стали 30ХГСА применяется следующая проверенная технология сварки: подогрев до 350 °C, сварка в защитной газовой смеси (аргон – 90 %, углекислый газ – 10 %) с разделкой кромок; толщина металла (и шва) – 22 мм, сварочная проволока марки Св07ХНЗМД по ТУ14–1-4345–87, ∅ 1,2 мм. Сварочный ток 210–230 А, сварка в 3–4 слоя, подогрев после сварки зоны шва на 200 °C, затем защита (укутывание) асботканью в 3 слоя всей зоны сварки, остывание со скоростью 3–6 °C в секунду до 60 °C. Сварной шов испытывает большие переменные (не знакопеременные) нагрузки и прекрасно работает.

2. Сварка крупных изделий из стали 12ГН2МФАЮ выполняется проволокой сварочной марки Св08ХН2ГМТА ∅ 1,2 мм в защитной среде смеси газов: аргон – 88 % + углекислый газ – 12 %, с предварительным местным подогревом зоны сварки до 200 °C, ширина околошовной зоны ~80 мм, толщина листов 8 мм, швы в 2 слоя: один на другой – ступенькой (не во всю ширину). Указанная газовая смесь смягчает процесс сварки, уменьшает количество и размер брызг, повышает глубину провара, уменьшает вероятность появления горячих трещин и пор.

Опасной вредной примесью в околошовной зоне является водород, который диффундирует в околошовную зону, скапливается в микропустотах и несовершенствах кристаллической решетки и, переходя в молекулярную форму, создает громадное давление, что приводит к образованию трещин.

Для сваривания низколегированных и среднелегированных сталей используются ручная сварка электродами, автоматическая под флюсом, полуавтоматическая и автоматическая в защитных газах и их смесях. Оптимальная скорость охлаждения для сталей типа 30ХГСА составляет 6,3 °C в секунду.

Вариант технологического процесса. C точки зрения протекания процесса сварки, сталь низколегированную высокопрочную марки 14Х2ГМР не отличить от низкоуглеродистой, но для получения надежного качества после сварки необходимо выполнить комплекс технологических мер и правильно выбрать сварочные материалы. Варианты сварки этой стали следующие: полуавтоматическая сварка сварочной проволокой марки Св10ХГ2СМА, защитный газ СО 2 или Аr + СО 2 , либо порошковой проволокой ПП-АН54 по ВТУ ИЭС № 90–73. Диаметр сварочной проволоки 1,0–1,6 мм. При ручной сварке сталей 14Х2ГМР + 09Г2С, 10ХСНД сталь 3 применяются электроды АНП-2 по ТУ 14–4-468–73 или УОНИИ-13/45.

При автоматической сварке под флюсом – проволока сварочная Св-08ХН2ГМЮ, флюс АН-17М или проволока Св-10ГА, Св-08ГС, Св-10Г2, флюс тот же. Сварка должна выполняться при отсутствии сквозняков и при окружающей температуре не ниже –10 °C. Местный подогрев до 150–200 °C применяют для больших толщин (более 8 мм) и для узлов со сложными сопряжениями деталей. Время нагрева примерно 1,5–2,0 мин на 1 мм толщины соединения нормальным пламенем газового резака. Начало и окончание сварного шва должны быть выведены на технологические пластины. Сварочный ток немного ниже обычного (до 10 %), протяженность сварки одного участка шва – до 250 мм. Рекомендуется сварка многослойным швом.

Газовая сварка. Среднелегированные и высоколегированные хромистые стали (1X13, 2X13 и др.) склонны к образованию закалочных структур на воздухе и трещин в области шва и в околошовной зоне.

Вид пламени – нормальное; расход ацетилена 70 дм3/ч на 1 мм толщины металла.

В качестве присадочного материала используют сварочную проволоку марок Св-02Х19Н9, Св-04Х19Н9 и Св-06Х19Н9Т. Сварку проводят с применением флюса следующего состава (%): борная кислота – 55, оксид кремния – 10, ферромарганец – 10, феррохром – 10, ферротитан – 5, титановая руда – 5, плавиковый шпат – 5.

Сварку выполняют в один слой с предварительным подогревом до температуры 200–250 °C и максимально допустимой скоростью, без перерывов и повторного нагрева. При толщине металла до 3 мм применяют левый способ сварки, при толщине свыше 3 мм – правый.

 

Сварка высоколегированных сталей

Высоколегированными называют стали на основе железа, легированные одним или несколькими элементами в количестве 5–55 %. Эти стали имеют высокие прочность, вязкость, пластичность и широко применяются в промышленности. Но далеко не все из них по свариваемости пригодны для сварных конструкций и изделий. По содержанию никеля эти стали делят на 3 группы.

1. Безникелевые.

2. Никельсодержащие – до 8 % Ni.

3. Никельсодержащие – 8–30 % Ni.

По назначению они образуют 8 групп.

1. Инструментальные высококачественные.

2. Шарикоподшипниковые.

3. Магнитные.

4. Нержавеющие.

5. Жаростойкие.

6. Маломагнитные и немагнитные.

7. Жаропрочные.

8. С высоким омическим сопротивлением (например, нихром Х20Н80).

В сварных конструкциях применяются лишь стали 4-й, 5-й и 7-й групп.

Высоколегированные стали имеют ряд свойств, которые сказываются на технологии сварки.

1. Теплопроводность по сравнению с низкоуглеродистыми сталями понижена в 1,5–2 раза, а коэффициент линейного расширения увеличен в 1,5 раза. Это приводит при сварке к концентрации теплоты и к увеличению проплавления металла изделия, поэтому силу тока нужно уменьшать на 15–20 %. Большой коэффициент линейного расширения порождает значительные деформации в процессе и после сварки, а при отсутствии зазоров в сварном соединении и большой жесткости узла или больших толщинах свариваемого изделия – даже трещины, к которым эти стали более склонны.

2. Высокое электрическое сопротивление приводит к сильному нагреву электродного стержня. Поэтому при сварке электроды с хромоникелевыми стержнями выпускают длиной не более 350 миллиметров.

3. Сравнительно большая литейная усадка увеличивает деформацию и склонность к образованию трещин.

Хромистые стали 40Х9С2, 15Х5М, 10Х5МФ, 12X13, 15X28, 15Х18С10 хорошо сопротивляются окислению при высоких температурах и стойки к агрессивной среде, но склонны к закалке на воздухе и росту зерен в ЗТВ. Их сварку необходимо выполнять с предварительным подогревом до 200–400 °C. После сварки изделие охлаждают на воздухе до 150–200 °C, а затем подвергают высокому отпуску: нагрев в печи до 720–750 °C с выдержкой в течение 5 мин на 1 мм толщины металла, но не менее 1 ч, с последующим медленным охлаждением на спокойном воздухе. Закалку проверяют с помощью магнита (закаленная сталь немагнитна).

Коррозионно-стойкие высокохромистые стали способны утрачивать антикоррозионные свойства при неправильном термическом цикле сварки. Это явление называется межкристаллитной (ножевой) коррозией. Если сталь не содержит до 1 % титана или ниобия, но содержит бор и ванадий, которые снижают жаростойкость, то при нагревании выше 500 °C происходит выпадение из твердого раствора карбидов хрома и железа по границам зерен (кристаллов). Границы зерен обедняются хромом, и карбиды хрома и железа становятся центрами коррозии и коррозионного растрескивания. Поэтому коррозия называется межкристаллитной (ножевой), так как нет химической однородности кристалла.

Последующая термообработка (чаще – закалка) позволяет восстановить антикоррозионные свойства. Нагревом до 850 °C ранее выпавшие из раствора карбиды хрома вновь растворяются в аустените, а при быстром охлаждении они не выделяются в отдельную фазу. Быстрым охлаждением фиксируется строение металла.

Такой вид термообработки называется стабилизацией. Стабилизация несколько снижает пластичность и вязкость металла, но зачастую эти свойства у коррозионно-стойких сталей не являются главенствующими, и таким эффектом можно пренебречь.

При сварке жаростойких сталей нужно обеспечивать быстрое охлаждение (любыми методами), тогда коррозионная стойкость сохраняется и без применения термообработки. К таким маркам относятся стали аустенитного класса, типа 18/8, т. е. с содержанием 18 % хрома и 8 % никеля. Эти марки сталей относятся к группе хорошо сваривающихся из-за наличия никеля и позволяют применять ускоренное охлаждение при сварке и после нее.

Для получения высокой пластичности и вязкости без потери антикоррозионных свойств сварного соединения необходимо закалить металл: прогреть по всей толщине до температуры 1000–1100 °C и быстро охладить в воде. Этот режим приемлем для хромоникелевых сталей аустенитного класса.

При электродуговой сварке электроды для высоколегированных сталей имеют основной тип покрытия и редко – смешанный. Электродный стержень близок по химическому составу к основному металлу, но с увеличенным количеством некоторых легирующих элементов (молибден, марганец, вольфрам), необходимых сварному шву для придания ему мелкозернистой структуры и для улучшения механических свойств, в первую очередь пластичности.

В сварном стыке обязательно должен быть зазор (разумного размера) для свободной усадки шва при остывании. Сварку нужно вести по возможности тонкими электродами и швами при минимальной погонной тепловой энергии. Чтобы более равномерно распределять нагрев по изделию в процессе сварки и уменьшать скорость охлаждения изделия после нее, высоколегированные стали, склонные к закалке, подогревают до 100–300 °C.

Главной причиной появления пор при сварке жаростойких сталей является водород. Источники водорода – флюс, электродное покрытие, защитный газ, различные наслоения с влагой. Поэтому свариваемые кромки должны быть чистыми. Сварочная проволока (в том числе и для электродов) для сварки высоколегированных сталей с особыми свойствами выпускается по ГОСТ 2246–70, которым предусмотрена 41 марка, например марки Св-06Х19Н9Т, Св-04Х19Н9, Св-05Х19Н9ФЗС2, Св-10Х17Т, Св-12ХПНМФ и др. Электроды этой группы применяются для сварки высоколегированных сталей с особыми свойствами, таких как: 15Х25Т, 08Х18Т1, 20Х23Н13, 20Х23Н18, 10Х23Н18,15Х12ВНМФ, 14Х17Н2, 12Х18Н9,12Х18Н10Т и др. Следует еще раз отметить, что никель улучшает свариваемость.

Режимы сварки высоколегированных сталей и сплавов аустенитными электродами назначают с таким расчетом, чтобы отношение силы тока к диаметру электрода не превышало 25–30 А/мм. При сварке аустенитными электродами в вертикальном или потолочном положении силу тока уменьшают на 10–30 % по сравнению со сваркой в нижнем положении. Электроды перед сваркой, во избежание образования пор в металле шва, прокаливают при температуре 250–400 °C в течение 1–1,5 часа.

Газовая сварка высоколегированных сталей может применяться только в случаях, когда нет другого выхода. Высоколегированные (содержащие свыше 10 % легирующих элементов) хромистые (свыше 14 % хрома) и хромоникелевые стали сваривать газовой сваркой не рекомендуется из-за резкого ухудшения их эксплуатационных свойств. Даже небольшой избыток кислорода в пламени приводит к выгоранию хрома.

В качестве присадки применяют сварочную проволоку, близкую по химическому составу к свариваемому металлу. При газосварке титан выгорает полностью, что приводит к межкристаллитной коррозии. При нагреве до 500–800 °C и медленном охлаждении, что характерно для газовой сварки, из твердого раствора выпадают карбиды хрома по границам зерен с потерей коррозионной стойкости.

Для сварки необходим еще и флюс сложного состава: 28 % мрамора, 30 % фосфора, 10 % ферромарганца, 6 % ферросилиция, 6 % ферротитана, 20 % двуокиси титана. Флюс разводится на жидком стекле и наносится на кромки детали в виде пасты. Сварка выполняется после высыхания флюса.

При наличии хороших электродов и источников питания дуги нет необходимости применять более сложную и малопроизводительную технологию сварки, да еще с потерей качества соединений.

 

Сварка чугуна

Чугун – это сплав железа с углеродом, где, в отличие от стали, углерода много – около 2–5 %. В зависимости от количества углерода в сплаве различают белые, серые, ковкие и высокопрочные чугуны.

Белые чугуны на изломе имеют почти белый цвет. Весь углерод в них находится в связанном состоянии в виде карбида железа – цементита Fe3C. Цементит хрупок, имеет высокую твердость (выше твердости напильника), не поддается механической обработке режущими инструментами и как конструкционный материал практически не применяется. Используется для получения ковких чугунов и сталей.

Серый чугун – это не сплошной металл, а пористая металлическая губка, поры которой заполнены рыхлым неметаллическим веществом – графитом. Такая структура неблагоприятна для сварки, она не встречается ни в одном другом металле. На изломе он имеет серебристый цвет из-за наличия пластинчатых включений графита, включающего в себя половину всего углерода (остальной углерод находится в связанном состоянии). Серые чугуны содержат: 3,2–3,5 % углерода; 1,9–2,5 % кремния; 0,5–0,8 % марганца; 0,1–0,3 % фосфора и менее 0,12 % серы.

Пример обозначения серого чугуна: СЧ32–52. Буквы обозначают серый чугун (СЧ), первое число обозначает предел прочности при растяжении (32 кгс/мм2, или 320 МПа), второе число – предел прочности при изгибе. Относительное удлинение при разрыве серого чугуна практически равно нулю. Это характеризует его как непластичный материал.

Хорошо обрабатывается режущим инструментом. Температура плавления, в зависимости от количества углерода, составляет 1100–1250 °C.

Ковкий чугун – название условное. Он не поддается ковке, так как имеет повышенную пластичность и вязкость. Получают его длительным отжигом белого чугуна. В структуре содержит: 2,4–3,0 % углерода в виде графита хлопьевидной формы; 0,8–1,4 % кремния; 0,3–1,0 % марганца; менее 0,2 % фосфора; не более 0,1 % серы.

Ковкий чугун обладает повышенной прочностью при растяжении и высоким сопротивлением удару, он менее склонен к трещинообразованию. Пример обозначения ковкого чугуна: КЧ45–6. Буквы обозначают ковкий чугун (КЧ), первое число – предел прочности при растяжении (45 кгс/мм2, или 450 МПа), второе – относительное удлинение в процентах (6 %).

Высокопрочный чугун содержит графит шаровидной формы и имеет наиболее высокие прочностные свойства. Содержит: 3,2–3,8 % углерода; 1,9–2,6 % кремния; 0,6–0,8 % марганца; до 0,12 % фосфора и не более 0,3 % серы. Высокопрочный чугун получают путем введения добавки-модификатора – магния в жидкий расплав, что способствует образованию графитных включений шаровидной формы. Механические свойства такого чугуна приближаются к свойствам углеродистых сталей, а литейные свойства выше (но ниже, чем у серых чугунов). Пример обозначения высокопрочного чугуна: ВЧ45–5. Буквы обозначают высокопрочный чугун (ВЧ), первое число обозначает предел прочности при растяжении (45 кгс/мм2, или 450 МПа), второе – относительное удлинение в процентах.

Свариваемость чугуна можно характеризовать как противоречивую. При оценке физической свариваемости чугун следует отнести к группе хорошо свариваемых материалов, а при оценке по технологической свариваемости, когда требуется сварное соединение без снижения качества основного металла и металла шва, он является трудносвариваемым сплавом. Основные причины, ухудшающие свариваемость чугуна, следующие.

1. Возможность образования в шве и околошовной зоне хрупких и труднообрабатываемых структур отбела (т. е. появления участков с выделениями цементита той или иной формы) и закалки с очень высокой твердостью.

2. Повышенная текучесть и низкая пластичность затрудняют удержание расплавленного металла от вытекания и формирование шва. Это также создает напряженное состояние структуры и приводит к трещинам.

3. Чугун не имеет пластического (тестообразного) состояния и при достижении температуры плавления мгновенно переходит из твердого состояния в жидкое, а при охлаждении – из жидкого в твердое. Поэтому он поддается сварке только в нижнем положении шва.

4. Образование пористости за счет большого количества окиси углерода и быстрое затвердевание расплавленного металла – причина того, что газы не успевают выйти. Интенсивное газовыделение из сварочной ванны, которое продолжается и на стадии кристаллизации, может приводить к образованию пор в металле шва.

5. «Рост» чугуна, т. е. склонность серого чугуна к необратимому увеличению объема на 3–5 % при нагреве его до 300–500 °C, приводит к деформациям, иногда – к трещинам.

6. Вследствие окисления кремния на поверхности сварочной ванны возможно образование тугоплавких оксидов, что может приводить к непроварам.

При охлаждении чугун расширяется. Повышенная склонность чугуна к образованию хрупких структур связана в основном с высоким содержанием в нем углерода. Это явление особенно проявляется при дуговых способах сварки. При локальном нагреве чугуна создается перепад температур в теле, вызывающий термические напряжения.

Зато при газовой сварке обеспечивается бóльшая зона плавного нагрева и меньшая скорость охлаждения, поэтому образование структур закалки и отбела сварного стыка менее вероятно.

Чугуны очень неоднородны по своему химическому составу и сильно засорены различными примесями, поэтому результаты сварки чугунных деталей одинаковой марки могут быть различны. Нужно помнить и о том, что никому в производстве еще не удавалось получить равнопрочное чугунное сварное соединение.

Нужно помнить, что есть виды чугунных изделий, чугуны которых практически не поддаются сварке. Например, не поддается сварке так называемый горелый серый чугун – подвергшийся длительному воздействию высокой температуры (например, плита на печке), кислот, пара и т. п. Из-за пористости чугуна в подобных случаях окисление проникает на всю толщину металла, обволакивая металлические зерна пленкой окислов и делая металл рыхлым, механически непрочным и главное – не смачивающимся никаким жидким металлом. При попытке сварки дугой в стыке от температуры образуются (скатываются) шарики полуметалла, а стык на их объем углубляется, и получается канавка. Плохо также свариваются чугуны с черным изломом.

Технологические трудности сварки чугуна породили множество способов и разновидностей его сварки: чугун можно сваривать дуговой сваркой металлическим или угольным электродами, газовой сваркой, термитной сваркой, заливкой жидким чугуном, порошковой проволокой и т. д. Но ни один способ не является вполне приемлемым для всех случаев, встречающихся в практике. Поэтому сварку чугуна применяют только при ремонтных работах и при устранении мелких дефектов в отливках. Причем лишь газовая сварка является одним из относительно надежных и несложных способов, позволяющих получить наплавленный металл, по свойствам близкий к основному металлу. Это объясняется термическими процессами при сварке, меньшей вероятностью появления в зоне сплавления отбеленного чугуна.

В зависимости от температуры предварительного подогрева различают сварку с подогревом до высокой температуры (горячая сварка), с небольшим подогревом (полугорячая сварка) и без подогрева (холодная сварка).

Горячая сварка чугуна. Горячая сварка – это разработанный еще в XIX веке И. Г. Славяновым способ, успешно используемый до настоящего времени. Основными недостатками горячей сварки чугуна являются большая трудоемкость и тяжелые условия труда сварщиков, правда, этим достигается высокое качество сварного шва.

При горячей сварке изделия предварительно нагревают до 600–700 °C. При сварке крупных изделий можно применять местный подогрев. При подготовке дефектного места к сварке его тщательно очищают от загрязнения, разделывают для образования полости, легко доступной для сварки, устраивают формовку для предотвращения вытекания металла из сварочной ванны. Формовку выполняют графитовыми или угольными пластинками, скрепленными формовочной массой из кварцевого песка, увлажненного жидким стеклом, или другими формовочными материалами. Формовку производят в опоках. Форму просушивают при постепенном изменении температуры от 60 до 120 °C, после чего изделие подогревают. Применяют несколько способов ручной горячей сварки чугуна.

Ручную дуговую сварку покрытыми электродами используют в мелкосерийном производстве, при заварке дефектов в труднодоступных местах. При сварке покрытыми электродами с чугунным стержнем на переменном или постоянном токе прямой полярности обеспечивается стабильно хорошее качество. Перед началом заполнения заформованного участка первую порцию расплавленного металла рекомендуется выплеснуть для удаления неметаллических включений. Сварку ведут на токах 900–1000 А.

Для заварки мелких дефектов при полужидком металле сварочной ванны следует применять покрытые электроды со стержнем из углеродистой стали ∅ 5 мм. Сварку производят на постоянном токе прямой полярности силой 200–250 А с использованием стандартного оборудования. Механические свойства металла сварного соединения аналогичны свойствам основного металла.

Газовую сварку чугунных деталей выполняют нормальным пламенем или пламенем с небольшим избытком ацетилена. У деталей толщиной до 5 мм разделку кромок не делают, а у изделий толщиной свыше 5 мм производят разделку кромок под углом 70–90°. Диаметр прихваток 5–6 мм. После нагрева до 500–700 °C в начале сварки пламя горелки устанавливают почти вертикально таким образом, чтобы ядро пламени находилось на расстоянии 2–3 мм от поверхности свариваемого металла. По мере выполнения сварки горелку наклоняют под небольшим углом. Вид пламени – нормальное или слегка науглероживающее. Его тепловую мощность выбирают исходя из расхода ацетилена 120 дм3/ч на 1 мм толщины свариваемого металла.

В качестве присадки применяют чугунные прутки марки А диаметром 4, 6, 8, 10 мм и длиной 250–450 мм. Для облегчения выделения газа металл сварочной ванны необходимо непрерывно помешивать присадочным прутком. С целью удаления образовавшихся при сварке окислов и улучшения процесса сварки используют специальные флюсы (табл. 36). Для получения сварного соединения со свойствами, аналогичными свойствам основного металла, следует уменьшить скорость охлаждения путем отвода пламени сварочной горелки от поверхности свариваемого металла на 50–60 мм, подогревая наплавленный металл пламенем в течение 1–1,5 мин. Для уменьшения внутренних напряжений в массивных деталях сложной конфигурации их рекомендуется вторично подогреть до 600–700 °C и постепенно охладить.

Газовую сварку с местным подогревом до 300–500 °C применяют, когда место сварки и характер конструкции позволяют использовать местный подогрев без появления трещин и напряжений в свариваемых изделиях. Подогрев выполняют сварочными горелками, паяльными лампами и другими возможными средствами. Состав газового пламени и его мощность при сварке выбирают такие же, как и при сварке с общим подогревом. В качестве присадки применяют чугунные прутки марки Б диаметром 4, 6, 8, 10 и 12 мм и длиной 250–450 мм. Места сварки после окончания процесса медленно охлаждают, покрывая асбестом или засыпая песком.

Полугорячая сварка. Когда требуется исправить небольшой дефект сложной детали или дефект, расположенный на массивной детали в тонком месте, где укорочение от нагрева при сварке не встречает большого сопротивления, можно применять электродуговую сварку с предварительным нагревом до 250–400 °C (полугорячую сварку). Такой подогрев свариваемой детали способствует замедленному охлаждению металла шва и прилежащих к нему зон после сварки. По технике выполнения и применяемым материалам полугорячая сварка не отличается от горячей.

Детали перед сваркой нагревают в термических печах, горнах или с помощью газовых горелок ацетиленокислородным пламенем. При подогреве газовой горелкой необходимо следить за равномерностью нагрева подогреваемой поверхности.

Полугорячую сварку чугуна можно осуществлять низкоуглеродистыми стальными электродами с покрытиями типа МР-3, УОНИИ-13, стальными электродами со специальным покрытием, чугунными электродами и ацетиленокислородным пламенем с применением чугунных присадочных прутков. При сварке сквозных трещин или при заварке дефектов, находящихся на краю деталей, необходимо применять графитовые формы, предотвращающие вытекание жидкого металла из сварочной ванны. Во время сварки следует непрерывно поддерживать значительный объем расплавленного металла в сварочной ванне и тщательно его перемешивать концом электрода или присадочного стержня. Для замедленного охлаждения заваренные детали засыпают мелким древесным углем или сухим песком.

Холодная сварка. Сварка называется холодной потому, что изделие перед сваркой не проходит общий подогрев до высоких температур, а подогреву подвергаются лишь зона сварки и свариваемые кромки до температур 350–500 °C в зависимости от габаритов изделия и толщины стенок.

Существует значительное число способов холодной электродуговой сварки чугуна: стальными электродами, стальными электродами со специальными покрытиями, чугунными, медными и прочими электродами. Стержни для электродов делаются преимущественно из цветных металлов и сплавов, например меди, медно-никелевых и железоникелевых сплавов.

Холодную сварку чугуна стальными или чугунными электродами применяют лишь в редких случаях при ремонте неответственных чугунных изделий небольших размеров с малым объемом наплавки, не требующих после сварки механической обработки. Сварное соединение неоднородно по структуре, часто не обладает достаточной плотностью и имеет низкую прочность.

Сварку электродами с защитно-легирующими покрытиями выполняют с V– или Х-образной разделкой кромок. Для устранения неравномерного разогрева детали сваривают отдельными участками вразбивку. Длина отдельных наплавленных участков сварного шва не должна превышать 100–120 мм. После наплавки отдельных участков им дают возможность остыть до температуры 60–80 °C.

Хорошие результаты получают при сварке электродами с покрытием УОНИИ-13/45 на постоянном токе обратной полярности. Также для сварки чугуна получили распространение медно-железные, медно-никелевые и железоникелевые электроды.

Ручная сварка электродами из цветных металлов на медной основе получила широкое распространение для заварки трещин с обеспечением хороших прочностных показателей свариваемых деталей. Сварку ведут электродами ОЗЧ-2 и СТЧ-3 на постоянном токе прямой полярности в нижнем или наклонном положениях небольшими участками длиной 30–80 мм «вразброс» для предупреждения чрезмерного местного перегрева детали. Основной металл при этом проплавляют минимально. Каждый валик после остывания следует очистить и проковать.

Зазоры между кромками при заварке трещин рекомендуется заплавлять стальными электродами. Возобновляют сварку после охлаждения места сварки до 50–70 °C. Длина дуги у электродов ОЗЧ-2 должна быть предельно короткой. Применяют электроды ∅ 4–7 мм, силу тока соответственно 140–300 А. Сварку электродами со стержнем из сплава на основе никеля используют для устранения мелких дефектов, прежде всего, когда требуется обеспечить обрабатываемость сварного соединения, а также его цвет, аналогичный цвету основного металла. Обычно применяют электроды со стержнем из медно-никелевого сплава, который называют монель-металлом: ОЗЧ-З, ОЗЧ-4, ОЗЖН-1, МНЧ-2 и СТЧ-2. Основная марка таких электродов – МНЧ-2 (70 % никеля, 28 % меди).

Сварку электродами ОЗЧ-З и МНЧ-2 на постоянном токе обратной полярности производят короткими швами длиной 30–50 мм с проковкой каждого шва и перерывами для охлаждения. При сварке электродами ОЗЧ-З ∅ 2,5–5 мм сварочный ток 60–150 А, а электродами МНЧ-2 ∅ 3–5 мм – 90–190 А (из расчета 30–40 А на 1 мм диаметра электродного стержня). При заварке крупных дефектов или наплавке больших объемов металла используют также электроды ОЗЖН-1. Электродами ОЗЧ-З наплавляют первый и последний слой, а промежуточные слои наплавляют поочередно электродами ОЗЖН-1 и ОЗЧ-З. Техника и режимы сварки электродами ОЗЧ-1, ОЗЖН-1 и ОЗЧ-З аналогичны. Эти электроды рекомендуются для наплавки последнего слоя при заполнении разделки электродами ОЗЧ-З. То же относится и к электродам СТЧ-2 и МНЧ-2. Сварку ведут электродами ∅ 3–6 мм, сварочный ток соответственно 85–240 А.

Холодная сварка чугуна медно-никелевыми электродами ведется короткими валиками (40–50 мм) с перерывами для охлаждения до температуры 60–70 °C. Высота валика не менее 4 мм, причем каждый валик прочеканивается ударами ручного молотка. Если проковка недоступна или невозможна, то применение медных электродов нецелесообразно. Наплавку валика выполняют только в нижнем положении. При выполнении всех рекомендаций сварка обеспечивает до 70 % прочности основного металла и плотность сварного соединения.

Некоторые дефекты, расположенные по краям, а также «бобышки» и платики можно наплавлять полужидкой ванной с принудительным формированием. Используют силу тока в 1,5 раза больше по сравнению с током при послойной сварке. Мелкие дефекты на обрабатываемых поверхностях заваривают электродами с карбидообразующими элементами в покрытии, например ЦЧ-4. Сварку ведут на минимальном токе электродами диаметром более 4 мм из расчета 23 А на 1 мм диаметра электрода. Ток постоянный, полярность обратная. Кромки рекомендуется облицовывать не более чем в 2 слоя с последующим заполнением объема стальными электродами типа Э42 и Э42А.

Когда не требуется механическая обработка сварных соединений и не оговаривается их прочность, рекомендуется сварка стальными электродами, применяемыми для сварки низкоуглеродистых сталей, а также электродами ЦЧ-4 или электродами со стержнем на основе никеля. Сварку производят отдельными участками на минимальном режиме с перерывами для охлаждения основного металла. При толщине детали до 20 мм разделка кромок необязательна. При большей толщине угол разделки 90–120°.

Для получения равнопрочного с основным металлом соединения непосредственно по месту работы детали без ее демонтажа в завариваемое место устанавливают в шахматном порядке стальные шпильки. При толщине стенок детали до 10 мм диаметр шпилек составляет 6 мм, до 20 мм – 10 мм, для более толстых – 16 мм. Сварку выполняют участками 40–50 мм с перерывами для охлаждения и минимальной глубиной проплавления.

Для качественной сварки серого чугуна нужны специальные электроды, которых, как правило, нет и достать их трудно. В аварийной ситуации, например для экстренного ремонта котла, можно использовать обыкновенные электроды для переменного тока. Производят сварку как обычно, но через каждые 2–3 см шов надо охлаждать солидолом.

Сварка без предварительного нагрева изделий из высокопрочного и ковкого чугуна имеет свои особенности – высокопрочный чугун обладает повышенной склонностью к отбеливанию и большой прокаливаемостью, а ковкий чугун имеет повышенную графитизацию, что затрудняет смачиваемость поверхности при сварке. Сварку можно выполнять до и после термической обработки. До термической обработки изделия сваривают электродами УОНИИ-13/45 и УОНИИ-13/55, а после нее – электродами со стержнем на основе никеля.

Газовую холодную сварку применяют, когда при нагревании и охлаждении детали могут свободно расширяться и сжиматься, не вызывая значительных остаточных напряжений. Технология холодной и горячей сварки в основном одинакова. Вид пламени – нормальное или слегка науглероживающее. Расход ацетилена составляет 100–120 дм3/ч на 1 мм толщины металла, тепловая мощность пламени – максимально возможная. Перед сваркой необходимо подогреть завариваемые кромки пламенем горелки.

Сварку проводят как левым, так и правым способами, в зависимости от толщины деталей, с применением флюсов (см. табл. 36) и присадочных материалов в виде прутков марок А и Б. Шов формируют в нижнем положении. После сварки горелку в течение 2–3 мин медленно отводят от сварного шва. Место сварки защищают асбестовыми листами или песком.

При заваривании дефектов сварку рекомендуется проводить отдельными сварочными ваннами длиной 20–50 миллиметров.

Газовая пайкосварка. Нагрев чугуна при сварке приводит к значительным деформациям изделия, поэтому на последних операциях механической обработки сварных соединений используют не сварку, а пайкосварку – промежуточный процесс между сваркой и пайкой. Заключается она в том, что до температуры плавления нагревают не свариваемый металл, а легкоплавкий (820–860 °C) присадочный материал, смачивающий свариваемые кромки.

Низкотемпературная пайкосварка выполняется ацетиленокислородным пламенем, которое позволяет выполнять независимый, раздельный нагрев основного и присадочного металлов, флюсов. Вид пламени – строго нормальное. Вместо ацетиленокислородного пламени можно использовать пропано-кислородное. Его тепловую мощность выбирают исходя из расхода пропана 60–70 дм3/ч на 1 мм толщины металла.

Перед пайкосваркой изделие прогревают до 300–400 °C в печи, а при небольших размерах изделия – пламенем газовой горелки. С места сварки должны быть удалены загрязнения (окислы, жир и др.). Кромки разделывают механическим путем, как и при сварке. При разделке сквозных трещин притупление должно быть не более 1,5 мм. Места сварки зачищают до металлического блеска.

Подготовленные к сварке кромки обжигают пламенем горелки с избытком кислорода для выжигания графита на поверхности кромок, чтобы улучшить смачиваемость чугуна припоем и сцепление металлов. На нагретую поверхность наносят слой специального флюса марки ФСЧ-2 или МАФ-1 (табл. 37). Специальные чугунные присадочные прутки марки НЧ-2 или УНЧ-2 (табл. 38) также покрывают флюсом, предварительно подогрев их.

Признаком готовности кромок к пайкосварке является равномерное растекание расплавленного флюса по кромкам (это 800–850 °C). Конец присадочного прутка разогревается и опускается во флюс, при этом пламя горелки не должно отводиться от места нагрева, а на кромки нужно периодически подавать флюс. На горячий пруток налипает нужное количество флюса. Затем расплавляется конец прутка с флюсом. Капли расплавленной присадки растираются тонким слоем по поверхности разогретых кромок этим же прутком. При соприкосновении капли с кромкой соединения на поверхности кромки повышается температура, так как капля отдает свою часть теплоты. Под действием флюса и пламени капли жидкого припоя хорошо растекаются по кромкам тонким слоем, заполняя поры и пустоты в чугуне, обеспечивая улучшение прочности сцепления.

Отрицательное влияние свободного графита на кромках при смачивании уменьшается активными добавками во флюсе.

Можно применять пайкосварку латунными припоями . Этот метод отличается тем, что рабочая температура процесса составляет 650–780 °C (т. е. практически температура смачивания поверхности металла), что не изменяет существенно структуру чугуна, а значит, не вызывает термических внутренних напряжений. Соединяемые кромки должны быть шероховатыми, так как гладкие поверхности латуни плохо смачиваются и сцепление латуни с чугуном недостаточно прочное. Углерод тоже препятствует смачиванию латунью, поэтому его выжигают с кромок окислительным пламенем или покрывают кромки пастой из железных опилок, борной кислоты и нагревают кромки пламенем горелки до 750–900 °C. Способ выжигания углерода окислительным пламенем проще и используется чаще.

Пайкосварка состоит в следующем: нагрев кромок до красного цвета, обработка флюсом, облуживание нормальным пламенем или немного окислителем. Пайкосварка выполняется в слегка наклонном положении снизу вверх, чтобы расплавленная латунь не закрывала луженые участки. Лучшие результаты достигают при левом способе сварки. Расстояние между ядром пламени и концом прутка должно составлять 2–3 мм, угол между горелкой и деталью – 20–30°. После сварки изделие медленно охлаждают под слоем асбеста или в песке.

В качестве присадочных материалов берут латунь Л63, ЛОK59–1-03 или ЛОМНА 49–05–10–4–0,4 по ГОСТ 16130–90. Испарению цинка препятствует пленка окислов кремния, а также избыток кислорода в пламени. Без применения мер защиты угар цинка составит 5 %, а цинковый дым ядовит для организма человека. Соединения при такой пайкосварке получаются почти равнопрочные с низкоуглеродистой сталью.

Снижение рабочей температуры достигается применением специальных флюсов, например марки ФПСН-1 и ФПСН-2. Флюсом нейтрализуется вредное действие свободного графита. При температуре плавления флюсов 600–650 °C они являются индикаторами начала процесса при пайкосварке, т. е. сигналом для расплавления припоя. Флюс применяют в виде пасты, разведенной водой, или в виде порошка.

Наплавленный металл сразу же после сварки проковывают при температуре 600 °C ручным медным молотком.

Для исправления мелких дефектов на последующих операциях механической обработки применяют также газопорошковую пайкосварку . Исправляемую поверхность нагревают газовой горелкой до 300–400 °C, этой же горелкой напыляют слой порошкообразного сплава, не доведенного до расплавления, на напыленную поверхность наплавляют порошкообразный сплав. Деталь нагревается незначительно, сохраняя окончательные геометрические размеры. Порошковые материалы (например, сплавы НПЧ-1 и НПЧ-2) подают к месту сварки через горелку.

 

Сварка алюминия и его сплавов

Сварка алюминия и его сплавов затруднена тем, что на поверхности расплавленного металла постоянно образуется тугоплавкая пленка оксида алюминия Al2O3, препятствующая сплавлению частиц металла между собой. Высокая температура плавления оксида алюминия (2050 °C) и низкая температура плавления алюминия (658 °C) крайне затрудняют управление процессом сварки. Попадая в шов, окисная пленка образует неметаллические включения, резко снижая показатели прочности и пластичности.

Алюминий при расплавлении не меняет свой цвет, поэтому визуальное наблюдение при сварке за состоянием ванны затруднено, особенно при подогреве, так как в один момент металл стыка может просто провалиться, распасться. Алюминий очень хрупок в нагретом состоянии. При сварке окисную пленку удаляют флюсами, покрытиями электродов и специальными циклическими импульсами на дуге от источников питания.

Следующая трудность – образование пор по причине наличия в шве водорода. Он, вяло выделяясь из ванны, оставляет дефекты в виде пор. Алюминий при сварке склонен к кристаллизационным трещинам. Присутствие в нем железа и кремния сильно влияет на появление трещин в металле шва. Увеличение содержания кремния до 0,6 % снижает стойкость против образования трещин. Железо в шве до 0,7 % положительно влияет на стойкость к образованию трещин. При содержании железа более 0,8 % стойкость к образованию трещин снижается.

К проблемным параметрам алюминия при сварке относятся также высокая теплопроводность – в 3 раза выше, чем у железа, и высокий коэффициент теплового расширения – в 2 раза больше, чем у железа, что способствует увеличению деформаций.

Абсолютное большинство сварных конструкций изготавливается из деформируемых, термически не упрочняемых сплавов алюминия с марганцем (АМц) и с магнием (АМг), а также литейных недеформируемых сплавов алюминия с кремнием (силумин). К таким сплавам относятся: АД, АД-1, АМц, АМг, АМг3, АМг5В, АМг6, АВ, АД33, АД35, Д20, ВАД-1, В92У.

Для прочих сплавов сварка плавлением почти не применяется, так как околошовная зона сильно разупрочняется и невозможно получить прочное соединение. Распространенный сплав алюминия с медью (4–5 % Cu) Д16, Д1, называемый дюралюминием, имеет очень плохую свариваемость и для сварных конструкций не применяется, а соединяется клепкой.

Высокая теплопроводность алюминия и его сплавов требует применения специальных технологических приемов, а при массивных деталях – предварительного подогрева. Алюминий сваривают плавлением и давлением; в первом случае применяется ручная и механизированная сварка в аргоне плавящимся и неплавящимся электродом, покрытыми электродами, газовая.

Независимо от способа сварки алюминиевые изделия перед сваркой должны проходить специальную подготовку, заключающуюся в обезжиривании металла и удалении с его поверхности пленки оксида алюминия. Поверхность металла обезжиривают растворителями (авиационным бензином, техническим ацетоном), затем механической зачисткой или химическим травлением удаляют оксидную пленку.

Химический способ удаления пленки оксида алюминия состоит из следующих операций: травление в течение 0,5–1 мин раствором 45–55 г едкого натра и 40–50 г фтористого натрия на 1 л воды; промывка в проточной воде; нейтрализация в 25–30 %-ном растворе азотной кислоты в течение 1–2 мин; промывка в проточной, а затем в горячей воде; сушка до полного удаления влаги. Обезжиривание и травление рекомендуется делать не более чем за 2–4 ч до сварки.

Ручную электросваркуалюминия используют во многих случаях.

Ручную сварку угольным электродом на постоянном токе прямой полярности используют только для неответственных изделий. Этот способ сварки ранее успешно был внедрен электротехниками для сварки контактов электропроводов. Недостаток: чистый алюминий загрязняется углеродом. Оксидную пленку удаляют с помощью флюса АФ-4А (табл. 39). Сварку ведут на графитовых или угольных подкладках. Электроды графитовые или угольные, ∅ 8–15 мм; сварочный ток – 150–450 А. Флюс наносят на основной и присадочный материал.

Сварку металла толщиной до 2 мм ведут без присадки и без разделки кромок, металл толщиной свыше 2 мм сваривают с зазором 0,5–0,7 толщины свариваемых листов или с разделкой кромок.

Ручную сварку покрытыми электродами применяют в основном при изготовлении малонагруженных конструкций из технического алюминия, сплавов типа АМц и АМг, силумина при толщине материала более 5 мм. Тонкий листовой алюминий (до 3 мм) нужно варить с отбортовкой.

Использование постоянного тока обратной полярности с предварительным подогревом (для средних толщин – 250–300 °C, для больших толщин – до 400 °C) обеспечивает требуемое проплавление при умеренных сварочных токах. В связи с тем, что алюминиевый электрод плавится в 2–3 раза быстрее стального, скорость сварки алюминия должна быть соответственно выше.

Сварку рекомендуется выполнять непрерывно в пределах одного электрода, так как пленка шлака на кратере и конце электрода препятствует повторному зажиганию дуги. Для обеспечения устойчивого процесса при минимальных потерях на разбрызгивание рекомендуется применять сварочный ток из расчета 25–32 А на 1 мм диаметра электрода, но не более 60 А.

Электроды ОЗА-1 предназначены для сварки алюминия АД0, А6, АД1, АД и подобного. Электродный стержень Св-А97 (ГОСТ 7871–75). Предел прочности металла шва 6,5–8,5 кгс/мм2. После сварки шов следует немедленно промыть горячей водой и очистить стальной щеткой от остатков шлака. Покрытие электродов гигроскопично (поглощает влагу из окружающей среды), поэтому электроды перед сваркой просушивают при температуре 200 °C в течение 2 ч.

Для заварки литейных дефектов применяются электроды марки ОЗА-2 с электродным стержнем из кремнистого алюминия АК5 (ГОСТ 7871–75). Электроды ОЗА-2 применяются для наплавки деталей из литейных сплавов марки AЛ-2, АЛ-4, AЛ-5, AЛ-9, АЛ-11, а также для их сварки. При сварке нужно учитывать необходимость любых подкладок (даже формовка размягченным водой асбестом) для удержания расплава алюминия от провала.

Рекомендованные флюсы приведены в табл. 39. Флюс наносится либо в виде порошка, либо в виде пасты, приготовленной на воде или спирте. Разводят флюс в необходимом количестве с учетом его хранения до 6 ч в закрытой таре, чтобы не уменьшить его химическую активность. При применении указанных флюсов для электродных покрытий к ним добавляют до 30 % криолита Na3AlF6.

Основной вид соединения – стыковой, но при механизированной сварке в защитных газах применяют и тавровые, угловые соединения.

Аргонодуговая сварка алюминия. Аргонодуговая сварка алюминия и его сплавов с середины 60-х годов прошлого века является несложной и хорошо разработанной в части технологии сварки задачей. Она обеспечивает наилучшее качество по прочности, внешнему виду, имеет наименьшие технологические сложности. При ручной дуговой сварке применяется неплавящийся вольфрамовый электрод, а при полуавтоматической и автоматической – плавящийся, хотя при автоматической сварке нередко применяют и неплавящийся электрод.

При сварке в аргоне не требуется тщательной подготовки (очистки от окислов) кромок алюминия, сварка выполняется на специальном оборудовании, импульсом тока дуги, от которого разрушается и удаляется окисная пленка. В процессе сварки хорошо видно, как пленка окислов оттесняется в стороны от ванны и вскрывается чистый (как ртуть) серебристый металл, который медленно расплавляется при правильном режиме.

Сварщику необходимо помнить, что алюминий и его сплавы при нагреве сразу переходят из твердой фазы в жидкую, минуя пластическую. Поскольку при нагреве до 400–500 °C алюминий почти полностью теряет прочность, надо следить за тем, чтобы деталь не разрушилась под действием собственной силы тяжести.

Для автоматической сварки алюминиевых сплавов вольфрамовым (неплавящимся) электродом оптимальные режимы указаны в табл. 40. На сварочных полуавтоматах применяется сварочная алюминиевая проволока ∅ 1–2 мм, сварочный ток до 300 А, скорость подачи проволоки – 150–650 м/ч, расход защитного газа (аргона) 300–600 л в час; чем больше скорость сварки, тем больше расход аргона. Сварка вольфрамовым (неплавящимся) электродом выполняется на переменном токе с использованием в сварочной цепи специального осциллятора. Сварка плавящимся электродом проводится на постоянном токе при обратной полярности, сварочный ток – 300–400 А, напряжение на дуге 38–44 В, скорость сварки – 12–20 м/ч. При сварке вольфрамовым электродом на прямой полярности («—» на электроде) стойкость электрода и допустимый предельный ток выше примерно в 7 раз.

Присадочную проволоку ∅ 2,0 мм подают в зону сварки механически, по мере надобности. Подающий механизм по принципу действия – не толкающего, как для стальной проволоки, а тянущего типа.

Ручную аргонодуговую сварку выполняют неплавящимся вольфрамовым электродом в осушенном от влаги аргоне высшего или первого сорта на переменном токе. Для металла толщиной до 5–6 мм используют электроды ∅ 1,5–5,0 миллиметров.

Проволоку и свариваемые кромки обезжиривают ацетоном или бензином, затем счищают окисную пленку стальной щеткой. Зачистка позволяет сохранить алюминий чистым в течение 2 часа.

Сварка выполняется без поперечных колебаний электродом или прутком. Сварку желательно вести на больших скоростях в один слой, чтобы не перегревать металл.

Если толщина свариваемого металла более 8 мм, то алюминий нужно предварительно подогревать до температуры 150–300 °C горелкой – по 80–100 мм с каждой стороны стыка.

Особые требования предъявляются к технике сварки. Угол между присадочной проволокой и электродом должен составлять ~90°. Присадку следует подавать короткими возвратно-поступательными движениями. Недопустимы поперечные колебания вольфрамового электрода. Обеспечение эффективной защиты для каждого режима сварки достигается оптимальным расходом газа (табл. 41). Для уменьшения опасности окисления размеры сварочной ванны должны быть минимальными. Сварку алюминия толщиной до 10 мм обычно ведут левым способом (справа налево), который позволяет снизить перегрев свариваемого металла.

Автоматическая сварка алюминия по флюсу. Особенность сварки алюминия – по флюсу, а не под флюсом – заключается в том, что флюс имеет высокую электропроводность, шунтируется электродугой и дуга горит с видимым ярким свечением.

Применяемый флюс марки АН-А1 имеет следующий состав: хлористый калий (50 %), хлористый натрий (20 %), криолит Na3AlF6 (30 %). Есть и другие марки флюсов, например АН-А4, АН-А6, но их составы отличаются незначительно. Высота слоя флюса – 15–30 мм; сварочная проволока – Св-А97 и Св-АМц ∅ 2–3 мм. Сварку ведут постоянным током при обратной полярности. Сварочный ток – 300–400 А, напряжение на дуге – 38–44 В (т. е. повышенное), скорость сварки – 12–20 м/ч. Алюминий толщиной 4–10 мм варят таким способом без разделки на стальной подкладке.

Газовая сварка алюминия. Одним из наиболее доступных и недорогих способов сварки алюминия и его сплавов является газовая сварка с использованием как ацетилена, так и пропан-бутана. Способ является надежным и незаменимым при отсутствии технических возможностей применить более совершенный способ, например аргонодуговую сварку. По качеству соединения деталей газовая сварка дает удовлетворительные результаты. Однако основным видом соединений при газовой сварке алюминия и его сплавов является стыковое. Выполнять тавровые, угловые и нахлесточные соединения не рекомендуется.

Кромки разделывают механическим способом и за 2 ч до сварки тщательно зачищают. Перед сваркой кромки деталей и присадочную проволоку промывают в течение 10 мин в щелочном растворе, содержащем 20–25 г едкого натра и 20–30 г карбоната натрия на 1 дм3 воды при температуре 65 °C, с последующей промывкой в воде. После этого кромки и присадку протравливают в течение 2 мин в 15 %-ном растворе азотной кислоты, промывают в горячей и холодной воде, а затем сушат.

Сварку проводят с применением флюсов (см. табл. 39), до создания которых газовая сварка алюминия была невыполнимой задачей. Для ответственных сварочных работ, в особенности для тонких металлов, при сварке алюминия и сплавов нужно применять флюсы, содержащие соли лития. Лучшим из них считается флюс АФ-4А. В качестве горючего газа, кроме ацетилена, можно использовать природный газ, пропан-бутановые смеси и водород. Качество соединения в таких случаях получается вполне удовлетворительное.

Флюс наносят в зону сварки различными удобными способами в виде пасты или порошка, прилипающего к разогретому металлу. Находящиеся во флюсе фтористые соединения растворяют окисную пленку Аl2О3 в расплавленной ванне, а хлористые соли лития отнимают кислород у окиси алюминия, и металл становится чистым. Флюсы очень гигроскопичны, поэтому их хранят в герметичной таре. Флюс, разведенный в виде пасты на воде, может храниться не более 10 часов.

Соли лития очень дефицитны и дороги, поэтому делается много попыток создать флюсы, не содержащие лития. Но все безлитиевые флюсы на сегодняшний день не являются полноценными; это всего лишь заменители, дающие более или менее удовлетворительные результаты.

Настоящий флюс содержит от 15 до 30 % солей лития. Проверка его пригодности проводится так: нагревается небольшая зона (точка) горелкой до появления серой шероховатой поверхности (окисления), затем разогрев посыпается флюсом. Если поверхность металла очищается до ртутного блеска, то флюс хороший.

Сварку осуществляют в нижнем положении за один проход с максимально возможной скоростью. Левым способом сваривают детали толщиной до 5 мм, правым – толщиной свыше 5 мм. Сварку плоских конструкций целесообразно выполнять обратноступенчатым методом.

Детали толщиной свыше 10 мм перед сваркой рекомендуется подогреть до температуры 300–350 °C. В качестве присадочного материала используют сварочную проволоку одиннадцати марок (СвАК5, СвАМц, СвАМг3 и др.).

Пламя газовой горелки нормальное, его тепловую мощность выбирают исходя из расхода ацетилена 75 дм3/ч на 1 мм толщины металла. Сварку ведут с расположением мундштука горелки под углом 20–40°, а прутка – под углом 40–60° к плоскости детали. При сварке нужно постоянно помешивать (или щупать – при подогреве) концом прутка ванну. Прочность сварного шва составляет 70–90 % от прочности основного металла. Чтобы флюс не разъедал алюминий, после сварки его удаляют промывкой горячей водой или пятиминутным травлением в 2 %-ном растворе хромовой кислоты при температуре 80 °C. При обнаружении на поверхности белого налета промывку повторяют.

 

Сварка меди и ее сплавов

 

Температура плавления меди – 1083 °C, прочность – 25 кгс/мм2. Ее теплопроводность в 6 раз выше, чем у стали, поэтому при сварке требуется дополнительный нагрев мощным источником теплоты. Медь пластична в холодном состоянии и очень хрупка при больших температурах, теряя одновременно и прочность. Отливки из меди имеют большую пористость и литейную усадку, поэтому литые детали из чистой меди не делают. Расплавленная медь хорошо растворяет газы, выделяя их при затвердевании, и это вызывает пористость.

Нагретая медь легко поглощает водород, порождающий так называемую водородную болезнь меди. Водород проникает на большую глубину и, взаимодействуя с закисью меди, восстанавливает ее по реакции Cu2О + Н2 = 2Сu ++ Н2О. Нерастворимые в меди молекулы воды накапливаются внутри металла в больших количествах, и при кристаллизации возникают или трещины в уже остывших местах, или поры там, где металл еще жидкий. Большое внутреннее давление в порах после охлаждения разрывает металл, образуя множество микротрещин и делая металл непрочным. Для предупреждения этого следует снижать количество водорода в зоне сварки (прокалка электродов и флюсов, применение осушенных защитных газов; особенно хорошо действует азот).

Медь легко окисляется в расплавленном состоянии и образует с кислородом два окисла: закись меди Cu2О и окись меди СuО. Закись меди имеет разную растворимость в жидком и твердом металле и температуру плавления 1064 °C, что ниже температуры плавления самой меди. Это приводит к неметаллическим включениям и снижает теплопроводность.

Более легкоплавкая эвтектика Cu2О + Сu при затвердевании выпадает в последнюю очередь, располагается по границам кристаллов и в итоге приводит к образованию горячих (кристаллизационных) трещин. Качество такого сварного соединения невысокое. Поэтому предельное содержание кислорода в меди должно быть строго ограничено до 0,03 %, а в некоторых ответственных изделиях – до 0,01 %. Наилучшую свариваемость имеет электролитическая медь, содержащая не более 0,05 % примесей. На свариваемость меди также оказывают большое влияние примеси, входящие в ее состав (кислород, висмут, свинец, сера, фосфор, сурьма, мышьяк); особенно отрицательно влияют висмут и свинец.

Высокая теплопроводность меди заставляет применять при сварке высококонцентрированные источники нагрева, а иногда – предварительный и сопутствующий подогрев, так как даже тепла дуги для качественного прогрева металла не хватает. Высокий коэффициент линейного расширения требует принимать особые меры против деформации, в том числе необходимо минимизировать количество прихваток в узле.

Для меди и сплавов на ее основе могут быть использованы все основные способы сварки плавлением, но при этом надо четко представлять все перечисленные ее свойства и особенности поведения. Например, сварка меди газами – заменителями ацетилена не рекомендуется к применению из-за большого количества кислорода в пламени, который насыщает расплавленный металл кислородом, водородом и шлаковыми включениями.

Незначительное количество кислорода присутствует даже в очень чистой меди, но это практически неопасно, так как его молекулы распределяются вдоль волокон металла и слабо влияют на механические свойства меди. Но достаточно нагреть прокат для сварки, как вновь образуются крупные кристаллические зерна металла, по границам которых появляется кислородная эвтектика, снижая механические свойства меди. Восстановить эти свойства можно механической обработкой, т. е. пластическим деформированием в холодном состоянии (проковка, гибка, прокатка и т. п.).

Сварку меди выполняют только в нижнем положении шва следующими видами и способами:

● дуговая сварка угольным и металлическим плавящимся и неплавящимся электродом;

● газовая сварка ацетиленокислородным пламенем; в качестве защитной среды используются флюс, инертный по отношению к меди газ (азот, аргон), а также электродные покрытия.

При дуговой и газовой сварке по причине жидкотекучести и большой теплоотдачи меди применяют графитовые или стальные прокладки.

Ручная дуговая сварка угольным или графитовым электродом находит ограниченное применение преимущественно для малоответственных изделий. Электрод затачивают на конус на ⅓ его длины, сварку ведут постоянным током прямой полярности. Плотность тока на электроде обычно составляет 200–400 А/см2 (табл. 42). Для сварки необходимо напряжение 40–50 В и большая длина дуги во избежание вредного влияния на сварочную ванну выделяющегося СО. С этой же целью, а также в связи с возможностью охлаждения ванны присадочный материал не погружают в ванну, а держат под углом примерно 30° к изделию на расстоянии 5–6 мм от поверхности ванны. Угольный электрод держат под углом 75–90° к свариваемому изделию. Из-за длинной дуги возникает явление магнитного дутья, которое следует нейтрализовать.

Сварка меди угольным электродом при толщине до 3 мм выполняется по отбортовке без присадочного металла. Сварку производят на постоянном токе при прямой полярности и только в нижнем положении. Перед сваркой нужен предварительный подогрев до температуры 250–350 °C.

При толщине металла свыше 5 мм стыковое соединение сваривают с разделкой кромок под углом 70–90°. В качестве присадки применяют медь M1, фосфористую медь (например, МФ8) или кремнистую бронзу (например, БрКМц-3–1) диаметров 2–8 мм. Для защиты расплавленного металла от окисления стоит применять присадочный материал с фосфором, который является активным раскислителем и улучшает качество сварного шва. В качестве флюса применяют буру (95 %) с борным шлаком (5 %), или смесь 94–96 % прокаленной буры с 6–4 % металлического магния, или чистую буру (100 %).

Флюс наносят на смоченную жидким стеклом поверхность прутка или на свариваемые кромки в виде пудры и просушивают на воздухе. Можно и макать нагретый пруток в порошок.

Сварку ведут на графитовой или асбестовой подкладке с зазором между свариваемыми кромками не более 0,5 мм, электрод наклоняют углом вперед на 10–20° к вертикали. После сварки рекомендуется проковка швов.

Ручную дуговую сварку покрытыми электродами выполняют на постоянном токе обратной полярности короткой дугой без поперечных колебаний (табл. 43). Лучшее формирование шва обеспечивает возвратно-поступательное движение электрода. Удлинение дуги ухудшает формирование шва, увеличивает разбрызгивание, снижает механические свойства сварных соединений. Сварку можно выполнять и на переменном токе, но сила тока должна быть в 1,5 раза больше, чем при сварке стали.

Медь толщиной до 4 мм сваривают без разделки кромок и подогрева. При толщине 5–10 мм необходимы предварительный подогрев до температуры 400 °C и односторонняя разделка кромок с углом 60–70° и притуплением кромок 1,5–3 мм. При бóльших толщинах рекомендуется X-образная разделка.

Рекомендуются электроды марок «Комсомолец-100», ОЗЧ-1 и ОЗЧ-2. У них стержень медный, сварочный ток 50 А на 1 мм диаметра электрода, напряжение на дуге 25–30 В. Электроды марок АНЦ-1 и АНЦ-2 обеспечивают выполнение сварки без подогрева меди толщиной до 15 мм или с невысоким (250–400 °C) подогревом для металла бóльших толщин. Медные электроды диаметром менее 3 мм применяют редко вследствие низкой механической прочности стержня.

Ручную аргонодуговую сварку выполняют вольфрамовым электродом постоянным током прямой полярности в аргоне высокой чистоты, а также в среде гелия, азота или их смеси и водорода. Металл толщиной более 4 мм сваривают с предварительным подогревом до температуры 800 °C. В качестве присадки используют прутки из раскаленной меди, медно-никелевого сплава (МНЖКТ-5–1–0,2–0,02), бронзы (БрКМцЗ-1, БрОЦ4–3), а также специальных сплавов, содержащих эффективные раскислители – редкоземельные металлы. Для металла толщиной свыше 5–6 мм применяют V– или Х-образную разделку кромок с углом раскрытия 60–70°.

Сварку ведут обычно справа налево при наклоне электрода по отношению к изделию углом вперед на 80–90°, угол наклона присадочной проволоки – 10–15°, вылет электрода – 5–7 мм. Ток постоянный, прямая полярность, сварочный ток – 400–900 А в зависимости от толщины металла. Диаметр вольфрамового электрода – 2,4–4,8 мм; присадочная проволока – 2–6 мм; расход аргона или азота – 3–8 л/мин.

Автоматическаясварка меди. Автоматическая сварка меди выполняется угольным электродом под флюсом толщиной 4–6 мм. Режим: ток постоянный, прямая полярность, сварочный ток – 750–1000 А, напряжение дуги – 18–24 В, скорость сварки – 16–22 м/ч. В свариваемый стык вкладывают полоску латуни ЛT-80, флюс ОСЦ-45.

Автоматическая сварка меди металлическим электродом и флюсом – ток постоянный, обратная полярность. Электродная проволока – медь M1, М2; флюсы: АН-20, АН-348Л, ОСЦ-45; сварочный ток – 100 А на 1 мм диаметра электрода, напряжение на дуге – 38–40 В, скорость сварки – 15–25 м/ч. Бóльшие толщины меди целесообразно варить двухэлектродной сваркой в одну ванну.

Газовая сварка меди. Газовая сварка меди выполняется только ацетиленокислородным пламенем строго нормального соотношения газов. Тепловую мощность пламени выбирают в зависимости от толщины свариваемых деталей:

● до 4 мм – исходя из расхода ацетилена 150–175 дм3/ч на 1 мм толщины металла;

● при толщине 4–10 мм – 175–225 дм3/ч.

Если толщина меди превышает 10 мм, сварку проводят двумя горелками: первая осуществляет подогрев, вторая – непосредственно сварку. Пламя должно быть «мягким» (с минимально возможной длиной ядра).

В качестве присадки применяют медные прутки и проволоку по ГОСТ 16130–90 марок: M1, МСР1, МНЖ5–1, МНЖКТ5–1–0,2–0,2 и др. Температура плавления присадочной проволоки должна быть ниже температуры плавления основного металла. Если для присадки используется чистая медь, то во флюс вводят фосфористую медь. Диаметр присадочной проволоки должен составлять 0,5–0,75 толщины металла, но не более 8 миллиметров.

В качестве флюса применяют в основном чистую буру (100 %) или буру пополам с борной кислотой. Вообще есть до десятка рецептов флюсов для сварки меди (табл. 44), но все они изготавливаются из окислов и солей бора и натрия. Флюс применяют в виде порошка или пасты, замешанной на спирте.

Шов заполняется в один слой. Сварку проводят как левым, так и правым способом с максимальной скоростью, без перерыва и за один проход. Для компенсации потерь теплоты вследствие ее отвода в основной металл применяют предварительный и сопутствующий подогрев свариваемых кромок. Сварку выполняют на асбестовой подкладке.

После сварки металла толщиной до 4 мм шов проковывают в холодном состоянии, при большей толщине – при нагреве до температуры 550–600 °C с охлаждением в воде.

 

Сварка латуни

Латунь – это сплав меди с легко испаряемым цинком. Все способы сварки и наплавки латуни имеют определенные трудности именно из-за бурного испарения цинка и образования множества пор разных размеров.

Температура плавления цинка – 420 °C, а кипения – 907 °C, что близко к температуре плавления латуни. Испаряясь, цинк быстро окисляется в тугоплавкую пылевидную окись цинка, которая очень ядовита. Предельно допустимая концентрация цинка в воздухе – 0,001 мг/л, поэтому сваривать латунь необходимо под вытяжными устройствами и в респираторе.

Оптимальные результаты для сварки латуни дает газовая сварка заменителями ацетилена. Формирование шва хорошее, шлак легко отделяется от поверхности шва. Сварочная ванна спокойная, как и у меди, жидкотекучая. Вид пламени – окислительное, препятствующее выгоранию цинка из-за наличия оксидной пленки на поверхности свариваемого металла. Расход ацетилена – 100–120 дм3/ч на 1 мм толщины металла.

Изделия толщиной до 1 мм сваривают с отбортовкой кромок, 1–5 мм – с отторцованными кромками, 6–15 мм – с V-образной разделкой кромок, 15–25 мм – с Х-образной разделкой. Кромки должны быть зачищены до металлического блеска. Возможно их травление 10 %-ным раствором азотной кислоты, после чего детали промывают горячей водой и насухо протирают ветошью.

Сварку проводят с максимально возможной скоростью левым способом в нижнем или слегка наклонном (до 15°) положении шва с применением тех же флюсов, что и для меди (см. табл. 44), и присадочных проволок, легированных кремнием, бором, алюминием (Л63, ЛК62–0,5), или самофлюсующейся присадочной проволоки ЛКБ062–0,2–0,04–0,5. Конец ядра пламени располагают на расстоянии 7–10 мм от свариваемой поверхности. Конец присадочной проволоки должен постоянно находиться в зоне сварочного пламени, которое направляют на проволоку. Ее держат под углом 90° к мундштуку.

После сварки швы подвергают проковке. Латуни, содержащие более 40 % цинка, проковывают при температуре выше 650 °C, а менее 40 % – в холодном состоянии. Затем проводят отжиг изделия при температуре 600–650 °C.

Электродуговая сварка. Латунь успешно сваривают угольной дугой, присадка и флюсы – те же, что и при газовой сварке. Режимы сварки такие же, как и для сварки меди.

Существуют способы сварки латуни металлическим плавящимся электродом, но из-за токсичности расплава латуни и технологических сложностей электроды с покрытием не выпускаются. Можно также выполнять сварку неплавящимся (вольфрамовым) электродом в аргоне, электроконтактную сварку и сварку под флюсом.

 

Сварка бронзы

Обычно под бронзой понимают сплав меди с оловом в качестве основного легирующего компонента. Но к бронзам также относят медные сплавы с алюминием, кремнием, бериллием, свинцом и другими элементами, за исключением цинка (это латунь) и никеля (это мельхиор). Как правило, в любой бронзе в незначительных количествах присутствуют добавки: цинк, свинец, фосфор и др. Такие включения и обусловливают проблемы со сваркой бронзовых деталей, а именно выгорание олова и цинка, высокая жидкотекучесть бронзы и порообразование.

Температура плавления бронзы – 950–1080 °C. Сварка бронзы в основном применяется для исправления дефектных отливок из бронзы, ремонта деталей и наплавки. Бронзы с большим содержанием алюминия почти не поддаются сварке обычными приемами. Например, бронзу марки БрАЖ9–4 невозможно сварить из-за тугоплавкой двуокиси алюминия.

Электросварка . Бронзу сваривают угольным, металлическим электродами, в среде аргона – вольфрамовым электродом по технологии, аналогичной сварке меди. Сварку бронзы нужно вести быстро, ограничивая нагрев основного металла и размеры ванны, ускоряя охлаждение и затвердевание ванны. В качестве присадки используют прутки из фосфористой бронзы. Флюсы и подогрев при сварке угольной дугой не обязательны.

Хорошие результаты дает сварка металлическим электродом – литым бронзовым стержнем.

Газовая сварка бронзы выполняется с предварительным подогревом до 450 °C, присадочные прутки ∅ 5–8 мм, близкие по химическому составу к свариваемому материалу. Бронзы очень жидкотекучие, поэтому их сваривают только в нижнем положении шва. При температуре 550–650 °C бронзовые детали становятся чрезвычайно хрупкими и малопрочными. Газовое пламя сварочной горелки строго нормальное. Его тепловую мощность выбирают исходя из расхода ацетилена 70–120 дм3/ч на 1 мм толщины металла. Пламя «мягкое», без перегрева жидкой ванны.

Сварку проводят с применением тех же флюсов и присадочных материалов, которые используют при сварке меди. Работа ведется преимущественно левым способом в нижнем положении на подкладных элементах из асбеста или графита. Конец ядра пламени располагают на расстоянии 7–10 мм от поверхности свариваемого металла. При сварке следует перемешивать сварочную ванну присадочным прутком, периодически добавляя флюс в жидкий металл.

Для получения соединений алюминиевых и кремнистых бронз газовая сварка используется редко. Они лучше свариваются аргонодуговым способом.

После сварки литых деталей из оловянной или малокремниевой бронзы их отжигают при температуре 450–500 °C и охлаждают в воде.

Сварной шов проковывают при сварке только прокатной, но не литой бронзы. Газовая сварка бронз дает прочность 75–90 % от прочности основного металла.

 

Сварка свинца

Свинец отличается малой теплопроводностью и низкой температурой плавления (327 °C) с образованием тугоплавкого оксида РbО (температура плавления 850 °C). При сварке изделие должно иметь наклон не более 10–15°. Наиболее рационально нижнее положение. Рекомендуется использовать формирующиеся пластины-прокладки. Кромки деталей предварительно обезжиривают бензином и зачищают до металлического блеска на ширину 20–30 миллиметров.

Электродуговая сварка свинца может производиться с помощью угольного или вольфрамового электрода в среде инертных газов при постоянном токе прямой полярности (табл. 45). Электроды во время сварки располагают перпендикулярно детали или под углом 10° в направлении сварки.

При газовой сварке свинца применяют газы – заменители ацетилена: пропан-бутан, водород, природный и городской газы, пары бензина и керосина.

Наибольшее распространение получили нахлесточные и стыковые соединения. Листы толщиной до 1,5 мм сваривают встык без применения присадочного металла с отбортовкой кромок. Перед сваркой кромки тщательно зачищают до металлического блеска на ширину не менее 30 мм с обеих сторон шва. Детали толщиной до 6 мм сваривают встык без разделки кромок, а большей толщины – с разделкой под углом 30–35° с каждой стороны. Мощность сварочного пламени выбирают из расчета 15–20 дм3/ч ацетилена на 1 мм толщины свариваемого металла.

Сварку свинца можно выполнять левым способом в любом пространственном положении. Присадочным материалом являются полоски свинца или свинцовая проволока. Наконечник горелки должен быть наклонен к поверхности свариваемого металла под углом 45°. Для удаления оксидной пленки рекомендуется применять флюс, состоящий из равных частей канифоли и стеарина. Чтобы предотвратить протекание металла при сварке свинца, используют подкладки.

 

Сварка никеля и его сплавов

Эти материалы обладают высокой жаростойкостью и жаропрочностью, они устойчивы к действию коррозии. Основные трудности при сварке никеля и его сплавов – высокая склонность к образованию пор и кристаллизационных трещин, связанная с резким изменением растворимости кислорода, азота и водорода при переходе металла из твердого в жидкое состояние. Поэтому технология сварки должна обеспечивать надежную защиту зоны сварки от атмосферного воздуха, хорошее раскисление сварочной ванны и ее дегазацию.

Эффективная мера предотвращения пористости – сварка короткой дугой (до 1,5 мм), при которой резко уменьшается подсос газов из атмосферы, предварительный прогрев материала до 300 °C и охлаждение на воздухе. Для преодоления высокой склонности металла к образованию кристаллизационных трещин ограничивают содержание вредных примесей и вводят элементы, связывающие серу в более тугоплавкие соединения (до 5 % Мn и до 0,1 % Mg).

Для ограничения роста зерна сварку ведут на ограниченной погонной энергии и вводят в металл шва в небольшом количестве модификаторы (титан, алюминий, молибден), измельчающие его структуру.

Детали толщиной до 5 мм сваривают без разделки кромок, толщиной 6–12 мм – с V-образной разделкой, толщиной более 12 мм – с Х-образной разделкой. Угол раскрытия разделки – 60–70°, притупление – 2–4 мм. Перед сваркой кромки деталей обезжиривают ацетоном и зачищают до металлического блеска. Для формирования обратной стороны шва используют формирующие прокладки из меди или подушки из флюса.

Ручную дуговую сварку применяют для листов толщиной свыше 1,5 мм и выполняют электродами с основным покрытием на постоянном токе обратной полярности. Для предупреждения перегрева электрода и снижения напряжений в сварном соединении при сварке используют ток, пониженный по сравнению с током для сварки стали (табл. 46).

Сварку по возможности необходимо вести в нижнем положении со скоростью примерно на 15 % меньше скорости сварки сталей. Поперечные колебания электрода не должны превышать трех диаметров электрода. При смене электрода или случайных обрывах дуги ее возбуждают, отступая на 5–6 мм от кратера назад на зачищенном от шлака шве. Рекомендуется вести сварку за один проход, зазор между кромками должен быть 2–3 мм. При больших толщинах, когда многопроходная сварка неизбежна, рекомендуется сваривать после остывания соединения и тщательной очистки предыдущего слоя от шлака и брызг.

Для сварки никеля используют электроды, изготовленные из никелевой проволоки НП1 (Н-10, Н-37, «Прогресс-50» и др.). Для сварки никеля и медно-никелевых сплавов используют электроды с покрытием УОНИИ-13/45. Для сварки хромоникелевых (ХН78Т) сплавов используют электроды ЦТ-28, а для сплавов типа ХН80ТБЮ – электроды ИМЕТ-4, ИМЕТ-7, ИМЕТ-4П, ВЧ-2–6. Для снятия напряжений после сварки рекомендуется термообработка.

Ручную аргонодуговую сварку проводят постоянным током прямой полярности при надежной защите сварочной ванны от окисления струей аргона. Предупреждение пористости при этом способе достигается добавкой к аргону до 20 % водорода и использованием проволоки с добавками титана, алюминия, ниобия, которые связывают газы. Швы рекомендуется накладывать с минимальными поперечными колебаниями электрода, угол наклона горелки к оси шва должен быть 45–60°, вылет вольфрамового электрода 12–15 мм, присадочный материал подают под углом 20–30° к оси шва. Многослойное соединение выполняют после полного охлаждения металла, зачистки и обезжиривания предыдущих швов. Защита аргоном рекомендуется также со стороны подкладки.

Хорошие результаты дает полуавтоматическая сварка плавящимсяэлектродом в среде аргона на постоянном токе обратной полярности.

 

Сварка титана и его сплавов

Титан обладает высокой прочностью до температур 450–500 °C при малой плотности, высокой коррозионной стойкостью. Технический титан содержит примеси, в том числе газы – кислород, азот и водород, которые в различной степени повышают прочность и снижают пластичность и вязкость металла. В сварных швах они вызывают образование холодных трещин.

Особенности сварки титана – необходимость надежной защиты зоны сварки и обратной стороны корня шва от вредного воздействия атмосферного воздуха, обеспечения в процессе сварки минимального времени нагрева свариваемых деталей. Дополнительные затруднения при сварке создает большая склонность титана к росту зерна при нагреве до температур выше 880 °C и парообразование.

Качество сварных соединений во многом определяется технологией подготовки кромок деталей и титановой проволоки под сварку. Оксидно-нитридную пленку, которая образуется после горячей обработки полуфабрикатов, удаляют с помощью механической обработки и последующего травления металла в течение 5–10 мин при 60 °C в смеси 350 мл соляной кислоты, 50 г фтористого натрия и 650 мл воды.

Ручную сварку вольфрамовым электродом выполняют постоянным током прямой полярности с использованием специальных приспособлений, позволяющих защитить зону сварки, остывающие участки шва и околошовную зону, а также корень шва. Защиту корня шва можно осуществить плотным поджатием кромок свариваемых деталей к медной или стальной подкладке, подачей инертного газа в подкладку с отверстиями или изготовленную из пористого материала.

Сварку ведут без колебательных движений горелки, на короткой дуге, углом вперед. Угол между электродом и присадочным материалом поддерживают в пределах 90°, подачу присадочной проволоки осуществляют непрерывно. После окончания сварки или обрыва дуги аргон должен подаваться до тех пор, пока металл не остынет примерно до 400 °C.

Ориентировочные режимы ручной дуговой сварки титана вольфрамовым электродом приведены в табл. 47.

Для титана и его сплавов толщиной 0,5–2,0 мм применяют ручную и механизированную импульсно-дуговую сварку неплавящимся электродом. Сварку выполняют импульсами постоянного тока прямой полярности.

 

Особенности MIG/MAG-сварки различных материалов

Нелегированные и низколегированные стали. Такие стали хорошо свариваются сваркой MAG в среде газовых смесей М1, М2, М3 или в среде чистого CO2. Исключение составляют высокоуглеродистые марки с содержанием углерода около 0,45 %. Из-за сильного провара металл шва при смешивании получает относительно много углерода, что угрожает возникновением горячих трещин. Средством против этого могут служить любые способы, уменьшающие провар: низкие значения силы тока, сваривание с несколько опережающим протеканием металла шва и т. п.

Порообразование у нелегированных и низколегированных сталей происходит большей частью из-за азота. Он может выделяться во время перемешивания при сварке сталей с высоким содержанием азота, например нитрированных сталей. Однако большей частью азот проникает из воздуха вследствие негерметичности колокола защитного газа. Надежную защиту обеспечивают правильно заданное количество защитного газа, а также отсутствие завихрений в потоке защитного газа, вызываемых, например, брызгами, попавшими в сопло, или нестабильностью процесса. Диоксид углерода менее восприимчив к этому виду порообразования, чем газовые смеси. У смесей восприимчивость снижается с увеличением доли СО2.

Высоколегированныестали и никелевые сплавы. В качестве защитного газа для высоколегированных сталей используются смеси аргона и кислорода с содержанием кислорода 1–5 % или аргон с содержанием СО2 до 2,5 %. При сваривании антикоррозионных сталей серьезной проблемой являются оксидные пленки, остающиеся на шве и рядом с ним после сваривания. Их следует полностью удалить с помощью щетки, облучения либо травления до того, как изделие пойдет в эксплуатацию, так как они снижают антикоррозионную защиту.

Смеси с содержанием углекислоты в этом отношении несколько лучше смесей с содержанием кислорода. Однако доля диоксида углерода в защитном газе не должна быть слишком большой, так как разлагающийся в дуге газ ведет к насыщению металла шва углеродом и, как следствие, к снижению антикоррозионной защиты. Максимально допустимое содержание СО2–5 %.

При сваривании антикоррозионных сталей следует избегать любого перегрева, так оно может привести к охрупчиванию и снижению антикоррозионной защиты из-за выделения карбида хрома. Поэтому процесс ввода тепла должен постоянно контролироваться, кроме того, следует делать паузы, чтобы изделие могло остыть. Для материалов группы полноаустенитных сталей рекомендована «холодная» сварка для предотвращения появления горячих трещин. Так как аустенитные стали не становятся хрупкими под воздействием водорода, для повышения мощности (увеличения скорости сваривания) к аргону можно примешать водород, но не более 7 % из-за возможности порообразования. Двухслойные стали, обладающие двойной структурой из аустенита и феррита, напротив, больше тяготеют к образованию трещин под воздействием углерода. Никелевые сплавы технологией MIG свариваются, как правило, в среде аргона. У чистого никеля и некоторых сплавов небольшие добавки водорода могут снизить поверхностные напряжения и улучшить этим рисунок шва.

Алюминийи его сплавы. Как правило, в качестве защитного газа при сварке MIG алюминиевых материалов используется аргон. Из-за высокой теплопроводности алюминия особенно эффективны в этом случае добавки гелия, который улучшает теплопроводность и содержание тепла в атмосфере защитного газа. Это ведет к более глубокому и широкому провару.

Если глубокий провар не нужен, например при сваривании тонких листов, процесс сварки при той же форме провара можно вести быстрее. Из-за высокой теплопроводности алюминия изделия с более толстым сечением можно предварительно нагревать. Это не только обеспечивает надежность провара, но и снижает риск порообразования, так как металл шва имеет больше времени для дегазации при застывании. При использовании защитных газов с содержанием гелия – его доля составляет обычно 25 или 50 % – предварительное нагревание можно сократить, а при более тонких стенках от него можно и совсем отказаться. Благодаря этому высокая цена газов, содержащих гелий, частично оправдывается.

Особенность MIG-сварки алюминия в том, что она проводится под действием постоянного тока обратной полярности.

При сварке MIG сложностей с удалением тугоплавкой оксидной пленки на сварочной ванне нет: на горелку c электродом подключается «—», а на деталь – «+». Это обеспечивает разрушение поверхностного слоя алюминия (происходит так называемая катодная очистка) и плавление детали. Необходимо помнить, что этот метод будет эффективным только в случае небольшой толщины защитной пленки. Так что в любом случае рекомендуется непосредственно перед свариванием удалить пленку с помощью скребка или щетки, так как пленка гигроскопична и из нее в металл шва может проникнуть водород.

Водород – это единственная причина порообразования при MIG-сварке алюминиевых материалов. В жидком состоянии алюминий обладает относительно высокой способностью растворять водород, а в твердом алюминии этот газ практически не растворяется. Поэтому, если порообразование недопустимо, весь водород, проникший в металл при сварке, должен быть удален до застывания. Это не всегда возможно, прежде всего у изделий большой толщины. Поэтому в толстых изделиях из алюминия невозможно добиться швов, совершенно не имеющих пор.

Алюминиево-магниевый сплав и силумины склонны к образованию при сварке горячих трещин, если содержание кремния составляет примерно 1 %, а содержание магния – около 2 %. Этой области легирования следует избегать с помощью соответствующей присадки. Чаще всего проволочный электрод, чье легирование на один уровень выше, чем легирование сплава изделия, лучше, чем электрод с таким же легированием.

MIG-сварка алюминия может проводиться в разных пространственных положениях детали. Если сварка выполняется в вертикальном положении, то горелку нужно двигать сверху вниз. Это обязательное правило, в противном случае шов не удастся. Сопло должно быть направлено несколько вверх. Вертикальные изделия нужно сваривать быстро, чтобы расплавленный металл не успевал стекать вниз.

Режимы полуавтоматической сварки плавящимся электродом алюминия в аргоне для металла толщиной 3 мм: диаметр электрода – 0,8 мм, сварочный ток – 120–145 А, скорость подачи проволоки – 900 м/ч, скорость сварки – 30 м/ч, расход аргона – 15–17 л/мин.

Прочие материалы. Кроме вышеназванных материалов, достаточно часто сваркой MIG свариваются также медь и медные сплавы. Из-за высокой теплопроводности чистая медь должна быть предварительно сильно нагрета во избежание дефектов сцепления.

Металл шва из бронзовой проволоки, например из алюминиевой или оловянной бронзы, обладает хорошими антифрикционными свойствами. Поэтому он используется для наплавки на поверхности скольжения. При таких работах на железных материалах провар должен поддерживаться небольшим с помощью соответствующих мер, так как железо обладает лишь незначительной растворимостью в меди. Оно включается в металл шва в виде шариков и снижает эксплуатационные характеристики. Схожие условия действуют и при пайке MIG. Эта технология используется, например, для соединения оцинкованных листов в автомобилестроении. В качестве присадки используются проволочные электроды из кремнистой или оловянной бронзы. Благодаря низкой точке плавления этих бронз снижается испарение цинка. Возникает меньше пор, а защитное цинковое покрытие сохраняется и рядом со швом, и на обратной стороне. Здесь тоже следует избегать проникания провара в стальной материал, а сцепление должно осуществляться, как и при высокотемпературной пайке, исключительно благодаря силам диффузии и адгезии. Это достигается правильной настройкой сварочных параметров и особенным положением горелки, благодаря которому дуга горит только на жидкой сварочной ванне.